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For flexible aircraft, it is often required to control individual aeroelastic modes which are
lightly damped or even unstable. In order to achieve a maximum controller performance, a
large number of measurements and control surfaces is required, which in turn complicates
controller design. Blending control inputs and measurement outputs, individual aeroelastic
modes can be isolated efficiently and hence controlled by a single input single output
controller. In this paper, a novel approach is presented for designing H2-optimal blending
vectors for the control of individual aeroelastic modes. An efficient algorithm is derived to
jointly compute the interdependent input and output blending vectors, where an explicit
mode decoupling can be considered. The effectiveness of the proposed approach is proven
by designing a gust load alleviation system for a flexible aircraft with distributed flaps and
measurements.

I. Introduction

In order to improve aircraft performance, structural weight reduction and aerodynamically efficient high
aspect ratio wings play a key role.1 This, however, typically leads to a reduced separation between rigid body
and flexible modes as well as an increased sensitivity to gust encounters.2 To counteract these adverse effects,
active control can be used by feeding back multiple measurements to available control surfaces. Increasing
the number of measurements or multifunctional control surfaces allows improving aircraft performance,3 but
also leads to new challenges in the design and certification of the flight control system.4

In general, a reasonable control design requires a thorough modeling of the underlying physical system.5

For an aeroelastic system, this includes the description of complex effects like the coupling of unsteady
aerodynamics with structural dynamics leading to models with a large number of highly coupled states.6

For the control of the described adverse effects, however, typically only few aeroelastic modes need to be
considered while the residual modes should not be affected.

Generalizing the described control problem, the objective is to control few out of a large number of modes
by feeding back multiple measurements outputs to multiple control inputs. In order to solve this control
problem, observer based methods may be used, where a prior model order reduction is recommended or even
necessary for controller synthesis.5 In the case of a large number of measurements, this can be avoided by
blending the measurement signals in a way such that the resulting virtual output represents the response of a
single mode. Similarly, a virtual input can be generated which allows an explicit control of a single mode. As
a result, single input and single output (SISO) systems are derived which isolate the modes of interest and
enable the design of SISO controllers.

In order to achieve the desired mode isolation, appropriate blending vectors need to be designed. As the
input and output blending vectors can not be designed independent of each other, an iterative procedure
is proposed, for instance, in Ref. 7. In the given algorithm, denoted as “modal isolation and damping for
adaptive aeroservoelastic suppression” (MIDAAS), the input and output blending vectors are computed
by different methods and directly provide a static gain feedback controller. Another iterative approach is
presented in Ref. 8, where the inputs and outputs are blended in order to allow a SISO notch filter design for
suppressing individual modes. Apart from this, a SISO controller design may also be enabled by diagonalizing
a multiple inputs and multiple outputs (MIMO) system such that individual inputs allow to control individual
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outputs. Respective algorithms as summarized, for instance, in Ref. 9 do not necessarily require an iterative
procedure but also do not allow an explicit consideration of the controllability and observability of individual
modes.

In this paper, a novel approach is presented for the joint design of input and output blending vectors
which maximize the controllability and observability of a single mode in terms of the H2 norm. Taking into
account also an explicit decoupling of modes, independent SISO controllers can then be designed for each
mode to be controlled. The proposed modal control approach is described in Section II, where a special focus
is put on the scaling of inputs and outputs. For the joint computation of the interdependent input and output
blending vectors, an unconstrained optimization problem in a single variable is derived in Section III which
can be solved efficiently. Eventually, the effectiveness of the proposed approach is demonstrated by designing
a gust load alleviation (GLA) controller for large flexible transport aircraft in Section IV.

II. Modal Control

In this section, the general concept of using virtual inputs and outputs for modal control is presented.
The proposed approach allows controlling individual modes by means of SISO controllers independent of the
number of inputs, outputs or states of the underlying dynamic system.

A. Modal Decomposition

A linear time-invariant (LTI) system with nu inputs, ny outputs and nx states can be described by the
transfer function matrix

G(s) = C (sI −A)
−1

B +D, (1)

where A ∈ R
nx×nx ,B ∈ R

nx×nu ,C ∈ R
ny×nx ,D ∈ R

ny×nu and s denoting the Laplace variable. Assuming
that A is diagonalizable, a modal decomposition of G(s) is possible such that

G(s) =

ni∑

i=1

Mi(s) +D, (2)

where the individual modes i = 1, ..., ni are given as

Mi(s) =







Rpi

s− pi
if ℑ(pi) = 0

Rpi

s− pi
+

Rpi

s− pi
otherwise.

(3)

According to Equation (3), a mode i is either described by a single real pole pi with an imaginary part
ℑ(pi) = 0 or a conjugate complex pole pair pi and pi . Hence, the number of modes ni does not necessarily
equal the number of states nx as conjugate complex pole pairs are considered as single modes. Each pole pi
is associated with a residue Rpi

= cTpi
bpi

∈ C
ny×nu , where bpi

∈ C
nu and cpi

∈ C
ny are the pole input and

output vectors, respectively. For a real pole, the corresponding pole vectors and residue are also real and for
a conjugate complex pole pair the pole vectors and residues are also conjugate complex.

Furthermore, the natural frequency of a mode is given as

ωn = |pi| (4)

and for ωn 6= 0, the corresponding relative damping is

ζ = −ℜ(pi)/ωn. (5)

Note that for a conjugate complex pole pair, the corresponding real parts ℜ(pi) = ℜ(pi) and magnitudes
|pi| = |pi | are equal. For more information on modal decomposition and the properties of individual modes
see, for instance, Ref. 5.
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Figure 1: Closed-loop interconnection of the plant G(s) with the controller K(s)

B. Modal Control using Virtual Inputs and Outputs

The task of controlling a single mode of a high order dynamic system G(s) can quickly become challenging
when the number of control inputs or measurement outputs is increased. In order to reduce the complexity of
the control problem, it is proposed to generate a virtual control input vu,j and a virtual measurement output
vy,j to isolate the modes Mj (s), j = 1, .., nj to be controlled, where {Mj (s)} ⊆ {Mi(s)}. To that end, the
input and output signals of the plant are blended using the blending vectors ku,j ∈ R

nu and ky,j ∈ R
ny . This

allows a decoupling of modes which enables to design SISO controllers cj(s) for each mode to be controlled.
Furthermore, the blending vectors can be seen as directional filters depending rather on the shape but not
frequency of the targeted mode and thus, a great robustness against frequency variations can be achieved.

The resulting feedback interconnection is depicted in Figure 1, where the controller

K(s) = KuC(s)KT
y , (6)

with the SISO controllers listed on the diagonal of

C(s) = diag
(
c1 (s), · · · , cnj

(s)
)

(7)

and the blending vectors summarized in

Ku =
[

ku,1 · · · ku,nj

]

(8)

Ky =
[

ky,1 · · · ky,nj

]

. (9)

C. Scaling

For a proper blending vector design, an appropriate scaling is crucial as different signals with possibly different
physical units are united in a single one. To that end, it has to be distinguished between the scaling of the
plant’s inputs and outputs and the scaling of the virtual inputs and outputs generated for modal control.
For the plant inputs and outputs, it is proposed to group the respective signals according to their physical
unit and to scale them in groups. This allows for normalizing different physical units among each other
while maintaining the relative importance of individual signals. For the virtual input and output signals, a
normalization of the magnitudes is recommended in order to support the subsequent SISO controller design.

Considering the proposed scalings, the blending vectors defined in Section II.B can be split up into

ku,j = Λuk
∗
u,jλu,j (10)

ky,j = Λyk
∗
y,jλy,j , (11)

where the diagonal matrices Λu ∈ R
nu×nu and Λy ∈ R

ny×ny scale the inputs and outputs of the plant and
the scaling factors λu,j ∈ R and λy,j ∈ R are introduced to normalize the virtual input and output signals.
The actual optimal input and output blending vectors k∗

u,j ∈ R
nu and k∗

y,j ∈ R
ny are considered to be of

unit length and derived in Section III.



D. Summary of the Proposed Controller Design Procedure

The proposed controller design procedure for modal control can be divided into three main parts as depicted
in Figure 2. First, a modal decomposition is carried out and the modes to be controlled are selected. Second,
input and output blending vectors are designed for each selected mode and, as a result, dedicated virtual
inputs and outputs are generated. Note that for a proper blending vector design, it is proposed to scale all
inputs and outputs as described in the previous section. Finally, SISO controllers are designed for each mode
to be controlled, where the individual controllers may be designed simultaneously or in a sequential way. For
the latter, each SISO loop is closed before the next SISO controller is designed. Note that due to a limited
number of control inputs and measurement outputs, a perfect mode decoupling may not always be possible.
In that case, the modal decomposition may be repeated after closing a SISO loop which is indicated by the
dashed arrow in Figure 2.

Figure 2: Proposed Controller Design Procedure

III. Optimal Blending of Inputs and Outputs for Modal Control

For the design of the input and output blending vectors, two main objectives are considered in this paper.
On the one hand, a sufficient mode decoupling has to be achieved in order to enable the proposed SISO
controller design. On the other hand, a maximum controllability and observability of the targeted mode is
desired. As controllability and observability can not be regarded independent of each other, a joint design of
the respective input and output blending vectors is required. In the following, an appropriate optimization
problem is formulated and a procedure for solving it is derived.

A. Problem Statement

In this paper, the combined controllability and observability of an asymptotically stable modeM(s) ∈ {Mj (s)}
is quantified in terms of the H2 norm. By blending control inputs and measurement outputs with real-valued
unit vectors ku and ky , this measure can not be increased but is rather decreased. This loss of controllability
and observability can be quantified by the efficiency factor

η =

∥
∥kT

y M(s)ku

∥
∥
H2

‖M(s)‖H2

, (12)

where η ∈ [0 1] when ‖M(s)‖H2
is finite, which is the case since M(s) is assumed to be asymptotically stable

and strictly proper. Based on that, a pair of input and output blending vectors is considered as H2-optimal
when the efficiency factor η is maximized. The resulting optimization problem can hence be formulated as

maximize
ku∈Rnu ,ky∈R

ny

∥
∥kT

y M(s)ku

∥
∥
H2

subject to ‖ku‖2 = 1

‖ky‖2 = 1.

(13)

In the following Section III.B, preliminaries are described which support the derivation of an efficient solution
procedure for (13) given in Section III.C. In order to consider also the desired mode decoupling, additional
optimization constraints are proposed in Section III.D and eventually, a solution of the overall optimization
problem is summarized in Section III.E.



B. Preliminaries

1. H2 norm of a first or second order SISO system

The optimization problem (13) requires to maximize the H2 norm of the asymptotically stable SISO system

m(s) = kT
y M (s)ku , (14)

which has a maximum order of two. For this special type of LTI system, it can be shown that

‖m(s)‖H2
= |m(iωn)|

√

ζωn, (15)

where ωn and ζ are the natural frequency and the relative damping of a single mode as defined in Section II.A.
Note that in Equation (15), the complex variable i =

√
−1 is not to be confused with the subscript i defined

in Section II.A to index individual modes. As the term
√
ζωn in Equation (15) is independent of the actual

blending vectors, the original problem of maximizing the H2 norm in (13) can be turned into a problem of
maximizing the magnitude of the complex scalar z = m(iωn).

2. Magnitude of a complex scalar

The magnitude of a complex scalar z 6= 0 with a phase angle φ∗ = arg z can be computed by rotating z onto
the positive real axis in the complex plane. As it is illustrated in Figure 3, the clockwise rotation of z by an
angle φ ∈ R, described as

z̃(φ) =
(
ℜ(z) + iℑ(z)

)
(cosφ− i sinφ)

= ℜ(z) cosφ+ ℑ(z) sinφ
︸ ︷︷ ︸

ℜ(z̃(φ))

+i
(
ℑ(z) cosφ−ℜ(z) sinφ

)

︸ ︷︷ ︸

ℑ(z̃(φ))

, (16)

which results in ℜ(z̃) = |z| and ℑ(z̃) = 0 iff φ = φ∗. Based on that, the magnitude of z can be computed by

|z| = max
φ

ℜ
(
z̃(φ)

)
= max

φ

(
ℜ(z) cosφ+ ℑ(z) sinφ

)
, (17)

where the real part of z̃(φ) is maximized for φ = φ∗.
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Figure 3: Determination of the magnitude of the complex scalar z by rotating it onto the
positive real axis.

C. Computation of H2-optimal Blending Vectors

In the following, an equivalent to the optimization problem (13) is derived which allows for an efficient
computation of the H2-optimal blending vectors by taking into account the preliminaries of Section III.B.

To begin with, Equation (17) is taken and z = kT
y M(jωn)ku is inserted. Factoring out the real-valued

blending vectors ky and ku leads to

|kT
y M(jωn)ku | = max

φ

(
kT
y

(
ℜ(M(jωn)) cosφ+ ℑ(M(jωn)) sinφ

)
ku

)

= max
φ

(
kT
y F(φ)ku

)
,

(18)



where F(φ) : R → R
ny×nu is defined as

F(φ) = ℜ(M(jωn)) cosφ+ ℑ(M(jωn)) sinφ. (19)

Recalling that the actual goal is to find a maximum of Equation (18) gives

max
ku ,ky

∣
∣kT

y M(jωn)ku

∣
∣ = max

ku ,ky

max
φ

(
kT
y F(φ)ku

)

= max
φ

max
ku ,ky

(
kT
y F(φ)ku

)
.

(20)

In Equation (20), the term

max
ku ,ky

(
kT
y F(φ)ku

)
= ‖F(φ)‖2 = σmax (21)

can be directly computed for a given value of φ by applying a singular value decomposition (SVD) on

F(φ) = UΣV T =
[

ky,max •
]
[

σmax 0

0 •

]
[

ku,max •
]T

, (22)

where the placeholder • denotes a matrix of adequate size. In Equation (22), both U ∈ R
ny×ny and

V ∈ R
nu×nu are orthogonal matrices which are real-valued as F(φ) is also real-valued. Furthermore,

Σ ∈ R
ny×nu is a rectangular diagonal matrix with the singular values of F(φ) in descending order on its

diagonal. Selecting only the largest singular value σmax ∈ R≥0, the corresponding input and output singular
vectors ku,max ∈ R

nu and ky,max ∈ R
ny directly yield the input and output blending vectors which solve

Equation (21) for a given value of φ.
Finally, inserting Equation (21) into Equation (20), an equivalent to optimization problem (13) can be

derived as

max
ku ,ky

∥
∥kT

y M(s)ku

∥
∥
H2

⇔ max
φ

‖F(φ)‖2 , (23)

where ku ∈ R
nu and ky ∈ R

ny are constrained by ‖ku‖2 = 1 and ‖ky‖2 = 1 while φ ∈ R is unconstrained.
Solving the unconstrained optimization problem in Equation (23) yields an optimal phase angle for which the
H2-optimal blending vectors can be directly determined according to Equation (22). Hence, the number of
optimization variables is reduced from nu + ny to a single one, or, in other words, the difficulty of finding a
solution of (13) becomes independent of the actual number of inputs and outputs.

D. Mode Decoupling

So far, H2-optimal blending vectors are derived which maximize the controllability and observability of the
targeted mode. For mode decoupling, however, it is additionally desired that the resulting virtual inputs and
outputs prevent an excitation or measurement of certain residual modes. This can be achieved by enforcing
the input and output blending vectors to be orthogonal on the pole input and output vectors of the respective
residual modes. For a complex-valued pole vector, this means that orthogonality is enforced on both the real
and imaginary part as the blending vectors are real-valued. Collecting the real and imaginary parts of the
respective pole input and output vectors as row vectors in the matrices Qu and Qy , the original optimization
problem (13) can be augmented as

maximize
ku∈Rnu ,ky∈R

ny

∥
∥kT

y M(s)ku

∥
∥
H2

subject to ‖ku‖2 = 1

‖ky‖2 = 1

Quku = 0

Qyky = 0,

(24)

where the constraints Quku = 0 and Qyky = 0 enforce the desired mode decoupling. For the blending vectors
ku and ky , this means that they are restricted to the null space of Qu and Qy . If one of the null spaces is



empty, meaning that Qu or Qy has full rank, the augmented optimization problem (24) is infeasible. This
also implies that for a finite number of inputs and outputs, the number of residual modes which can be made
uncontrollable or unobservable is limited. Note, however, that for mode decoupling it may be sufficient to
make the respective residual modes either uncontrollable or unobservable but not both.

In order to solve the augmented optimization problem (24), the original optimization variables ku and ky

are substituted by

ku = Nu k̃u (25)

ky = Ny k̃y , (26)

where Nu and Ny denote an orthonormal basis of the null space of Qu and Qy , respectively. With the

vectors k̃u and k̃y as new optimization variables, the equivalent optimization problem (23) can be turned into

max
k̃u ,k̃y

∥
∥
∥k̃

T
y N

T
y Mj (s)Nu k̃u

∥
∥
∥
H2

⇔ max
φ

∥
∥NT

y F(φ)Nu

∥
∥
2
, (27)

since the real-valued matrices Nu and Ny act as unitary linear transformations preserving the inner product.

This means that if k̃u and k̃u are real-valued unit vectors, ku and ku are also real-valued unit vectors. Solving
the equivalent optimization problem (27) for φ, solutions for k̃u and k̃y can be determined by the SVD in
Equation (22) directly yielding the H2-optimal blending vectors when multiplied with Nu and Ny .

It has to be noted, however, that the additional mode decoupling constraints typically decreases the
maximum achievable H2 norm in the optimization problem (24). Hence, a trade-off between the decoupling
of individual modes and the attainable controllability and observability of the mode to be controlled is usually
required.

Furthermore, it has to be noted that the described procedure for mode decoupling may also be used to
eliminate a non-zero feedthrough matrix D 6= 0. For this purpose, the right or left singular vectors of D only
need to be added to Qu or Qy , respectively.

E. Summary of the Proposed Algorithm

Summing up the findings of Section III.C and III.D, the augmented optimization problem (24) including the
constraints for mode decoupling can be efficiently solved by first finding an optimal phase angle

φ∗ = argmax
φ∈R

∥
∥NT

y F(φ)Nu

∥
∥
2
, (28)

where F(φ) is defined in Equation (19) and the null spaces Nu and Ny for mode decoupling are defined in
Section III.D. Due to the given periodicity of F(φ), the search for an optimal phase angle may be restricted
to an interval of size π, for instance φ ∈ [0, π[. Note that if the pole and hence residue of the underlying mode
is real-valued, the optimal blending vectors can be computed without any optimization by carrying out an
SVD on the corresponding residue Rpi

.
After determining the optimal phase angle φ∗, the corresponding H2-optimal input and output blending

vectors k∗
u = Nu k̃

∗
u and k∗

y = Ny k̃
∗
y can be derived by means of an SVD of

F(φ∗) = UΣV T =
[

k̃∗
y •

]
[

σ∗
max 0

0 •

]
[

k̃∗
u •

]T

, (29)

where σ∗
max = ‖F(φ∗)‖2 =

∥
∥NT

y F(φ∗)Nu

∥
∥
2
is the optimal value of the objective function of Equation (28).

Note that the optimal phase angle and the resulting optimal blending vectors are not necessarily unique.
This can be shown at the example when the real and imaginary part of M(jωn) have equal singular values
but orthogonal singular vectors.



IV. Application: Gust Load Alleviation

For the evaluation of the effectiveness of the proposed control approach, a GLA system is designed for a
flexible aircraft with distributed flaps and measurements. To that end, the nonlinear aeroelastic aircraft model
of industrial complexity is linearized and a modal decomposition is carried out. After selecting the aeroelastic
modes that should be controlled, corresponding input and output blending vectors are designed, where an
explicit decoupling from modes like the short period motion is considered. Subsequently, independent SISO
controllers are designed in order to increase the relative damping of the selected aeroelastic modes. Eventually,
the performance of the resulting GLA system is evaluated in terms of the reduction of the wing root bending
moment (WRBM) during gust encounters.

A. Flexible Aircraft Modeling

The flexible aircraft used in this paper is modeled according to Ref. 10 and is a derivative of the one used
in Ref. 11. The aeroelastic model interconnects a finite element model of the airframe with a model of the
unsteady aerodynamics. The unsteady aerodynamics model is computed in frequency domain by means of the
doublet lattice method12 and transformed to time domain using Roger’s rational function approximation.13

For the gust input, the aircraft is divided into 30 zones in the direction of flight and a Padé approximation is
used to model the time delay for each zone. As control surfaces, a pair of elevators and 9 equally distributed
trailing edge flaps on each wing are modeled as illustrated in Figure 4. The actuators for each control surface
are approximated by a second order Butterworth low pass filter with a cutoff frequency of ωc = 40 rad/s.
Eventually, the resulting structural loads are recovered by the force summation method described in Ref. 6.
For more details on aeroelastic modeling see also Refs. 10, 12,14.

Figure 4: Distributed trailing edge flaps (red) and sensor locations (blue) on the wing.

The response of the flexible aircraft is captured by 11 distributed inertial measurement units (IMUs),
where 2 IMUs are placed on the tips of the horizontal tail plane (HTP), 3 IMUs are placed on each wing
and 3 IMUs are placed along the fuselage. Each of the IMU measures the rotational rates and translational
accelerations in three spatial directions.

Furthermore, only symmetric excitations are taken into account, meaning that the gust encounter, the
measurement signals and the control surface deflections are assumed to be equal on the left and right hand
side of the aircraft. This allows discarding all non-symmetric structural modes leading to a longitudinal
aircraft model with a reduced number of inputs, outputs and states.

For the proposed control approach, the nonlinear aircraft model is linearized around steady horizontal
flight at Ma = 0.86 and h = 9108m, where the phugoid mode is truncated as it is outside the frequency
range of interest for GLA. The resulting LTI system is of order 264 and has 1 vertical gust and 10 control
surface inputs. As outputs, besides the 66 measurement signals from the distributed IMUs, also the WRBM
is computed to evaluate the efficiency of the GLA system.

B. Modal Decomposition and Mode Selection

Taking the LTI model described in the previous section, a modal decomposition is carried out with the
aeroelastic modes in the frequency range of interest listed in Table 1. As it is typical for highly flexible
aeroelastic systems, all modes besides the short period mode (rigid body) are very lightly damped and the
distances between the respective frequencies are small.

In order to allow a systematic selection of the modes to be controlled, their respective dominance needs to
be quantified. To that end, M̃i(s) is defined as the transfer function of a single mode i from the vertical gust
input to the WRBM output, or in general terms, from the disturbance inputs to the performance outputs.

Based on that, the dominance of each mode can be quantified by
∥
∥
∥M̃i(s)

∥
∥
∥
H2

, where the H2 norm is used in



a similar manner as for the evaluation of the combined controllability and observability in Section III.A. For
the given aeroelastic modes, the first and second wing bending mode are the most dominant ones according
to the last column in Table 1. For the purpose of GLA, it is hence desired to increase the damping of the
two modes, where it is worth to mention that the short period mode is already controlled by the flight
control system. Note that the respective modal dominances can also be recognized in the open-loop frequency
response depicted in Figure 7 in Section IV.E.

Table 1: Symmetric aeroelastic modes in the frequency range of interest

i mode name natural frequency relative damping normalized dominance

ωn,i (rad/s) ζi (-)
∥
∥
∥M̃i(s)

∥
∥
∥
H2

1 short period 1.6 0.42 0.167

2 first wing bending 10.9 0.12 1.000

3 first wing torsion 15.6 0.03 0.033

4 first engine 18.4 0.03 0.019

5 first wing inplane 21.9 0.03 0.067

6 second wing bending 25.2 0.05 0.175

7 first HTP bending 34.4 0.05 0.038

C. Blending of Inputs and Outputs

As described, the goal of the GLA system is to increase the relative damping of the first and second wing
bending mode. In order to maintain handling qualities, however, it is required that the short period mode is
not affected by the GLA system. To that end, the input and output blending vectors are designed such that
the short period mode is explicitly made unobservable and uncontrollable.

Furthermore, it should be ensured that the wing torsion, the HTP bending and the engine mode listed in
Table 1 are not excited while increasing the damping of the two wing bending modes. This means that it is
sufficient to either make the three modes uncontrollable by the virtual inputs or unobservable by the virtual
outputs. For the latter, the maximum achievable H2 norm (13) is considerably larger because the number of
available measurements is much larger than the number of available control surfaces. For this reason, the
three modes are only made unobservable by the virtual outputs, degrading the combined controllability and
observability of the first and second wing bending mode only slightly. Note that the wing inplane mode at
21.9 rad/s is not taken into account during blending vector design as its controllability and observability is
small anyways.

To allow for an independent SISO controller design for the two wing bending modes, the corresponding
virtual inputs and outputs also need to be decoupled. For this purpose, the input and output blending vectors
associated to one mode are enforced to be orthogonal on the input and output pole vectors of the other mode
and vice versa.

The overall achieved decoupling can be reviewed by the frequency response depicted in Figure 5. It can
be seen that the virtual input of one mode is hardly measurable by the virtual output of the other mode,
which is actually required for an independent SISO controller design. The peaks at the natural frequencies of
the first and second wing bending mode indicate a good controllability and observability of the respective
modes while the contribution of other nearby modes is negligibly small. In addition to that, the achieved
decoupling can also be examined in terms of invariant zeros placed at the location of the poles which should
not be excited as it is illustrated in Figure 6 in Section IV.E.

D. SISO Controller Design

After blending inputs and outputs, independent proportional integral (PI) controllers are designed for the
first and second wing bending mode. The respective gains are tuned by hand with the goal to minimize the
WRBM during gust encounter while satisfying actuator limitations and robustness requirements. For the
gust encounter, both are considered a discrete “1-cos” gust excitation and a stochastic gust excitation based
on a Dryden filter. The control surface deflections are limited by ±20◦ and the deflection rates are limited by
±60 ◦/s. In order to achieve the desired robustness, classical gain and phase margins of at least 6 dB and 45◦
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Figure 5: Normalized frequency response from virtual inputs to virtual outputs to control the
first and second wing bending mode 1stWB and 2ndWB.

are required, where the individual loops are cut open at the virtual as well as real inputs and outputs of the
underlying system.

E. Results

Closing the individual SISO loops, the poles of the aeroelastic system are shifted as depicted in Figure 6. It
can be seen that the relative damping of the first and second wing bending mode is increased by a factor of
more than 2.5 while the other poles are not or only marginally displaced. The effect of increasing the modal
damping on the WRBM is illustrated by the frequency response depicted in Figure 7, where the low frequency
range covering the short period mode is hardly affected by the GLA system. Considering a stochastic gust
excitation modeled by a Dryden filter,15 the expected mean value of the resulting WRBM is reduced by
17%. For the critical discrete gust excitation,16,17 the peaks of the WRBM are even reduced by 23% and
additionally, undesired oscillations are effectively suppressed as depicted in Figure 8a. At the same time, the
rigid body motions are hardly affected as it can be seen in Figure 8b and Figure 8c. Hence, the proposed
control design procedure based on blending of inputs and outputs provides a great potential for the control of
aeroelastic systems.

V. Conclusions

In order to facilitate the control design for individual aeroelastic modes, a new approach for blending
control inputs and measurement outputs is presented in this paper. To that end, the H2 norm is introduced
as a joint measure of the controllability and observability of a single mode subject to be maximized. The
resulting optimization problem is augmented by constraints for mode decoupling, where the required trade-off
can be adjusted by the control designer. An efficient algorithm is derived which allows the joint computation
of the interdependent input and output blending vectors by solving an unconstrained optimization problem
in a single variable.

The effectiveness of the proposed algorithm is evaluated by designing a GLA system for a flexible aircraft
with distributed flaps and measurements. To that end, the aeroelastic modes which have the highest impact on
the structural loads, represented by the WRBM, are identified in a systematic way. Subsequently, dedicated
virtual inputs and outputs are generated using the proposed blending approach, where an excellent decoupling
from rigid body motions is achieved. Furthermore, the low frequency modes of the engine, the wing torsion
and the HTP bending are explicitly made unobservable in order to avoid an undesired excitation. By designing
a simple PI controller for each selected aeroelastic mode, the respective damping is increased leading to
reduction of the maximum WRBM of 23% for the critical gust excitation.
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