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Structural optimization with a flutter constraint for a vehicle designed to fly in the transonic regime is a

particularly difficult task. In this speed range, the flutter boundary is very sensitive to aerodynamic nonlinear-

ities, typically requiring high-fidelity Navier-Stokes simulations. However, the repeated application of unsteady

computational fluid dynamics to guide an aeroelastic optimization process is very computationally expensive.

This expense has motivated the development of methods that incorporate aspects of the aerodynamic nonlin-

earity, classical tools of flutter analysis, and more recent methods of optimization. While it is possible to use

doublet lattice method aerodynamics, this paper focuses on the use of an unsteady high-fidelity aerodynamic

reduced order model combined with successive transformations that allows for an economical way of utiliz-

ing high-fidelity aerodynamics in the optimization process. This approach is applied to the common research

model wing structural design. The high-fidelity aerodynamics produces a heavier wing than that optimized

with doublet lattice aerodynamics. It is found that the optimized lower wing skin thickness distribution using

high-fidelity aerodynamics differs significantly from that using doublet lattice aerodynamics.

Nomenclature

Variables

C coefficient matrix of dimension N✒Ne

D damping matrix

F nodal force vector, N

g generalized displacement vector, m

G generalized force vector, N

H�s✝ frequency domain aerodynamic influence coefficient (AIC) matrix of

dimension N✒N, m

Im✒Q✘ imaginary part of the frequency domain gAIC

k reduced frequency, k � ωLR➞U➍

K stiffness matrix, N➞m

LR reference length

M mass matrix, kg

N number of node points

Nr number of retained modes
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Ne number of modes in the expanded set, Ne ✬ Nr

q➍ dynamic pressure, N➞m
2

Q�s✝ frequency domain generalized aerodynamic influence coefficient (gAIC)

matrix of dimension Ne✒Ne, m

p nondimensional Laplace variable, p � sLR➞U➍

Re✒p✘ real part of the nondimensional Laplace variable

Re✒Q✘ real part of the frequency domain gAIC

s dimensional Laplace variable, s � ζ ω ✑ iω , s
✍1

U➍ freestream velocity, m➞s

UEAS freestream equivalent air speed, m➞s

x vector of displacements, m

η minimum modal flutter damping

λn n
th

chosen root in the Roger approximation of the generalized AIC matrix

ω undamped natural frequency of structure, rad➞sec

ω f frequency of flutter, rad➞sec

Ω diagonalized matrix of free vibration frequencies of the structure, rad➞sec

ζ true damping, ζ � 1➞2π✒ln�an✑1➞an✝✘, where an is the n
th

oscillation peak

Superscripts

˜ Laplace transform

➌ chosen optimization constants

Subscripts

b baseline

m modified

I. Introduction

Aeroelastic optimization of flexible wing structures typically seeks to minimize structural weight and/or fuel burn,

with constraints placed upon various flight metrics. Of these constraints, the aeroelastic flutter margin is particularly

critical, due to the abrupt, damaging, and sensitive nature of this failure mechanism, and also because a large fraction of

the structural weight is typically allocated to satisfying the flutter constraint [1]. For transonic applications, the flutter

boundary is very sensitive to aerodynamic nonlinearities, typically requiring high-fidelity Navier-Stokes simulations

for its accurate prediction [2]. At the same time, flutter simulations based on computational fluid dynamics (CFD) are

very computationally expensive, and somewhat incompatible to the high volume of function evaluations required for

structural and aeroelastic optimization in an unsteady flowfield.

Aeroelastic optimization using Reynolds-averaged Navier-Stokes (RANS) CFD, nevertheless, is desirable since

flowfield nonlinearity can have a significant effect on the optimized structure. With the progress in computing power,

this approach to performing at least static aeroelastic optimization seems feasible for some cases, as attested to by

recent published results [3–11]. In addition, there have been recent investigations into optimization of shape or aero-

elastic properties using the adjoint method with the time-domain [12–15] or frequency-domain [16] Euler or Reynolds-

averaged Navier-Stokes equations. In all of those time or frequency-domain studies, the configurations have either

been two-dimensional or simple three-dimensional wings.

Given the complexity of industrial flight configurations and the growing recognition of the amount of grid reso-

lution required for solution accuracy, flutter- or gust-based optimization of a structure (or of a coupled aerodynamics,

structure and control system) driven by the unsteady Reynolds-averaged Navier-Stokes (URANS) equations, still

seems to be years away from routine use. This limitation encourages finding other means to incorporate high-fidelity
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aerodynamics into a structural optimization when constrained by a required flutter onset margin.

Obviously, there has always been a motivation to understand and develop effective methods of including flutter

constraints during structural optimization [17, 18]. Haftka and Yates [19] pioneered the development of a flutter

constrained optimization method, using the low fidelity aerodynamic tools available at that time. More recent studies

have addressed the problem of optimization with a flutter or gust load constraint [14, 20–26], but still used simplified

aerodynamics such as Euler CFD, doublet lattice, unsteady panel, or strip theory aerodynamics.

Linear unsteady aerodynamic tools exist that can compute an offline database of aerodynamic coefficients for

a given planform [27–29]. As these coefficients are not functions of structural design variables, they may be used

across the entire aeroelastic optimization process for an efficient handling of the flutter margin constraint. Linear

flutter constraint boundaries are nonconservative (i.e., they overpredict the flutter dynamic pressure), and so a variety

of tools exist to correct the unsteady aerodynamics, either based on CFD or wind tunnel data [30]. Overset-field panel

methods have also been developed via oscillatory linearizations about a steady CFD result, interpolated onto a linear

panel mesh [31]; the final result is a database of offline transonic aerodynamic coefficients, which as before, is highly

amenable to aeroelastic optimization. Chen, et al. [32] have developed a method of transforming unsteady pressure

coefficients from a baseline to a modified set of modes using a linearization of data from a nonlinear transonic small

disturbance code.

In this paper, a somewhat simpler and possibly less expensive formulation than that in Ref. 32 is developed to

transform unsteady aerodynamic data to an updated structural model. This method provides an economical way to

generate a CFD-based flutter margin. The unsteady data is derived by using aeroelastic system identification tools [33]

to output a generalized aerodynamic influence coefficient (gAIC) matrix. The Roger approximation [34] of either

the URANS or doublet lattice method (DLM) aerodynamics are combined with the equations of structural dynamics

to obtain flutter predictions at select Mach numbers. Ostensibly, the Roger approximation is only useful for the

structure whose mode shapes (eigenvectors) were used for structural perturbations to generate the CFD-based unsteady

aerodynamics. Methods exist, however, to project the Roger approximation terms from the baseline modal space into

a modified modal space, making the technique well-suited for aeroelastic optimization, where the mode shapes will

change from one design iteration to the next.

II. Aerodynamic Relationship between the Baseline and Modified Structures

The present goal is to drive a structural model from a baseline configuration toward a modified optimal structure

under a flutter constraint utilizing CFD-based unsteady aerodynamics. It has been reported that under certain condi-

tions the influence of the derivatives of the mode shapes on the generalized aerodynamic force is negligible. In this

case, the terms carrying the influence of mode shape change on the gAIC can be neglected and the optimization is

influenced mostly by natural frequency of the optimized structure [20, 22]. In the present case where high-fidelity

CFD at transonic flight conditions is used, it is unclear whether the effect of a mode shape change on the gAIC will

be insignificant. Thus, a more general approach is likely to be needed. In the approach used here, the high-fidelity

unsteady aerodynamics of the baseline model is used to derive the gAIC matrix of the modified structure. This is done

via a projection of the modified modes onto the baseline modal basis vectors.

Neglecting the structural damping, the equations of structural dynamics for the baseline structural model can be

written

Mbẍ✑Kbx � Fb . (1)

The unknown x�t✝ is the vector of dynamic displacement increments and Fb�t✝ is the vector of aerodynamic forcing

increments at N node points, both from a steady-state equilibrium. A Laplace transformation yields

✒s
2
Mb✑Kb✘x̃�s✝ � F̃b�s✝ . (2)
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These equations are diagonalized with the mass normalized eigenvectors Φb, such that Φ
T
b MbΦb � I , Φ

T
b KbΦb � Ω

2
b

and x �Φbg. Thus,

✒s
2
I✑Ω

2
b✘g̃�s✝ �Φ

T
b F̃b � G̃b . (3)

There is a unique solution g̃b to this problem everywhere the left hand side is invertable. Note that functional depen-

dence of g̃ and G̃ on s will be implied but left out from here on.

The optimization proceeds to a modified structural model with eigenvectors Φm, such that Φ
T
mMmΦm � I,

Φ
T
mKmΦm � Ω

2
m and x � Φmg and finally to an expression similar to equation 3. From this point forward, a uni-

fied notation will be used in which the subscript γ is either b for baseline or m for modified model. With this notation,

the aerodynamic forcing of the structure can be written

F̃γ�s✝ � q➍H�s✝x̃�s✝γ , γ � �b,m✝ . (4)

Since the AIC matrix H�s✝ is node dependent only, and absent large geometric changes, the same nodal AIC matrix

will apply to the baseline and modified structures [19, 32].

Write equation 4 in generalized coordinates

G̃γ �Φ
T
γ F̃γ � q➍Φ

T
γ H�s✝Φγ g̃γ � q➍Qγ�s✝g̃γ (5)

where Qγ is the gAIC matrix. A relationship between the gAIC of the baseline and modified structures is required. An

orthogonal basis can be used such as that obtained by an application of the Gram-Schmidt procedure [35, 36] to the

baseline modes. On the other hand, it is sometimes advantageous to use a nonorthogonal basis, for example, the use

of linear normal modes as bases for a nonlinear structure [37–40]. In the present case, the modified structure mode

shapes can be expressed in terms of the eigenvectors of the baseline undamped structure using

Φγ �ΦbCγ . (6)

Cγ is a matrix of constant coefficients where Cb � I for the baseline structure and Cm ❥ I for the modified structure.

See also equation 3 of Ref. 32. Substituting equation 6 into equation 5 yields

G̃γ � q➍C
T
γ Φ

T
b HΦbCγ g̃γ � q➍C

T
γ QbCγ g̃γ , γ � �b,m✝ , (7)

which reveals that

Qγ�s✝ �C
T
γ Qb�s✝Cγ . (8)

Equation 8 provides a means to calculate the gAIC of the modified structure from the baseline structure gAIC.

To calculate C, Ref. 32 starts from equation 6 and uses a least-squares solution given by

Cγ � �Φ
T
b Φb✝✍1

Φ
T
b Φγ . (9)

One can also compute the inverse of Φb if it is square, or pseudo-inverse otherwise, to get

Cγ �Φ
✍1
b Φγ . (10)

An alternate approach is to use equation 6, the orthogonality of the baseline mode shapes with respect to the baseline

mass matrix, and mass normalization of the baseline modal vectors to get

Cγ �Φ
T
b MbΦγ . (11)

The most efficient method of computing Cγ can be determined on a case by case basis.
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When performing CFD-based flutter or system identification, the mode shapes of the structure at structural nodes

must be projected onto the surface of the CFD model. In this context, it is important to note that in each case the

modal displacement at the structural model nodes are used in equations 9- 11 rather than that projected to the CFD

surface. Thus, the modified mode shapes do not need to be projected onto the CFD surface and likewise a repeated

CFD analysis of the modified structure is not required. This simplification results in a significant reduction in the

computation required.

For a complete baseline eigenvector basis, the representation of the modified modes will be exact. For a model

with N degrees of freedom, but with only Nr modes retained (typically Nr ✽ N), the modified modes calculated by

equation 6 will be approximate. To improve the accuracy requires the use of an enriched basis set to calculate Cm. It is

possible to get a reduced set of modes Φm that is exact by using all N basis vectors (Φb) in calculating the coefficient

matrix Cm, which in this case will have dimensions N✒Nr. From a practical standpoint, a few additional modes used

to calculate Qm can result in increased accuracy. One can partition the baseline gAIC Qb into an Nr ✒Nr submatrix

designated by subcript rr and additional submatrices re, er and ee (ee submatrix having dimensions �Ne✍Nr✝✒�Ne✍

Nr✝) to get

Qb � ✗�Qb✝rr �Qb✝er�Qb✝re �Qb✝ee

✢ . (12)

The addition of a few modes beyond Nr may result in somewhat better accuracy in the retained modes without a large

increase in the system identification of the Ne mode responses. In this case Cm will have dimensions N✒Ne.

A way to assess the adequacy of the Ne modes is to do a cross correlation of the approximated modified modes

(Φ
➡

m) using equation 6 and the exact modified modes (Φm)

β � �Φ
➡T
m Φm✝➞�Φ

T
mΦm✝ (13)

where an exact representation will give β � 1.

III. Flutter Equation and Optimization Method

The aerodynamic stiffness, damping, mass and wake induced lag effect are introduced by the Roger rational

function approximation [34], which are transformed into the nondimensional Laplace variable p � sLR➞U➍

Qb�p✝g̃ � ✒A0b✑ pA1b✑ p
2
A2b✑

Nlags

❂
n�1

pEnb➞�p✍λn✝✘g̃ (14)

where Nlags is the number of lag states with root λn for lag n. These equations embody the unsteady aerodynamics

which can be supplied by the DLM or URANS equations. The flutter equations (which now include a damping term)

are written

✒U
2
➍

L2
R

Mγ p
2
✑

U➍

LR
Dγ p✑Kγ ✍ r̃✘g̃ � 0 (15)

where

Mγ � I✍q➍C
T
γ A2bCγ , Dγ � 2ζγ Ωγ ✍q➍C

T
γ A1bCγ

Kγ �Ω
2
γ ✍q➍C

T
γ A0bCγ , r̃ � q➍

Nlags

❂
n�1

C
T
γ pEnbCγ➞�p✍λn✝✘ .

(16)

These equations are reformulated in state-space form, and the migration of the system’s Laplacian eigenvalues,

as a function of dynamic pressure q➍ (or more commonly, equivalent air speed UEAS), are simply computed with the
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p-method [41]. The Laplacian may be expanded as p � η ✑ i � k; an η value greater than zero indicates an unstable

system, and η is equal to zero at the flutter point. Rather than actually locate these flutter points, a method more

amenable to the gradient-based optimization used here is discussed by Hajela [42] and Ringertz [18], where the traces

of η as a function of UEAS must be below some bounding curve. This method allows the flutter mechanism to change

identity during the optimization process, while still maintaining a smooth design space. Specifically:

η ✫

⑦❸❸❸❶❸❸❸⑨
η
➌
� �3 �U➌

�U
2
EAS ✍2 �U

3
EAS✝➞�U➌✝3

, 0 ✫UEAS ✫U
➌

c � �UEAS ✍U
➌✝2

✍η
➌

, UEAS ✪U
➌

(17)

where U
➌

is the minimum allowable flutter equivalent air speed, typically based on a 20% margin, η
➌

is the requisite

damping at this flutter margin, and c is a quadratic scaling parameter. If η
➌

is set to 0, the method of Ringertz [18]

is recovered. Critical UEAS points (local minima) of the inequality in Eq. 17 are computed and lumped together into a

single aggregate constraint via the Kreisselmeier-Steinhauser (KS) function [43].

For the gradient-based optimization exercises discussed below, the derivative of critical points in Eq. 17 with

respect to various structural sizing design variables must be computed analytically. The eigenvalue derivatives are

simply computed using methods in Ref. 44 via a fixed-mode approximation, where the derivative of the mode shapes

(Φm) with respect to design variables is neglected for the purposes of gradient computations.

During the optimization process (discussed in detail below), the numerical optimizer will continually update the

structural details of the wing. At a given design iteration, the mode shapes of the current structure are designated Φm.

The baseline mass matrix Mb, mode shapes Φb, and gAIC matrix Qb are all constant and read from disk at the start of

the procedure, and the procedures outlined above are used to compute the gAIC of the current structural iterate, Qγ .

The analytical derivatives of these baseline terms (Mb, Φb, Qb) with respect to the modified structural layout design

variables are exactly zero. Derivatives of Qγ are approximated to be zero via the fixed-mode approximation discussed

above.

IV. Results

As an example, consider the undeflected common research model (uCRM). The uCRM is a jig shape of the 1g

wing shape model developed in Ref. 45. The uCRM is a generic transport configuration with a standard rib/spar wing-

box. The layout of the rib/spar wingbox is shown in Figure 1. Figure 2 presents the DLM aerodynamic panels used

in this study. This structure and aerodynamic panel layout has been used in previous static aeroelastic optimization

studies [7]. This model and a version with a higher aspect ratio, is being analyzed by the NASA Performance Adap-

tive Aeroelastic Wing (PAAW) research project for a cruise condition at Mach 0.85. Dynamic aeroelastic optimization

studies with the uCRM have been performed elsewhere, which included flutter optimization using DLM aerodynam-

ics [24]. A similar optimization will be performed here, but with the URANS aerodynamics solved with the high-

fidelity Navier-Stokes solver FUN3D v12.8. The Navier-Stokes code FUN3D (fully unstructured three-dimensional

Navier-Stokes) is a finite volume unstructured CFD code for compressible flows [46, 47]. FUN3D solves the steady

and unsteady Reynolds-averaged Navier-Stokes (URANS) flow equations loosely coupled with the Spalart-Allmaras

turbulence model [48] on a tetrahedral mesh. The surface triangulation of this mesh is shown in Figure 3. System

identification of the aerodynamic response to a perturbation of each mode is performed in the manner addressed in

Ref. 33. The perturbation is a Gaussian pulse, which produces the generalized aerodynamic force response. A fast

Fourier transform is applied to the time histories to produce the gAIC.
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Fig. 1 uCRM wing-box structure from Ref. 7.

Fig. 2 uCRM DLM panels from Ref. 24.

A. Retained and Exanded Mode Sets

Before discussing the flutter calculations, the influence of the number of modes in the expanded set in comparision

to the retained number of modes will be investigated here. The cross correlation (Eq. 13) provides a metric to assess

the adequacy of the expanded mode set chosen. The structural model has a complete set of 56242 nodes resulting

in a large set of eigenvectors, whereas the expanded and retained mode sets are significantly smaller than this. Two

sets of retained modes are constructed. One set has 20 retained modes (Nr � 20) and the other has 25 retained modes

(Nr � 25). The first set (Nr � 20) is constructed using no expansion of the mode set, i.e. Ne � 20. The correlation

measure is found in the second column of Table 1. The correlation measure for the case in which Nr � 25 while

being constructed from a set with Ne � 100 is found in the third column of Table 1. The remaining column gives the

correlation measure for Nr � 20 and Ne � 25. When Nr � Ne � 20, there is a marked drop off in the accuracy of the last

8-9 modes. Retaining a much larger expanded set (Ne � 100) results in much better accuracy in all the modes, while
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Fig. 3 uCRM surface mesh for URANS calculation.

in the case in which Nr � 20 and Ne � 25, there is some improvement in all the modes, and especially in modes 15-20.

B. Flutter Onset

Since the target cruise condition is Mach 0.85, attention to potential nonlinear transonic effects such as shock

motion and shock separation is important to identifying flutter onset. Transonic nonlinearity can reduce the flutter onset

dynamic pressure in a Mach range typically just below Mach 1. In the present configuration, nonlinear transonic effects

are clearly evident at Mach 0.85. To see this effect, flutter simulations have been performed with DLM aerodynamics

and URANS aerodynamics at Mach 0.70 and 0.85. The evolution of the modal flutter damping with increase in

atmospheric density and speed are shown for the two Mach numbers in Figures 4 and 5.

Using DLM aerodynamics, the onset of instability is generally around the same density at Mach 0.70 and 0.85.

Using a URANS analysis, however, the onset of aeroelastic instability is clearly much lower at Mach 0.85. The

significant difference between flutter onset using DLM and URANS aerodynamic models at Mach 0.85 motivates the

present work. URANS flutter calculations using the method outlined in Sec. II will accurately provide flutter onset,

while the approach of Sec. III will be used to optimize the structure under the flutter onset constraint.

C. Approximating the Flutter Onset of a Modified Structural Model Using Baseline DLM and URANS Aerodynamics

To verify the performance of the method, the flutter onset of the baseline and modified finite element structural

models will be compared. The gAIC matrix of the modified structure is calculated using the baseline and modified

structural models and the URANS Qb. The aerodynamics are implemented into the flutter equations using a Roger

approximation. Figure 6 shows the damping for the baseline and the modified models using URANS aerodynamics.

These two models are sufficiently different to provide a realistic assessment of the current capability.

The first step is to verify the model. The flutter onset for this configuration is a coalescing of the first three modes.

Since these modes are the most significant, and differ most from the baseline to modified model, the gAIC matrix
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Table 1 β (Equation 13).

mode Nr � 20 Nr � 25 Nr � 20

number Ne � 20 Ne � 100 Ne � 25

1 0.99999 1.00000 1.00000

2 0.99833 0.99959 0.99931

3 1.00023 1.00004 1.00010

4 1.00034 1.00031 1.00030

5 1.00042 0.99950 0.99981

6 1.00090 0.99955 1.00020

7 1.00112 1.00134 1.00130

8 0.99985 0.99984 0.99999

9 1.00092 0.99983 1.00110

10 0.99860 1.00088 1.00130

11 0.99011 1.00002 0.99881

12 0.98912 0.99985 1.00320

13 0.99092 1.00041 0.99945

14 0.98693 0.99883 1.00030

15 0.97804 0.99890 0.99302

16 0.98685 0.99814 0.99912

17 0.91360 0.99384 0.99718

18 0.95756 0.99620 0.99481

19 0.97184 0.99208 0.97882

20 0.96091 1.00027 0.97577

21 — 0.97525 —

22 — 0.99766 —

23 — 0.93356 —

24 — 1.00524 —

25 — 1.00055 —

Fig. 4 Flutter damping versus density for the baseline model using DLM and URANS aerodynamics, Mach 0.70,

(q DLM, ❛ URANS).
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Fig. 5 Flutter damping versus density for the baseline model using DLM and URANS aerodynamics, Mach 0.85,

(q DLM, ❛ URANS).

Fig. 6 Flutter damping versus density using URANS aerodynamics, Mach 0.85, (❛ modified, q baseline).

terms for the 1
st

two of these modes will be scrutinized. All the remaining results in this paper use Nr � Ne � 20.

Figures 7 and 8 show four of the gAIC terms, each of which involves the second mode interacting with itself or one

of the other first three modes. Figure 7 is derived from the DLM theory. Figure 8 is derived from URANS theory. For

these gAIC terms, the baseline and modified models are easily differentiated. It is clear that the modified aerodynamic

model using the method of Sec. II and that directly from the modified models are identical. This is true using either

the DLM or the URANS theory.

Figure 9 compares the evolution of the flutter damping for the URANS modified model using the method of Sec.

II and that computed directly from a gAIC matrix calculated by a URANS system identification of the modified modes.
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(a) Q21 (b) Q12

(c) Q22 (d) Q23

Fig. 7 DLM gAIC terms, (✍ ✍ ✍ baseline,✍ modified, ❝ modified using equations 8 and 11).

Except for slight differences in some of the higher frequency modes, the two models are identical. The differences in

the higher frequency modes are most likely due to a drop off in accuracy given that Ne � Nr.

Finally, a comparision is shown in Figure 10 between the flutter damping calculated using the URANS baseline

model, the URANS model created using the method of Sec. II, and damping calculated from a time-marching URANS

flutter simulation. The damping of the time marching flutter solutions is obtained from the modal time histories by

the log decrement method and flutter frequency by the spacing of zero crossings. The URANS time-marching flutter

simulation is started from a static aeroelastic solution at a slightly negative angle of attack in order to approximate a

zero-lift condition. The URANS time-marching flutter simulation also includes wing weight while the URANS system

identification solution did not include wing weight and is also started from an undeformed vehicle shape. Furthermore,

the initial modal velocity used to start the time-marching flutter solutions was somewhat larger than the excitation used

to create the analytical aerodynamic models. Because of these differences in the way damping and flutter frequencies

are obtained, some differences are to be expected between the time-marching flutter and the frequency domain solu-

tions. The time-marching solution analog to the real part of the nondimensional Laplace variable �Re✒p✘✝ at flutter

onset is calculated from the true damping �ζ✝ and the flutter frequency �ω f ✝ at two dynamic pressures near the flutter

onset. The Re✒p✘ calculated from the time-marching solutions is about a percent below the predicted flutter onset

point in either case. On the other hand, the slope of the damping near flutter onset, and the increment in flutter onset

from the baseline to modified solutions is well simulated by the present method.
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(a) Q21 (b) Q12

(c) Q22 (d) Q23

Fig. 8 URANS gAIC terms, (✍ ✍ ✍ baseline,✍ modified, ❝ modified using equations 8 and 11).

Fig. 9 Flutter damping versus density from URANS aero, Mach 0.85, generated with modified structure modes (❛) and

URANS transformed aero using equation 8 (q).
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Fig. 10 Flutter damping versus density, comparing analytical with time-marching URANS.

D. Optimization Results

The optimization problem considered here seeks to find the structural sizing layout of the wingbox, which min-

imizes the structural mass while still satisfying several constraints on aeroelastic performance. Design variables are

based on the patch-level discretization in Fig. 1, where each skin panel is a design patch, each rib is a patch, and

each spar section is a patch. Design variables include the shell thickness of each patch (bounded between 3 and 30

mm), the thickness of the stiffeners attached to each patch (bounded between 2.5 and 30 mm), and the height of the

stiffeners attached to each patch (bounded between 30 and 150 mm). The stiffeners are modeled as smeared T-shaped

stiffeners [49], where the flange is bonded to the shell members. The total number of design patches is 237, and the

total number of design variables is 711.

The objective function is the structural mass, computed by the volume of the wingbox finite element model. This

function is minimized subject to many constraints. First, a flutter constraint is enforced at a Mach number of 0.85,

across a range of flutter margins, using the methods outlined in Sec.s II and III. A series of static aeroelastic constraints

are also enforced, spread across four trimmed maneuver loads: a 2.5g pull-up, a -1g push-over, a roll maneuver, and a

2g landing load. All cases are run at the aircraft dive speed at sea level with full fuel. For each load case, the stresses in

each finite element are computed, and the KS function is used to compress all of the elemental failure function values

within a given patch into a single metric.

Next, buckling analyses are run for each stiffened panel in the upper and lower skins using a Rayleigh-Ritz method

(assumed buckling modes). Both global buckling of a stiffened panel (bordered by ribs and spars) and local buckling

between each stiffener is computed, where simply-supported boundary conditions are used for both scenarios. As

with the stress metrics, each buckling eigenvalue for a given stiffened panel is compressed into a single KS function.

Design constraints are placed on both the stress and the buckling KS functions. The final gradient-based optimization

problem is solved with the Globally-Convergent Method of Moving Asymptotes tool [50].

The optimal structural mass, as a function of the flutter margin constraint boundary (using a dive speed of 185

m/s), is shown in Fig. 11, for two cases. The first case uses URANS to compute the baseline gAICs Qb, whereas

the second case uses linear DLM aerodynamics. Both sets of results then use the transformation methods detailed

above, to compute Qγ as the structure is optimized. For low flutter margins in Fig. 11, the flutter constraint is very

easy to satisfy, and is inactive (i.e., the static aeroelastic constraints drive the design process entirely). The structural
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mass (objective function) in this case is 8,631 kg. Increasing the flutter margin makes the constraint harder to satisfy,

resulting in an increase in the structural mass. As also seen in the figure, the URANS model predicts a more aggressive

flutter mechanism than the linear DLM model and therefore, results in heavier structural models. This added weight is

due to the fact that the DLM does not accurately predict the drop in the flutter onset dynamic pressure typically seen

in the transonic Mach range, frequently called the transonic dip. At a margin of 1.2, the URANS flutter model is 4.3%

heavier.

Fig. 11 Optimal structural mass for various flutter constraint boundaries.

The equivalent skin thickness distributions (sum of the panel thickness and the smeared stiffener thickness) are

shown in Fig. 12, for three cases: the design with an inactive flutter constraint, and the two designs (URANS and

DLM) with a 1.2 flutter margin constraint. For all cases, peak thickness tends to occur between the wing root (span

location of 3 m) and the Yehudi break in the trailing edge (span location of 10 m), and then trends toward minimum

gage at the wingtip. The addition of the flutter constraint increases the thicknesses in various areas, as expected, but the

redistribution of material is quite different for the two flutter models. Particularly in the lower skin, the URANS model

forces an increase in thickness localized near span location of 10 m, whereas the DLM model shows more of a global

thickness increase across most of the skin. Such a result indicates that while the two aerodynamic models are both

linearizations (in the case of DLM, the linearization is about the null state), and the flutter-damping plots presented

above look topologically similar, the two flutter models in fact rely on inherently different flutter mechanisms, and

therefore force the optimizer to react in fairly different ways. Neither model, it should be noted, is able to account for

changes in the underlying shock structure with changes in the structural sizing variables, as the URANS linearization

is conducted just once, and the resulting Qb matrix projected from one modal space to the next.

V. Concluding Remarks

A concise transformation of the unsteady generalized aerodynamic influence coefficient matrix based on the

baseline structural modes is used to optimize a transport wingbox model under a transonic flutter constraint (among

other linear static aeroelastic constraints), where the flutter constraint boundaries are computed using unsteady high-

fidelity Reynolds-averaged Navier-Stokes aerodynamic model. Rather than recomputing a complete CFD-based time-
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Fig. 12 Upper and lower skin equivalent thickness distributions.

marching flutter solution at each design iteration, the approach requires only a single matrix transformation. System

identification techniques are used to extract linearized generalized aerodynamic influence coefficients for a baseline

wing configuration. An inexpensive modal projection method is then used to transform these baseline aerodynamic

terms into the modal space inhabited by the various structural iterates obtained during the optimization process.

The results demonstrate the need for transonic flutter computations, versus purely-linear physics, and then demon-

strate the accuracy and the efficiency of both the system identification techniques, and the modal projection techniques.

Finally, a structural optimization is presented with a large number of structural sizing design variables, which seeks to

minimize structural mass under static aeroelastic stress and buckling constraints, as well as a flutter constraint. Opti-

mization results are presented for a large range of required flutter margins, using both a CFD-based flutter constraint,

and an entirely linear DLM-based flutter constraint. The CFD model predicts a more aggressive flutter mechanism

than the linear DLM model (as the latter does not capture the flutter dip), and results in a heavier optimal structure.

Furthermore, the optimal distribution of material under the flutter constraint identified by optimizing the structural

models coupled with URANS and DLM aerodynamics is highly dissimilar.
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