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i SECTION I
¥ INTRODUCT ION

In the field of airplane design, there exists a class of problems in
which the motion of an aeroelastic system may vary in an arbitrary manner
with time, depending upon the initial conditions, the character of the applied

forces, and dynamic response properties of the system. Rapidly applied

external forces may rise from many sources during the life of a modern air-

plane. One of the most important disturbing forces is that produced by gusts.

Detailed study of this phenomenon in subsonic, transonic and supersonic flows
is important.
A time-dependent response study requires simulitaneous integration of the

structural and aerodynamic equations in time. In the subsonic and supersonic

A T e S A e

cases, the governing flow equations are linear and aerodynamic forces depend

s o

upon the body motion in a linear fashion. Many unsteady aerodynamic theories

are available fo. the solution of the aeroeiastic problems for these cases.

e AT e

Several classical examples, {1lustrating the dynamic response phenomena for the ;
i subsonic case may be found, for example, in Reference 1. ;
On the other hand, governing equations for flows in the transonic regime
are nonlinear and they are characterized by the presence of shocks on the air-
foil. Because of these complexities, the study of the aeroelastic phenomenon
X in the transonic regime is fairly involved. From earlier studies it has been
observed that for the case of flow over an airfoil in a free stream at Mach

numbers near one, small amplitude motions can cause large variations in the E

e -

aerodynamic forces and moments. In addition, phase differencas between the

flow variables and the resultant forces may also be large. Because of these

special characteristics of the transonic flows, the probability of encountering

B e 2Pl ALy

i

>
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seroelastic instabilities is higher. Detailed investigations of this problem
are of practical significance.

The numerical methods for the computation of aerodynamic forces of small-
disturbance transonic flows about oscillating airfoils and planar wings have
been rapidly developed in recent years. A brief mention of such developments
containing 32 references can be found in Reference 2. Based on these develop-
ments many aeroelastic computations have been carried out. A comprehensive
state-of-the-art review of the developments in transonic aercelasticity is
given by Ashley in Reference 3,

The first significant application of unsteady transonic computations to
an aseroelastic response study was by Ballhaus and Goorjian (Reference 4). In

that study they illustrated the use of the time-integration and the indicial

approaches for the aeroelastic response problems. They performed an aeroelastic

response analysis for a NACA 64A006 airfoil with a single pitching degree of

freedom. Pitching axis was assumed to be at the mid-chord., The time-history

respanses were computed by using their computer program LTRANZ for unsteady

transonic flow coupled with an integration procedure for the simple differential

aquation of motion for the airfoll. The motion of the airfoil in a flow at

M, = 0.88 was forced for the first few cycles with an amplitude of oscillation

of 0.5 degrees until the pitching moment became periodic, after which the air-

foil motion and the aerodynamic response were left free to drive each other,

As the structural damping coefficient was varied parametrically the responses

ware obtained for the highly damped, neutral, s$1ightly divergent, and highly

divergent cases. It was shown that in order to obtain a flutter solution for

their example system at M_ > 0.88, it is necessary that the nonlinear aerodynamic
equations be used and that the moment variation lead the motion, Here it may

be noted that linear flat plate equations can not be used to predict a phase

lead and can not be used to obtain a flutter solution.

2
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In Reference 4 another case with large initial amplitude of 1.5° and
M = 0.87 was also considered. This example {1lustrated a non-sinusoidal

co

pitching moment behavior that could result from the large shock wave excursions
encountered at larger airfoil motion amplitudes.

In Reference 5, Rizzetta performed an aercelastic response study of a NACA
64A010 airfoil by simultaneously integrating the LTRANZ aerodynamics program
and the structural equations of motion. The study included a single degree
of freedom case with airfoil pitching at quarter chord and a three degree of
freedom case with airfoil pitching, plunging, and aileron pitching.

Mach numbers considered in Reference 5 were 0.72 and 0.82, A procedure
similar to that discussed in Reference 4 was employed to analyze the single
pitching degree of freedom case. For the three degree of freedom case, results
were obtained as plots of nondimensional pitching displacement (and moment),

plunging displacement (and 11ft) and aileron displacement (and moment)versus

time for various arbitrary values of the airfoil-air mass ratios. The other

aeroelastic parameters were also selected arbitrarily. A1l the displacement

and force quantities in the figures were divided by o'(0), the initial pitching
velocity. Dimensional values for o'(0) corresponded to 1,3, and 5 degrees. By
varying the values of u, converging and diverging curves were obtained.

It was pointed out in Reference 5 that no attempt was made to obtain
response curves corresponding to flutter condition for the three degree of
freedom system. The accuracy of results was tested against the homogeneous
solutions obtained for the structural system without the aerodynamic forces.
It was achieved by assuming large values for u. At large values of p the
quantities in the aerodynamic matrix have negligible effect on the response
sclution.

The aeroelastic response studies made in the transonic regime so far have

not included the single degree of freedom case of airfoil plunging and the two
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degree of freedom case with airfoil pitching and plunging. Although the

single degree of freedom systems do not represent the "real world" problems,
i. . some studies of them may give insight to other practical aercelastic problems.
éJ : On the other hand the earlier studies have shown that primary flexure-torsion
flutter corresponding to the two degree of freedom system is the most
destructive of all aeroelastic instabilities. The "transonic dip" phenomenon
e reported in References 6,7 and 8 showed that flexure-torsion flutter may

be more hazardous at Mach numbers near one. Studies conducted so far

(References 2,3,6,7,9) included only the results corresponding to the neutral
stability (flutter) point for transonic Mach numbers. The response studies
in the neighborhood of these transonic neutral stability points are also of
significant interest.

In this study aeroelastic response analyses were performed for a flat plate
and a NACA 64A006 afrfoil, Several cases with single degree of freedom of

pitching, single degree of freedom of plunging, and two degrees of freedom

of pitching and plunging were considered in detail, Aerodynamic forces

?; required in this analysis were obtained by time-integration method with the

J_ﬂ-—l—“ ::’ ;

: use of the LTRAN2 computer code. ¥
ﬁ To evaluate the 1inear solution obtained by using LTRAN2, a flat plate was i
ﬂ- first analyzed at M_ = 0.7. Converging type response was obtained for a flat }%
“ plate pitching at mid-chord by simultaneously integrating LTRAN2 with the 'i
corresponding structural equation of motion, For the same case, response 'i
was also obtained by integrating the aerodynamic equation given by the quasi ;§

PRI SR SEP-

) steady-state theory with the structural equation of motion. Responses for

pitching angle and pitching moment were obtained by using both methods and

the two sets of results were compared with each other.

An example identical to that discussed in Reference 4 was also considered.

In the example a NACA 64A006 airfoil with single degree of freedom pitching

-
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about mid-chord at M_ = 0.88 was considered. In this study the aerodynamic
coefficients required for the analysis were obtained by time integration
method, whereas in Reference 4 the indicial method was employed to obtain the
same aerodynamic coefficients. Response results obtained from both studies
for neutrally stable, diverging, and converging cases are compared and
discussed. This example was also used to evaluate the numerical integration
scheme employed in the present analysis.

Another case of a single plunging degree of freedom system for a flat
plate at Mach number of 0.7 was also considered. Converginyg type plunging
response results were obtained by using both the aerodynamic forces computed
by LTRAN2 and quasi steady-state aerodynamic theory., The two sets of results

were compared.

Finally, the important case of a two degree of freedom system with plunging

and pitching was analyzed, Two configurations, one in the form of a flat
plate and the other a NACA 64A006 airfoil were considered.

The flat plate was assumed to pitch about the mid-chord at M_ = 0.7,
Flutter speeds and corresponding reduced frequencies were first obtained by
varying the airfoil-air mass ratio y for selected values of plunge to pitch
frequency ratio mh/m“. position of mass center Xy and radjus of gyration
Yo The aerodynamic coefficients required for this analysis were obtained by
both LTRAN2 (1inear) and a Kernel Function method. For a selected point on
the flutter curve (say, a point corresponding to reduced frequency ke = 0.1)
a response study was carried out. Neutrally stable, stable and unstable
response results in the form of displacements and forces were obtained by
varying the airfoil-air mass ratio n. These results are discussed. The
effect of airfoil-air mass ratio on peak amplitudes was also studied.

A study simflar to that performed for a flat plate was also carried out
for a NACA 64A006 airfoil pitching about the quarter chord at M = 0.85. The
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plots of flutter speeds and the corresponding reduced frequencies versus

airfoil-air mass ratio u were obtained by using the aerodynamic coefficients

computed by time integration method. These results were compared with those

obtained by using relaxation and indicial methods in Reference 2. For a
selected point on these flutter curves, a response study was carried out.
Neutrally stable, stable and unstable response results were obtained in the
form of displacements and forces by varying the airfoil-air mass ratio u.

These results are discussed. The effect of airfoil-air mass ratio u on

T T T - * T2

3 peak amplitudes was also studied for the NACA 64A006.
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SECTION 11
GOVERNING AERODYNAMIC AND AEROELASTIC
EQUATIONS OF MOTION

In this section the basic equations employed in the present work both for the

gerodynamic part and structural part of the equations of motion are discussed.

2.1 Transonic Flow Equations

Many numerical procedures have been developed for computations of transonic
unsteady flow fields around oscillating two-dimensional airfoils. A brief
description of these developments is given in Reference 2. In this report the
time integration method developed by Ballhaus and fioorjian (Reference 8) 1is used.

The simplified basic aerodynamic equations, following the assumntions that
the flow is two-dimensional, inviscid, transonic (M_* 1), and that the velocity
disturbances are small as compared to the free stream velocity U, can be deduced
from the general equation of continuity of gas dynamics as

2 n
Lot " Velux ¥ty (1)

KMy, + 2k M
where kc = wc/U is the reduced frequency; M_1is the free stream Mach number; ¢
is the disturbance velocity potential; VC =1 - Mi - (7+1)MT¢X; m is a function
of M_; and y is the ratio of specific heats.

In deriving the above equation, the coordinate system is fixed with respect
to the airfoil, and x is aligned with the free stream direction. The flow is
defined as locally subsonic or supersonic, relative to the fixed coordinate
system, for vC » 0 or VC < 0, respectively. A measure of the degree of un-
steadiness is given by the reduced frequency kc when the airfoll is oscillating

periodically with a frequency uw in rad/sec.

Vg b e i bk 2T o CTEANRULLINL G e

-

. T

Rope

PRI

LM e

et T W it o i e i




As a further simplification of Equation 1, the frequency of the transonic
flow can be assumed as low so that k 1 - Mf < 23, Equation 1 may

then be reduced to

2y =
ZkeMadxt = Votux ¥ byy (2)

where t 15 the thickness-chord ratio of the airfoil.

Equation 2 is suitable for the time integration approach. This approach is
based on the finite difference scheme that intearates Equation 2 in time for
harmonic aerodynamic motions until the transient states in the solution disappear
and the forces become periodic.

\ Several numerical procedures are available to solve Equation 2. Among them

; the procedure developed by Ballhaus and Goorjian (Reference 10) based on the

E alternate-direction implicit algorithm has been proven to be computationally

'¢ efficient and is being widely used. This procedure uses a conservative, implicit
| finite-difference scheme to time-accurately integrate the nonlinear, low-frequency
transonic small-disturbance equation as defined in Equation 2. A computer code
LTRAN2 was developed based on this procedure. This code can be used to find the
flow field solutions for the airfoils with arbitrary combinations of pitch,

plunge and flap deflections.

2.2 Quasi{ Steady-State Aerodynamic Equations for Flat Plates
For subsonic flow conditions exact unsteady aerodynamic solutions are

available for flat plates with arbitrary pitch and plunge motions. Depending

upon certain assumptions these solutions may further be simplified. One such
solution can be obtained by using quusi steady-state assumption.

Quast steady-state theory neglects the influence of wake vortices on the
flow. This is valid when the flat plate is oscillating with a very low reduced
frequency (kC = 0.0).

i




o pe s e

For a flat plate pitching with an angle « about an axis located at a ‘ i

distance bah from the mid-chord and plunging with displacement h, the expressions

pwr T

for quasi steady aerodynamic 11fting force, Qh' and moment, Qa are given as

.

fj,. (see chapter 5 of Reference 1), , j
. . . B
L Q, " - wob?[h + U - bayal-2nalblh + Ua + b(1/2-a,)a] (3) O
. Q, * nobbagh - UB(1/2 - &) - b2(1/8 + ad)a) (4)
= + 2nUbP(ay + 1/2)[h + Ua + b(1/2 = 8, )a) 4
- where bah = distance of the pitching axis measured from mid-chord in semi-chords ﬁ
?'2‘ b = semi-chord length of the airfoil. g
- b
f'; The above equations are derived assuming that the flow 1s incompressible 5
iﬁ; (M, = 0). The effect ov Mac) number is approximated by multiplying the

de aerodynamic forces by the Prandtl-Glauert number, 8, which is defined as %'
| |
":' ; g = -u—l'- - (5) "
4 ‘/1"'_“'2 D.
| ®

;; In the present work 1t is assumed that the above equations are valid

- for flat plates oscillating at M_ ~ 0.7 with reduced frequency k, = 0.1,

{Q‘ 2,3 Aeroelastic Equations of Motion for Single

and Two Degree of Freadom Airfoil System

In the present work two-dimensional airfoils in transcnic flow with
single pitching degree of freedom, single plunging degree of freedom and two
N degrees of freedom, plunge and pitch, are considered. Figure 1 describes the

| sign conventions and the variables used in this study.

. 2.3.1  Pitching Degree of Freedom System
The equation of motion for the case assuming that airfoil is pitching

about an axis located at a distance ahb from the mid-chord, 1s

L S R
\ ' 1y .




Ia; + cu& +Ka = Q (6)

where Iu = mass moment of inertia of the airfoil about the elastic axis; Ku =
spring constant corresponding to pitching; Ca = mechanical damping coefficient
corresponding to pitching; Qa is the aerodynamic moment about the pitching axis,
defined positive in positive o direction.

A nondimensional form of Equation 3 can be written as

Q
a" + A]a' + Aza = -I--9-2 (7)
w

a
where the prime reprisents the differentiation with respect to nondimensional
time wt and w 1s the circular frequency of oscillation. A] " Ca/law and A2 =
Ka/Iau\2 are the nondimensional damping and stiffness parameters, respectively.

The aerodynamic moment Qu may be written as
Q ™ qczcm (8)

where q = 1/29U2. dynamic pressure
¢ = full chord length of the airfoil
p = free stream density
Cn " aerodynamic moment coefficient.

The values for c. are computed from LTRANZ.

m
Using Equation 8 and the definition kc = wc/U, Equation 7 can be rewritten as

a' + Alu' + Aza n——y ¢ (9)

This equation 15 incorporated in LTRAN2 to obtain the aercelastic responses.

The following derivations are based on the assumption that Qa {s obtained
from quasi steady-state aerodynamic theory.

For a single pitching degree of freedom system, the aerodynamic moment 0u
for the two degree of freedom case as given in Equation 4 may be reduced to

the form

10
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q, * mpb?(- Ub(1/2 - a,)i - b2(1/8 + aﬁ)&)
+ aHQUbZ(ah +1/2){Ua + b(0.5 - a,)a) (10)

Correcting this Qu for the effect of Mach number and substituting it into
Equation 7 give

dlu" + e]a' + flu = . (1)
(0.125+a, )8

2(0.5-a, )8 4(a§-o.25)a
+

el » A] + N‘kc H'kc
8(ah+0‘5)8
fy = Ay - "“"“:ﬁ;?”“
ke
I(l
u'ow = » alrfoil-air mass moment of inertia ratio.
1

Equation 11 is a second order, ordinary differential equation., From this
equation the closed form solution for pitching response can be ohtained for

glven initial conditions and other variables.

2.3,2 Plunging Degree of Freedom System

If h 1s the plunging displacement measured positive downwards from a mean

position, the equation of motion for the system can be written as
mh + chﬁ +Koh = Q (12)

where m ~» mass of the airfoil per unit span: ch = damping coefficient corresponding
to plunging; Kh = spring constant corresponding to plunging; and Qh v aerodynamic
11fting force defined positive in positive h direction,

The nondimensional form of Equation 12 is written as

Q)
(S" + B]b' + BZK\ B oeuagee (13)
Mw 'C
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where the prime represents the derivative with respect to nondimensional time ut; %1

é § = h/c, nondimensional plunging displacement; B, = Ch/mm, nondimensional damping

1
parameter;82 = Kh/mwz, nondimensional stiffness parameter,

The aerodynamic force Qh may be expressed as

: Q * = qeeg (14) .ﬂ
: where ¢ 1s the 1ift coefficient which can be obtained by LTRANZ. A negative ﬁ
i} sign is introduced in Equation 14 since 1ift force is defined positive upwards 5
: in the computer code. b
}, Substituting Equation 14 in Equation 13 and rearranging give {:
3 2¢ &
i 8 4+ Bys' + Bysw - —k (15)
. muk?2 _ F.
c .

: where . = ——£%~. airfoil-air mass ratio f
4 wvob [3’.
;ﬁ This equation is incorporated in the LTRAN2 code to obtain the aercelastic if
y responses for the plunging case. if

The following derivations are based on the assumption that an explicit
expression for Qh is obtainable from the quasi steady-state aerodynamic theory.
- For a single plunging degree of freedom system, the aerodynamic force Q, for

(Equation 3) may be written as

Qy = - 2nUnbh - 1obh (16)

Correcting the Qh for the effect of Mach number and substituting it into
Equation 13 give
dps" +e,8' + 8 % 0 (17)

P S B
where d2 1+ L e, B1 + ﬁkc , f2 B2 g

Equation 17 1s a second order ordinary differential equation. From this i

equation, closed form solutions can be obtained for plunging responses for given

initial conditions and other variables, PE
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2.3.3 Two Dimensional Airfoil with Pitch and Plunge Degrees of Freedom

Figure 1 shows an airfoil plunging with a positive displacement h (downward)
and pitching with a positive angle a (with the nose up) about elastic axis. The
elastic axis is located at a distance ahb from the mid-chord while the mass
center is located at a distance x,b from the elastic axis. Both distances are
defined positive when measured toward the trailing edge.

In this analysis it is assumed that the airfoil is rigid and the amplitudes
of oscillation are small. It is also assumed that there 1s no coupling in the
mechanical damping. Hence considering the inertia forces, damping forces,

elastic forces, and aerodynamic forces, the equations of motion are

mh + Sa + chh + Khh = Qh (18a)
Sh + xaa + caa +Ka®Q (18b)

where § = airfoil static moment about the elastic axis and other quantities

have the same definitions as given in the single degree of freedom system.

The nondimensional form of Equation 18 can be written as

2 L

g+ x o' 4 g E + Lﬁh) - (19a) )

a h w W ;

E

xaa“ + ria" + cud + ri {%%]za = ;Egif (19b) ?

where the prime represents the derivative with respect to nondimensional time ut; ¥

£ = h/b 15 nondimensional plunging displacement; X, ® S/mb is a coefficient to j

be multipiied by the semi-chord length to locate the mass center from the elastic %
axis} wy, ® (Kh/m)]/2 is the uncoupled plunging frequency; w is the frequency of

oscillation of the system; ra = (Ia/mb2f51s the coefficient to be multiplied i

[

by the semi-chord to give the radius of gyration about the elastic axis; w,= (ﬁ‘/ld

is the uncoupled pitching frequency; oy ™ (Ch/mm) is the nondimensional damping

13
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Figure 1. Definition of Parameters for Two Degree of
Freedom Aeroelastic Analysts
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v Vg
1 :
parameter corresponding to plunging; L, = (Ca/mbzm) is the nondimensional é
s: damping parameter corresponding to pitching. y
;E Substituting Equations 8 and 14 into Equation 19 and rearranging, the final ﬂ
. i
gg matrix equation for the response analyses is f
t ) . ' H
2 gh £’ £l _ 4 Gy,
| i {5} o+ te1 {8} ¢ o - { (20)
. mukg m
[
v
g'i where [M], [C], and [K] are the mass, damping and stiffness matrices,
ﬁ\ respectively, and they are defined as
- 1 x
[M] = 2 (21a)
o x | r2
: | L& 9
.
8 KN
) [c] = *l—— (210)
bk ] 0 Ly
M - (o] e | (21¢)
- = c
g ™) T 17
% ‘
)
1* where U* = U/bwa is the nondimensional flight speed parameter and ¢, and Ch
;; are the aerodynamic 1ifting and moment coefficients. These quantities are ‘
directly obtained from the computer program LTRANZ. 5
_ A
3 Equation 20 is incorporated into LTRAN2 to obtain the aeroelastic ﬁ
responses for two dimensional airfoils with pitching and plunging degrees of %
N
freedom. 2
k!
il
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SECTION 111
RESPONSE SOLUTION PROCEDURE

In order to obtain the aeroelastic response solutions it is necessary to
simulataneously integrate the structural and aerodynamic equations. In the

present analysis this integration is carried out by a numerical procedure.

3.1 Direct Integration Method

The aeroelastic Equations 9, 15, and 20 can be written in a general form as

[M] (u") + [C] (u'} + [K] (u} = {p} (22)
where [M], [C], and [K] are the mass, damping, and stiffness matrices, respectively;
{u} 1s the vector of the displacement degrees of freedom for the structure; prime
denotes the derivatives with respect to nondimensional time t = wt; {p} is the
vector of the aerodynamic loads. Equation 22 1s in the form suited for numerical
integration.

Many numerical procedures are available in the Yiterature for the solution of
the equations of motion in a form similar to Equation 22, Discussion of such
procedures as applied to dynamic problems of structures can be found in references,
such as 11, In the present analysis the common direct integration procedure is
employed to find the time-history dynamic responses of the aeroelastic system.

The solution is obtained by using a step-by-step time integration finite difference
approach,

Assuming a linear variation of acceleration, the velocities and displacements

at the end of a small time interval at can he expressed as

futdp = (u'lg 3¢ A%{“"}f-AE + A%{u"}i (23a)
2 22
tulg = Qulg gy *aRudy g + 85 g L+ 5 g (23b)

16

- e

. =
el

Cinolrae o o et i



i,
|
r.
f

Substituting Equations 23a and 23b into 22 yields

g = IFD [tpg - (2w = [KIow)]

(24)
where .
: - . -1
(71 =[] + &[] + 4 K] (250)
{v} = (U'}E_AE + -Aét "z .t (25b)
2
{w} = {ulg Azt AHU']E_A{ + é%— {u"}E_AE (25¢)

For small amplitude (structurally linear) problems, matrix [F] need only be
formed once since it is independent of time. On the other hand the aerodynamic
load vector {p} depends upon the displacement degrees of freedom {u}, the time
derivatives of {u}, the reduced frequency k. and the free stream Mach number M_.
The vector {p} 1s obtained by numerically solving the transonic aerodynamic
Equation 2 with the use of LTRANZ, The values of {u} and the time derivatives of

{u) used for computing {p} are based on the values obtained at the time t-at.

3.2 Solution for Aerodynamic Forces {p} by LTRAN2

The basic LTRANZ code employs a non-iterative alternating direction implicit
(ADI) scheme to advance the solution for the perturbatior potential, ¢, from one
time interval to tne next at each grid point in the computational flow field.
Differencing in x-direction is of mixed type which has been quite successful in
maintaining stability for both subsonic and supersonic flow regions. The
conservative form of the equation is preserved, which 1s essential for the
proper description of the shock wave motions. While the ADI scheme has no time
step limitation for stability based on classical linear stability analysis,
instabilities may be generated by the motion of shock waves due to the mixed
differencing. Hence, the time interval Af must be chosen such that shock waves
do not travel more than one mesh point in the x-direction over a single time

step. Based on this procedure pressure distributions at any time can be computed. !
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By integrating these pressure curves, aerodynamic 11fting forces and

moments are computed. 3
At every time step LTRAN2 requires the effective induced angle of attack oy

ik Cor Lo . -

and its time derivatives as input. In general, for the two degree of freedom

system described in Figure 1 the induced angle of attack ay can be defined as

o Eaal

E.. a *a + 3- (26a)
f or \
. kc
o =at—3 £ (26b)

o and £' at every time step can be computed from the direct integration

scheme discussed earlier in this section.

3.3 Summary of Step by Step Time Integration of Aercelastic Equations

The procedure discussed in this section was incorporated in LTRAN2 in the
following manner, For a set of starting values of {u}, {u'}, and {p}, (say,
known at time t-at) the acceleration vector {(u"} at time T was computed from
Equation 24. Based on the known acceleration vector {u"}, the displacement
vector {u} and velocity vector {u'} at time ¥ were computed from Equations 23a
and 23b, respectively. From these quantities the effective induced angle of
attack %y and 1ts time derivatives were computed for time t. This induced

angle of attack oy and other required guantities were then read into the LTRAN2

code and the new aerodynamic load vector {p} at time t was computed. At this
stage all the quantities.namely, {u}, {u'}, {u"}, and {p} at time t were known
50 that further computations for time t + At can be carried out. This process

was repeatad for every time step.

e e W ki P o i ek
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SECTION IV
RESULTS

Aeroelastic response analyses were carried out for two airfoil configurations,

a flat plate and a NACA 64A006 airfoil. In both cases, the airfoils were con-

sidered as single and two degree of freedom systems. E

4,17 Finite Difference Computational Grid
The size and the pattern of the grid play an important role in obtaining

accurate results from LTRAN2. Because of the various reasons discussed in

Reference 10, a fairly fine mesh is required in order to obtain acceptable
solutions, However, the mesh size is Timited by the capacity of the core
memory availalbe in a computer,

In this analysis a 79 x 99 finite difference mesh, with 79 grid points in
the vertical (y) direction and 99 grid points in horizontal (x) direction, was
employed for final computations. Details of this grid were kindly supplied by

Ballhaus and Goorjian. This was the maximum grid size that could be practically

used on the COC 6500 computer available at Purdue University. A schematic

diagram of the portion of the grid near the airfoil is shown in Figure 2.

This grid has a smooth non-uniform pattern and it is symmetric about the
y = 0 1ine. The spacings of the grid points are smaller near the leading and
tralling edges in x-direction and near the mean chord 1ine in the y~direction.

The spacings are gradually enlarged as the grid points are farther away from the

airfoil. Thus the grid boundaries are located sufficiently away from the airfoil
both in x-and y-directions. From leading edge to trajling edge, a total of 33

|
grid points is used so that an accurate representation of the pressure distribution i
can be obtained, particularly when there is a shock. Other salient features for j

this grid are given as follows: i
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(1) Minimum spacing in x-direction = 0,0033c

(2) Minimum spacing in y-direction = 0,02¢

(3) Distance between the upstream grid boundary and the
leading edge = 1033,53¢

(4) Distance between the downstream grid boundary and the
leading edge = 855,91¢

(5) Distance between grid boundary and the

mean chord line = 811.12¢,

4.2 Steady-State Computations

The steady-state solution 1s required as an initial condition for the unsteady
computations. In this analysis the steady-state solution was obtained by using
the successive 1ine over-relaxation method (SLOR) available in the LTRAN2 code.

In the process of obtaining the steady-state solution, multiple qrid
computations were carried out in order to accelerate the rate of convergence.
First, a converged steady-state solution was obtained for a coarse grid (35x38).
This solution was then interpolated to form a starting solution for a medium
grid (53x79). A converged solution was then obtained for the medium qrid. This
solution was again interpolated to form a starting solution for the final com-
putational grid (79 x 99).

The SLOR computations were carried out for the fine grid (79x99) for several
hundred iterations. This iterative process was stopped when the variation in the
perturbation velocity potential at all grid points between consecutive iterations
reached a value of about 4x10'5. This required about 600 1terations. The steady
solution obtained at this stage was used to plot the pressure curves and also

used as a starting solution for the - -~ady computations,
4.3 Unsteady Computations (Forced Motion)

Steady-state results obtained by the SLOR method were used as the inftial
conditions for unsteady computations. In order to obtain unsteady results the
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airfoil was first subjected to a harmonic forced motion. In most of the cases
the induced angle of attack ay was varied sinuscidally with an amplitude of Q.01
radians(0.574°) and Equation 2 was integrated in time by LTRANZ, During the
process of time integration, 120 time steps per ¢ycle were used., After some
duration of time the effect of the initial conditions on the unsteady solution
became negligible such that the aerodynamic force coefficients Cy and Cn
became periodic. In general, four to six cycles of forced motion were required
to obtain fairly periodic results from LTRAN2, However, the exact time at which
the forced motion had to be stopped, depended upon the type of initial conditions
specified for free motion., For all the cases studied, forced motion was stopped
such that Ay °i' and aq were 0,0, 0.01, and 0,0, respectively, with ay
in the unit of radians. From this stage onwards free motion conditions were
simulated by simultaneously integrating the structural and aerodynamic equations
and allowing the o foil motion and aerodynamic response to drive each other,
Due to inherent nonlinearity in the transonic aerodynamic equation, the
free motion response solution depends upon the initial values for g ai. and
a:. Physically these initial conditions may be used to represent the impulsive

forces (gusts) striking the airfoil.

4.4 Response Analysis of Single Degree of Freedom Systems

4.4.1 NACA 64A006 Airfoil Pitching at M = 0,88

A case of a NACA 64A006 airfoil pitching about the mid-chord at M = 0,88
and kc = 0.1 was considered, This case was selected in order to verify the
present formulations and also compare the results with those already obtained by
Ballhaus and Goorjian (Reference 4).

The airfoil configuration data required for this case were obtained from

Reference 12, The airfoll configuration {s shown in Figure 3.
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The steady-state solution was obtained by the SLOR method. A plot of the
steady-state pressure curve is shown in Figure 4. In this figure it may be
observed that there 1s a fairly strong shock on the airfoil between x/c = 0.64
and 0.69.

The governing differential equation of motion for this case is
a' + Aja' + Aja" = Agcy (27)

where A, = n/Bu'kg (see Equation 9),
To obtain tha present response solution, it was first necessary to obtain a
solution for the neutrally stable case. The moment coefficient |cm“| and phase

angle ¥ (phase lag between Cn and o) were obtained by the time integration method

by considering five cycles of forced motion. The pitching motion was sinusoidally

forced with an amplitude of 0.5°, The values of Icmul and ¢ obtained from this
analysis were 0,8565 and -67.5 degrees, respectively, On the other hand the
indicial method was employed in Reference 4 to obtain these results, The cor-
responding values of Icmul and ¢ obtained in Reference 4 were 0,8617 and ~68,87
degrees , respectively, The differences between the present results and those
obtained in Reference 4 may be mainly due to the two different methods employed.
fwt

w
0 ¢

relating the aerodynamic and structural constants, Equation 27 yields

By assuming harmonic motion with frequency w, f.e., a * a , and by

Ay = -Aqlc |81ny (28a)

ma

Ap = 1+ A3|cmu|cosw (28b)

Assuming the value of AS equal to 1.333 (same as that used in Reference 4)
and substituting the values described earlier for |cm“| and y into Equations 28,
A] and Az were obtained, respectively, as 1,05 and 1.437, These values correspond

to the neutrally stable case. It is noted that in Reference 4, A] and A2 were
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obtained as 1.072 and 1,414, respectively. The aeroelastic resnonse analysis was
then carried out by simultaneously integrating the aerodynamic and the afrfoil
motion equations. Uifferent types of responses were obtained by parametrically
varying the structural damping parameter A]. The motion was forced for the first
five cycles after which the pitching moment became periodic and the airfoil
motion and aerodynamic response were left free to drive each other., The amplitude
of the pitching angle was 0.5 degrees. The initial conditions for free motion were
corresponding to a{0) = 0.0, and «'(0) = 0.5,

Response was obtained for values of the parameters corresponding to the
neutrally stable case.i.e..A] = 1,05, A2 = 1,437 and A3 » 1,333, Fiagure 5
shows the response curves for the pitching anale o and the corresponding pitching
moment ¢,. In both curves, the first cycle is due to ferced motion and the
remaining cycles are due to free motion. Because the parameters corvesponding to
the flutter solution were chosan, the response in free motion is, as expected,
very nearly periodic.

A diverging response was obtuained when A1 was assumed as 0.5. The results
for the responses of both the pitching angle and the pitching moment are shown {n
Figure 6. A converging response was obtained when A] was assumed as 1.5 and
the results are shown in Figure 7. These results are similar to thuse presented
in Reference 4.

The above studies indicate that the genera) formulation of the problem is

correct and the numerical integration procedure employed is quite accurate,

4.4,2 Flat Plate Pitching at H_ = 0.70
In the computer code LTRAN2, there {s a capability to solve the linear form
of Equation 2. This can be done by setting the input value for y equal to -1.0.
A response analysis for a flat plate pitching about mid-chord at Mach number M = 0.7

was performed for a reduced frequency kc * 0.1, The present LTRAN2 (1inear)

26
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results waere compared with that obtained by quasi steady-state aerodynamic theory
which is valid for reduced frequencies of the order kc = 0.1,

The flat plate configuration was simulated in LTRANZ by using data corresponding
to a flat plate of a thickness-to-chord ratio of 0.01., 1In order to avoid numerical
difficulty, the data for the airfoil configuration were started at x/c = 0.003
rather than at x/c = 0.0 (leading edge). The unsteady computations were started
with zero steady-state pressure conditions.

Equation 9 as given in section II is the governing differential equation of
motion for this case. The aerodynamic equation was integrated in time for four
cycles by forcing a sinusoidal variation of pitching angle with amplitude of 0.01
radians. The free motion was started at the end of the fourth cycle. The initial
conditions nbtained for free motion were corresponding to «(0) = 0.0 and
a'(0) = 0.01. The structural parameters for free motion were so selected that
a converging type response could be obtained. The values for the damping parameter
A], the st1ffﬁess parameter A2 and the airfoil-air moment of inertia ratio y'
were 0.5,1.5and 1000, respectively. The value assumed for u' was quite high
when comparad to the actual values for aircraft wings. However, this number was
required in order to obtain a response solution that can be compared with
gquasi steady-state theory.

The converging type response curves obtained for pitching angle « and pitching
moment ¢, are shown in Figure 8., In the same figure the responses obtained by
employing the quasi steady-state aerodynamic theory are also shown. These re-
sponses were obtained by solving the differential Equation 11 for the same values
of Ays Ayy 1’y (0) and o'(0) as used for LTRAN2. The two sets of solutions are, in
general, in fairly good agreement,

Small differences in amplitude and phase angle in Figure 8 between the {wy

sets of results are mainly due to the difference batween the two methods. It may

e T = o~
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Figure 8. Comparison of the Pitching Responses Obtained by LTRAN2 and Quasi Steady-
State Thaory for a Flat Plate Pitching about Mid-Chord,
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be observed that there is no phase lag between the pitching angle and the cor-
responding moment in the quasi steady-state solution but there 1s some phase
lag in the LTRANZ s .tution. Therefore, the effective aerodynamic dampings in
the system between the iwo methods are different which may cause the discrepancy
between the two sets of curves. Such discrepancy becomes larger for smaller
values of u' since aerodynamic damping is inversely proportional to u'.

At this point, it may be noted that LTRAN2 is based on the low frequency ap-
proximation which is more valid for Mach numbers near unity, The discrepancy
found in the two sets of curves may also be partly due to the low value of Mach

number (0.7) considered.

4,4,3 Flat Plate Plunging at M = 0.7

In this case, response results were obtained for a flat plate with only a
single plunging degree of freedom. The Mach number and reduced frequency kC
considerad were equal to 0.7 and 0.1, respectively. Flat plate conditions were
simulated in the same manner as discussed earlier. Results were obtained both
from LTRAN2 (1inear) and quasi steady-state theory.

The governing differential equation of motion for this case is given in
Section II as Equation 15. The aerodynamic equation was first integrated by
LTRANZ2 for four cyrles by forcing a sinusoidal plunging motion with amplitude
of plunging displacement § = h/c = 0.1, This corresponds to an amplitude of
0.01 radians for the induced angle of attack ay kcdl

The free motion was started with initial conditions corresponding to
a1(0) = 0,0 (6§ = 0.1) and a;(o) = 0,01 (&' = 0.0). The structura) parameters
were selected so that a converging type response could be obtained. The values
assumed for the structural damping parameter B]. the structural stiffness
parameter B, and the airfoil-air mass ratio u were equal to 0.0, 1.0, and 100,

respectively. Response curves obtained from LTRANZ2 for plunging displacement &
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ﬁﬁ and 11fting force coefficient c, are shown in Figure 9. In the same fiqure the
corresponding resulits obtained by quasi steady-state theory are also shown,
These results were obtained by solving the differential equation 17 based on the
same initial conditions and structural parameters as used in LTRANZ,

Response results obtained by both methods compare fairly well. The small

differences 1n phase angles and amplitudes may be mainly due to the difference

b in the methods. |

b 4.5 Two Degree of Freedom Systems (Pitching and Plunging)

§ ?; In the response studies of the two degree of freedom systems, two cases were

3 ﬁ analyzed. One case is a flat plate pitching about the mid-chord at M°° = 0.7
' and the other is a NACA 64A006 airfoil pitching about the quarter chord at

R A T T —

b
) ‘ M., = 0.85. Response results were obtained by parametrically varying the airfoil-

air mass ratio u. In all the examples, the values of reduced frequency kc and

SR T

. radius of gyration r, Were assumed as 0.1 and Q.5,respectively, The mechanical

damping was assumed as zero (ch g, " 0). N

i : 4.5.1 Flat Plate Plunging and Pitching about Mid-Chord at M = 0.7
g ? In this case response studies were performed for a flat plate pitching about
mid-chord at a subsonic Mach number M, = 0.7. Both the LTRAN2 (1inear) code and

the Kernel Function method were used so that the two sets of results can be
*: compared, léﬁ
v Before starting the response analysis it was necessary to find the aero- ;i;
elastic parameters corresponding to a neutrally stable condition. Equations 20

-7? %& discussed in Section II are the governing equations of motion for this case. The

T gmee Wa o em

*
aeroelastic parameters include: flight speed parameter U , airfoil-air mass

ratio u, position of the mass center Xy plunge to pitch frequency ratio wh/m“.

radius of gyration o damping parameters h and oo and position of elastic axis 3

The values for Xy o wh/“u’ For Spe By and a, were assumed as 0.0, 0.2, 0.5,
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Figure 9. Comparison of the Plunging Responses Obtained by LTRAN2 and Quasi
Steady-State Theory for a Flat Plate.




0.0, 0.0 and 0.0, respectively,

W
In order to obtain the values of kc. U and u corresponding to the neutrally

A M R e PRy

stable condition, the U-g method was used. A detailed discussion of this

! method is given in Reference 2.

Rl v o

To use the U-g method,it is necessary to obtain a table of aerodynamic

coefficients similar to those obtained in Reference ?, Table 1 shows the aero-

s dynamic coefficients of Cpv €y 0 © and c_ obtained by using the time integration
6 kg My My

method of LTRAN2 (1inear) and Kernel Function method for various values of

reduced frequency kc. Agreement is good between the two methods.

A flutter analysis was carried out for various values of airfoil-air mass
ratio u by the U-g method. Figure 10 shows the curves for flutter speed and correspond-

ing reduced frequency versus the airfoil-air mass ratio u obtained by both methods.

Excellant agreament 1s observed.

] Any point on the curves shown in Figure 10 represents a neutrally stable
‘ state whereas the zones below and above the curves represent stable and unstahble
!

conditions, respectively. Response analyses were carried out for stable, neutrally

stable and unstable conditions by selecting the aeroelastic parametars based on
! any selected point in the flutter speed curves., Because the time integration

method was used in performing the response studies, it was essential that the

R T T )

flutter curves be obtained by using the time integration method instead of the indicial

and relaxation methods as used in Reference 2.

i
A
:

The governing equations of motion for this case are given by Equation 20 of

§

A

Section I1. To begin with, the aerodynamic equation was integrated in time for : ;
four cycles by forcing a sinusoidal pitching motion with amplitude of 0.01 f
1

{

radians. In the fourth cycle the aerodynamic force responses became almost

periodic, After that, the free motion was started by simultaneously integrating

i
1
]
the structural and aerodynamic equations. This was startad witk inftial conditions @
with &(0) = 0, £'(0) = 0, a(0) = 0, and a'(0) = 0.01. 4
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Table 1

AERODYNAMIC COEFFICIENTS FOR FLAT PLATE
PITCHING ABOUT MID-CHORD AT M = 0.7

Reduced Frequency k. = wc/U
Rerodynamic
Coeff, Method 0.05 0.10 0.15
Real Imag. Real Imag, Real Imag.
¢ ] 0.0669 0.4225| 0.1700] 0.8000 | 0.3038 1.134
vy 2 0.0616 0.3974| 0.1666| 0.7190 | 0.2719 1.9876
¢, ] 8,449 -1.338 | 8,001 | -1.700 7.557 -2.025
@ 2 7.964 «1.133 | 7.240 | -1.488 6,671 -1.570
ﬁn 1 0.015 0.0952( 0.0479| 0.1787 | 0.0954 0.2486
8 e 0.0174 0.0990( 0,0501| 0.1780 | 0.0865 0.2425
Ch 1 1,904 - .3016| 1.787 | - .4788 | 1.657 - 6361
¢ 2 1.985 - ,3500( 1.794 | - .5117 | 1.640 - 5996

Method 1: Time Integration by LTRANZ (1linear).
Method 2: Kernel Function Method.
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Aergelastic parameters for the neutrally stable condition were selected
from a point on the flutter speed curves in Figure 10 at ko ® 0.1. The cor-
responding values of u and U* were equa) to 289.5 and 7.23, respectively. These

g values were substituted into Equation 20 and the response analysis was carried
out. Response curvas for pitching angle o and the corresponding pitching

momant ¢, for about six cycles are shown in Figure 11, After small initial dis-
turbances (due to initial conditions) both rasponse curves show a perfect perfodic 5

behavior. Similar curves obtatned for plunging displacement ¢ and corresponding

1ifting force c, are shown in Figure 12, These curves also show a perfect

¥ periodic behavior after some small initial disturbances. It is seen that the

: neutrally stable conditions obtainad by the prasent response method are in good
% agreement with those obtained by the U-g method based on both the time integration

T I L T e

and the Kernel! Function method.
In Figure 11, the response cur s for pitching displacement a and pitching

e ik
a2 e - I

g moment ¢ for the stable and unstable conditions are also shown. These were
é' obteained by changing the airfoil-air mass ratio u. For unstable response the u
¥ value assumed was 10% lower than that correasponding to the neutrally stable

condition, This point s in the unstable zone of Figure 10. On the other hand,

| for stable response the u value selected was 10% higher than that corresponding
to the neutrally stable condition. The corresponding stahle and unstable rasponsas
for plunging displacement & and 11fting force ¢, are a1s0 shown in Figure 12, i
It 1y seen that the stable and unstable conditions obtained by the U-g method
produced converging and divarging responsas, respectively.

It was also of interest to study the effect of airfoll-air mass ratio
(altitude) u on tha peak amplitudes of the responsa curves. In this analysis,
the peak amplitudes corresponding to the second free cycle were considered.

Figure 13 shows plots of the ratio of the second cycle peak amplitude to the

amplitude of the neutrally stable curve versus the ratio of airfoil-air mass §
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Figure 13. Effect of Airfoil-Ai Mass Ratio on Peak Amplitudes of : 4
Responses for Flat Plate at M = 0,7, ! 'y
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ratio u to the airfoil-air mass ratio at the neutrally stable condition. The

R Sp——_—

plots include four curves for plunging displacement, 1ifting force, pitching v

o et

displacement and pitching moment, respectively.

A

From Figure 13 it may be observed that the curve corresponding to plunging b

displacement is steeper than the other three curves. A1l the curves assume a

rr———.
I Tt
<

fidelrae e

similar trend below the neutrally stable point. The curves for 1ifting force and

e

moment are very close to each other and they virtually coincide. Such curves ' ﬁ;

may be used to study the aeroelastic behavior of the system near the neutrally

e

stable point.

Ei

4.5.2 NACA 64A006 Airfoil Plunging and Pitching about Quarter Chord at M = 0.85

H

j
:
|
i
!
4

In the flutter analysis performed in References & and 7, a "transonic dip"

phenomenon was observed for the NACA 64A006 airfoil. Flutter speeds reached a

minimum in the neighborhood of M = 0.85, From the aeroelastic point of view,

this Mach number is the critical value. Hence, in this study aeroelastic response

analysis was carried out at M = 0,85, ¥
In this case a NACA 64A006 airfoil pitching about the quarter chord (ahn-.S) ‘

s at M = 0.85 was considered. The procedure for obtaining the responses 1s the same
.é as that described for the case of the flat plate, ‘;
Hi The =teady-state pressure distribution curve obtained from LTRAN2 (non-
Tinear) is shown in Figure 14. In the same figure pressure curves obtained by A
STRANS2 (Reference 2) and by experimental method (Reference 13) are also shown for
N i comparison. In general, all three curves agree fairly well,

Using the steady-state initial conditions, unsteady computations were carried
out by using LTRAN2 (nonlinear). The time integration method was employed to

[ obtain the aerodynamic coefficients Co s Cy s Gy and c. . The coefficients for '&
i ™ 8 o

various values of reduced frequency ko are shown in Table 2. In the same table, the

aerodynamic coefficients computed by UTRANS2 and the indicial method in Reference 2 g
are also given. In general, all three methods agree well., It may be noted that
42
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the results obtained by the time integration method are expected to be more accurate
than those obtained by the other two methods for kc < 0.2.

Based on the coefficients given in Table 2, flutter analysis was carried out
by the U-g mathod. Flots of flutter speed and corresponding reduced frequency

versus airfoil-air mass ratio are shown in Figure 15, The values assumed for the

aeroclastic parameters were: position of elastic axis 3, = -0,5; position of
mass center Xy = 0.25: plunge to pitch frequency ratio mh/wa = 0.2; radius of
i gyration re " 0.5; and damping parameters oy " 0 and 8" 0.
The results obtained from the relaxation method (UTRANS2) and the indicial

method are,in general, in good agreement. The curves obtained from the time

integration method, however, di fer from the other two sets of curves to some
extent, Such discrepancy may be due to the differences in the methods and the
numerical errors in computations., It may be noted here that both the relaxation

ﬁ and indicial methods are based on time-linearized equations in the unsteady aero-
dynamic computations ard the provision of treating the shock wave motion i3 lacking.

The time integration method has no such time-1inearization assumption and it can

efticiently treat shock movement, Thus the presence of shock for the Mach number

RN > i Al

considered might have also caused the discrepancy in these flutter results,

In the vesponse analysis, Equation 20 1s the governing aeroelastic

Bt

equation of the system. Reduced frequency was assumed as kC = 0.1, To start

F e

]

C with, the aerodynamic equation was integrated in time for $ix cycles by forcing a

AR

sinusoidal pitching motion with amplitude of 0.01 radians. In the sixth cycle

PRy =

the forced responses in LTRAN2 became almost periodic. From this point onwards

AR

free motion was considered by simultaneously integrating the aerodynamic and

T e v -

EEERg:

structural equations. Free motion was storted with initial conditions with

=G

£(0) = 0, £'(0) = 0, a(0) = 0, and «'(0) = 0.01.
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Table 2 i
b

AERODYNAMIC COEFFICIENTS FOR NACA 64A006 e

PITCHING ABOUT THE QUARTER CHORD AXIS AT M « 0.85 N

R - 4

\ ;}f

Reduced Frequency k_ = wc/U 3

Aerodynamic . B,

Coeff. Method 0.05 0.10 0.15 ]

Real Imag Real Imag Real Imag l ;

1 0.302 | 0.678| 0.616 | 1.067 | 0.867 | 1.335 s

C d

*s 2 0.136 | 0.666( 0.492 | 1.180 | 0.938 | 1.470 A

3 0.163 0.626| 0.480 | 0.962 | 0.783 | 1.148 K.

1 113,561 | -6.038 | 10.669 | -6.160 | 8.900 | -5.780 §7

c i

b 2 13.310 | -2.720 [ 11.820 | -4.920 | 9.770 | 6.250 B

‘L‘f

3 [11.803 | -3.701 | 9.160 | -4.491 | 7.223 | -4.076 R

) 1 0.010 | - .038 | 0.011 |- .068 | - .028 | - .104 -

g 2 |- .00i |- .034 |- .005(-.068 -.012]- .102 9

] 3 |0.004 |- .026 | 0.009 |- .054 | 0.013 |- ,089 3
L 1 |- .749 | - 201 |- .675 [ - 107 | - .691 | + .185 g
v c E
1 M 2 |- .676 | 0,021 |- .677 | 0.053 | - .677 | 0.082 M

1 3 |- .500 |« .07 |- 510 | - 147 | - 514 | - 210 :
8 ,(f.
' i
Method 1. LTRAN2  Time Intagration (79 x 99 ;“

Method 2. LTRENZ2 Irdicia) Method (79 x 99 ? '

Method 3. STRANSZ2 and UTRAMNS2 Reluration method (59 x 60) \ b

i. !
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Stable, n2utrally stable, and unstable responses were obtained by parametrically

varying the airfoil-air mass ratio u. A neutrally stable response was obtained hy 1{

considering a point on the flutter speed curve obtained by the time integration
Cy_ method in Figure 15 at kc = 0,1, The corresponding values of u and U* thus
'i,f obtained were equal to 252.5 and 5.5, respectively. These values along with the !

Lbrf' other aercelastic parameters (ah » -5, X, " 0.25, wh/mu 0.2, r, " 0.5, kc = ,.0)

B o e

55;' were substituted into Equation 20 and the response analysis was carried out,

”ﬂ{;~ The responses for plunging displacement and corresponding 1ifting force obtained

o Sl

};ﬂﬁ' from LTRANZ are shown in Figure 16. After some small initial disturbances due to

_}:u the initial conditions, the response curves show ideal periodic behavior.
The corresponding stable response curves for pitching displacement o and

pitching moment Cp are shown in Figure 17, These curves are shown only from the

S x:r_?ga',_ﬁ:_.-‘!_m.;. 9

;‘§: second cycle of the free motion, As compared to Figure 16, there were quite

‘é; pronounced initial disturbances due to initial conditions in the first cycle. How- ‘;
%i ever, the responses became almost periodic after the third cycle of free motion. zf
%’ One possible reason for the pronounced initial disturbances in the first k

:¢f&r cycle of the free pitching response is that the pitching axis 1s located at the
quarter chord. The moment valuas at the quarter chord are very small and the 3
. 3 h} plunging motion initially dominates the response. Hence, the pitching responses j
%H require more cycles to become periodic when compared to the plunging responses. R
X

It may be noted that for the case of flat plate pitching about the mid-chord,
the order of initial disturbances was the same for both plunging and pitching
responses (See Figures 11 and 12). This may be due to the fact that the moment ?
T value about the mid-chord is larger than that about the quarter chord. l
The curves for neutrally stable responses presented in Figures 16 and 17 show 5 1
that the neutrally stable conditions obtained by the present response method are in

good agreement with those obtained by the U-g method based on the time integration
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method. On the other hand the flutter points predicted by the indictial and re-
laxation methods will result in a slightly diverging case.
The response results for the neutrally stable condition presented in Figures
16 and 17 also show the validity of the principle of superposition of air loads
which was used in obtaining the flutter results by the U-g method. In deriving the
equations for the simultaneous integration procedure it was not necessary to use
such assumption.
In Figure 16, the response curves for plunging displacement ¢ and 1ifting
force ¢, for stable and unstable conditions are also shown. Thase were obtained by
changing the airfoil-air mass ratio u. For unstable response, the u value assumed
was 10% less than that corresponding to the neutrally stable condition. This
point is in the unstable zone of Figure 15, On the other hand, for stable response
the value of u assumed was 10% higher than that corraesponding to the neutrally
stable condition., This point 1s in the stable zone of Figure 15. Stable and
unstable response curves obtained for pitching displacement a and pitching moment
Cm are also shown in Figure 17, It is seen that the stable and unstable conditions
ebtained by the U-g method produced converging and diverging responses, respectively,
It was also of interest to study the effect of airfoll-air mass ratio u
(altitude) on peck amplitudes of rasponse curves. In this analysis, the peak
amplitudes corrasponding to the fourth cycle of free motion were considered,
Figure 18 shows nlots of the ratip of fourth cycle peak amplitude to the
amplitude of the neutrally stable curves versus the ratio of airfoil-air mass
ratio u to the u value corresponding to the neutrally stable point. These plots
include four curves for plunging displacement, 11fting force, pitchin_ displace-
ment and pitching moment, respectively.
From Figure 18 1t may be observed that all the four cuvves have similar trends.
The curve corresponding to pitching rotation is the steepest among the four curves.
There 15 a sudden change in the slopes near the flutter point for all curves.
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SECTION V
CONCLUDING REMARKS

The purpose of this research was to study the aeroelastic response behavior
of single (plunging or pitching) and two degree of freedom airfoil systems in
two-dimensionyl small-disturbance unsteady transonic flows. The aerodynamic
computer code LTRAN2 which 1s based on a fully implicit finite difference
scheme was employed to obtain the aerodynamic forces. Response behavior was
studied for a flat plate at a subsonic Mach number of M = 0.7 and a NACA 64A006
atrfoil at transonic Mach numbers 0,85 and 0,88, The influence of the airfoil-
air mass ratio u on response behaviors was studied in detail.

As a result of this study the following concluding remarks may be made:

(1) The response results obtained for single degree of freedom systems of pitching
and plunging for flat plates at M = 0,7 show that LTRAN2 (linear) results compare

well with the results based on quasi steady-state aerodynamic theory.

(2) Pitching response results obtainaed for a NACA 64A006 airfoil at M = (0,88
show that the present procedure of numerically integrating the structural and
transonic aerodynamic equations gives results which agree with those obtained

previously by Ballhaus and Goorjian (Reference 4),.

(3) Results obtained for a flat plate with two degrees of freadom (pitching and
plunging) at M = 0.7 {1lustrate that neutrally stable conditions obtained by the
U~y method based on aerodynamic coefficients computed by the time integration
method (LTRAN2) check with the neutrally stable conditions obtained by the time-
response method, [t was also 1llustrated that the neutrally stable conditions

obtained by the U-g method based on aerodynamic coefficients obtained by the

Kernel Function method compare well with those obtained by the time-response method.

O S




(4) Response results obtained for a NACA 64AD06 airfoil with two degrees of
freedom (pitching and plunging) at the transonic Mach number M = 0.85 show that

: ;f neutraily stable conditions obtained by the U-g method based on aerodynamic

f.Aé ‘ coefficients computed by the time integration method (LTRAN2) agree well with

%5 %, those obtained by the time integration response analysis. However, the neutrally '
E; ff' stable conditions obtained by the U-g method based on the relaxation and indicial

i aerodynumic coefficients do not agree so well with that obtained by the time
integration response analysis., This lack of good agreement may be due to the

assumption of time Tineartzation in the indicial and relaxation methods. Further-

more, the provision of treating the shock wave motion is lacking in the relaxation

and the indictal programs,

(5) Good comparison betwsen the neutrally stable conditions given by tha U-g
mathod (based on time integration aerodynamic coefficients) and the time-

‘F - response analysis indicate that the principle of linear superposition of airloads
used in the U-g method is valid for the cases analyzed.

(6) In general 1t may be concluded that the present method 1s accurate for
predicting the neutrally stable conditions (flutter) for a two-degree-of-freedom
system. This method also takes into consideration the movement of the shock

whereas 1t 1s not possible to do so in the U-g method,

(?) Because of the limitations of the method employed in the computer code
. LTRAN2, only low reduced frequencies (kc < 0.2) were considerad in the analysis,
?; Modifications to the LTRAN2 code are required for considoration of higher

: 2{ reduced frequencies.

(8) In this study 1t was also observed that M = 0.88 appears to be practically
the highast Mach number that can be used in LTRANZ for a NACA 64A006. Modifications

in the basic code are required to account for higher Mach numbers.




(9) This analysis may provide a systematic procedure for the transonic aero-
elastic response analysis of airfoils, The present study may also be used as
a comparative basis by the experimentalists and other analysts who work in the
same field.

(10) Similar studies on other airfoils, especially supercritical ones, are
needed.

(11) In order to study more practical cases of full-wing aeroelastic responses,

a transonic computer code to account for three dimensional unsteady flow is

required.
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