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SECTION I

INTRODUCTION

In the field of airplane design, there exists a class of problems in

which the motion of an aeroelastic system may vary in an arbitrary manner

with time, depending upon the initial conditions, the character of the applied

forces, and dynamic response properties of the system. Rapidly applied

external forces miy rise from many sources during the life of a modern air-

plane. One of the most important disturbing forces is that produced by gusts.

Detailed study of this phenomenon in subsonic, transonic and supersonic flows

is important.

A time-dependent response study requires simultaneous integration of the

structural and aerodynamic equations in time. In the subsonic and supersonic

cases, the governing flow equations are linear and aerodynamic forces depend

upon the body motion in a linear fashion. Many unsteady aerodynamic theories

are available fci, the solution of the aeroelastic problems for these cases.

Several classical examples, illustrating the dynamic response phenomena for the

subsonic case may be found, for example, in Reference 1.

On the other hand, governing equations for flows in the transonic regime

are nonlinear and they are characterized by the presence of shocks on the air-

foil. Because of these complexities, the study of the aeroelastic phenomenon

in the transonic regime is fairly involved. From earlier studies it has been

observed that for the case of flow over an airfoil in a free stream at Mach

numbers near one, small amplitude motions can cause large variations in the

aerodynamic forces and moments. In addition, phase differences between the

flow variables and the resultant forces may also be large. Because of these

special characteristics of the transonic flows, the probability of encounterinq

1 i,
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aeroelastic instabilities is higher. Detailed Investigations of this problem

are of practical significance.

The numerical methods for the computation of aerodynamic forces of small-

disturbance transonic flows about oscillating airfoils and planar wings have

been rapidly developed in recent years. A brief mention of such developments

containing 32 references can be found in Reference 2. Based on these develop-

ments many aeroelastic computations have been carried out. A comprehensive

state-of-the-art review of the developments In transonic aeroelasticity is

given by Ashley In Reference 3.

The first significant application of unsteady transonic computations to

an aeroelastic response study was by Ballhaus and Goorjian (Reference 4). In

that study they illustrated the use of the time-integration and the Indicial

approachesfor the aeroelastic response problems. They performed an aeroelastic

response analysis for a NACA 64A006 airfoil with a single pitching degree of

freedom. Pitching axis was assumed to be at the mid-chord. The time-history

* responses were computed by using their computer program LTRAN2 for unsteady

transonic flow coupled with an integration procedure for the simple differential

equation of motion for the airfoil. The motion of the airfoil in a flow at

Mo - 0.88 was forced for the first few cycles with an amplitude of oscillation

of 0.5 degrees until the pitching moment became periodic, after which the air-

foil motion and the aerodynamic response were left free to drive each other.

As the structural damping coefficient was varied parametrically the responses

were obtained for the highly damped, neutral, slightly divergent, and highly

divergent cases. It was shown that in order to obtain a flutter solution for

their example system at M. > 0.88, it is necessary that the nonlinear aerodynamic

equations be used and that the moment variation lead the motion. Here it may

be noted that linear flat plate equations can not be used to predict a phase

lead and can not be used to obtain a flutter solution.

2
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In Reference 4 another case with large initial amplitude of 1.50 and

M 0.87 was also considered. This example illustrated a non-sinusoidal

pitching moment behavior that could result from the large shock wave excursions

encountered at larger airfoil motion amplitudes.

In Reference 5, Rizzetta performed an aeroelastic response study of a NACA

64A010 airfoil by simultaneously integrating the LTRAN2 aerodynamics program

and the structural equations of motion. The study included a single degree

of freedom case with airfoil pitching at quarter chord and a three degree of

freedom case with airfoil pitching, plunging, and aileron pitching.
!f',

Mach numbers considered in Reference 5 were 0.72 and 0.82, A procedure

similar to that discussed in Reference 4 was employed to analyze the single

pitching degree of freedom case. For the three degree of freedom case, results

were obtained as plots of nondimensional pitching displacement (and moment),

plunging displacement (and lift) and aileron displacement (and moment)versus

time for various arbitrary values of the airfoil-air mass ratios. The other

aeroelastic parameters were also selected arbitrarily. All the displacement

and force quantities in the figures were divided by a*(0), the initial pitching

velocity. Dimensional values for a'(0) corresponded to 1,3, and 5 degrees. By

varying the values of U, converging and diverging curves were obtained.

It was pointed out in Reference 5 that no attempt was made to obtain

response curves corresponding to flutter condition for the three degree of

freedom system, The accuracy of results was tested against the homogeneous

solutions obtained for the structural system without the aerodynamic forces.

It was achieved by assuming lav.ge values for p. At large values of p the

quantities in the aerodynamic matrix have negligible effect on the response

solution.

The aeroelastic response studies made in the transonic regime so far have

not Included the single degree of freedom case of airfoil plunging and the two

1~ 3



degree of freedom case with airfoil pitching and plunging. Although the

single degree of freedom systems do not represent the "real world" problems,

some studies of them may give insight to other practical aeroelastic problems.

On the other hand the earlier studies have shown that primary flexure-torsion

flutter corresponding to the two degree of freedom system is the most

destructive of all aeroelastic instabilities. The "transonic dip" phenomenon

reported in References 6,7 and 8 showed that flexure-torsion flutter may

be more hazardous at Mach numbers near one. Studies conducted so far

(References 2,3,6,7,9) included only the results corresponding to the neutral

stability (flutter) point for transonic Mach numbers. The response studies

in the neighborhood of these transonic neutral stability points are also of

significant interest.

In this study aeroelastic response analyses were performed for a flat plate

and a NACA 64A006 airfoil. Several cases with single degree of freedom of

pitching, single degree of freedom of plunging, and two degrees of freedom

of pitching and plunging were considered in detail. Aerodynamic forces

required In this analysis were obtained by time-integration method with the

use of the LTRAN2 computer code.

To evaluate the linear, solution obtained by using LTRAN2, a flat plate was

first analyzed at M. - 0.7. Converging type response was obtained for a flat

plate pitching at mid-chord by simultaneously integrating LTRAN2 with the

corresponding structural equation of motion, For the same case, response

was also obtained by integrating the aerodynamic equation given by the quasi

steady-state theory with the structural equation of motion. Responses for

pitching angle and pitching moment were obtained by using both methods and

the two sets of results were compared with each other.

An example identical to that discussed in Reference 4 was also considered.

In the example a NACA 64A006 airfoil with single degree of freedom pitching

4
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about mid-chord at M= - 0.88 was considered. In this study the aerodynamic

coefficients required for the analysis were obtained by time integration

method, whereas in Reference 4 the indicial method was employed to obtain the

same aerodynamic coefficients. Response results obtained from both studies

for neutrally stable, diverging, and converging cases are compared and

discussed. This example was also used to evaluate the numerical integration

scheme employed in the present analysis.

Another case of a single plunging degree of freedom system for a flat

plate at Mach number of 0.7 was also considered, Converging type plunging

response results were obtained by using both the aerodynamic forces computed

by LTRAN2 and quasi steady-state aerodynamic theory, The two sets of results

were compared.

Finally, the important case of a two degree of freedom system with plunging

and pitching was analyzed. Two configurations, one in the form of a flat

plate and the other a NACA 64A006 airfoil were considered,

The flat plate was assumed to pitch about the mid-chord at M, - 0.7.

Flutter speeds and corresponding reduced frequencies were first obtained by

varying the airfoil-air mass ratio 1, for selected values of plunge to pitch

frequency ratio uh/w,, position of mass center xa, and radius of gyration

y3. The aerodynamic coefficients required for this analysis were obtained by

both LTRAN2 (linear) and a Kernel Function method. For a selected point on

the flutter curve (say, a point corresponding to reduced frequency kc = 0.1)

a response study was carried out. Neutrally stable, stable and unstable

response results in the form of displacements and forces were obtained by

varying the airfoil-air mass ratio ji. These results are discussed. The

effect of airfoil-air mass ratio on peak amplitudes was also studied.

A study similar to that performed for a flat plate was also carried out

for a NACA 64A006 airfoil pitching about the quarter chord at M 0.85, The

5
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plots of flutter speeds and the corresponding reduced frequencies versus

airfoil-air mass ratio v were obtained by using the aerodynamic coefficients

computed by time integration method. These results were compared with those

obtained by using relaxation and indicial methods in Reference 2. For a

selected point on these flutter curves, a response study was carried out.

Neutrally stable, stable and unstable response results were obtained in the

form of displacements and forces by varying the airfoil-air mass ratio vi.

These results are discussed, The effect of airfoil-air mass ratio P on

peak amplitudes was also studied for the NACA 64A006.

I'I
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SECTION II

GOVERNING AERODYNAMIC AND AEROELASTIC

EQUATIONS OF MOTION

In this section the basic equations employed in the present work both for the

aerodynamic part and structural part of the equations of motion are discussed.

2.1 Transonic Flow Equations

Many numerical procedures have been developed for computations of transonic

unsteady flow fields around oscillating two-dimensional airfoils. A brief

description of these developments is given in Reference 2. In this report the

time integration method developed by Ballhaus and Goorjian (Reference 8) is used,

The simplified basic aerodynamic equations, following the assumptions that

the flow is two-dimensional, Inviscid, transonic (M 1 1), and that the velocity

disturbances are small as compared to the free stream velocity U, can be deduced

from the general equation of continuity of gas dynamics as

22 + 2k M 2 t +
kcM 0tt c 2 xt Vc xx +yy (1)

where kc W Wc/U is the reduced frequency; M. is the free stream Mach number; 4,

is the disturbance velocity potential; Vc = 1 - M - (+)MNx; m is a function
of M=; and y is the ratio of specific heats.

In deriving the above equation, the coordinate system is fixed with respect

to the airfoil, and x is aligned with the free stream direction. The flow is

defined as locally subsonic or supersonic, relative to the fixed coordinate

system, for Vc > 0 or V c < O, respectively. A measure of the degree of un-

steadiness is given by the reduced frequency kc when the airfoil is oscillating

periodically with a frequency w in rad/sec.

7
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As a further simplification of Equation 1, the frequency of the transonic

flow can be assumed as low so that k 1 I - M 2/3. 1. Equation 1 may
C

then be reduced to

2k M2  V + y (2)
cCe xt C XX ~yy

where T is the thickness-chord ratio of the airfoil.

Equation 2 is suitable for the time integration approach. This approach is

based on the finite difference scheme that integrates Equation 2 in time for

harmonic aerodynamic motions until the transient states in the solution disappear

and the forces become periodic.

Several numerical procedures are available to solve Equation 2. Among them

the procedure developed by Ballhaus and Goorjian (Reference 10) based on the

alternate-direction implicit algorithm has been proven to be computationally

efficient and is being widely used. This procedure uses a conservative, implicit

finite-difference scheme to time-accurately integrate the nonlinear, low-frequency

transonic small-disturbance equation as defined in Equation 2. A computer code

LTRAN2 was developed based on this procedure. This code can be used to find the

flow field solutions for the airfoils with arbitrary combinations of pitch,

plunge and flap deflections.

2.2 Quasi Steady-State Aerodynamic Equations for Flat Plates

For subsonic flow conditions exact unsteady aerodynamic solutions are

available for flat plates with arbitrary pitch and plunge motions. Depending

upon certain assumptions these solutions may further be simplified. One such

solution can be obtained by using quasi steady-state assumption,

Quasi steady-state theory neglects the influence of wake vortices on the

flow, This is valid when the flat plate is oscillating with a very low reduced

frequency (kc 0.0).

c8
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For a flat plate pitching with an angle a about an axis located at a

distance bah from the mid-chord and plunging with displacement h, the expressions

for quasi steady aerodynamic lifting force, Qh' and moment, Q are given as

(see chapter 5 of Reference 1),

h wpb 2 '[h + U& - bah J-2rptlb~r + ic. + b(l/2-ah)&J (3)

.Q= pb~2bah Ub(l/2 - ah); - b 2(1/8 + al)"J (4)

+ 2rpUb 2 (ah + I/2)[( + Ua + b(0/2 - ah)ciJ

where bah a distanco of the pitching axis measured from mid-chord in semi-chords

b - semi-chord length of the airfoil.

"The above equations are derived assuming that the flow is incompressible

. 0). The effect of" MNv:i number is approximated by multiplying the

aerodynamic forces by the Prandtl-Glauert number, s, which is defined as

In the present work it is assumed that the above equations are valid

for flat plates oscillating at Me* - 0.7 with reduced frequency kc * 0.1.

2.3 Aeroelastic Equations of Motion for Single
and Two Degree of Freedom Airfoil System

In the present work two-dimensional airfoils in transonic flow with

single pitching degree of freedom, single plunging degree of freedom and two

degrees of freedom, plunge and pitch, are considered. Figure 1 describes the

sign conventions and the variables used in this study.

2.3.1 Pitching Degree of Freedom System

The equation of motion for the case assuming that airfoil is pitching

about an axis located at a distance ahb from the mid-chord, is

9
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I c+ C +K (6)

where I = mass moment of inertia of the airfoil about the elastic axis; K =

spring constant corresponding to pitching; C u mechanical damping coefficient

corresponding to pitching; QC is the aerodynamic moment about the pitching axis,

defined positive in positive a direction.

A nondimensional form of Equation 3 can be written as

a" +AI' + A2 c- 2  (7)
I OW

where the prime reprLsents the differentiation with respect to nondimensional

time wt and w is the circular frequency of oscillation. AI - C,/Iw and A2

KQ/I422 are the nondimensional damping and stiffness parameters, respectively.

The aerodynamic moment Q( may be written as

Q4 qc 2cm (8)

2where q =/2pU , dynamic pressure

c * full chord length of the airfoil

P free stream density

Cm - aerodynamic moment coefficient.

The values for cm are computed from LTRAN2.

Using Equation 8 and the definition kc wc/U, Equation 7 can be rewritten as

a" + A I + A2c 0 - Cm (9)

c

This equation is incorporated in LTRAN2 to obtain the aeroelastic responses,

The following derivations are based on the assumption that Qa is obtained

from quasi steady-state aerodynamic theory.

For a single pitching degree of freedom system, the aerodynamic moment

for the two degree of freedom case as given in Equation 4 may be reduced to

the form

10



Q iob2{- Ub(I/2 - ah)c - b2 (1/8 + a2)3X)

+1 2lTpb Ub2 1 2 a

+ ZpUb2(ah + 1/2)MU% + b(O.5 - ah)c) (10)

Correcting this % for the effect of Mach number and substituting it into

Equation 7 give

d + e1a, + fla (-)
(0,.125+a 2)a3

where d 1.0 + (

2 (0.5-ah) 3 4 (ah-O. 2 5)[3e 1 I A 1I + 0,1 kc + W, k c

8 (ah++015)6

S~I Wk

III .... , airfoil-air mass moment of inertia ratio.tob4

Equation 11 is a second order, ordinary differential equation. From this

equation the closed form solution for pitching response can be obtained for

given initial conditions and other' variables.

2.3,2 Plunginq Degree of Freedom System

If h is the plunging displacement measured positive downwards from a mean

position, the equation of motion for the system can be written as

ih + Ch 1 + Khh - Qh (12)

where w - mass of the airfoil per unit span. Ch - damping coefficient corresponding

to plunging; Kh spring constant corresponding to plunging; and Qh - aerodynamic

lifting force defined positive in positive h direction,

The nondimensional form of Equation 12 is written as

611 + B + B2, , h (13)

1161 c

W 1



where the prime represents the derivative with respect to nondimensional tine wt;

S- h/c, nondimensional plunging displacement; B8 Ch/mw, nondimensional dampinq

2
parameter;B2  Kh/mw2, nondimensional stiffness parameter,

The aerodynamic force Qh may be expressed as

Qh qcc, (14)

where c is the lift coefficient which can be obtained by LTRAN2, A negative

sign is introduced in Equation 14 since lift force is defined positive upwards

in the computer code,

Substituting Equation 14 in Equation 13 and rearranging give

2c
k5' + BI•6 + B2d " ____c (15)

where t, , airfoil-air mass ratio
Sb

This equation is incorporated in the LTRAN2 code to obtain the aeroelastic

responses for the plunging case,

The following derivations are based on the assumption that an exPlicit

expression for Qh is obtainable from the quasi steady-state aerodynamic theory.

For a single plunging degree of freedom system, the aerodynamic force Qh for

(Equation 3) may be written as

Qh 2,nUpbF - irpb'h (16)

Correcting the Qh for the effect of Mach number and substituting it into

Equation 13 give

d2" + e 2 6' + f2S - 0 (17)

where d2 - + e 2  1 ' a2 2 B

Equation 17 is a second order ordinary differential equation. From this

equation, closed form solutions can be obtained for plunging responses for given

initial conditions and other variables.

12
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2.3.3 Two Dimensional Airfoil with Pitch and Plunge Degrees of Freedom

Figure 1 shows an airfoil plunging with a positive displacement h (downward)

and pitching with a positive angle a (with the nose up) about elastic axis. The

elastic axis is located at a distance ahb from the mid-chord while the mass

center is located at a distance x b from the elastic axis. Both distances are

defined positive when measured toward the trailing edge.

In this analysis it is assumed that the airfoil is rigid and the amplitudes

of oscillation are small. It is also assumed that there is no coupling in the

mechanical damping. Hence considering the inertia forces, damping forces,

elastic forces, and aerodynamic forces, the equations of motion are

mh + Sý + Chh + Khh h Qh (18a)

Sh + I La + C a a + K • Qa (18b)

where S a airfoil static moment about the elastic axis and other quantities

have the same definitions as given in the single degree of freedom system.

The nondimensional form of Equation 18 can be written as

÷ '+ - (19a)

x+ +r a -(19b)

where the prime represents the derivative with respect to nondimensional time wt;

h/b is nondimensional plunging displacement; x U S/mb is a coefficient to

be multiplied by the semi-chord length to locate the mass center from the elastic

axis; wh (K0h/1)I/2 is the uncoupled plunging frequency; to is the frequency of

oscillation of the system; r = (I /mb 2 -is the coefficient to be multiplied

by the semi-chordto give the radius of gyration about the elastic axis; w,= (K /I9 2

is the uncoupled pitching frequency; h (Ch/ma) is the nondimensional damping

13
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parameter corresponding to plunging; r (C /mb •) is the nondimensional

damping parameter corresponding to pitching.

Substituting Equations 8 and 14 into Equation 19 and rearranging, the final

matrix equation for the response analyses is

EM] + [C)]~, + [K] I (20)

where [M], [C], and [K] are the mass, damping and stiffness matrices,

respectively, and they are defined as

[MI = (21a)

[C) = 2O (21b)

[K]r2 (21c)

where U* = U/bw is the nondimensional flight speed parameter and c, and cm

are the aerodynamic lifting and moment coefficients. These quantities are

directly obtained from the computer program LTRAN2.

Equation 20 is incorporated into LTRAN2 to obtain the aeroelastic

responses for two dimensional airfoils with pitching and plunging degrees of

freedom.
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SECTION III

RESPONSE SOLUTION PROCEDURE

In order to obtain the aeroelastic response solutions it is necessary to

simulataneously integrate the structural and aerodynamic equations. In the

present analysis this integration is carried out by a numerical procedure.

3.1 Direct Integration Method

The aeroelastic Equations 9, 15, and 20 can be written in a general form as

[M] (u") + CC] {u') + [K] (u) - {p) (22)

where [M], [C], and [K] are the mass, damping, and stiffness matrices, respectively;

{u) is the vector of the displacement degrees of freedom for the structure; prime

denotes the derivatives with respect to nondimensional time t ot; {p} is the

vector of the aerodynamic loads. Equation 22 is in the form suited for numerical

integration.

Many numerical procedures are available in the literature for the solution of

the equations of motion in a form similar to Equation 22. Discussion of such

procedures as applied to dynamic problems of structures can be found in references,

such as 11. In the present analysis the common direct integration procedure is

employed to find the time-history dynamic responses of the aeroelastic system.

The solution is obtained by using a step-by-step time integration finite difference

approach.

Assuming a linear variation of acceleration, the velocities and displacements

at the end of a small time 'interval At can be expressed as

At Nt
i,2

SIA't 2(At 2
("I~ {ult-A A'(u}ElAt + t(u) -At + -. { 2b

16
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Substituting Equations 23a and 23b into 22 yields

{u"}1 [F] rf - [C]{v) - [K]{wlJ (24)

where

[F]- LM] + At [C] + At [K (25a)

t- [K (25b)
(vW = (u'}1_A + T (u"}+,AE (25c)

For small amplitude (structurally linear) problems, matrix [F] need only be

formed once since it is independent of time. On the other hand the aerodynamic

load vector (p) depends upon the displacement degrees of freedom (u), the time

derivatives of (u), the reduced frequency kc and the free stream Mach number M .

The vector (p) is obtained by numerically solving the transonic aerodynamic

Equation 2 with the use of LTRAN2. The values of (u) and the time derivatives of

(u) used for computing {p) are based on the values obtained at the time t-At.

3.2 Solution for Aerodynamic Forces fp) by LTRAN2

The basic LTRAN2 code employs a non-iterative alternating direction implicit

(ADI) scheme to advance the solution for the perturbation potential, *, from one

time interval to vne next at each grid point in the computational flow field,

Differencing in x-direction is of mixed type which has been quite successful in

maintaining stability for both subsonic and supersonic flow regions. The

conservative form of the equation is preserved, which is essential for the

proper description of the shock wave motions. While the ADI scheme has no time

step limitation for stability based on classical linear stability ana)ysis,

instabilities may be generated by the motion of shock waves due to the mixed

differencing. Hence, the time interval Af must be chosen such that shock waves

do not travel more than one mesh point in the x-direction over a single time

step. Based on this procedure pressure distributions at any time can be computed.

17



By integrating these pressure curves, aerodynamic lifting forces and

moments are computed.

At every time step LTRAN2 requires the effective induced angle of attack a1

and its time derivatives as input. In general, for the two degree of freedom

system described in Figure 1 the induced angle of attack ai can be defined as

a + (26a)

or

c+ (26b)

a and ý' at every time step can be computed from the direct integration

scheme discussed earlier in this section.

3.3 Summary of Step by Step Time Integration of Aeroelastic Equations

The procedure discussed in this section was incorporated in LTRAN2 in the

following manner. For a set of starting values of (u), fu'l, and (p), (say,

known at time t-AJ) the acceleration vector {u"} at time i was computed from

Equation 24. Based on the known acceleration vector fu"}, the displacement

vector {uM and velocity vector {u'l at time f were computed from Equations 23a

and 23b, respectively. From these quantities the effective induced angle of

attack a,, and its time derivatives were computed for time t. This induced

angle of attack a, and other required quantities were then read into the LTRAN2

code and the new aerodynamic load vector (p) at time E was computed. At this

stage all the quantities~namely, (u}, Wu'}, Wu"}, and (p) at time I were known

so that further computations for time I + A can be carried out. This process

was repeated for every time step.
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SECTION IV

RESULTS

Aeroelastic response analyses were carried out for two airfoil configurations,

a flat plate and a NACA 64AO06 airfoil. In both cases, the airfoils were con-

sidered as single and two degree of freedom systems.

4.1 Finite Difference Computational Grid

The size and the pattern of the grid play an important role in obtaining

accurate results from LTRAN2. Because of the various reasons discussed in

Reference 10, a fairly fine mesh is required in order to obtain acceptable

solutions. However, the mesh size is limited by the capacity of the core

memory availalbe in a computer.

In this analysis a 79 x 99 finite difference mesh, with 79 grid points in

the vertical (y) direction and 99 grid points in horizontal (x) direction, was

employed for final computations. Details of this grid were kindly supplied by

Ballhaus and GoorJian. This was the maximum grid size that could be practically

used on the CDC 6500 computer available at Purdue University. A schematic

diagram of the portion of the grid near the airfoil is shown in Figure 2.

This grid has a smooth non-uniform pattern and it is symmetric about the

y - 0 line. The spacings of the grid points are smaller near the leading and

trailing edges in x-direction and near the mean chord line in the y-direction.

The spacings are gradually enlarged as the grid points are farther away from the

airfoil. Thus the grid boundaries are located sufficiently away from the airfoil

both in x-and y-directions. From leading edge to trailing edge, a total of 33

grid points is used so that an accurate representation of the pressure distribution

can be obtained, particularly when there is a shock. Other salient features for

this grid are given as follows:
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(1) Minimum spacing in x-direction = 0.0033c

(2) Minimum spacing in y-direction = 0.02c

(3) Distance between the upstream grid boundary and the

leading edge = 1033,53c

(4) Distance between the downstream grid boundary and the .4
leading edge * 855,91c

(5) Distance between grid boundary and the

mean chord line - 811.12c,

4.2 Steady-State Computations

The steady-state solution is required as an initial condition for the unsteady

computations. In this analysis the steady-state solution was obtained by using

the successive line over-relaxation method (SLOR) available in the LTRAN2 code.

In the process of obtaining the steady-state solution, multiple qrid

computations were carried out in order to accelerate the rate of convergence.

First, a converged steady-state solution was obtained for a coarse grid (35x38).

This solution was then interpolated to form a starting solution for a medium

grid (5309). A converged solution was then obtained for the medium grid. This

solution was again interpolated to form a starting solution for the final com-

putational grid (79 x 99).

The SLOR computations were carried out for the fine grid (79x99) for several

hundred iterations. This iterative process was stopped when the variation in the

perturbation velocity potential at all grid points between consecutive iterations

reached a value of about 4xl0"5. This required about 600 iterations. The steady

solution obtained at this stage was used to plot the pressure curves and also

used as a starting solution for the - dy computations.

4.3 Unsteady Computations (Forced Motion)

Steady-state results obtained by the SLOR method were used as the initial

conditions for unsteady computations. In order to obtain unsteady results the

21



airfoil was first subjected to a harmonic forced motion. In most of the cases

the induced angle of attack at, was varied sinusoidally with an amplitude of 0.01

radians(0.5740 ) and Equation 2 was integrated in time by LTRAN2. During the

process of time integration, 120 time steps per cycle were used. After some

duration of time the effect of the initial conditions on the unsteady solution

became negligible such that the aerodynamic force coefficients c. and cm

became periodic, In general, four to six cycles of forced motion were required

to obtain fairly periodic resulti from LTRAN2, However, the exact time at which

the forced motion had to be stopped, depended upon the type of Initial conditions

specified for free motion. For all the cases studied, forced motion was stopped

such that at,, aI, and a I were 0.0, 0,O1, and 0,0, respectively, with a,

in the unit of radians, From this stage onwards free motion conditions were

simulated by simultaneously integrating the structural and aerodynamic equations

and allowing the ,',foil motion and aerodynamic response to drive each other,

Due to inherent nonlinearity in the transonic aerodynamic equation, the

free motion response solution depends upon the initial values for at, ct, and

al. Physically these initial conditions may be used to represent the impulsive

forces (gusts) striking the airfoil.

4.4 Response Analysis of Single Degree of Freedom Systems

4.4.1 NACA 64A006 Airfoil Pitching at M - 0.88

A case of a NACA 64A006 airfoil pitching about the mid-chord at M a 0.88

and kc - 0.1 was considered. This case was selected in order to verify the

present formulations and also compare the results with those already obtained by

Ballhaus and Goorjian (Reference 4).

The airfoil configuration data required for this case were obtained from

Reference 12. The airfoil configuration is shown in Figure 3.

22
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The steady-state solution was obtained by the SLOR method. A plot of the

steady-state pressure curve is shown in Figure 4. In this figure it may be

observed that there is a fairly strong shock on the airfoil between x/c 0.64

and 0.69.

The governing differential equation of motion for this case is

&" + Ala' + A2 " - A3 cm (27)

where A3- w/8'k2 (see Equation ),

To obtain the present response solution, it was first necessary to obtain a

solution for the neutrally stable case. The moment coefficient Icm.I and phase

angle ' (phase lag between cm and a) were obtained by the time integration method

by considering five cycles of forced motion. The pitching motion was sinusoidally

forced with an amplitude of O.5. The values of Icm I and * obtained from this

analysis were 0.8565 and -67,5 degrees, respectively, On the other hand the

indicial method was employed in Reference 4 to obtain these results. The cor-

responding values of jcMI and ' obtained in Reference 4 were 0,8617 and .68.87

degrees , respectively. The differences between the present results and those

obtained in Reference 4 may be mainly due to the two different methods employed,

By assuming harmonic motion with frequency w, i.e., a e and by

relating the aerodynamic and structural constants, Equation 27 yields

A1 I -A3 c1 m•m snq, (28a)

A2  1 + A3 1cmaIcos' (28b)

Assuming the value of A3 equal to 1.333 (same as that used in Reference 4)

and substituting the values described earlier for Icma I and q, into Equations 28,

A1 and A2 were obtained, respectively, as 1.05 and 1.437. These values correspond

to the neutrally stable case. It is noted that in Reference 4, A1 and A2 were
24

i 24

.Wei
-•. . . : , +...• L••.,,,.•: .,.-• •,. • • . .. • . ..... .i; • '--O w lyj•'



NACA 64A006 , M=,. 0.88
-0.6

4*1

:• •-0.4-

• z
i: U

i,:• -0.2
-0.1

Wg 0

:' • 0.1

cc 0.2CL

S>. 0.3
~02

<0.4

0 0.2 0.4 0.6 0.8 1.0
x/c

Figure 4. Distribution of Steady Pressure Coefficients for NACA 64A006
Airfoil at M * 0.88 by LTRAN2.
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obtained as 1.072 and 1.414, respectively. The aeroelastic resronse analysis was

then carried out by simultaneously integrating the aerodynamic and the airfoil

motion equations. Different types of responses were obtained by parametrically

varying the structural damping parameter A1. The motion was forced for the first

five cycles after which the pitching moment became periodic and the airfoil

motion and aerodynamic response were left free to drive each other. The amplitude

of the pitching angle was 0.5 degrees. The initial conditions for free motion were

corresponding to o(0) - 0.0, and a'(0) - 0.S,

Response was obtained for values of the parameters corresponding to the

neutrally stable case,ie.,AI - 1.05, A2 - 1.437 and A3 a 1,333. Figure 5

shows the response curves for the pitching angle a and the corresponding pitching

moment cm, In both curves, the first cycle is due to forced motion and the

remaining cycles are due to free motion. Because the parameters corresponding to

the flutter solution were chosen, the response in free motion is, as expected,

very nearly periodic,

A diverging response was obtained when AI was assumed as 0,5. The results

for the responses of both the pitching angle and the pitching moment are shown In

Figure 6. A converging response was obtained when Al was assumed as 1,6 and

the results are shown in Figure 7. These results are similar to those presented

in Reference 4.

The above studies indicate that the general formulation of the problem is

correct and the numerical integration procedure employed is quite accurate,

4.4.2 Flat Plate Pitching at Mi - 0.70

In the computer code LTRAN2, there is a capability to solve the linear form

of Equation 2. This can be done by setting the input value for y equal to -1.0.

A response analysis for a flat plate pitching about mid-chord at Mach number M 0.7

was performed for a reduced frequency kc 0.1. The present LTRAN2 (linear)

26
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results were compared with that obtained by quasi steady-state aerodynamic theory

which is valid for reduced frequencies of the order kc = 0.1.

The flat plate configuration was simulated in LTRAN2 by using data corresponding

to a flat plate of a thickness-to-chord ratio of 0.01. In order to avoid numerical

difficulty, the data for the airfoil configuration were started at x/c 0.003

rather than at x/c = 0.0 (leading edge). The unsteady computations were started

with zero steady-state pressure conditions.

Equation 9 as given in section II is the governing differential equation of

motion for this case. The aerodynamic equation was integrated in time for four

cycles by forcing a sinusoidal variation of pitching angle with amplitude of 0.01

radians. The free motion was started at the end of the fourth cycle. The initial

conditions obtained for free motion were corresponding to a(O) - 0.0 and

al(0) = 0.01. The structural parameters for free motion were so selected that

a converging type response could be obtained. The values for the damping parameter

A,, the stiffness parameter A2 and the airfoil-air moment of inertia ratio i'

were 0.5,1.5 and 1000, respectively. The value assumed for v' was quite high

when compared to the actual values for aircraft wings. However, this number was

required in order to obtain a response solution that can be compared with

quasi steady-state theory.

The converging type response curves obtained for pitching angle a and pitching

moment cm are shown in Figure 8. In the same figure the responses obtained by

employing the quasi steady-state aerodynamic theory are also shown. These re-

sponses were obtained by solving the differential Equation 11 for the same values

of AV, A2 , ', (0) and a'(0) as used for LTRAN2. The two sets of solutions are, in

general, in fairly good agreement.

Small differences in amplitude and phase angle in Figure 8 between the two A

sets of results are mainly due to the difference between the two methods. It may

30
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Figure 8. Comparison of the Pitching Responses Obtained by LTRAN2 and Quasi SLeady-
State Theory for a Flat Plate Pitching about Mid-Chord.
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be observed that there is no phase lag between the pitching angle and the cor-

responding moment in the quasi steady-state solution but there is some phase

lag in the LTRAN2 s lution. Therefore, the effective aerodynamic dampings in

the system between the two methods are different which may cause the discrepancy

between the two sets of curves. Such discrepancy becomes larger for smaller

values of W' since aerodynamic damping is inversely proportional to w'.

At this point, it may be noted that LTRAN2 is based on the low frequency ap-

proximation which is more valid for Mach numbers near unity, The discrepancy

found in the two sets of curves may also be partly due to the low value of Mach

number (0.7) considered.

4.4.3 Flat Plate Plunging at M o 0.7

In this case, response results were obtained for a flat plate with only a

single plunging degree of freedom. The Mach number and reduced frequency kc

considered were equal to 0.7 and 0,1, respectively, Flat plate conditions were

simulated in the same manner as discussed earlier. Results were obtained both

from LTRAN2 (linear) and quasi steady-state theory,

The governing differential equation of motion for this case is given in

Section II as Equation 15. The aerodynamic equation was first integrated by

LTRAN2 for four cycles by forcing a sinusoidal plunging motion with amplitude

of plunging displacement 6 • h/c - 0.1 . This corresponds to an amplitude of

0.01 radians for the induced angle of attack ai a kc6.

The free motion was started with initial conditions corresponding to

ai(0) - 0,0 (6 - 0.1 ) and ci(0) - 0.01 (6' - 0.0). The structural parameters

were selected so that a converging type response could be obtained. The values

assumed for the structural damping parameter B1, the structural stiffness

parameter D2 and the airfoil-air mass ratio )j were equal to 0.0, 1.0, and 100,

respectively. Response curves obtained from LTRAN2 for plunging displacement A

32
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and lifting force coefficient c• are shown in Figure 9. In the same figure the

corresponding results obtained by quasi steady-state theory are also shown.

These results were obtained by solving the differential equation 17 based on the

same initial conditions and structural parameters as used In LTRAN2.

Response results obtained by both methods compare fairly well. The small

differences in phase angles and amplitudes may be mainly due to the difference

in the methods,

4.5 Two Degree of Freedom Systems (Pitching and Plunging)

In the response studies of the two degree of freedom systems, two cases were

analyzed, One case is a flat plate pitching about the mid-chord at M - 0.7

and the other is a NACA 64AO06 airfoil pitching about the quarter chord at

"Mal N 0,85, Response results were obtained by parametrically varying the airfoil-

air mass ratio p. In all the examples, the values of reduced frequency kc and

radius of gyration ra were assumed as 0,1 and O.6orespectively. The mechanical

damping was assumed as zero (ch " C ' 0).

4.5.1 Flat Plate Plunging and Pitching about Mid-Chord at M - 0.7

In this case response studies were performed for a flat plate pitching about

mid-chord at a subsonic Mach number M. a 0.7. Both the LTRAN2 (linear) code and

the Kernel Function method were used so that the two sets of results can be

*' compared.

Before starting the response analysis it was necessary to find the aero-

elastic parameters corresponding to a neutrally stable condition. Equations 20

discussed in Section II are the governing equations of motion for this case. The

aeroelastic parameters include: flight speed parameter U airfoil-air mass

ki• 1ratio p, position of the mass center x , plunge to pitch frequency ratio wh/•,

radius of gyration r , damping parameters Ch and C , and position of elastic axis ah,

The values for x , wh/(w, rL, h) r%, and ah were assumed as 0.0, 0.2, 0.5,

,.., 33
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Steady-State Theory for a Flat Plate.
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0.0, 0,0 and 0.0, respectively,

In order to obtain the values of kc, U and p corresponding to the neutrally

stable condition, the U-g method was used. A detailed discussion of this

method is given in Reference 2.

To use the U-g methodit is necessary to obtain a table of aerodynamic

coefficients similar to those obtained in Reference 2. Table I shows the aero-

dynamic coefficients of c,,, c% , Cm and Cm obtained by using the time integration

method of LTRAN2 (linear) and Kernel Function method for various values of

reduced frequency kc. Agreement is good between the two methods.

A flutter analysis was carried out for various values of airfoil-air mass

ratio p by the U-g method. Figure 10 shows the curves for flutter speed and correspond-

Ing reduced frequency versus the airfoil-air mass rat1a w obtained by both methods.

Excellent agreement is observed,

Any point on the curves shown in Figure 10 represents a neutrally stable

state whereas the zones below and above the curves represent stable and unstable

conditions, respectively. Response analyses were carried out for stable, neutrally

stable and unstable conditions by selecting the aeroelastic parameters based on

any selected point in the flutter speed curves. Because the time integration

method was used in performing the response studies, it was essential that the

flutter curves be obtained by ut.ing the time integration method instead of the indicial

and relaxation methods as used in Reference 2.

The governing equations of motion for this case are given by Equation 20 of

Section II. To begin with, the aerodynamic equation was integrated -in time for

four cycles by forcing a sinusoidal pitching motion with amplitude of 0.01

radians. In the fourth cycle the aerodynamic force responses became almost

periodic. After that, the free motion was started by simultaneously integrating

the structural and aerodynamic equations. This was started witO initial conditions

with t(0) 0 0, t'(0) 0 0, %(0) 0 0, and a'(0) - 0.01.
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Table 1

AERODYNAMIC COEFFICIENTS FOR FLAT PLATE

PITCHING ABOUT MID-CHORD AT M - 0.7

erodynanilc 
Reduced Frequency kc wc/U

:oeff, Method 0.05 0.10 0.15

Real Imag. Real Imag, Real Imag,

c 1 0.0669 0,4225 0.1700 0.8000 0.3038 1.134
Z 2 0.0616 0.3974 0.1666 0.7190 0.2719 0.9876

c 1 8.449 -1.338 8.001 -1.701 7,557 -2.025
2 7,964 -1.133 7.240 -1.488 6,671 -1.570

c 1 0,0151 0.0952 0.0479 0.1787 0,0954 0.2486
2 0.0174 0.0990 0.0501 0.1780 0.0865 0.2425

C 1 1.904 - .3016 1.787 - .4788 1,657 - .6361

2 1.985 - .3500 1.794 - .5117 1.640 - .5996

Method 1: Time Integration by LTRAN2 (linear).
Method 2: Kernel Function Method.
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Figure 10. Effect of Airfoil-Air Mass Ratio on Flutter Speed for Flat Plate
at Mu 0.7
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Aeroelastic parameters for the neutrally stable condition were selected

from a point on the flutter speed curves in Figure 10 at kc a 0.1. The cor-

responding values of u and U* were equal to 289.5 and 7.23, respectively. These

values were substituted into Equation 20 and the response analysis was carried

out. Response curves for pitching angle a and the corresponding pitching

moment cm for about six cycles are shown in Figure 11. After small initial dis-

turbances (due to initial conditions) both response curves show a perfect periodic

behavior. Similar curves obtained for plunging displacement 4 and corresponding

lifting force c are shown In Figure 12. These curves also show a perfect

periodic behavior after some small initial disturbances. It Is seen that the

neutrally stable conditions obtained by the present response method are in good

agreement with those obtained by the U-g method based on both the time Integration

and the Kernel Function method.

In Figure 11, the response cut ý for pitching displacement * and pitching

moment dm for the stable and unstable conditions are also shown. These were

obtained by changing the airfoil-air mass ratio p. For unstable response the p

value assumed was 10% lower than that corresponding to the neutrally stable

condition. This point is in the unstable zone of Figure 10, On the other hand,

for stable response the u value selected was 10% higher than that corresponding

to the neutrally stable condition. The corresponding stable and unstable responses

for plunging displacement c and lifting force ct are also shown in Figure 12,

It is seen that the stable and unstable conditions obtained by the U-g method

produced converging and diverging responses, respectively.

It was also of interest to study the effect of airfoil-air mass ratio

(altitude) u on the peak amplitudes of the response curves. In this analysis,

the peak amplitudes corresponding to the second free cycle were considered.

Figure 13 shows plots of the ratio of the second cycle peak amplitude to the

amplitude of the neutrally stable curve versus the ratio of airfoil-air mass
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Figure 13. Effect of Airfoil-Air Mass Ratio on Peak Amplitudes of
Responses for Flat Plate at M - 0,7.
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ratio P to the airfoil-air mass ratio at the neutrally stable condition. The

plots include four curves for plunging displacement, lifting force, pitching

displacement and pitching moment, respectively.

From Figure 13 it may be observed that the curve corresponding to plunging

displacement is steeper than the other three curves. All the curves assume a

similar trend below the neutrally stable point. The curves for lifting force and

moment are very close to each other and they virtually coincide. Such curves

may be used to study the aeroelastic behavior of the system near the neutrally
stable point.

4.5.2 NACA 64A006 Airfoil Plunging and Pitching about Quarter Chord at M ' 0.85

In the flutter analysis performed in References 6 and 7, a "transonic dip"

phenomenon was observed for the NACA 64A006 airfoil. Flutter speeds reached a

minimum in the neighborhood of M - 0.85. From the aeroelastic point of view,

this Mach number is the critical value. Hence, in this study aeroelastic response

analysis was carried out at M - 0.85.

In this case a MACA 64A006 airfoil pitching about the quarter chord (ah,-.5)

at M m 0.85 was considered. The procedure for obtaining the responses is the same

as that described for the case of the flat plate.

The steady-state pressure distribution curve obtained from LTRAN2 (non-

linear) is shown in Figure 14. In the same figure pressure curves obtained by

STRANS2 (Reference 2) and by experimental method (Reference 13) are also shown for

comparison. In general, all three curves agree fairly well.

Using the steady-state initial conditions, unsteady computations were carried

out by using LTRAN2 (nonlinear). The time integration method was employed to

obtain the aerodynamic coefficients c , c. , cm and cm . The coefficients for

various values of reduced frequency kc are shown in Table 2. In the same table, the

aerodynamic coefficients computed by UTRANS2 and the indicial method in Reference 2

are also given. In general, all three methods agree well. It may be noted that
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Figure 14. Distribution of Steady Pressure Coefficients for NACA
64AO06 Airfoil at M 0.85.
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the results obtained by the time integration method are expected to be more accurate

than those obtained by the other two methods for kc < 0.2.

Based on the coefficients given in Table 2, flutter analysis was carried out

by the U-g mathod. Plots of flutter speed and corresponding reduced frequency

versus airfoil-air mass ratio are shown in Figure 15. The values assumed for the

aeroelastic parameters were: position of elastic axis ah - -0.5; position of

mass center x - 0.25; plunge to pitch frequency ratio wh/w. - 0.2; radius of

gyration r• - 0.5; and damping parameters ch n 0 and cc - 0.

The results obtained from the relaxation method (UTRANS2) and the indicial

method are,in general)in good agreement. The curves obtained from the time

integration method, however, di 'Fer from *the other two sets of curves to some

extent, Such-discrepancy may be due to the differences in the methods and the

numerical errors in computations. It may be noted here that both the relaxation

and indicial methods are based on time-linearized equations in the unsteady aero-

dynamic computations and the provision of treating the shock wave motion i lacking.

The time integration method has no such time-linearization assumption and it can

efficiently treat shock movement, Thus the presence of shock for the Mach number

considered might have also caused the discrepancy in these flutter results.

In the response analysis, Equation 20 is the governing aeroelastic

equation of the system. Reduced frequency was assumed as kc 0 0.1. To start

with, the aerodynamic equation was integrated in time for six cycles by forcing a

sinusoidal pitching motion with amplitude of 0.01 radians. In the sixth cycle

the forced responses in LTRAN2 became almost periodic. From this point onwards

free motion was considered by simultaneously integrating the aerodynamic and

structural equations. Free motion was started with initial conditions with

& 0. ý1(0) 0, a(O) 0 0, and cz'(0) 0.01.
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Table 2

AERODYNAMIC COEFFICIENTS FOR NACA 64A006

PITCHING ABOUT THE QUARTER CHORD AXIS AT M w 0.85

Reduced Frequency kc Wc/U
Aerodynamic
Coeff. Method 0.05 0.10 0.15

Real Imag Real Imag Real Imag

1 0.302 0.678 0.616 1.067 0.867 1.335

z 2 0.136 0.666 0.492 1.180 0.938 1.470

3 0.163 0.626 0.480 0.962 0.783 1.148

1 13.561 -6.038 10.669 -6.160 8.900 -5,780
C

2 13.310 -2.720 11.820 -4.920 9.770 -6.250

3 11.B03 -3.701 9.160 -4,491 7.223 -4.076

1 0.010 - .038 0.011 - .068 - .028 - .104
C

2 001 - 034 -005 - .068 - .012 - .102

3 0.004 - .026 0.009 - .054 0.013 - .089

1 - .749 - .201 - .675 - .107 .691 + .185
C , ,

m 2 - .676 0,021 - .677 0.053 - .677 0.082

3 -. 501 -. 071 -. 510 1.147 {-.514 -. 210I J

Method 1. LTRAN2 timie Intigration (79 x 99)
Method 2. LTRAN2 Ir.dlclal Method (79 x 99)
Method 3. STRAtS2 and UTRA.S2 Rel~hation method (59 x 60)
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Figure 15, Effect of Airfoil-Air Mass Ratio on Flutter Speed for NACA
64A006 Airfoil at M 0.85.
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Stable, neutrally stable, and unstable responses were obtained by parametrically

varying the airfoil-air mass ratio v. A neutrally stable response was obtained by

considering a point on the flutter speed curve obtained by the time Integration

method in Figure 15 at k £ 0.1. The corresponding values of u and U thusC
obtained were equal to 252.5 and 5.5. respectively. These values along with the

other aeroelastic parameters (ah `*5, x a 0.25, - 0.2, r. 0.5, k .

were substituted into Equation 20 and the response analysis was carried out,

Tht responses for plunging displacement and corresponding lifting force obtained

from LTRAN2 are shown in Figure 16. After some small initial disturbances due to

the initial conditions, the response curves show ideal periodic behavior.

The corresponding stable response curves for pitching displacement a and

pitching moment cm are shown in Figure 17. These curves are shown only from the

second cycle of the free motion, As compared to Figure 16, there were quite

pronounced initial disturbances due to initial conditions in the first cycle. How-

ever, the responses became almost periodic after the third cycle of free motion.

One possible reason for the pronounced initial disturbances in the first

cycle of the free pitching response is that the pitching axis is located at the

quarter chord. The moment values at the quarter chord are very small and the

plunging motion initially dominates the response. Hence,the pitching responses

require more cycles to become periodic when compared to the plunging responses.

It may be noted that for the case of flat plate pitching about the mid-chord,

the order of initial disturbances was the same for both plunging and pitching

responses (See Figures 11 and 12). This may be due to the fact that the moment

value about the mid-chord is larger than that about the quarter chord.

The curves for neutrally stable responses presented in Figures 16 and 17 show

2 1 that the neutrally stable conditions obtained by the present response method are in

good agreement with those obtained by the U-g method based on the time integration
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method. On the other hand the flutter points predicted by the indiclal and re-

laxation methods will result in a slightly diverging case.

The response results for the neutrally stable condition presented in Figures

16 and 17 also show the validity of the principle of superposition of air loads

which was used in obtaining the flutter results by the U-g method. In deriving the

equations for the simultaneous integration procedure It was not necessary to use

such assumption.

In Figure 16, the response curves for plunging displacement t and lifting

force cl for stable and unstable conditions are also shown. These were obtained by

changing the airfoil-air mass ratio u. For unstable response, the p value assumed

was 10% less than that corresponding to the neutrally stable condition. This

point is in the unstable zone of Figure 15. On the other hand, for stable response

the value of p assumed was 10% higher than that corresponding to the neutrally

stable condition. This point is in the stable zone of Figure 15. Stable and

unstable response curves obtained for pitching displacement ( and pitching moment

c are also shown in Figure 17. It is seen that the stable and unstable conditionsm

obtained by the U-9 method produced converging and diverging responses, respectively.

It was also of interest to study the effect of airfoil-air mass ratio

(altitude) on peik amplitudes of response curves. In this analysis, the peak

amplitudes corresponding to the fourth cycle of free motion were considered,

Figure 18 shows plots of the ratio of fourth cycle peak amplitude to the

amplitude of the neutrally stable curves versus the ratio of airfoil-air mass

ratio u to the u value corresponding to the neutrally stable point. These plots

include four curves for plunging displacement, lifting force, pitchin displace-

ment and pitching moment, respectively.

From Figure 18 it may be observed that all the four curves have similar trends.

The curve corresponding to pitching rotation is the steepest among the four curves.

There is a sudden change in the slopes near the flutter point for all curves.
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SECTION V

CONCLUDING REMARKS

The purpose of this research was to study the aeroelastic response behavior

of single (plunging or pitching) and two degree of freedom airfoil systems in

two-dimensional small-disturbance unsteady transonic flows. The aerodynamic

computer code LTRAN2 which is based on a fully implicit finite difference

scheme was employed to obtain the aerodynamic forces. Response behavior was

studied for a flat plate at a subsonic Mach number of M m 0.7 and a NACA 64A006

airfoil at transonic Mach numbers 0,85 and 0,88, The influence of the airfoil-

air mass ratio P on response behaviors was studied in detail.

As a result of this study the following concluding remarks may be made:

*! (1) The response results obtained for single degree of freedom systems of pitching

and plunging for flat plates at M - 0.7 show that LTRAN2 (linear) results compare

well with the results based on quasi steady-state aerodynamic theory.

(2) Pitching response results obtained for a NACA 64A006 airfoil at M - 0,88

* show that the present procedure of numerically integrating the structural and

transonic aerodynamic equations gives results which agree with those obtained

* previously by Ballhaus and Goorjlan (Reference 4).

(3) Results obtained for a flat plate with two degjrees of freedomn (pitching and

plunging) at M , 0.7 illustrate that neutrally stable conditions obtained by the

U.1 method based on aerodynamic coefficients computed by the time integration

method (LTRAN2) chock with the neutrally stable conditions obtained by the time-

response method, It was also illustrated that the neutrally stable conditions

obtained by the U-g method based on aerodynamic coefficients obtained by the

Kernel Function method compare well with those obtained by the time-response method.
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(4) Response results obtained for a NACA 64A006 airfoil with two degrees of

freedom (pitching and plunging) at the transonic Mach number M - 0.85 show that

neutrally stable conditions obtained by the U-g method based on aerodynamic

coefficients computed by the time Integration method (LTRAN2) agree well with

those obtained by the time integration response analysis. However, the neutrally

stable conditions obtained by the U-g method based on the relaxation and indicial

aerodynamic coefficients do not agree so well with that obtained by the time

Integration response analysis, This lack of good agreement may be due to the
assumption of time linearization in the indicial and relaxation methods. Further-

more, the provision of treating the shock wave motion is lacking in the relaxation

and the indicial programs.

(5) Good comparison between the neutrally stable conditions given by the U-g

method (based on time integration aerodynamic coefficients) and the time-

response analysis indicate that the principle of linear superposition of airloads

used in the U-g method is valid for the cases analyzed.

(6) In general It may be concluded that the present method is accurate for

predicting the neutrally stable conditions (flutter) for a two-degree-of-freedom

system. This method also takes into consideration the movement of the shock

whereas it is not possible to do so in the U-g method.

(7) Because of the limitations of the method employed in the computer code

LTRAN2, only low reduced frequencies (kc < 0.2) were considered in the analysis.

Modifications to the LTRAN2 code are required for considoration of higher

reduced frequencies.

¶ (8) In this study it was also observed that M - 0.88 appears to be practically

the highbst Mach number that can be used in LTRAN2 for a NACA 64A006. Modifications

"In the basic code are required to account for higher Mach numbers.
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(9) This analysis may provide a systematic procedure for the transonic aero,,

elastic response analysis of airfoils. The present study may also be used as

a comparative basis by the experimentalists and other analysts who work in the

same field,

(10) Similar studies on other airfoils, especially supercritical ones, are

needed.

(11) In order to study more practical cases of full-wing aeroelastic responses,

a transonic computer code to account for three dimensional unsteady flow Is

required.
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