
Citation: Salehi Paniagua, K.;

García-Fogeda, P.; Arévalo, F.

Aeroelastic Stability of an Aerial

Refueling Hose–Drogue System with

Aerodynamic Grid Fins. Aerospace

2023, 10, 481. https://doi.org/

10.3390/aerospace10050481

Academic Editor: Daochun Li

Received: 30 January 2023

Revised: 10 May 2023

Accepted: 16 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Aeroelastic Stability of an Aerial Refueling Hose–Drogue
System with Aerodynamic Grid Fins
Keyvan Salehi Paniagua 1 , Pablo García-Fogeda 1,* and Félix Arévalo 2

1 Department of Aircraft and Space Vehicles, ETSIAE, Universidad Politécnica de Madrid, 28040 Madrid, Spain
2 Structural Dynamics and Aeroelasticity Department, AIRBUS Defence and Space, Getafe,

28906 Madrid, Spain
* Correspondence: pablo.garciafogeda@upm.es

Abstract: In this work, the aeroelastic stability of an aerial refueling system is investigated. The
system is formed by a classical hose and drogue, and the novelty of our work is the inclusion of a
grid fin configuration to improve its stability. The unsteady aerodynamic forces on the grid fins are
determined using the concept of a unit grid fin (UGF). For each UGF, the unsteady aerodynamic
forces are computed using the Doublet-Lattice Method, and the forces on the complete grid fins are
calculated using interfering factors obtained from wind tunnel measurements for the steady case.
The static equilibrium position of the system influences the linearized perturbed unsteady motion of
the ensemble. This effect, together with the phase lag angle introduced to account for the unsteady
aerodynamic forces in the hose, makes the flutter computation of the complete system a non-typical
one. The results show that, by adding the grid fins, the stability of the refueling system is improved,
delaying or annulling flutter occurrence.

Keywords: aerial refueling; grid fins; aeroelastic analysis; flutter computation

1. Introduction

Aerial refueling, or air-to-air refueling (AAR), is the process of transferring fuel from
one aircraft to another during flight. Although there are different methods to perform an
aerial refueling process, the most widely used technique today is the hose and drogue
system, in which a trailing hose with a drogue at its end is used to transfer the fuel.

Much work and many lines of research have focused on different aspects of the study
of hose and drogue systems. Among them, the work of [1] should be highlighted, since it
is one of the first models to analyze the static stability of the system during the refueling
process. Other more recent work of interest include [2] or [3], which analyze the dynamic
response of a hose–drogue system. Authors such as [4] or [5] studies the response of a
system including a reel mechanism for the hose, while certain studies such as the work
of [6] included nonlinear effects to simulate the response of the hose. A thorough review of
the state of the art for AAR can be found in [7].

Following [8], in the whole aerial refueling process, four different phases can be con-
sidered: the stabilized flight condition, the hose deployment, the pre-contact hose-deployed
condition, and the drogue-receiver aircraft contact. Focusing on the third phase, problems
with the stability of the system, which are decisive in ensuring successful attachment, could
appear. For that reason, recently, several research lines about the stability of the system
have been developed, emphasizing how to control the drogue and the hose once they
have been deployed. For example, the work of [9–11] presented methods for controlling
an automatic refueling drogue and that of [12] studied an active control strategy based
on automatic control surfaces. However, the possibility of aeroelastic problems in aerial
refueling systems with hoses and drogues have barely been investigated.

This paper introduces an analysis of the possibility of flutter-type aeroelastic stability
following and extending the model presented in [13]. In order to obtain reliable results,
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different effects such as the downwash angle induced by the tanker wake, a new modeling
of the aerodynamic forces on the hose, an experimental estimation of the structural damping
of the system, and the lag between aerodynamic forces and hose motion will be included.
This analysis is performed, however, not for a classic hose–drogue model but for one with
an active control system installed. Specifically, in this work, the stability of the system will
be studied when a prototype of grid-type fins is included between the hose and the drogue.

Grid fins (also called lattice fins) are a type of flight control surface that consists of
a lattice of small aerodynamic surfaces, arranged within a box. Although their classical
applications have been in missiles and rockets, they have interesting advantages when used
in a system such as the one presented in this work. If the grid fins have the capability of
being actively controlled, they may be used to increase the stability of the refueling process,
as well as to achieve an autonomous hose approach to the receiver aircraft. The aerodynamic
forces generated by this type of fin have been studied in several works for the subsonic
regime. For example, [14] or [15] presented experimental and analytical results of the
aerodynamic forces for different grid fin configurations. Other work, such as [16], focused
on analyses with computational tools. Nevertheless, due to the computational cost of
solving the aerodynamics of complete fins, in this work, the aerodynamic coefficients
of the grid fins will be obtained following [17], which presents a simplified model with
high reliability.

The complete hose–drogue–grid fin model, as will be described in Section 2, starts
from the static equilibrium position of the system. The subsequent dynamic motion will
be assumed to be of small amplitude with respect to the steady configuration. Therefore,
a linearization of the perturbed equations will be performed. The resulting system of
equations, in which the unsteady aerodynamic forces of the grid fins will be included,
allow us to analyze the aeroelastic behavior (in particular, the possibility of flutter) of the
hose–drogue–grid fin system for different flight conditions and values of the parameters.
All of the flight conditions considered are in the low–mid subsonic range. The results will
emphasize the differences that appear between the hose–drogue system with and without
the grid fin model.

The remainder of this paper is organized as follows: Section 2 formulates the general
hose–drogue–fin model. In Section 3, the aerodynamic forces generated by the grid fins,
as well as their inclusion into the model, are presented. Section 4 presents the dynamic
problem once the system is perturbed with a small amplitude. The flutter analysis is out-
lined in Section 5, and Section 6 provides the different results. Finally, the main conclusions
are presented in Section 7.

2. Hose–Drogue–Grid Fin Model

Figure 1 presents the geometry in a differential hose element, as well as at the hose–
drogue–fin junction at the end of the hose. As can be seen, the reference system (x, y, z)
is defined by the x-axis opposite to the flight direction, the y-axis pointing downwards,
and the z-axis forming right-handed Cartesian axes. In order to obtain the equations of the
model, Figure 1 can be projected in a vertical plane (x, y) and in a horizontal plane (z, x) to
show the acting forces in a differential hose element, as can be seen in Figure 2.
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Figure 1. Hose-drogue-grid fins model.

ρH
∂2y
∂t2 ds

x

y

pds
qds

ρH gds

T

T +
∂T
∂s

ds

P

W

Q

ρH
∂2x
∂t2 ds

WF

LF

DF

MF ρH
∂2z
∂t2 ds

z

x

rds

T

T +
∂T
∂s

ds

Q
NF

DF

ZF

Figure 2. Geometry and active forces of the hose-drogue-grid fins model, (x, y) and (z, x) planes.

The governing equations for the coordinates of the hose x(s, t), y(s, t), z(s, t) and for
the hose tension T(s, t), with no considerations of bending forces as a first step in the model
are:
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Figure 2. Geometry and active forces of the hose–drogue–grid fin model, (x, y) and (z, x) planes.

The governing equations for the coordinates of the hose, x(s, t), y(s, t), z(s, t), and for
the hose tension T(s, t), with no considerations of bending forces as a first step in the model,
are as follows:

− ρH
∂2x
∂t2 − c

∂x
∂t

+ q +
∂

∂s

[
T
(

∂x
∂s
− ε

∂y
∂s

)]
= 0, (1)

− ρH
∂2y
∂t2 − c

∂y
∂t
− p + ρH g +

∂

∂s

[
T
(

∂y
∂s

+ ε
∂x
∂s

)]
= 0, (2)

− ρH
∂2z
∂t2 − c

∂z
∂t

+ r +
∂

∂s

(
T

∂z
∂s

)
= 0, (3)

(
∂x
∂s

)2
+

(
∂y
∂s

)2
+

(
∂z
∂s

)2
= 1, (4)

where s is the hose arc length; t is the time; ρH is the mass per unit length of the hose; c
is the structural damping coefficient of the hose; q, p, and r are the drag, the lift, and the
lateral aerodynamic force (all per unit length) on the hose ;and ε is the downwash angle
induced by the tanker wake. The results obtained for the hose and drogue model without
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grid fins showed that, in general, the configuration will be symmetrical with respect to the
z = 0 plane. Ro and Kamman [18] have shown that, even for the case of asymmetry of
the hose–drogue system with respect to the wing location, the lateral deviation is small.
Therefore, in our configuration with grid fins, as will be shown in Section 3, the lateral force
on the hose, r, will be very small and can be neglected.

The drag and the lift on the hose can be written following [13], as follows:

q(s, t) = K1 + K2

[(
∂y
∂s

)3
+ 3ε

∂x
∂s

(
∂y
∂s

)2
]

, (5)

p(s, t) = K2

[
∂x
∂s

(
∂y
∂s

)2
− ε

((
∂y
∂s

)3
+ 2

∂y
∂s

(
∂x
∂s

)2
)]

, (6)

where K1 and K2 are defined following the work of [19]:

K1 = q∞ · dH · CD f , (7)

K2 = q∞ · dH · CD0, (8)

where dH is the hose external diameter, CD f is the friction drag coefficient, and CD0 is the
zero-lift drag coefficient.

The boundary conditions of Equations (1)–(4) at the hose–tanker junction, s = 0, are
as follows:

x(0, t) = XT(t), (9)

y(0, t) = YT(t), (10)

z(0, t) = ZT(t), (11)

where XT(t), YT(t), and ZT(t) represent the prescribed motion at the hose–tanker con-
nection. Equations (9)–(11) must be completed with geometric or kinematic boundary
conditions on the derivatives of the variables at s = 0 as a function of the considered case
of the connection (for example, pinned, clamped, etc.). On the other hand, the boundary
conditions at the hose–drogue–fin junction, s = s0, are as follows:

− T(s0, t)
[

∂x(s0, t)
∂s

− ε
∂y(s0, t)

∂s

]
+ Q + DF − ZF

∂z(s0, t)
∂s

= 0, (12)

T(s0, t)
[

∂y(s0, t)
∂s

+ ε
∂x(s0, t)

∂s

]
+ P + LF −W − WT

g
∂2y(s0, t)

∂t2 −WF = 0, (13)

T(s0, t)
∂z(s0, t)

∂s
+ ZF + DF

∂z(s0, t)
∂s

= 0, (14)

where s0 is the total hose length; W is the drogue weight; P and Q are the drogue lift and
drag, respectively; WF is the grid fin weight (WT = W + WF is the weight of the complete
system, drogue+grid fins); LF is the grid fin lift; DF is the grid fin drag; and ZF is the grid
fin side force.

Starting from an initial static equilibrium position, the system is perturbed with a
small amplitude. Hence, the four variables of the system can be expressed as follows:

x(s, t) = xe(s) + δ1 · ξ(s, t), (15)

y(s, t) = ye(s) + δ1 · η(s, t), (16)

z(s, t) = ze(s) + δ1 · σ(s, t), (17)

T(s, t) = Te(s) + δ1 · τ(s, t) ' Te(s), (18)

where ye(s), xe(s), ze(s), and Te(s) are the static equilibrium coordinates of the system
and the static hose tension; δ1 is the small amplitude unsteady perturbation parameter;
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and η(s, t), ξ(s, t), σ(s, t), and τ(s, t) are the perturbed values of the variables. With re-
spect to T(s, t), the work of [20] shows that is not affected by unsteady effects (see also,
for example, [8]). Therefore, the unsteady hose tension has been assumed to be negligible.
Additionally, the angle of attack of the hose can be divided in two different terms:

α(s, t) = αe(s) + δ1 · α1(s, t), (19)

where αe(s) is the steady angle of attack and α1(s, t) is the unsteady angle of attack.
The steady angle can be expressed as a function of the static unknowns by projecting
in both axes:

sin αe =
dye

ds
+ ε

dxe

ds
, (20)

cos αe =
dxe

ds
− ε

dye

ds
. (21)

As can be seen in Equations (20) and (21), the steady angle of attack includes the effect
of the downwash angle induced by the tanker aircraft ε. The modeling of this angle is
performed using the Lifting Line Theory. This angle affects the steady angle of attack αe
and, due to the coupling between the steady and the unsteady motion (see Section 4), will
also influence the dynamics of the system.

With respect to α1, considering the unsteady effect due to the motion of the system
and assuming small angles, it can be expressed as the ratio of the vertical speed of the hose
v̇(s, t) to the free-stream speed U∞:

α1(s, t) =
v̇(s, t)

U∞
=

∂η

∂s
(s, t) +

1
U∞

∂η

∂t
(s, t). (22)

By projecting the angle of attack onto both axes and linearizing it, the aerodynamic
forces on the hose (Equations (5) and (6)) can also be split into a steady term and a term of
order δ1:

q(s, t) = qe(s) + δ1
dq
dα

∣∣∣∣
αe

α1(s, t), (23)

p(s, t) = pe(s) + δ1
dp
dα

∣∣∣∣
αe

α1(s, t). (24)

Regarding the steady problem, a numerical integration of the resulting nonlinear
system of equations yields the static equilibrium position of the system and the static
tension of the hose. Afterwards, the dynamic problem, i.e., the system of equations to be
obtained with the perturbed variables from Equations (15)–(17), must be resolved.

3. Grid Fin Prototype. Aerodynamic Characterization

As mentioned in Section 1, in order to provide automatic control stabilization when
the receiver approaches the drogue, a grid fin prototype is included at the end of the hose.
The configuration of the prototype is shown in Figure 3.
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Figure 3. Grid fin prototype.

As can be seen, there are two fins in vertical position (fins 1 and 3) and two fins
in horizontal position (fins 2 and 4). Each of these fins can rotate around its own axis
independently of the drogue. These motions, together with the motion of the complete
model in the hose–drogue–fin junction (pitch and yaw) will allow for defining a local angle
of attack (rotation around the z-axis) and a local angle of sideslip (rotation around the
y-axis) of each of the fins αF

i and βF
i , for i = 1, ..., 4.

With the addition of the grid fin aerodynamic forces, as seen in Equations (12)–(14),
the static and dynamic behavior of the whole system will be altered. The method to obtain
the aerodynamic forces on the grid fins is based on the work of [17], generalized in order
to include the unsteady motion of the grid fins. In this reference, the complete fin was
divided into unit grid fins (UGF). On each UGF, the aerodynamic forces were computed.
Multiplication of the net forces acting on each UGF by the number of total equivalent
UGF provided the total force on the fin. In [17], it was shown that the comparison of
the results by the simplified UGF method and the solution of the complete fin is very
accurate in the subsonic regime. While in this reference, the solution of the complete
fin was achieved using a CFD code, in this work, the aerodynamic coefficients will be
obtained with the Doublet-Lattice Method (DLM) code. With this code, a UGF normal force
coefficient CNα,UGF is calculated as a function of the Mach number M∞ and for the reduced
frequency of the unsteady motion of the system k = ωlre f /2U∞. With the approach of the
UGF method, the lift coefficient slopes on the vertical and horizontal fins can be expressed
as follows:

CLα1 = CLα3 = CNα,UGF ·
SUGF

S f in
· Neq,V , (25)

CLα2 = CLα4 = CNα,UGF ·
SUGF

S f in
· Neq,H , (26)

where SUGF is the reference surface of a UGF; S f in is the reference surface of a complete fin;
and Neq,V and Neq,H are the equivalent UGF for a vertical and an horizontal fin, respectively,
which are estimated following the same procedure described in [17]. It is important to
point out that, due to the symmetry of the fin configuration, the side force coefficient slopes
in the fins can be obtained easily from the lift coefficients: CZβ1 = CLα2 and CZβ2 = CLα1.
Once CLα and CZβ have been obtained, it is possible to develop a formulation to calculate
the aerodynamic forces on the complete fins. Contributions to the total forces, such as the
interference terms between the four fins and the rest of the prototype, are obtained from
experimental data, while the computations from the DLM are strictly associated with the
isolated fins. Although these other contributions are always very small with respect to the
fins themselves, they are included in the results used for the aerodynamic coefficients.
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For the configuration presented in Figure 3, the lift and the side force coefficient for
each grid fin are as follows:

CF
Li = CLαi · αF

i · cos βF
i , (27)

CF
Zi = CZβi · (−βF

i ) · cos αF
i , (28)

for i = 1, ..., 4. The complete coefficients can be obtained from Equations (27) and (28):

CF
L =

4

∑
i=1

f̂iL · CF
Li, (29)

CF
Z =

4

∑
i=1

f̂iZ · CF
Zi, (30)

where f̂iL and f̂iZ are correction factors needed to include interferences and other effects
obtained from experimental data. With respect to the rest of the aerodynamic coefficients,
the drag coefficient CF

D is obtained from experimental data of static tests. Therefore, it
will be assumed completely steady, i.e., in the perturbed equations, it will not appear.
The pitch and yaw moment coefficients CF

M and CF
N are obtained in a similar way to

Equations (29) and (30). However, since they will have no effect on the results (the bending
and torsion of the hose are not considered in the model), these expressions are not included
in this development. Once the aerodynamic coefficients are known, the grid fin forces can
be expressed as follows:

LF = q∞ · SUGF · CF
L , (31)

ZF = q∞ · SUGF · CF
Z, (32)

DF = q∞ · SUGF · CF
D. (33)

In a similar way to Equations (15)–(18), the angles of attack and sideslip of the grid
fins can be split into a steady and in an unsteady contribution (for a symmetric case of the
grid fin configuration):

αF
i = αF

ei
+ δ1 · ∆αF

i , (34)

βF
i = βF

ei
+ δ1 · ∆βF

i , (35)

where αF
ei

and βF
ei

are the steady angle of attack and sideslip of each fin, and ∆αF
i and

∆βF
i are the unsteady angle of attack and sideslip of each grid fin (i = 1, . . . , 4). Thus,

Equations (27) and (28) can be rewritten as follows:

CF
Li = CLαi · (αF

ei
+ δ1 · ∆αF

i ) · cos(βF
ei
+ δ1 · ∆βF

i ), (36)

CF
Zi = CZβi(−βF

ei
− δ1 · ∆βF

i ) · cos(αF
ei
+ δ1 · ∆αF

i ), (37)

Linearizing and retaining only terms of order δ1, the unsteady force coefficients ∆CF
Li

and ∆CF
Zi are as follows:

∆CF
Li = CLαi(∆αF

i cos βF
ei
− αF

ei
∆βF

i sin βF
ei
), (38)

∆CF
Zi = CZβi(∆βF

i cos αF
ei
+ βF

ei
∆αF

i sin αF
ei
). (39)

The coefficients ∆CF
L and ∆CF

Z for the total forces are obtained with Equations (29) and (30).
It can be seen that both coefficients ∆CF

L and ∆CF
Z are functions of eight unknowns: the unsteady

angles of attack ∆αF
i and sideslip ∆βF

i of each of the four fins. It is possible to write these two
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expressions in matrix form as a function of the unknowns: ∆Qαβ · XF, where the vector of
unknowns will be the following:

XF = {∆αF
1 ∆βF

1 ∆αF
2 ∆βF

2 ∆αF
3 ∆βF

3 ∆αF
4 ∆βF

4}T , (40)

Additionally, the matrix is as follows:

∆Qαβ =




∆Qα1α1 ∆Qα1β1 0 0 0 0 0 0
∆Qβ1α1 ∆Qβ1β1 0 0 0 0 0 0

0 0 ∆Qα2α2 ∆Qα2β2 0 0 0 0
0 0 ∆Qβ2α2 ∆Qβ2β2 0 0 0 0
0 0 0 0 ∆Qα3α3 ∆Qα3β3 0 0
0 0 0 0 ∆Qβ3α3 ∆Qβ3β3 0 0
0 0 0 0 0 0 ∆Qα4α4 ∆Qα4β4

0 0 0 0 0 0 ∆Qβ4α4 ∆Qβ4β4




, (41)

where each coefficient of the matrix can be defined, following Equations (38) and (39), as follows:

∆Qαiαi = f̂iL · CLαi · cos βF
ei

, (42)

∆Qαi βi = − f̂iL · CLαi · αF
ei
· sin βF

ei
, (43)

∆Qβiαi = f̂iZ · CZβi · βF
ei
· sin αF

ei
, (44)

∆Qβi βi = f̂iZ · CZβi · cos αF
ei

, (45)

for i = 1, . . . , 4. Equation (41) gives the generalized unsteady force matrix of the fins as a
function of their angles of attack and sideslip. To couple the aerodynamic forces on the fins
with the dynamic equations on the hose, this matrix must be expressed as a function of the
three perturbed variables of the dynamic problem: η(s, t), ξ(s, t) and σ(s, t). By analyzing
the fin angles at the static equilibrium position, a relationship between these angles and the
static variables can be found:

sin αF
e1
' dye

ds
(s0); cos αF

e1
' dxe

ds
(s0), (46)

sin βF
e1
' dze

ds
(s0); cos βF

e1
' dxe

ds
(s0), (47)

where it has been assumed that the angles in the hose–fin–drogue junction are small.
In Equation (47), it can be observed that the value for βF

e1
is very small, and therefore, the

lateral forces on the hose can be neglected. Starting with fin 1, once the system is perturbed
from their static position, the unsteady angles of attack and sideslip could be written,
retaining terms of order δ1, as follows:

∆αF
1 =

∂y
∂s
(s0, t)

∂x
∂s
(s0, t)

=

dye

ds
(s0) + δ1 ·

∂η

∂s
(s0, t)

dxe

ds
(s0) + δ0 ·

∂ξ

∂s
(s0, t)

' dxe

ds
(s0)

∂η

∂s
(s0, t)− dye

ds
(s0)

∂ξ

∂s
(s0, t), (48)

∆βF
1 =

∂z
∂s
(s0, t)

∂x
∂s
(s0, t)

=

dze

ds
(s0) + δ1 ·

∂σ

∂s
(s0, t)

dxe

ds
(s0) + δ1 ·

∂ξ

∂s
(s0, t)

' dxe

ds
(s0)

∂σ

∂s
(s0, t)− dze

ds
(s0)

∂ξ

∂s
(s0, t). (49)
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Using the relationships of Equations (46) and (47), the angles of attack and sideslip
of fin i can be expressed as a function of the perturbed variables of the system at the
hose–drogue–fin connection (s = s0):

∆αF
i = cos αF

ei
· ∂η

∂s
(s0, t)− sin αF

ei
· ∂ξ

∂s
(s0, t), (50)

∆βF
i = cos βF

ei
· ∂σ

∂s
(s0, t)− sin βF

ei
· ∂ξ

∂s
(s0, t), (51)

for i = 1, . . . , 4. Equations (50) and (51) can be written as a transformation matrix T between
the grid fin angles and the derivatives of the perturbed variables. With this transformation
matrix, the unsteady aerodynamic force matrix of the fins as a function of the unknowns is
accomplished:

∆Qxyz =




∆Qxx ∆Qxy ∆Qxz
∆Qyx ∆Qyy ∆Qyz
∆Qzx ∆Qzy ∆Qzz


 = TT · ∆Qαβ · T (52)

It should be noted that ∆Qxyz represents the dimensionless force coefficients on the
fins. When added in the complete model, they will be multiplied by the dynamic flight
pressure q∞ and the reference surface of the unit grid fins SUGF.

4. Unsteady Problem

With the linearization proposed in Equations (15)–(18), a PDE system of equations is
obtained, where the unknowns are the perturbed variables of the system:

− ρH
∂2ξ

∂t2 − c
∂ξ

∂t
+

dq
dα

∣∣∣∣∣
αe

(
∂η

∂s
+

1
U∞

∂η

∂t

)
+

∂

∂s

(
Te

∂ξ

∂s

)
= 0, (53)

− ρH
∂2η

∂t2 − c
∂η

∂t
− dp

dα

∣∣∣∣∣
αe

(
∂η

∂s
+

1
U∞

∂η

∂t

)
+

∂

∂s

(
Te

∂η

∂s

)
= 0, (54)

− ρH
∂2σ

∂t2 − c
∂σ

∂t
+

∂

∂s

(
Te

∂σ

∂s

)
= 0. (55)

Additionally, the boundary conditions are as follows:

ξ(0, t) = η(0, t) = σ(0, t) = 0, (56)

Te(s0)
∂ξ

∂s
(s0, t) + q∞SGF

[
∆Qxx

∂ξ

∂s
(s0, t) + ∆Qxy

∂η

∂s
(s0, t) + ∆Qxz

∂σ

∂s
(s0, t)

]
= 0, (57)

Te(s0)
∂η

∂s
(s0, t)− WT

g
∂2η

∂t2 (s0, t) + q∞SGF

[
∆Qyx

∂ξ

∂s
(s0, t) + +∆Qyy

∂η

∂s
(s0, t) + ∆Qyz

∂σ

∂s
(s0, t)

]
= 0, (58)

Te(s0)
∂σ

∂s
(s0, t) + q∞SGF

[
∆Qzx

∂ξ

∂s
(s0, t) + ∆Qzy

∂η

∂s
(s0, t) + ∆Qzz

∂σ

∂s
(s0, t)

]
= 0, (59)

where ∆Qij is the unsteady grid fin force coefficients obtained from Equation (52). Apply-
ing separation of the variables, the perturbed variables of the system can be expressed
as follows:

ξ(s, t) = χ(s) · eλt, (60)

η(s, t) = N(s) · eλt, (61)

σ(s, t) = Γ(s) · eλt. (62)
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An improved model for the unsteady aerodynamic forces acting on the hose can be
obtained by adding a phase lag angle between the acting unsteady aerodynamic forces on
the hose and the hose dynamic motion. This phase lag angle ψ will be introduced through
the unsteady angle of attack and will affect the dynamic motion of the system:

α1(s, t) =
(

N′(s) +
λ

U∞
N(s)

)
· eλt+iψ. (63)

Just as in the cases of stall flutter events (see [21]), in this work, the phase lag angle will
be introduced in the system as one more parameter for flutter computation. The estimation
of ψ for different flight conditions can be obtained following the work of [22], as follows:

tan ψ =
2c f1,vac f1

| f 2
1,vac − f 2

1 |
, (64)

where f1,vac is the first frequency in a vacuum of the system and f1 is the first frequency of
the system including the fluid effect. Therefore, once the frequencies of the system (which
will be obtained solving the dynamic problem) are known, the estimation of ψ can be
performed with this simplified expression.

With these considerations, Equations (54) and (55) can be rewritten as follows:

− λ2ρHχ(s)− cλχ(s) +
dq
dα

∣∣∣∣∣
αe

(
N′(s) +

λ

U∞
N(s)

)
· eiψ +

d
ds

[Teχ′(s)] = 0, (65)

− λ2ρH N(s)− cλN(s)− dp
dα

∣∣∣∣∣
αe

(
N′(s) +

λ

U∞
N(s)

)
· eiψ +

d
ds

[TeN′(s)] = 0, (66)

− λ2ρHΓ(s)− cλΓ(s) +
d
ds

[TeΓ′(s)] = 0. (67)

Additionally, the boundary conditions can be written as follows:

χ(0) = N(0) = Γ(0) = 0, (68)

Te(s0)χ
′(s0) + q∞SGF[∆Qxxχ′(s0) + ∆QxyN′(s0) + ∆QxzΓ′(s0)] = 0, (69)

Te(s0)N′(s0)− λ2 WT
g

N(s0) + q∞SGF[∆Qyxχ′(s0) + ∆QyyN′(s0) + ∆QyzΓ′(s0)] = 0, (70)

Te(s0)Γ′(s0) + q∞SGF[∆Qzxχ′(s0) + ∆QzyN′(s0) + ∆QzzΓ′(s0)] = 0. (71)

Equations (65)–(67) are solved using the Weighted Residual Method (see [23]), where
the spatial parts of the perturbed variables χ(s), N(s) and Γ(s) will be approximated by
form functions ϕ(s). Thus, the problem formulation can be finally written in a compact
matrix form as follows:

(λ2M + λB + K − q∞Q)u = 0, (72)

where M, B, and K are the inertia, damping, and stiffness matrices, respectively; Q is
the grid fin force coefficient matrix; and u is the vector that represents the degrees of
freedom of the system (the horizontal, vertical, and lateral displacements of the system).
Considering the different contributions, the inertia matrix can be expressed by the following
sub-matrices:

M =




Mxx 0 0
0 Myy 0
0 0 Mzz


, (73)
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where Mxx, Myy, and Mzz are the inertia matrices of the horizontal, vertical, and lateral
motions of the hose, respectively. The damping matrix can be written as follows:

B =




Bxx Bxy 0
0 Byy 0
0 0 Bzz


, (74)

where Bxx and Byy are the damping matrices of the horizontal and the vertical motion,
which will have aerodynamic and structural contributions, and Bxy is the horizontal
damping term due to the vertical motion. In this matrix, there is a coupling between
vertical and horizontal motion, as shown in Equation (65). Concerning the lateral motion of
the hose, it has no aerodynamic damping (a fact that can be seen in Equation (67)). For that
reason, Bzz terms come only from the structural damping c. With respect to the stiffness
matrix, it can be written as follows:

K =




Kxx Kxy 0
0 Kyy 0
0 0 Kzz


, (75)

where Kxx, Kyy, and Kzz are the stiffness matrices of the horizontal, vertical, and lateral
motions of the hose, and Kxy is the coupling that appears in the horizontal stiffness matrix
due to the vertical motion.

As can be seen both in the equations and in the resulting matrices, coupling terms
between horizontal and vertical motion appear in B and K. However, these terms are only
seen in the horizontal motion (Equation (65)), while they do not appear for the vertical
one (Equation (66)). Therefore, the horizontal motion is coupled with the vertical motion,
but not vice-versa, which implies that it is possible to solve the vertical motion of the system
independently of the horizontal one. Furthermore, it can be noticed that the lag angle ψ
will appear in the aerodynamic contributions of B and K (for more details, see [24]).

The grid fin force matrix is formed using the following sub-matrices:

Q =




Qxx Qxy Qxz

Qyx Qyy Qyz

Qzx Qzy Qzz


, (76)

As seen throughout the development of the formulation, the terms associated with
the fin forces only appear for the boundary conditions at the hose–drogue–fin connection
(s = s0). Therefore, the sub-matrices of Equation (76) can be defined as matrices of zeros
except in the terms corresponding to this node:

Qlm
i,j = 0, (77)

Qlm
N,N = ϕ(s0) · ϕ′(s0) · SUGF · ∆Qlm, (78)

where l = x, y, z, m = x, y, z, N represents the position of the hose–drogue–fin junction in
the matrix and ∆Qlm is the different terms that show up in the grid fin aerodynamic matrix
defined in Equation (52).

5. Flutter Analysis

The main purpose of this work is to analyze the aeroelastic behavior of the hose–
drogue–grid fin system by obtaining the flutter boundaries under different flight conditions
and values of the parameters. It is important to highlight that the system can be considered
statically nonlinear but dynamically linear, being coupled static and dynamic problems.
Therefore, the nonlinear static equilibrium position will affect the dynamic forces, unlike
the classical flutter computation (see, for example, [25]). In other words, the flutter solution
will be influenced by nonlinearity effects of the static configuration equilibrium. In [24],



Aerospace 2023, 10, 481 12 of 19

an overview for the flutter computations of this type of systems is explained. However,
in this work, one of the main novelties is the inclusion of the grid fin prototype in the
hose–drogue model. Thus, another important goal is to analyze the effect of the grid fins in
the aeroelastic behavior of the system. Flutter analysis will be performed by means of the
k-Method (see [26]). Assuming harmonic motion λ = iω, Equation (72) can be rewritten
as follows:

[−ω2M + iωB + K − q∞Q(k, M∞)]u = 0. (79)

The aerodynamic force matrix is henceforth expressed as a function of the Mach
number M∞ and the reduced frequency k, since the grid fin aerodynamic coefficients are
a function of these parameters. As usually performed in this type of analysis, in order to
reduce the number of modes of the system, a modal approximation is introduced:

u = φahuh, (80)

where φah is the modal matrix of the conservative system, the columns of which include
the low-frequency modes, and uh is the vector of modal coordinates considered. Pre-
multiplying by φah

T gives

[−ω2Mhh + iωBhh + Khh − q∞Qhh(k, M∞)]uh = 0. (81)

Following the k-Method, a fictitious damping coefficient g proportional to the dis-
placement is introduced:

[−ω2Mhh + iωBhh + (1 + ig)Khh − q∞Qhh(k, M∞)]uh = 0; (82)

dividing by g and grouping the generalized mass matrix and the grid fin force matrix,
[
− ω2

1 + ig

(
Mhh +

ρ∞

2

( lre f

k

)2

Qhh(k, M∞)

)
+

iω√
1 + ig

Bhh + Khh

]
uh = 0. (83)

After manipulation of the different terms, Equation (83) can be written as a explicit
function of the flight speed:


−

U2
∞

1 + ig



(

k
lre f

)2

Mhh +
ρ∞

2
Qhh(k, M∞)


+

iU∞√
1 + ig

(
k

lre f

)
Bhh + Khh



uh = 0,

(84)
where the reduced frequency is written as k = ωlre f /2U∞, with lre f being the chord of the
grid fins. The eigenvalue of Equation (84) is as follows:

p2 = − U2
∞

1 + ig
, (85)

which can be approximated by

p =
iU∞√
1 + ig

' iU∞

(
1− i

g
2

)
= U∞

( g
2
+ i
)

. (86)

Procedure

The procedure to obtain the flutter boundaries in the hose–drogue–grid fin system
will be the following:

1. The configuration of each grid fin (and therefore the values of the angles αF
ei

and βF
ei

)
are selected.

2. The flight Mach number M∞ is fixed.
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3. The flight altitude H∞, and, therefore, the speed of sound a∞ and the air density ρ∞

are fixed. The flight speed is U∞ = a∞ M∞, and the dynamic pressure is q∞ =
1
2

ρ∞U2
∞.

4. The static equilibrium position of the system at the flight speed U∞ and the flight
altitude H∞ is obtained.

5. From the steady position:

(a) Mass, damping, and stiffness matrices of the systems M, B, and K are com-
puted.

(b) With M and K, the modal matrix of the conservative problem is φah, and
therefore, the generalized matrices Mhh, Bhh, and Khh are obtained. Matrix
Bhh will, in general, not be diagonal, while matrices Mhh and Khh will.

6. A range of interests of the reduced frequency is selected. For each reduced fre-
quency k j:

(a) The unsteady force coefficient from the UGF Method CLαi(k j, M∞) is com-
puted. Then, the unsteady grid fin force matrix Q is obtained, and with φah,
the generalized matrix is Qhh.

(b) The eigenvalues of Equation (84) for each mode pm are computed. Then,
we obtain

• The flutter speed U∞m = Im(pm);

• The damping gm =
2Re(pm)

Im(pm)
;

• The frequency ωm =
2k jU∞m

lre f
.

7. V − g−ω diagrams, representing (U∞m , ωm) and (U∞m , gm), are sketched.
8. The flutter speed UF will be the lowest at which any of the damping coefficients gm

becomes positive. From the V −ω diagram at this speed, the flutter frequency ωF is
obtained.

6. Results
6.1. Model Parameters

Table 1 summarizes the main parameters of the hose and drogue model.

Table 1. Hose–drogue–grid fin model main parameters.

Hose length s0 25.90 m
Hose mass per unit of length ρH 2.50 kg/m

Hose external diameter dH 0.0676 m
Structural damping coefficient of the hose c 1.00%

Drag zero-lift coefficient of the hose CD0 1.2
Friction drag coefficient of the hose CD f 4.5995 × 10−4

Grid fin–drogue prototype weight W 210.90 N
Average drogue drag Q 925.01 N

Equivalent nodes for the vertical fins Neq,V 114
Equivalent nodes for the horizontal fins Neq,H 120

Unit grid fin surface SUGF 2256 mm2

The hose is assumed to be fully extended in the pre-contact phase, without fuel, and
without any prescribed motion of the tanker aircraft (XT = YT = ZT = 0). As can be seen in
Table 1, the structural damping coefficient used is 1.00%. Although the damping was esti-
mated in a dynamic test performed on a piece of hose with an approximate result of 2.20%,
the value of 1.00% will be used to obtain a conservative solution of the flutter boundaries.

A wide range of flight altitudes (from 0 ft to 30,000 ft) and values of the lag angle (from
0◦ to 20◦) have been considered. However, once the results are obtained, this parameter
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must be estimated following Equation (64) to check whether, under the studied conditions,
this range of values can be reached.

6.2. Steady-State Validation

Before the flutter results of the system are shown, a validation of the model for the
steady case is presented in Tables 2 and 3. The calculated parameters are the same as those
of the work of [18] for two different flight speeds and several flight altitudes. They are the
maximum hose tension Te,max, the straight-line distance from the tanker to the drogue Le,
the vertical distance from the tanker to the drogue ye,max, and a dimensionless variable
based on the two previous parameters l̂e = ye,max/Le. The results are shown using the
model proposed in this paper but without the effect of the grid fins, in order to perform a
validation with the results of [18,27]. The hose–drogue data used in this comparison are
s0 = 14.33 m, dH = 0.0508 m, ρH = 4.09 kg/m, and the drogue weight W = 289 N.

Table 2. Comparison of the steady results with [18]. U∞ = 97.74 m/s.

Te,max [N] Le [m] ye,max [m] l̂e

7500 ft Ro and Kamman [18] 1379.44 14.30 5.68 0.40
Model without fins 1145.00 14.25 4.92 0.35

10,000 ft Ro and Kamman [18] 1310.49 14.30 5.97 0.42
Model without fins 1115.01 14.25 4.96 0.35

25,000 ft Ro and Kamman [18] 1009.03 14.30 7.99 0.56
Model without fins 1021.50 14.24 7.12 0.50

30,000 ft Ro and Kamman [18] 946.49 14.30 8.76 0.61
Model without fins 997.12 14.23 7.77 0.55

Table 3. Comparison of the steady results with [18]. U∞ = 149.19 m/s.

Te,max [N] Le [m] ye,max [m] l̂e

7500 ft Ro and Kamman [18] 2733.83 14.31 3.02 0.21
Model without fins 2566.26 14.28 3.45 0.24

10,000 ft Ro and Kamman [18] 2548.83 14,.31 3.22 0.23
Model without fins 2561.43 14.27 3.50 0.25

25,000 ft Ro and Kamman [18] 1677.33 14.30 4.72 0.33
Model without fins 2088.16 14.26 4.80 0.34

30,000 ft Ro and Kamman [18] 1467.56 14.30 5.35 0.37
Model without fins 1934.22 14.26 4.89 0.34

Tables 2 and 3 show that the results obtained with our model without grid fins are
similar to those presented in [18]. In addition, the results are close to the flight-test values
presented in [27]. For example, focusing on the vertical position of the drogue as in [18],
the flight-test data show differences from 1.98 m to 2.13 m at flight speeds ranging from
100 m/s to 152 m/s regardless of flight altitude. The results from [18] show differences from
2.65 m to 3.41 m at flight speeds ranging from 97.7 m/s to 149.2 m/s, while the proposed
model in this work shows a difference from 1.47 m to 2.48 m for the same range of flight
speeds. With respect to the maximum value of the tension, there are some differences
between both models. No values of the flight test have been given for this parameter, so no
assessment can be made about which model is able to better predict this variable.

6.3. Flutter Results

Figures 4 and 5 show the evolution with the non-dimensional flight speed of the
non-dimensional flutter frequencies and non-dimensional damping coefficients for the first
three modes of the system. The results were obtained for a lag value of ψ = 15◦ (which,
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as will be explained later, is the first value of ψ where unstable cases appear) and for two
different flight altitudes.
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Figure 4. V − g− f diagram for the first three modes. ψ = 15◦ and H∞ = 5000 ft.
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Figure 5. V − g− f diagram for the first three modes. ψ = 15◦ and H∞ = 30,000 ft.

As can be seen in Figures 4 and 5, flutter always occurs via a single mode: there is
no modal coupling in any of the studied cases. This type of flutter already appeared in
the hose–drogue system without grid fins (see [13]) and can also be found in examples of
stall flutter (see, for example, [21]). The flutter mode in all these cases is the first mode of
the system, just like in the system without grid fins. With respect to the evolution of the
damping coefficients with the speed, it can be noticed that the results for both altitudes are
very similar: the flutter speed for H∞ = 5000 ft is ÛF = 0.81, and that for H∞ = 30,000 ft is
ÛF = 0.78. Therefore, when the flight altitude increases, the flutter speed decreases slightly.
The damping coefficient for the second mode, although approaching zero for high flight
speeds, does not become positive in the studied range, and the damping coefficient for the
third mode becomes more stable with flight speed.

It is interesting to mention that, in the system with grid fins, the first unstable cases
appeared for a phase lag angle around 15◦, while in the system without grid fins (see [24]),
flutter appeared for a phase lag angle around 10◦. Therefore, the main conclusion is that
the inclusion of the grid fins in the model increases the stability of the system, in terms of a
wider range of possible lags over which the system is stable. A comparison of two cases
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with different values of ψ with and without grid fins can be seen in Figures 6 and 7, where
the V − g− f diagram for the first mode is presented.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

2

4

6

0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.02

0

0.02

Figure 6. V − g − f diagram comparison between the system without grid fins. ψ = 10◦ and
H∞ = 5000 ft.
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Figure 7. V − g − f diagram comparison between the system without grid fins. ψ = 15◦ and
H∞ = 5000 ft.

In Figure 6, it can be seen that, for ψ = 10◦, the system without grid fins (dashed red
line) reaches flutter for a certain flight speed, while the system with grid fins is stable over
the whole flight speed range studied. On the other hand, Figure 7 shows that, for ψ = 15◦,
the system reaches flutter both with and without grid fins. However, the flutter speed
without grid fins is lower.

The variation in the non-dimensional flutter speed as a function of the phase lag angle
and the flight altitude for both systems (with and without grid fins) is presented in Figure 8.
As previously explained, it can be seen that, for the system without grid fins, unstable
cases appear around 10◦ (left side of the Figure 8), while flutter in the system with grid
fins appears around 15◦ (right side of the Figure 8). When the phase lag angle increases,
the flutter speed decreases, with this reduction being less pronounced for higher values
of ψ. Concerning the flight altitude, as shown in Figures 4 and 5, when the flight altitude
increases, the flutter speed decreases slightly. This effect is due to the influence of the static
equilibrium position of the hose on the flutter speed.
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Figure 8. Non-dimensional flutter speed as a function of the lag angle and the flight altitude for the
system without and with grid fins.

As already explained, in all cases, flutter occurs via a single mode. Figure 9 presents the
flutter mode shape for a phase lag angle of ψ = 15◦ and different values of the flight altitude.
As can be seen, the flutter mode is barely affected by the change in the flight altitude.
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Figure 9. Flutter mode shape for different flight altitudes. ψ = 15◦.

7. Conclusions

The aeroelastic stability of a hose–drogue system with an aerodynamic grid fin model
has been presented. Starting from the steady configuration of the complete system, a time
linearization was performed in order to obtain the dynamic system of equations and to
subsequently analyze the aeroelastic behavior.

A prototype of grid fins was included in the model with the aim of increasing the
stability of the system during the refueling process. An efficient method to obtain the
aerodynamic forces of the grid fins was developed.

The possibility of flutter in the complete system was studied by means of the k-Method.
The results were obtained from different flight conditions and values of the phase lag angle
between the unsteady aerodynamic forces on the hose and the hose motion. These results
were compared with the ones obtained without the grid fin model. It was shown that the
inclusion of the grid fins produces a significant increase in the aeroelastic stability of the
ensemble: flutter without grid fins appears for a phase lag angle around 10◦, while that
with grid fins is delayed to 15◦. Likewise, the same type of aeroelastic instability (one
degree-of-freedom flutter) as in the case without grid fins was obtained, as was the same
flutter mechanism (the first mode of the system). It was also found that results have a
smooth variation with the flight altitude.

This work will continue with an analysis of different configurations of the grid fins
(for example, cross configuration). Furthermore, the addition of the bending forces on the
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hose and the tanker wake using a vortex lattice method will complete the model for linear
analysis. In this way, the hose–drogue–grid fin system will be able to analyze the most
stable ensemble for an aerial refueling process.
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