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ABSTRACT

The flutter stability of flap bending, lead-lag bending, and torsion of helicopter
rotor blades in hover is investigated using a finite element formulation based on
Hamilton's principle. The blade is divided into a number of finite elements. Quasi-
steady strip theory is used to evaluate the aerodynamic leads. The nonlinear
equations of motion are solved for steady-state blade deflections through an iterative
procedure. The equations of motion are linearized assuming blade motion to be a
small perturbation about the steady deflected shape. The normal-mode method
based on the coupled rotating natural modes is used to reduce the number of
equations in the flutter eigenanalysis. First the formulation is applied to single-
load-path blades, for example, articulated and hingeless blades. Numerical results
show very good agreement with existing results obtaiied using a modal approach.
The second part of the application concerns multiple-load-path blades, namely
bearingless blades. The flexure of a bearingless blade consists of multiple beams
(flexbeams and torque tube) leading to redundancy. The formulation is modified so
that the multibeams of the flexure could be modelled individually. Numerical results
are presented for several analytical models of the bearingless blade. Results are
also obtained using an equivalent beam appraoch (the common approach) wherein
a bearingless blade is modelled as a single beam with equivalent properties. The
comparison between the two sets of results show that the equivalent beam modelling

is inaccurate.
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blade elastic torsion stiffness

blade cross-section moments of inertia in the flap and lead-lag direc-

tions, respectively

polar radius of gyration of blade cross section, /I, + I;)/A

mass radius of gyration of blade cross section, m
principal mass radii of gyration of blade cross section

length of ith element
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time

elastic displacements in z,y, » directions, respectively

blade cross-section air velocity components in negative » and ¢ direc-

tions, respectively
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local axial coordinate of the ith element
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dimensionless time, 0t
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1. INTRODUCTION

Helicopter dynamics is a complex problem involving nonlinear structural, in-
ertial, and aerodynamic forces. For efficient blade designs, there is an increasing
trend toward nonuniformity in structural and aerodynamic properties, The root

geometry is complex.

Mnst of the helicopters in service employ either an articulated or a teetering
rotor. In recent years, there has been considerable interest in alternate designs with
an eye toward mechanical simplicity and increased maintainability, The hingeless
and bearingless rotors are the outgrowth of such efforts. A conventional articulated
rotor blade has mechanical flap and lag hiuges, o lag damper and a pitch bearing,
Figure 1 shows the schematic of an articulated blade hub and root. A hingeless
blade, as the name implies, lacks the hinges and is cantilevered at the hub, It does
have a pitch bearing for pitch control. A bearingless design eliminates the hinges
and the pitch bearing as well. Only some hingeless and bearingless designs include
lag dampers, The bearingless blade has an elastic flexure consisting of flexbeams
and a torque tube to facilitate pitch changes. An example (Fig. 2) that has been
tested in flight and wind dunne] is the Boeing- Vertol designed Bearingless Main
Rotor, BMR [Dixon and Bishop (1980); and Warmbrodt and McCloud (1981)). The
BMR flexure (Fig. 3) extends from the hub to ahout 25%blade radius where it
is connected to the outboard blade by a rigid clevis. The flexure consists of two
parallel, torsionally-soft, open-section beams and a torsionally-stiff (flexurally-soft)
torque tube. The inboard end of the torque tube is connected to a pitch link via
a pitch horn at the hub; and the outboard end is attached to the clevis, The
pitch control to the blade is applied through the torque tube bty rotating the blade-
root clevis which elastically twists the flexbeams. The blade outboard of clevis

is of airfoil section and is similar to a conventional blade. The articulated and
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hingeless blades are referred to as single-load-path blades and the bearingless blade
as multiple-load-path blade, This is because the blade loads can be transmitted to

the hub by redundant paths of the lexure in the case of a bearingless blade,

To help in the design of helicopter rotor blades, it is necessary to solve for trim
deflections and to determine the aeroelastic stability in hover and forward flight.
The aeroelastic stability of articulated blades is well understood, In the case of
hingeless and bearingless blades, the absence of hinge motion modifies the dynamic
characteristics of the blade and may significantly influence the aeroelastic stability.
Not enough is known about the parameters affecting the aeroelastic behavior of
bearingless blades. The influence of multilple load paths on aeroelastic stability is

not fully understood.

The simplest fori of roptor blade representation is the rigid blade model with
spring restrained hinges [Ormiston and Hodges (1972) and Kaza and Kvaternik
(1976)]. For this model, the trim solution is generally obtained from coupled linear
or nonlinear flap-lag equations and the flutter stability is determined assuming linear
perturbation motion about the trim solution. This type of modelling is satisfac-
tory for simple blade configurations such as articulated. A more appropriate repre-
sentation is to treat the rotor blade as an elastic beam. Houbolt and Brooks (1958)
have derived the differential equations of motion for the combined bending and
torsion of an elastic blade. Several authors [Hodges and Dowell (1974), Kvaternik
and Kaza (1976), and Rosen and Friedmann (1978)] have modified these equations
to consistently include nonlinear structural and inertial terms for moderately large
deflections. A number of researchers have aualysed the aeroelastic stability of hinge-
less blades with elastic-beam modelling. Examples are Hodges and Ormiston (1976)
and Jchnson (1977). The common approach for calculating the trim deflections,
as well as the aeroelastic sta’.iity, is the modal method (for example, the Galerkin

method) using coupled natural modes, In general, the trim deflections are assumed
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to be large and obtained by solving nonlinear steady-state equations; and the flutter
equations of motion are linearized about the trim state., This linearization simplifies
the stability analysis. There have been some attempts at determining the stability
using a complete nonlinear analysis such as the limit cycle analysis, These have
been for simple hlade models. For example, Friedmann and Tong (1973) consider a
flap-lag blade: and the analysis of Chopra and Dugundji (1979) incl1des the torsion

degree of freecdom but the blade is modelied as rigid with spring restrained hinges.

The theoretical analysis of a bearix zless blade is more involved than that of a
hingeless blade primarily due to the redundancy of the flexure. Several authors have
examined the aeroelastic stabililty of bearingless blades. Bielawa (1976) has given a
theoretical analysis for composite bearingless rotor blades and experimental results
from dynamically scale’ models. The formulation is made for a blade with one
flexbeam and a torque tube. Hodges (1979) has analyzed bearingless configurations
with single flexbeam. The bending stiffness of the torque tube is neglected. The
outboard blade is treated as rigid. Hodges has used an equivalent-beam approach
to model the twinbeam root flexure of the BMR blade. Harvey (1976) has modelled
a single-flexbeam bearingless blade by lumped massed connected by elastic beam
elements. If any of the analyses mentiond above are used to study the BMR blade,
then the twinbeams of the the flexure has to be modelled as single flexbeam with
equivalent properties. The equivalent properties can be obtained by matching the
fundamental frequencies of the equivalent-beam model with that of the multibeam

blade.

With the modal approach, it becomes increasingly difficult to handle geometric
coomplexities. For example, it is difficult to efectively model the multibeam flexure
of a bearingless blade. The finite element method [Gallagher (1975)] has been
extensively used in linear structural analysis. The structure is divided into a number

of finite elements and the application of energy principles, or the method of weighted
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residuals, yields approximate expressions for forces (inertial, elastic, etc.) over
each element, The global equations of motion are obtained by assembling the
elements. Nonuniform properties can be easily accommodated. The finite element
method is very flexible and the formulation can be adapted to different rotor blade
configurations with a few modifications. Multibeams of a bearingless blade can be

modelled individually.

The finite element method has been applied for the determiniation of free-
vibration characteristics of rotating one dimensional (flap bending) beams by many
authors. A few examples are Nagaraj and Shanthakumar (1975), Putter and Manor
(1978), and Hodges and Rutkowski (1981). It is common practice to use simple beam
elements (represented by end nodes) satisfying the continuity of displacement and
slope between elements. Refined elements with internal nodes may be used instead.
One can attain a desired accuracy by using either simple or refined beam elements,
but, if simple elements are used, a greater number of them may be necessary.
However, the assembly of simpie elements results in narrowly banded matrices; the
assembled matrices for refined elemnts are more populated. Murty and Raman
(1980) have used the finite element method for computing the nonlinear response

of a rotating beam under prescribed forces.

Yasue (1978) has obtained the natural-vibration characteristics of a hingeless
blade in combined flap bending, lag bending, and torsion using a finite element
formulation. The normal mode method based on these natural modes is utilized to
calculate the trim solution and the response of the blade under gust loading. Yasue's
finite elements exhibit the interelement continuity of the torsional deflection as well
as its slope; and hence a blade with jumps in torsional rigidity cannot be handled.
Friedmann and Straub (1980) and Straub and Friedmann and Straub (1981) have
- applied a finite element formulation based on the method of weighted residuals to

calculate the free-vibration characteristics of a flap-lag hingeless blade. Then, the
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trim state, flutter stability, and response of the blade in hover and forward flight
have been computed using a modal approach. These three rdeferences use the finite
element method just to obtain the natural modes; the trim solution is based on a

modal approach.

In the present research, a finite element formulation is developed to investigate
the flutter stability of flap bending, lead-lag bending, and torsion of rotor blades in
hover. The formulation is made for a nonuniform blade with pretwist and precone,
and having chordwise offsets of the center of mass, aerodynamic center, and tension
center from the elastic axis. The deflections considered sre the axial, lead-lag, and
flap deflections of the elastic axis and a torsional deflection about the elastic axis.
The spatial dependence of the deflections is made discrete by dividing the blade
into a number of elements. Approxiinate expressions for element forces are obtained
applying Hamilton’s principle; and the assembly of elements results in the global
equations of motion in terms of the nodal degrees of freedom. The aerodynamic
loads are based on quasi-steady strip theory. The trim solution is computed from
nonlinear steady state equations without making a modal transformation. The
coupled rotating natural-vibration characteristics are calculated about the trim
condition. The flutter motion is assumed to be a small perturbation about the
trim state. The normal mode method based on the rotating natural modes is used
to solve the linearized flutter equations as an eigenvalue problem. Flutter stability

is inferred by studying the flutter eigenvalues.

Here it should be pointed out that the emphasis of the present study is on the
feasibility of the application of the finite-element method to rotor blade aeroelas-
ticity; and hence, importance is not given to certain aerodynamic aspects such as
compressibility effects and the effects of preceding and returning wakes. A brief
review of the research in these areas follows. It is popular to use a quasisteady

strip theory approximation without wake effects for estimating the unsteady loads
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on a rotor, one of the main reasons being the difficulties involved in accuractely
representing the Theodorsen function ¢{s). The difficulties arise because, unlike
that of fixed wings, the wake of one rotor blade interacts with that of the others,
The first significant attempts at unsteady aerodynamic theories for rotary wings in
incompressible flow are due to Loewy (1957), Timman and Van De Vooren (1957),
and Jones (1958). A theory to study the compressiblity effects including wake is
presented by Jones and Rao (1970); aerodynamic coefficients for certain Mach num-
bers and frequencies are given in this paper. In another study, on the effects of tip
vortices on rotor blades in hovering flight, Jones and Rao (1971) colclude that the
use of two-dimensional strip theory would not result in serious error provided the
blades oscillate at several cycles per rotation. Murthy and Pierce (1976) formulate a
technique for the prediction of flutter of a helicopter rotor in hover and axial flight
in such a manner that various unsteady aerodynamic theories and various types of
coupling between the degrees of freedom could be accommodated. Kato and Yamane
calculate the rotor impedence of articulated-rotor helicopters in hover (1979a) and
forward flight (1979b) using a quasisteady approximation that neglects the effects of
preceding and returning wakes. In trying to correlate their theoretical results with
experiments, Kato and Yamane (1981) find that the quasisteady theory does not
predict the amplitude peaks and clefts which appear near the multiples of the blade
passage frequency b} (where b is the number of blades) whereas an analysis with
Loewy’s funrction agrees fairly well with the experiment. Various dynamic inflow
models are included in a flap-lag stability analysis of a rigid blade in forward flight
by Peters and Gaonkar (1980). Their study concludes that unsteady perturbations
in the induced flow have a significant effect on both the flap and lead-lag damping,

particularly for the regressing mode.

The application of the present method consists of two parts. First, numcrical

results are obtained for uniform single-load-path blades. Results are compared
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with that of a previous research based on a modal method. Comparisons with
experimental results are also made. The second part of the application concerns
multiple-load-path blades. The formulation made for single-load-path blades is
modified here to include the muitibeams of the root flexure of bearingless blades.
Each of the flexbeams and the torque tube are modelled as individual beams. The
displacement compatibility conditions, at the clevis, between the inboard beams and
the outboard beam are used in the modelling of the bearingless blade. Refined finite
elements with internal nodes are used, Numerical results are obtained for several
analytical models of the bearingless blade in hover. To determine the accuracy of
the conventional equivalent-beam approaches, results are obtained for a blade with
equivalent properties, Comparisons are made between the results of the present and
equivalent-beam models.

This is the first attempt to solve the nonlinear trim equations of a flap-lag-
torsion rotor blade using the finite element analysis directly. This approach enables
the coupled natural rotaing modes to be calculated about the steady deflected
positon of the blade. This is the first research to apply the finite element method
to bearingless blades; and the first one to model the multibcams of the flexure

individually.



2. HAMILTON'’S PRINCIPLE FORMULATION

2.1 Coordinate Systems

The coordinate systems used are shown in Fig. 4. The rotor blade is treated as
an elastic beam rotating at constant angular velocity 0. T'he rectangular coordinate
system z,y, z is attached to the undeformed blade which is at a precone angle of gp.
The origin is at the root of the blade, the z axis coincides with the elastic axis, and
the y axis is in the plane of rotation pointed towards the leading edge. The deformed
position of the Llade is defined as follows, A point P on the undeformed elastic axis
undergoes displzcements u,v,w in the z,y,z directions, respectively, and occupies
the position P’ on the deformed elastic axis; u is the axial deflection, v the lead-lag
deflection, and w the flap deflection. Then the blade cross section containing P/
undergoes a rotation #; about the deformed elastic axis. The orientation of the
deformed-beam cross section with respect to the undeformed-beam cross section is
described by a sequence of three rotations. This analysis uses the lag-flap-pitch
sequence of rotations defined in Hodges, Ormiston and Peters (1980). The thrid

angle in the sequence, ¥y, is written as

0 -0+$ (2.1)

and ¢ to second order is

¢~ ¢— /: v"w! dz (2.2)

where @ is the pretwist, ¢ is the geometric twist, and ¢ is the elastic twist due to

torsion. The orthogonal coordinate system &, 9, ¢ is attached to the deforemed blade
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such that the & axis is tangential to the deflected elastic axis and the  and ¢ axes
are the principal axes of the cross section. The transformation between the two

coordinate systems is given as

le P
1 )
lc 1

where ?e,?,,,?; and 's’,,}’,,?,. are the unit vector systems in the two coordinate frames,
The transformation matrix is defined in Hodges et al (19080) and is reproduced in

appendix A.

2.2 Hamilton's Principle

The formulation is based on Hamilton’s principle:

to
A s/: (6U — 6T — 6W)dt =0 (2.4)
1

where 6U, 6T, and §W are, respectively, the variation of strain energy, the variation
of kinetic energy, and the virtual work done by external forces. Hidges and Dowell
(1974) give expressions for §U, and §T. The expression for the variation of the strain

energy is

.




R ORIGINAL PAGE IS
U -/ <F(6u’ +v'60'+ W’ﬁw') OF POOR QUALlTY
0

+ [cw' + EAKY(0 + ¢)'(u' + %./2 + -;-w""

+ EB; 0’12 - EBgO’l(v”cos 0, + w" sin 01)]6$’

+ [EC14" + EC2(0" cos 8y — " sin 868"

+ {{Elz(v”cos 0y + w" sin 01)—EAca(u' + -;-v'z + %w’z) - EBgO’gS'] cosf

+ [EIy(v” sindy — w" cos 01)—EO'2¢"] sin 01}(60” + M&&)

+ {[Elz(v" cos ) + w" sin 01)—EAea(u' + %v’z + -;-w'z) - EB;;GW] sin )

- [Ely(v” sin#; — w” cos 01)—EC’2¢" ] cos d; }(6 w” - v”6$)> dz (2.5)

where the axial force F' is defined by

F = EA[t‘s' +1P e K404’ — es(v" cos ) + w"sin b)) (2.6)

1I* T2¥ T3

and the section constints are
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The blade cross-section area effective in carrying tension is A. I, and I, are,
respectively, the flapwise and chordwise area moments of inertia of the cross section;
Ak? is the polar moment of inertia of the cross section; J is the torsional constant
including cross-section warping; e, is the offset of the tension axis from the elastic
axis, positive forward; By, Bg, C}, and C5 are other section constants; X is the warp
function which is assumed to be antisymmetric about the chord. The cross section

is assumed to be symmetric about the chord.

The variation of the kinetic energy for the elastic beam is
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R
5T = f {m(n% +200 - )6
0
+ [mﬂz(v + ¢gcos8)) + 2mQ(fpw ~ i)
+ 2megﬂ(d'cos 0 + o' sin 01) -mv + megésin 01]60
- [mﬂp(ﬂzz + 206) + mw + mc,:fb cos 0|]6w
- [mk%q& + mﬂz(lcgm, - kzmg)cos 0 sin 9,
+ meyN°z(w’ cos 8) — v'sin ;) + meyNPvsin by
+ mey 0% fpz cos 0y — mey(V sin 8y — i cos 01)]6$
- meg(nzz cos 8; + 200 cos 01)60’

- me,(ﬂzz sinf; + 20vsin 0;)610’} dz (2.8)

Where the section integrals are defined by

= m d’? d
"‘Cg f / §

mlc,z"l = f /:4 ps2 dn dg (2.9)

mk?nz Ef‘/‘;pi]“" dndg

ki, = k2, + ki,

The blade mass per unit length is m; ¢, is the center of mass offset from the
elastic axis, positive forward; and km, and km, are the flapwise and chordwise mass

moments of inertia per unit length.

The virtual work §W of the external forces may be expressed as
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R
5W == fo (Lubu + Lybo + Lybw + Mybtp) dz (2.10)

where Ly, Ly, Lw, and My are the external loads distributed along the length of the
blade in the axial, lead-lag, flap, and torsion directions respectively and the virtual

rotation 6¢ as defined in Hodges et al (1280) is

b9 = 60+ w'6v' ' (2.11)

Since §U, 6T, and 6W, as given in Egs. (2.5), (2.8), and (2.10), are independent of

the time derivatives of 6u, 6v, §w, and 69, Eq. (2.4) can be written as

A e 6U — 5T — 6W =0 (2.12)

2.3 Elimination of the Axial Displacement

For single load path blades, the axial dispiacement u can be eliminated in terms
of the other deflections v, w, and ¢ and the centrifugal force F. This is possible
only for single-load-path blades since the force equilibriurn equation in the axial

direction can be solved a priori,

Equation (2.12) would result in four equations of motion representing éu, év,

§w, and 64, respectively, The fu equation is

R R
-/; [—F&u' + (mﬂzz + 2mo + L,,)&u] dz =0 (2.13)
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bu == 0 at zm=0

and

Fem(Q at zw=R,

the above equation can be written as

R
j; (F’ +mN%z + 2m0Y + L,u)ﬁu dz s={) (2.14)

Since this equation is true for arbitrary values of §u,

F' 4+ mQPz+2m0 + L, = o ' (2.15)

The external loads 2r2 of aerodynamic origin and the radial drag force Ly is negli-

gible in hover. So neglecting L, and integrating Eq. (2.15) results in

R
F(z) = / m(ﬂzz + 'zm;) dz (2.16)
z
The displacement u is eliminated from 6U, §T, and 6W using Egs. (2.6) and (2.18).

2.4 Nondimensionalisation

After eliminating u, the §U, 6T, and §W are nondimensionalised by dividing the

expressions by moQ2R3, where my is a reference mass per unit length (for example,

- 14 -
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the value of m at 0.5R). This is done to see the relative order of magnitude of
each term. The nondimensional displacements v/R, w/R, and ¢ are assumed to
be of order ¢ where ¢ is a small nondimensional quantity such that ¢* « 1, The
other nondimensional quanities and their assumed orders of magnitude are given in
Appendix B. The lowest order (i.e, first order) terms in 6U and éT are of order ¢*,
Terms of order ¢2 and ¢ are retained while neglecting all terms of order ¢4 (i.e., third
order) and higher, excepting some linear third order terms which are important for

the torsion equation. The following simplified nondimensional expressions for éU,

and 47T, and §W result. The symbols are retained after nondimensionalisation.

1
U - / <F(v’60’ + w'6w’)
moﬂ2 R3 0
+ GJ(&'&&' + 3 w'so” + 3 5w’ + v”w'6$')
+ [ka,(@’ + ﬁ) - @Akﬁfzé' + EAcak0'(v" cos 0y + w” sindy)

+ EBy 0’2 $’ —~ EB30'(v" cos 0; + w" sin 0 )]6&'

+ [ﬂ + EC2(w" cos §) — v" sin 0, )]6:;5”

+ [-Fca cosf) + {EI,; cos® (0 + Q_) + EI sin® (0 + g}_)}v”

+ —;-(EI,, — EI,)w" sin 20, — l'}',fic%(v”cos2 0 + %w” sin 20;)
+ (EAe,,kj-; " EB"’)O’&' cosfy — ECpp" sina,]su"

+ [-—Fca sin 8; + ‘{EI; sin® (0 + é) + EI cos® (0 + é)}w”

+ %(EI, — Bly)v" sin 26, - EAcﬁ(w"sing 0 + -lév" sin 20’1)
+ (EAedki - Ebﬂ)o'&' sinf, — ECy¢" cos &1}610”

+ [Fca(v” sin §; — w" cos 01)

+

f 2] L] N
(EI — EIy){-;—(w”" - v”') sin 28; + v"w" cos 26, }]6¢> dz (2.17)
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[l N
monzna 0 m ‘V+¢v005'|+2ﬂpw+2 o (vy +ww)dz

+ 2¢4(0' con#y + @' sindy) = i + cg;i sin Ol]w

- [ﬂ,(z + 20) + i + c,é cos l;]&w
- [k$n$ + %(kfnz - "3-1) sin 20) + ¢gz(w' cos #y — v'sin 8;)
+ egusindy + egfpzcosdy — c,(iﬁ sinéy — wcos 01) 59

- e,(z cos §; + 2v cos 0,)6 v

- c,(z sin §; + 2vsin ﬁ)&w’} dz (2.18)
and
W j"
- 4 d .
eyl (Lobv + Lubw + Myby) dz (2.19)

The singly underlined terms are nonlinear and the doubly underlined terms are

third order (¢) linear torsion terms.

s e St g v < - i w3 e e C e e e
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3. AERODYNAMIC LOADS

The exterﬁJal loads Ly, Lw, and M, of Eq. (2.19) are of aerodynamic origin,
The expressions for these aerodynamic loads in hover, distributed along the length
of the blade, are obtained based on a quasisteady strip-theory approximation. The
flow is assumed to be incompressible and inviscid, The induced inflow is assumed
to be uniform and steady. Virtual inertia effects are included. The variation in free
stream velocity due to flap, lead-lag, and torsion motions are taken into account.

Blade angle-of-attack stall is neglected.

3.1 Circulatory Forces

The forces L, and L, are in the y and z directions respectively (i.e., in the
undeformed coordinate frame). In the present analysis the sicip theory is based on
sections in the deformed frame, As a result, forces obtained in the deformed frame
have to be transformed to the undeformed frame. The magnitude and direction
of the relative wind over the blade section is obtained by vectorially adding the

negative of the blade velocity to the induced inflow.

T ) (3.1)

where V" is the relative wind, ¥ the blade velocity, and #; the inflow velicity. Hodges
and Dowell (1974) present the expression for ¥} in terms of the unit vectors in the

undeformed frame.

f’b - (:il - {1y} cos ﬂp)?z + [ﬁl + (21 cos fp — 21 sin ﬂp)] -"y
+ (21 + Qyy sinBp)7; (3.2)

- 17 -
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2y = z+u—Ad' — v'(ncosd; —¢siny) — w'(nsindy + ¢ coaty)
Y1 = v+ ncosd; ~¢sind)
2 = w4+ nsindy + ¢cosd

The following approximations are made.
(a) V is obtained at a reference point (ny,0) on the chord.

(8) sin Bp = fp; cos fp ~5 1,
(¢) Terms of ord~r ¢* and higher are neglected.

Then Eq. (3.1) is written as

‘7 - Uz?g + Uy.‘,y + Ug.:g

where

Uz = —t + t'y, cos 8; + w'ny sin 6y + (v + nr cos b)) ~ v;8p

(3.3)

(3.4

Uy = 0 + ;5'1'- sindy —Q(z+u-— v'ne cos ) — w'y, sin 01) + Q8p(w + nr sindy) (3.5)

Fs v
U; = —t + ¢npcos 8y — QFplv + n cos ) — v;

‘We are interested in expressing V in the deformed frame since the airfoil section

i» considered in that frame. So if V" is written as

Then

- 18 ~
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""URl Uz
-up} = 7] {y, (37)
“'UP Ug

The axial velocity Up is negligible in hover; the expressions for Ur and Up are

n

Ur = ﬂz[(l - %v")cos 0 — v'w'sin Gl]

+ Nfucosdy + (vo! — e fp)cos 8y + (v' + fp)vsin ]
+ vcosfy + (@ + v;)sin ) (3.8)

and

e
Up == —Qx[(l - -;-v") sin 0) + v'w' cos 8

+ Q[-usin 8y — (vv' — whp)sindy + (v’ + Bp)(n, + veos )]

~vsind; + (vb + v,-) cosdy + nrd (3.9)

According to the quasisteady approximation of the thin airfoil theory, the
circulatory forces are based on the angle of attack at the three-quarter-chord point
[e.g., see Fung (1969) pp. 193]. Therefore Ur and Up are evaluated at the three

quarter chord point; that is, g, is the n coordinate of the three-quarter-chord point.

Figure 5 shows the aerodynamic environment in the deformed frame. The
circulatory forces Ly., Ly., and My, in the n, ¢, and ¢ directions, respectively, can

be written as
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Ly, == Lsina — Dcosa
Ly = ~Lcosa — Dsina (3.10)
Méc == Mo = Lwc‘d

where L, D, and M, are, respectively, the lift, drag and pitching moment (about the
aerodynamic center) per unit length, « is the angle of attack at the three-quarter-
chord point, and ¢4 is the aerodynamic center offset from the elastic axis, The

expressions for L, D, and M, are

L= Gf,«%ﬂ’zc
1
D = CpzpVie ' (3.11)

1
Mac = Cpye 5#"20'

with

V= UL+ Up

and

tan g_.._.‘
ana U

T

where Cy, Cp, and C)pyq,, are the section lift, drag, and pitching moment coefficients,

and ¢ is the section chord. Substituting Eqs. (3.11) in Egs. (3.10) yields
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Lo = %’ «CLUpV - CpUrV)

1

1
Méc — -fpcsz“Vz - ‘dtwc

With the assumptions

CL=co+ 1
Cp = dy + d1a + dsa®

a & sina == —t{—; (3-13)

V == Ur

Eqs. (3.12) can be written as

i o . n
Ly, = Epc[—doU}' + (co — d1)UrUp + (¢ — d2)U P]
1
Ly, = —-épc[coU% +(e1 + do)UrUp + dlU?’] (3.14)

l 9 9
My == EpczoMac(UT + U;’) ~ egLly,

The assumed order of magnitude is unity for ¢; and ds; ¢ for o, dy, CM,., and a;
¢3/2 for eq4; and ¢ for dg. The circulatory forces Ly, and Ly, in the undeformed

frame are obtained from L, and L, using the transformation matrix.

L, 0
Ly, = [T]T Ly, (3.15)
Ly, Ly,




ORIGINAL PACE 1S
OF POOR QUALITY

Thus, the circulatory aerodynamic force components to order ¢? are

Ly, = -;-pc<cos 0 {—doﬂ2zz cos® 8y + (o — dl)(—-;-ﬂza:2 sin 20, + (lxv; cos 201)
+ (e1 ~ dg)[(ﬂz sin ) — v; cos 01)° — 20%2n, 4, sin 0|]}
+sin 6y {co(ﬂzzz cos? 0y + Qzy sin 201)
+(ey + do)[ﬂz cos 01(—-Qz sin 0} + v; cos f; + Nnefp) — Nav; sin? 0, + -;—v? sin 20|]

+d1(0212 sin® 8; — Qzv;sin 201)}

- unzx(do + dg) sin 26 sin 6,

- vﬂzxﬁp[(cx — dg)sin 20, cos 6) + (¢1 + do)sin 8 cos 20,
+ w?zfp(do + dg) sin 20y sin 6y

+ w'nzznr(—cl + dg + 2d3) sin 8 cos 0,

+ t}{cos 0y [—2ﬂzdg cos® §) — Qz(co — dy)sin 20y + (¢ — d2)(2ﬂz sin® 0; — v;sin 201)]

+ sinf, [29200 cos? 0; — (e1 + doXNz sin 20y — v; cos 20;) + 2Qzd) sin? 01]}

+ u'){cos 01[—ﬂzdo sin 20y + Qz(co — dy)cos 28y + (c1 — dz)(—ﬂz sin 26y + 2v; cos® 01)]
+ sin 8, [ﬂzco sie 20y + (1 + do)(ﬂz c0s 20; + v;sin 201)—ﬂzd| sin 201]}

+ $Qzn(—cy + do + 2d3) sin 8y cos 8y

— vv'0122(dg + do)sin 0, sin 20,

— vw'Q%2[—(cy — d3)sin 20; cos 8; + (c1 + dp)sin 0) cos 20;)

' 3
2
- v'w'ﬂz:zz[(cl - dg)(sin 20, cos fy — sin® 0;)

P 2,2 . 2
= v . Q°z°—(d; + da2)sin® 0; cos 0

+ (1 + do)(—- sin 20} cos 0y + sin® 01)]) (3.18)

-~ 00 _
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Ly, = -;-pc<sin 0 {-—-doﬂ"’zg cos® 0y + (co — dy )(--%ﬂ"!:u:2 8in 20 + Qzv; cos 20|)
+ (c1 — d2)|(Rz sin 8 — v;cos 01)° — 20%xn,fp sin 01]}

— cos 8} {co(ﬂ2z2 cos® 0y + Nzv;sin 2'1)

+ (1 + do)| 01z cos 8y (—Qz sin by + v; cos §y + OnyBp) — Nzv;sin® 4 + %v'," sin ‘2011
+d|(n’~'z'-‘ sin® 8; — Qzv; sin 20.)}

-u 2921[(«:1 - dg)sin3 01 + () + do)sin 6y cos® 01]
- vﬂ"’xﬂp[(cl — dg)sin 01 sin 20y + (c; + do) cos 9 cos 26;)
- w202zﬂp[(cl — dg)sin® 0y + (cy + do)sin ) cos® 01]

- w’ﬂzzvpr[‘z(cl ~ do)sin® 8; + (¢} + do) cos® 0|]

+ d{ain 0 [:ngdo cos® 0y — z(co — dy)sin 260) + (1 — dg)(2ﬂz sin” 8) — v;sin 201)]
— cos 01[2ﬂzco cos® 0; — (1 + do)Qz sin 20, — v cos 20}) + 20zd, sin® OI]}

+ 1b{sin 01[—0::(10 sin 20 + Qa(co — 4y ) cos 260y + (¢ — dg)(-—ﬂz sin 20 + 2v; cos® ll)]
— cosf [cho sin 20, + (¢1 + do)(ﬂz cos 20} + v, sin 201)—02({1 sin 20;]} ,

- 3920,[2(.:1 — da)sin® 8y + (c; + do)cos® 01]

- v‘v'ﬂ%[?(cl — dg) sind 81 + (¢ + do) sin 26, cos 01]

- vw'Q%z[(¢; — dg)sm 01 sin 20 + (cy + do)cos 65 cos 201]
- v'zﬂza:z[(cl ~ dy)sin® 8; + (¢; + do)sin 6, cos® 01]

+ v'w’ﬂ?‘zz[(cl — dn)sin 0 sin 20) + (cy + do)cos 8} cos 20,]

- w"ﬂzzz-;—'[(cl ~ dg)sin® 8) + (c1 + do)sin 6 cos® h]) (3.17)
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My, = %pc(ﬂ' {"CMac ed[(cl + do) sin 8 cos 8, — d, sinzll]}

- Qzeyer + do)(t? sin 20; — w cos 20|)> (3.18)

The singly underlined terms are nonlinear and the doubly underlined terms are

third order damping terms.

3.2 Noncirculatory Forces

The noncirculatory components are obtained from upsteady thin airfvil theory

[Fung (1969), pp 209-210]. To order ¢?, they are

Lype = %ﬂ'ﬁc [—w + Qzd + (-‘lic + cd)qs]
My, = Smpc? K—-c + e,,) ( 1. d)ﬂz 4;] (3.19)

3.3 Combined Forces

The expressins for the complete aerodynamic forces in the lead-lag, flap, and

torsion directions are given by

Ly = Ly,
Ly = Ly + Lwp,
My = My, + My, (3:20)

In the derivation of the above aerodynamic forces, nonlinear rate product terms
such as v2, , vw are neglected while retaining other nonlinear terms up to order

¢2. This is necessary for a linearized perturbation analysis about the steady state.
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Some damping terms of order ¢3, which may be important for the stability analysis,
are retained, The uniform induced velocity is based on the momentum theory.
The pite*: of the blade is obtained by combining the momentum and blade element

theories.

C
Ag = ky —-25

6C (3.21)
875k ™= 7} + 18X

where kj, is an empircal factor, Cr the thrust coefficient, o the solidity ratio of the

rotor, and 875z the blade pitch at three-quarter span.




4. FINITE ELEMENT DISCRETIZATION

4.1 Equations of Motion in_Terms of Nodal Degrees of Freedom

The finite element analysis is used to discretize the spatial dependence of the
equations of motion. The blade is divided inio a number of beam elements, Every
element consists of two nodes, denoted by node-1 and node-2 (Fig. 8), with five
degrees of freedom namely v, v/, w, «/, and $ at each node. The reason for choosing
¢ over ¢ as the torsional degree of freedom is as follows. The aerodynamic loads
depend explicitly on ¢. If 4 is chosen as the torsional degree of freedom, then
the presence of the integral term [y v"w’dz [Eq. (2.2)] makes the global matrices
nonbanded because of the coupling of the degrees of freedom of one element with
that of the other elements. The choice of $ eliminates this integral and thus

preserves the banded structure of the global matrices.

Hamilton's principle, Eq. (2.12), is discretized as

A-iA,'—O (4.1)

with

A; = 6U; — 6T; — 6W; (4.2)

where §U;, §T;, and §W; are respectively the strain energy, kinetic energy, and the
virtual work contributions of the sth element and n is the total number of elements.
The distribution of the deflections v, w, ¢ over an element is represented in terms

of the nodal displacements using shape functions. For the sth element (Fig. 6),
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v

vi = [A] {a) (4.3)
¢

where the shape function matrix [H] is

Hy H. H 4 0 0 0 0 0 0
M=|o o o o H H H B ° ° (4.4)
o o0 0 o0 o0 O 0 O Hy, Hgy

and the vector of element degrees of freedom {gq;} is defined as

() ==lvr v} ve vh w Wi wo wh 4 ¢2) (4.5)

The nodal degrees of freedom at node-1 of the element are vy, o}, wy, i, ¢ and
those at node-2 are va, vh, w2, wh, 2. The shape functions in Eq, (4.4) are the

Hermite polynomials defined as

+ 3 . 2
Hn(z;)—-:«?(—“-‘%) —3(3,’%) +1
] 3
VR RY .
Ha(e:) = ; (“—‘—) —2(3’1) +-’§l]
\ & i i
3 2
Hy(z; =—2(fi + (fl
afz:) l.') i (4.8)
T

3
p 3 2
y=if(2) - (2
H(z;) l'{(l;) ('t')].

3

T
H¢l(2;) =1 "":'

Hyo(z) = %
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where I; is the length of the ¢th element and z; is the local axial coordinate for
the ith element, measured from the left end of the element (Fig, 6). Similar to
Eq, (4.3), the distribution of the virtual displacements 6v, S, and §¢ over the ith

element is assumed to be

sv
fw} = [H] (6q;) (4.7)
5é

The substitution of Eq. (4.3) and Eq. (4.7) in Eq. (4.2) results in

A; = f(G5 40 9, 0q) (4.8)

which is nonlinear in ¢;. This function can be conveniently written as

A; = {8q;)T [Mdal (s} + (640} T (Cilas)) (i)
+ (6a:)T K g\ g} = {697 (Q:) (4.9)

where [M;i{(g;)), [Ci{q:)], and [K(q;)), represent the element inertia, damping and
stiffness matrices, respectively and {Q;} is the element load vector for the ith

element. The global matrices are obtained by the assembly of the element matrices.
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The global degree of freedom vector is dencted by {q} and the global virtual
displacement vector by {6q}. The global load vector {Q} is formed by combining
the element load vectors {Q;}. The assembly of element inertia matrices [M;(q;))

results in global inertia matrix [M(q)] as shown below.

[M(q)] =

The matrix [M] is a square matrix of order 5(n +1); it is also banded with the
sernibandwidth N, equal to 10. The global damping and stifness matrices [C(q)] and
[K(q)] are obtained in the same manner. The matrix [K] also is banded, whereas

the matrix [C] is nonbanded because of the presence of the double integral term

L r=
/ / (6’:}' + 1b’w') dzdz;
0 Jo

in the expression for §T; [Eq. (2.18)]. Matrix [M] is symmetric; the presence of
terms in [C] and [K] due to the nonconservative aerodynamic forces makes them
asymmetric. The process of assembling element matrices to obtain global matrices

can be mathematically indicated by substituting Eq. (4.9) in Eq. (4.1).
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A m (5q)T(M(9)(3} + (50)T[Cia)){d)
+ (6a)TIK(a)}(q) = (69)7(Q) =0 (4.10)

Since the virtual dispalcements §g are arbitrary, Eq. (4.10) leads to the equations

of motion

[M(a)l(3) + [C(a)l{d} + [K()}{a) = (Q} (4.11)

These equations are nonlinear in q. The bandedness of [M] and [K] helps reduce
the storage space needed in computer programs since the zero elements off the band

need not be stored.

4.2 Boundary Conditions

The formulation of the problem is based on energy pricniples; and hence, the
force boundary conditions, which are imbedded in the formulation, do not have to
be considered separately. The nature of the displacement boundary conditions at
the root determines the configuration of the rotor. For example, v, ¢/, w, ¢, and ¢
are zero at the root for a hingeless rotor blade; and for an articulated blade, v, w,

and ¢ are zero at the hinge.
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5. SOLUTION PROCEDURE

The steady trim condition of the rotor in hover is determined first since the
flutter stability equations are linearized about the trim state. The nonlinear steady-

state equations are obtained by dropping all time-dependent terms from Eq. (4.11).

[Ko(g0)l{g0} = {Qo} (5.1)

The matrix [Kp) is asymmetric, banded, and a function of the steady displacement

go. The contribution to the matrices [Ko] and {Qo} is from both structural and

aerodynamic forces. The expressions for the terms of the steady-state element

matrices are given in Appendix C. These matrices are evaluated numerically us-
ing Gauss quadrature formulas. The numerical solution of the nonlinear steady-
state equations is evaluated iteratively using Brown’s algorithm [Brown and Dennis
(1972)). This algorithm is a modified form of the Newton-Raphson method and the
solution is estimated such that the sum of the squares of the errors in ke equations
is a minimum. The linear solution of Eqgs. (5.1) is used as the initial estimate in
the solution procedure. The nonlinear stiffness matrix [Ko(qgo)] is updated at every
step of the iteration using the estimate from the previous step. The bandedness of
[Ko] is useful in two ways. The storage space needed in the computer program is
less since only the elements within the band are stored. The number of computer
operations is reduced considerably since the matrix operations cor:@pond‘ing to the

zero entries of [Koj, cutside the band, are skipped.

For a given level of thrust, the collective pitch required at three-quarter span

(0.75R) is calculated from Egs. (3.18). The steady elastic twist modifies the pitch
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distribution of the blade. The new pitch at three-quarter span is 8755 + ¢ 758 and

corresponding to this pitch vallue, a new thrust level is calculated.

5.2 Flutter Stability

The flutter equations of motion are linearized about the steady-state solution.
The displacement ¢ is written as the sum of a steady component (go) and an unsteady

perturbation (g).

q=q0+q (5.2)

Substituting Eq. (5.2) into Eqs. (4.11), subtracting Eqs. (5.1), and keeping only

linear perturbation terms, the flutter equations are obtained as

[ittan) {5} + [etan)] i} + [ Ktan)] @) = 0 (5.)

The inertia, damping, and stiffness matrices are functions of the steady deflection
go. The expressions for the terms of the perturbation element matrices are given in
Appendix D.

The flutter stability is determined by studying the eigenvalues of Eqs. (5.3).
The normal mode method (which considerably reduces the number of equations) is
used to calculate the flutter eivenvalues; and hence the natural modes are needed.
The coupled rotating vibration characteristics about the equilibrium position are
evaluated by dropping the damping matrix and removing all aerodynamic terms

from Egs. (5.3). The resulting equations are

lM.l{?}‘} + [K.)(3) = (0) (5.4)
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The inertia and stiffness matrices [M,] and |K,] are symmetric and the eigenvalues

(frequencies) of Eqs. (5.4) are real,

The flutter equations of motion, Eqs. (5.3), are transformed to the modal space

by writing

(@) = [¢){p} (6.5)

where [¢] is the matrix of the first N eigenvectors (colulmnwise) and {p} is the
vector of N generalized coordinates in the modal space. Substituting Eqs, (5.5)

into Eqs. (5.3) and premultiplying by [#]T yields the modal-space equations

[M*Kp} -+ [C*Hp} + [K*){p} = {0} (5.0)

The matrices [M*], [C*], and [X*] are asymmetric and of order N. These

equations can be written as a first order system of 2V equations.

[Al{r} - [B]{r} = {0} (5.7)
where
M*] [¢]
a - [
o (1
' [0] [K*
o [ (K*]
(1 [o]
and
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By writing r as

r =reMt (5.8)

Egs. (5.7) becomes
[Al{r} = A[B]{r} (5.9)

These equations are sclved as an algebraic eigenvalue problem. The eigenvalues \

are complex.
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6. APPLICATION TO SINGLE-LOAD-PATH BLADES

To show the fesibility of the finite element formulation, the method is first
applied to single-load-path blades; a hingeless blade and an articulated blade with
a hinge offset of 6%are considered. Convergence studies with respect to increasing
number of finite eflements and natural modes are presented. For the hingeless blade,
comparisons are made with previous theoretical results obtained by modal methods

and with some experimental results.

The numerical results obtained are for blades with uniform spanwise poperties.
The chordwise offsets of the center of mass, aerodynamic center, and tension center
from the elastic axis are considered to be zero. The section constatnts EB;, EBs,
and the warping constants ECy, EC2, are taken to be zero. A precone (8p) of 0.05

rad (2.9 deg), Lock number () of 5, and solidity ratio (¢) of 0.1 are used.

6.1 Hingeless Rotor Blades

The uniform blade properties selected for the stability analysis of a hingeless
rotor blade are given in Table 1. The stiffnesses El,, EI,, GJ, and the inertial
parameters ky,, kmy, k4 are chosen such that the rotating frequencies corresponding
to given values. The rotating flap frequency of the blade is taken to be 1.150. Two
different lead-lag frequencies are considered; a frequency of 0.7Q2 represents a soft-
inplane blade whereas 1.501 represents a stiff-inplane blade. Similarly a torsional
rotating frequency of 2.502 represents a torsionally-soft blade and 50 a torsionally-
stiff blade.

The convergence of the steady state deflections using different numbers of finite
elements is presented first. Table 2 shows the steady tip deflections Y0y, Wy
(nondimensionalized with respect to the rotor length) and g, tip (in rad) as the total

number of finite elements is varied from 2 to 8. The results are for a thrust level,
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Cr/o, of 0.1, The results show, for the case considered, that six elements are
sufficient for good convergence (three to four digit accuracy). The banded nature of
the stiffness matrix reduces both the storage space and computation time required.
For example, if eight elements are used, the full storage mode would require 2025
storage locations whereas the band storage mode needs cnly 855 locations for the
stiffness matrix. Furthermore, the number of arithmetic operations involving the
stiffness matrix is reduced by about 60%. The use of the linear solution as the
starting vector makes the nonlinear iterative solution converge rapidly; only three
or four iterations are needed for a converged solution. As a result, the computation

time required for the trim solution is small.

Figure 7 shows the steady tip deflections of a stifi-inplane hingeless blade as the
thrust Cr/o, (and hence the pitch 8) is varied. The torsion frequency corresponds
to a torsionally-stiff blade for these results. The magnitue of the flap and lead-lag
tip deflections increase with thrust. The magnitude of the torsional tip deflection
increases first and at higher thrust levels decreases. The torsional deflection is
primarily due to nonlinear flap-torsion and lag-torsion couplings. The steady-state
aerodynamic torsional moment is zero since Cyq,, and ¢4 are assumed to be zero
[see Eq. (3.18)]. At low values of Cr/o, both the flap and lead-lag deflections are
negative. At high values, the flap deflection is positive while the lead-lag deflection
is negative. The results of Hodges and Ormiston (1976) are also shown in this figure.
Hodges and Ormiston use a modal method with five nonrotating beam modes for
each one of the deflections vy, wo, and ¢9. The agreement between the two results
is excellent except at high trust levels where a slight deviation appears. This may
be due to the assumption by Hodges and Ormiston that sin ~ 8 and cosd ~ 1 (not
assumed here) for the claculation of aerodynamic loads, which may not be very
accurate at high values of 8. The steady tip deflections with respect to thrust for

a soft-inplane blade are shown in Fig. 8 The flap, lead-lag, and torsion curves
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are similar to that of the previous case. The flap deflections are almost identical
to that of the stif-inplane blade. The lead-lad deflections are higher in magnitude,
as expected, since the lead-lag stiffness is lower. The torsional deflections also are
higher in magnitude than for the stifl-inplane blade, which can be explained as due
to the coupling between lead-lag and torsion modes. Corresponding results from
Hodges and Ormiston (1976) are included in Fig. 8. Comparisons show that, as
before, the agreement between the two results is very good at low thrust levels and

the deviation increases with the thrust,

The rotating coupled natural frequencies of the stifl-inplane blade about its
steady deflected position are investigated for convergence as the number of finite
elements is varied, Table 3 presents the fundamental lead-lag, flap, and torsion
frequencies with increasing number of elements. It is seen that six elements are
sufficient for four digit accuracy. The bandedness of the inertia and stiffness

matrices is used effectively to mimimize computation time.

The solution of the flutter equations results in complex eigenvalues. The normal
mode method is examined for convergence as the number of modes is varied, keeping
the number of elements fixed at six. The real parts of the first three eigenvalues for
different numbers of modes is given in Table 4. This table shows that five modes
result in a well-converged solution (five-digit accuracy). Figure 9 shows the root
locus plot of the fundamental lead-lag, flap, and torsion modes as Cp/o is varied
from 0 to 0.3. Even though blade angle-of-attack stall has been neglected, such
high thrust levels are included for comparision with other theoretical results. Six
finite elements and five normal modes are used in obtaining these results. The flap
and torsion modes are stable over the entire range of Cr /o considered, whereas the
lead-lag mode is unstable for Cr/o between 0.01 and 0.05 and above 0.17. The
complete solution using six elements and five normal modes at a particular thrust

level requires about 7 s of computation time on a CDC 7600 machine. Figure
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10 shows the flutter stability boundaries as the lead-lag frequency is varied. The
results of Hodges and ormiston (1976) are also shown for compatison in this figure,
In this reference, the stability results are calculated using the normal mode method
with five coupled rotating modes. There is general agreement between the two
results. The differences that appear beiween the two results may be due to changes
in aerodynamic forces by including all second-order terms (order ¢2) in the present

analysis.

Figure 11 shows the root locus of the lead-lag mode of a stiff-inplane hingeless
blade when the blade pitch is varied from -10 deg to 12 deg. The blade precone
is zero for this case. Experimental results from Sharpe (1983) are also shown in
this figure. In the theoretical analysis structural damping is included such that the
results match that of the experiment at zero pitch. It is seen that the agreement
between the present analysis and experiment is good at low pitch settings and not so

good at higher pitch settings. Other theoretical analyses show similar discrepencies.

The same blade properties as given in Table 1 are used for the stability analysis
of an articulated blade with a hinge offset of 6%. The convergence characteristics
for the nonlinear steady solution, natural frequencies, and flutter eigenvalues are
presented in Tables 5-7, respectively. These results confirm the conclusions reached
for the hingeless blade that about eight elements and five normal modes are adequate
for four-digit accuracy. As before, only a few iterations result in a converged
nonlinear trim solution. The equilibrium tip deflections are plotted with respect
to thrust in Fig. 12. The lead-lag tip deflections are much higher than that for
the corresponding hingeless rotor blade because the lead-lag stiffness is lower when

the blade is hinged. The root locus of the flutter eigenvalues obtained using six
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clements and five normal modes is shown in Fig. 13. All three modes are stable

over the range of Cr/e shown,
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7. MODIFICATIONS FOR ANALYSIS OF MULTIPLE-LOAD-PATH BLADES

Having shown that the finite element formulation can be successfully applied for
the determination of the aeroelastic stability of single-load-path blades, the analysis
is extened to include the more complex multiple-load-path blades. As indicated in
the Introduction, the flexure of a Learingless blade contains one or two flexbeams
and a torque tube, The analytical model of a bearingless blade is shown in Fig. 14.
Each of the flexbeams and the torque tube are modelled as individual beams, For
this purpose several modification have to be made to the formulation presented in

the previous chapters.

7.1 Inclusion of Axial Degree of Freedom

In the analysis for single-load-path blades, the axial deflection u has been
eliminated in terms of the other deflections and the expression for the centrifugal
force. The force equilibrium equation in the axial direction cannot be solved a priori
for multiple-load-path blades; and hence the « deflection has to be included as a

degree of freedom.

7.2 Refined Finite Element

The beam element considered for discretizing multiple-load-path blades is shown
in Fig. 15. This element is more refined than the simple beam element used for
single-load-path blades. The element includes the axial degrees of freedom. Each
element consists of two end nodes and three internal nodes with a total of fifteen
degree of freedom. Each of the end nodes (1 and 2) have six degrees of freedom,
namely u, v, v/, w, ', and . There are two internal nodes for u and one inter-
nal node for . Two internal nodes are needed for the axial degree of freedom

to accurately represent the centrifugal force distribution over the element. With
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two internal nodes, the distribution of u over the element is cubic, Hence, the axial
force distributiion is quadratic and of the same order as that of the centrifugal forze.
The internal node for the torsional deflection assures that the torque approxima-
tion over the element is of the same order as the flap and lead-lag bending moment

approximations,

7.3 Displacement Compatibility Conditions at the Clevis

The element matrices are assembled, by considering displacement compatibility
conditions at interelement boundaries, to form global matrices. Except at the clevis,
the displacement compatibility conditions generally imply the continuity of u, v, ¢/,
v, &', and ¢ across element boundaries. The root element of the outboard blade is
connected to the outermost elements of the flexbeams and the torque tube through
the clevis which is assumed to be rigid (Fig. 14). The inboard beams are numbered

1,2,3, etc. The displacement compatibility conditions at the clevis can be written

as
u; = u— ;o'
Uy =y
(A /
vi=v (7.1)
w; = v+ 0;(%ac + ¢)
W -y
and

d; =4+ ¢ (for flezbeams)
¢, =¢ (for torquetube) (7.2)
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where u;, v;, w;, and ¢; are the deflections at the clevis for the ith inboard beam; and
u, «, w, and ¢ are the deflections at the clevis for the outboard beam, The p; is the
elastic axis offset of the sth inboard beam from that of the outboard beam (positive
forward) and 4, the difference between the collective pitch and the pretwist at the
clevis (Fig, 16), Equation (7.2) for the flexbeam indicates that a rigid body pitch

.rotation of the outboard blade is transferred to the flexbeam as an elastic twist.

7.4_Modifications in_Solution Procedure

In addition to the differences noted above, there are two major diflerences in
tl - son vion procedure for nonlinear trim solution. Some of the terms of the matrix
[Ko] depend on the centrifugal force F. The centrifugal force distribution is known
a priori only over the ouboard blade; it is unknown over the flexure because of
the multiple load paths involved. In obtaining the linear estimate of the steady
equations, it is assumed that the centrifugal force in each of the inboard beam is
in the ratio of its tensile stiffness EA. Then, at successive iterations the centrifugal
force distrubution is updated using Eq. (2.6).

The lead-lag and flap stiffnesses depend on the orientation (pitch) of the cross
section. The pitch distribution is known a priori for the outboard blade, For the
flexbeams, the resultant pitch is the sum of the pretwist 6, and the elastic twist due
to 8,. at the clevis (Fig. 16). For the first iteration of the nonlinear trim solution,
the pitch distribution along the flexbeams is assumed to be linear. This distribution

is updated at successive iterations based on the torsional deflection.
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8. APPLICATION TO MULTIPLE-LOAD-PATH BLADES

The formulation modified for multiple-load-path blades is applied to several
analytical models of bearingless rotor blades in hover. The outboard blade, the
flexbeams, and the torque tube are considered to be uniform, The chordwise offsets
of the tension center, mass ¢enter, and aerodynamic center from the elastic axis are
assumed to be zero, The section constants EBy, EB», and the warping constants
ECy, ECs are taken to be zero, The acrodynamic forces over the flexure is neglected.
A precone (f8p) of 0.05 rad (2.9 deg), Lock number (+) of 5, and solidity ratio (o) of
0.1 are used. The offset of the elastic axis of the flexbeams (Fig. 14) from that of the
outboard blade (g == —»3) is taken to be 0.4¢, where ¢ is the chord of the outboarad
blade; the torque tube offset (n2) is zero. The length of the flexure is 0.25R. The
blade structural poperties are given in Table 8; the aciodynamic properties are the
same as given in Table 1. Stiff- and soft-inplane and torsionally-stiff and soft blades

are considered.

To understand the behavior of multiple-load-path blades, a simple analytical
model is considered first. This model has an inboard flexure cosisting of two idcntical
flexbeams; the torque tube is not included (Fig. 17). The pitch of the flexure is
fixed at zero while the pitch of the outboard blade is varied. This is equivalent to
a physical model with a pitch bearing at the clevis. First, a convergence study is
made to determine the number of finite elements needed to obtain the nonlinear
trim solution to a desired accuracy. Table 9 shows the steady state tip deflections
Y0451 Y0yip1 WOy (nondimensionalized with respect to the rotor length), and , tip (in
rad) as the number of both the flexbeam and the outboard elements is varied, The
blade considered is stiff inplane and soft in torsion. A thrust level, Cp/e, of 0.1 is

used. The results show that two elements each for the lexbeams and two elements
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for the outboard blade are sufficient for five digit accuracy, The nonlinear iterative
solution converges rapidly since the linear solution is used as the initial estimate;

only four or five iterations are needed for a converged solution,

The rotating coupled natural frequencies of the blade about its steady deflectd
position are investigated for convergence as the number of finite elements is varied,
Table 10 presents the fundamental lead-lag, flap, and torsion frequencies with
increasing number of elements. Again, it is seen that a total of six elements, two
for the outboard blade and two each for the flexbeams, are sufficient for five digit
aceuracy,

The solution of the flutter equations results in complex eigenvalues, The normal
mode method is examined for convergence as the number of modes is varied, keeping
the total number of elements fixed at six. The real parts of the first three eigenvalues
for different numbers of modes is presented in Table 11. This table shows that five

modes result in a converged solution (five digit accuracy).

Figure 18 shows the root locus plot of the fundamental lead-lag mode as Cr /o
is varied from 0 to 0.2, It is seen that the lead-lag mode is unstable for Cz/e higher
than about 0.05. In this figure, the results from an equivalent-beam model are also
shown. In general, the properties of the equivalent-beam model are obtained by
matching the fundamental frequencies of the equivalent-beam model with that of
the multibeam blade. For flexbeams with uniform spanwise poperties, analytical
expressions for equivalent properties can be obtained. These are given in Appendix
D. The two results shown in Fig, 18 differ from each other, particularly at low
and high levels of thrust. The results at low thrust levels are of significance to tail
rotors. A careful study has been made to determine the cause of the differences
between the two results, The equivalent-beam model does not accuraiely simulate
the cross-coupling stiffness terms which are nonlinear in nature and depend on the

steady deflections. Results have been computed by suppressing, in the perturbation
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analysis, nonlinear cross-coupling terms of nonlinear origin from the structural
stiffness matrix of the flexure, for the twin- beam as well as the equivalent beam

model. These are shown in Fig. 19. Both sets of results are identical.

For the same model but considering a soft-inplane, torsionally-stiff blade, the
root locus of the lead-lag mode is plotted in Fig. 20. The behaviur of this blade
is very different from that of the stif-inplane blade. The coressponding equivalent-
beam model results are also included in this figure. The discrepency between the
results of the two models are more pronounced, particularly at high thrust levels,
than that of the stif-inplane blade. Again the reimoval, in the perturbation analysis,
of the cross-coupling terms of nonlinear origin from the structural stiffness matrix
of the flexure makes the results identical (Fig. 21). Similar conclusions are reached
from the root locus plots of the lead-lag mode of a torsionally-stiff blade (Figs. 22
and 23).

8.2 Twinbeam Model with Same Pitch For Inboard and Outboard Segments

This blade model also has a flexure consisting of two identical flexbeams; and
there is no torque tube, Both the inboard and the ouboard segments are maintained
at the same uniform pitch distribution. This represents a physical model with pitch
bearings at the hub end of the flexbeams. The root loci of the lead-lag mode with
respect to increasing level of thrust are shown in Fig. 24 for both the twinbeam and
the equivalent-beam models. The results are for a stiff-inplane and torsionally-soft
blade. The two resuits are in major disagreement with each other. This disparity
is explained as follows. The fundamental frequencies of the equivalent-beam model
are matched with that of the twinbeam model at a chosen pitch setting (zero in the
present example). As the pitch is changed, the effective flap and lead-lag stiffnesses

vary because of flap-lag coupling. This modifies the frequencies of the blade; and
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the frequency match no longer exists. This phenomenon is clearlyl seen from Table
12 where the fundamental frequencies are presented for various thjrust levels. As
the thrust (and hence the pitch) increases, the difference between the frequencies
of the two model widens. Thus, the equivalent-beam simulation is not accurate
with changing pitch. The results of Fig. 25 are for a soft-inplane blade. Again the
discrepency between the twin-beam and the equivalent-beam models is big. Similar

effects ave observed from the results of a torsionally-stiff blade (Fig. 26).

8.3 Bearingless Model with Torque Tube

This blade has a root flexure consisting of two identical flexbeams and a
torque tube in the middle. This model is a more appropriate representation of
the bearingless blade, Pitch control of the blade is achieved via the torque tube
by rotating the clevis. Due to the piltch application at the clevis, there is an
elastic pitch distribution over the flexbeam and this is determined iteratively. As
a result, the number of iterations required tur convergence of the nonlinear trim
solution is increased. Now it takes about ten iterations for five digit accuracy,
whereas, four or five itereations have been adequate for the two previous models.
The convergence characteristics are similar to the one presented for the previous
models in tables 9-11. The results have indicated that a total of eight elements -
two elements for the outboard blade, two for the torque tube, and two each for
the flexbeams - are adequate for five digit accuracy. The root loci of the flutter
eigenvalues (fundamental lead-lag, flap, and torsion modes) are shown in Fig. 27
as Cr/o is varied from to 0.15. The flap and torsion modes are stable while the
lead-lag mode becomes unstable at high levels of thrust (Cr/o greater than about
0.13). This is a weak instability and the introduction of a small amount of structural

damping would stabilize the mode.
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9. GENERAL CONCLUSIONS

The finite element method has been successfully applied to determine the
noniinear trim deflections and the flutter stability of sing! ~ and multiple-load-path
blades in flap bending, lead-lag bending and torsion. The formulation is based on
Hamilton's principle, The spatial dependence of the equations of motion is made
discrete by dividing the blade into a number of beam elements. Nonlinear trim
deflections are evaluated iteratively, solving the complete set of of global equations,
without making a modal transformation. The solution procedure is made efficient
using the bandedness of the stiffness matrix and the linear solution as the starting
vector. The coupled rotating natural modes are calculated about the trim condition
of the blade. The normal mode method based or these modes is used to solve the

linearized flutter equations as an eigenvalue problem.

The formulation is first applied to uniform single-load-path blades, namely
hingeless and articulated. Six finite elements are sufficient to determine the trim
deflections, and the free vibration characteristics. Five coupled rotating modes
are adequate for the normal mode solution of the flutter equations. The steady
tip deflections agree very well with that of a previous research which used modal
method based on a total of fifteen nonrotating uncoupled modes; the flutter stability
boundaries also show excellent agreement with that previous research based on a
modal approach. The root-locus plots of flutter eigenvalues as a function of the

pitch are generally in good agreement with experimental results.

Suitable modifications have been made in the formulation so as to consider
multiple-load-path blades. Numerical results are presented for several baringless
models. Results of the redundantbeam analysis are compared with that of the
equivalent-beam modelling; and the following important conclusions are reached.

The equivalent beam does not simulate the nonlinear structural coupling terms ap-
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propriately. Also, the properties of the equivalent beam are estimated by matching
frequencies with the bearingless blade at a particular pitch setting. At other pitch
settings, the frequencies change and the match no longer holds, As a result, the
stability results obtained using the equivalent-beam model are inaccurate.

Future extensions may include forward flight, ground and air resonance, and

consideration of composite blades.
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APPENDIX A. NONDIMENSIONAL QUANTITIES

The nondimensional quantities in §U, 6T, and §W [Eqs. (2.17),
(2.18), and (2.19)] are defined here. These symbols are retained

after nondimensionalisation.

Assumed order
Old quantity New quantity of magnitude
z/R z 1 '
()/a 0 1
v/R v 3
w/R w €
¢ ¢ €
8 0 1
F[moQ*R? F 1
El,[moQ*R* El, 1
EI,[mo0Q*R El, 1
GJ[meQ*R* GJ 1
EA/moQR? EA 1/é
EB; /MQQ"!RO EB; €
EBz/MoﬂcRb EBg €
EC[ /m°an° EC] 62
ECg/Moﬂst ECg €
ka/R ka €
km,/R km, ¢
kms/R kms €
ea/R e /2
eg/R e /2
By Py €
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APPENDIX B. STEADY-STATE ELEMENT MATRICES

The expressions for steady-state element stiffness matrix and load vector are
derived from the steady part of Eq. (4.2).

Ao, = 5Uo'. - 6To‘. - 5Wo.. (B.1)

The strain energy, kinetic evergy, and the virtual work contributions of the ith
element in steady state are obtained from Egs. (2.17), (2.18), and (2.18) by dropping
all time dependent terms and writing

0+ ¢)~ssind + dcosd

cos 0+:#

(8.2)

N
o N

wcosﬁ—&sinﬂ

This results in
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ORIGINAL PAGE IS
OF POOR QUALITY

6o,
o -:/ <Fo( 66v'+w66w')

+ GJ(¢06$' + powhsv" + dovlls e’ + vfwhss')
+ [Fokg(a' + @ - EAW'” b + EAegk0'(vf cos # + wf sin )

+ EB,&"&' — EBq#(v§ cos 0 + wfi sin a)]s&'
[EO|¢Q + ECg(w cos § — vl sin 0)]645

+ [—Foca cosd + (EL cos® 0 + EI, sin 0)06
(EI, - EIy)¢o(w cos 20 — vo sin 20)
+ E(EIz — EI)w} sin 26 — EAc;(vo cos® 0+ %wg sin 20)

' (EAe.,kj:; - E32)o'${, cos § — EC, sin 0]61}"

[—Foca sind + EI, sin® 0 + El, cos? 0)
Ely)cﬁo v§ cos 20 + wf sin 20)

+
+(BL;

+ %(EI, EIL)v{sin20 - EAca(wo sin® 0 + v ) sin 20)
( EAegk% — E62)0’¢o sin 8 — ECa$y cos 0]6«)
[Foca(vo sinf — wo cos 0)

+ (EL EI,){ ( 02 - vo'2 ) sin 20 + vfjw cos 20}]6$> dz; (B.3)
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ORIGINAL PAQE IS
OF POOR QUALITY

§To. /‘u’ i
m ol A m{[vo + c,(cos& — do sin 0)]60
- ﬂp26w

. [%(k”2 R k?"‘)(’;' sin 206y °°’2') + eg2(wh cos# - vf sin)
+ ¢guop sin 0 + egfpz cos 0)6¢
— e,z(cos 60— $o sin 0)60'

- e,z(z sin @ + @ cos 0)610'} dz;

and

§Wo. I
m - /o (Lvo6v + Lyybw + M¢o6¢) dz;

where the steady-state aerodynamic forces are
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ORIGINAL PAGE IS
OF POOR QUALITY

Lyg = %<cos 0{—!10,22 cos® 0 + (cg — dl)(-%zz 8in 20 + zX,-coa?O)

+ (c1 — dz)[(z sind — \;cos 0)% ~ 229y fp sin 0]}

+ sin 0{ t:o(a:2 cos® 0+ zk;an’nﬂ)

1

+ (e + do)[z cos 0(-—:: sind + \;cosd + n,ﬂ,) — z\;sin% 0 + 5

A7 sin 20]

+d|(;z2 sin® § — z)\;sin 20)}

~ uoz(do + d2)sin20sin

— vgzdp(c1 — da)sin 20 cosd + (cy + dg) sin # cos 20)
+ wO:zﬂp(do + da)sin 20sin 0

+ wh2zne(—cy + do + 2d3)sin d cos 8

+ $o(cos 0[—(co — dy)z° cos 20 + (¢} — dg)(ac2 sin 20 — 2z cos 20)]

—~ sin 0[(::0 - dy)z? sin 20 + (¢ + do)(z2 cos 20 + 2z), sin 20)]

- sin 0{—dox2 cos® 0 + (co — dl)(—%22 sin 26 + zk;coa%)

+ (eg — dg)[(z sin 8 — \; cos 0)2 — 2zn¢fp sin 0]}

+ cos 0{c0(22 cos? § + z)\;ﬂ'n?ﬂ)

+(c1 + do)[z cosd(—zsind + \;cosd + rBp) — Z\; sin® 0 + -;—X? sin 20]

+d|(22 sin® 6 — z)\;sin 20)})

— vovhz(do + d2)sin 0 sin 20
— vowhz(—(cy — d2)sin 20 cos § + (¢y + dg)sin § cos 26]

2
- vp zzg(do + dg)sin® 0 cos 0

- vaw{)zz[(c; - dg)(sin 20 cos § — sin® 0)

+ (e1 + do)(— sin 20 cos # + sin® 0)]) (B.8)
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ORIGINAL PAGE IS
0OF POOR QUALITY

- -g-<sin 0{-doz"’ cos® 0 + (co — d;)(--;-xg sin 20 + zk;coa”)
+ (ey ~ dz)[(z sin — \; cos )° — 221, fp sin 0]}
~ cos O{co(z2 cos? 0 + zMau’nN)
+(eg + do)[zcos 8(—=zsin 0 + \; cos# + qp8p) — z);sin® 0 + %xf sin20]
+d|(22 sin® 0 — z)\;sin 20)}

- ug 2z[(c1 - dz)axin3 0 +(cy + do)sin 8 cos? 0]
- vgzBpl(cy — do)sinfsin 20 + (cy + dg)cos f cos 20)
- wy 2zﬁp[(c1 — dg) sin3 8 + (¢y + do) sin 0 cos® 0]

- w{,2znr[2(c1 — dg)sin® 8 + (¢; + dg) cos® 0]
+ &o(sin 0[-—(co ~dy)z® cos 20 + (¢; + do)(::c"Z sin 20 — 2z\; cos 20)]

+ cos 0[(co - d;):z2 sin 20(c; + do)(z2 cos 20 + 2z \;sin 20)]

2
+ (eg — dg)[(z sin 8 — \; cos 0)% — 229y Bp sin 0]}

+ cos 0{-—d032 cos® 0+ (co — dl)(— -l-zz sin 20 + zkgcos%)

+ sin O{co(zz cos® 0 + z)“\'ain%)
+(e1 + do)[x cos §(—zsin 8 + \; cosd + neBp) — z);sin® 0 + -;-X? sin 20]
+d1(zz sin? 0 — 2\;sin 20)})

- vovf)z[?(cl — dg)sin® 0 + (¢} + do)sin 20 cos 0]

— vowhz|(cy — d2)sin Asin 26 + (¢} + do) cos f cos 20]
- vazzz[(cl — d2)sin® 0 + (¢) + do)sin § cos® 0]

+ v(,wﬁzz[(cl‘—- do)sin 0sin 20 + (¢; + do)cos 8 cos 2]

WX PO P : 2
wo 25 (e1 — d2)sin® @ + (¢} + do) sin dcos* @
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My, = %zz{cOMu - cd[(cl + dg)sin # cos # — d sin® 0]} (B.8)

The A9, of Eq. (B.1) can also be written as

Ao; = {8gi}[Kilo{ai}o + {62:H{Qi)o (B.9)

By comparing Eqs. (B.1) and (B.9) the element stiffness matrix and the load vector
can be written. The contribution from §Uy, and 6Ty, to the element stiffenss matrix

and the load vector is given as follows (the contribution from §Wo, can be easily
inferred from Ly, Lugy, and Mj,).

[val [Kvw] Kvév
(Kilo = |[Kuw] [Kuww] Kw] (B.10)
[Kgol [Kpul [Kgs
and
{Quv}
Ql = {{Qw} (B.11)
{Q¢}
where

I ,
[Ku] = fo " [Fo{H’}{H'}T + (EI, cos® 8 + Ely sin® § — EAe? cos a’~’){H”}{H"}T

_ m{H}{H}T] dz;

| | ; 2\ mygmT
[Koul = | 5(BL: - By - BAS)sin20{H"}{H")T dz;
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iy T
[Kyg) == /o ‘ [(EAeak2 -EBg)&'cosO{H”}{H’,;}
+ Foea sin 0{H"}{Hy}T
T
— ECpsint0{H") {HQ',}

+ megsin 0{H) {H,)"

~ megzsin 0{H'}{Hy)}T

~ (EI = BIy) sin 20{H"}{H")T (v}}{H4)T
+(BI, = EI)) cos 20{ H"}{H") T (w}{H,)}T

I A

(Kwy) = [Kuy)
[Kuww] = /o k [Fo{H'}{H’}T + (EI, sin® 8 + EI cos® § — EAc? sin® o){H"}{H"}T] dz;

[Kug] = /ol‘ [(EAcakﬁ ~ EB, ) sin o{H"}{H;}T

— Foegcos 0{H"} {H¢}T

T
+ ECy cos O{H”}{H'e's}
+ meyz cos O{H'}{H¢,}T
+ (EL — Ely) cos 20{ H"}{H"}T (v} {H4}T
+(EL — EL)sin20{H"}{H"}T (w$} {H,}T

+ GJ{H'}{H"}T{.;;}{H;,}T] dz;
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K] = -Ll.‘ [(EAea"?-t - EBz)" cos 0{”&}{}{”}1‘
+ Focqsin 0{H, } (H"}T
- ECs siuo{Hg}{.H”}T
+ meg sin 0{H¢}(H}T
— megzsin0{H, ) {H')T
- 5(EL = EL)sin20{H,) (05} (H"}{H")T

+ (EL - El)cos eo{m}(wa)"{ﬂ”}{}l”}"] dz;

(K ) = /o " [(EAeak';" ~ EBy )¢ sin o{u{,,}{u"}"
— Foca cos #{Hy} (H"}T
+ ECy cos o{n;}{ﬂ”}"
+ megzcos O H, ) {H')T
~ 3(BL - EL)sin20{Hy}(wt) " {H") (")

+ GJ{H:,}{va}T{H"} {H’}T] dz;

[K44) = fo ; [(GJ + Fok? - EAKAS” + EB.@"){HQ}{H;}T

+ By {ag}{n{;}r

+ m(k?,,z - k?,,l)cos 20{H¢} {H¢}T] dz;
b
{(Qu} = /; [Foea cos 0{H"} + meg cos 0{H} — meyz cos 0{H'}] dz;
I
{Qw} - /0‘ [Foea sin G{H”} + mﬂpz{H} —-megz sin O{H'}] dz;

1.
(@) = '[) v [_ _pokf,a'{yg} - -;-m(kﬁ.z - k?,,l)sin 20{Hy} — meyBpz cos 0{ Hy}| dz;
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The column vectors (H), {Hy}, and (v}) are defined as

(H)T = |Hy H: Hy Hy
{Hy)T = Hy, Hgy)

(v3)T = lvo, b, vo, b,

A similar definition holds good for {wg} .
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APPENDIX C. PERTURBATION ELEMENT MATRICES

The strain and kinetic energy contributions to the perturbation inertia, damp-
ing, and stiffness element matrices are given here, The contribution of the aerodynamic
forces is easily inferred from Eqs.(3.16)-(3.18). Since these matrices are linearized
about the steady deflection, the inertia and stiffness matrices are symmetric whereas
the damping matrix is antisymmetric; but the nonconservative aerodynamic terms

will make the damping and stiffness matrices asymmetric.

Inertia Matrix

The element inertia matrix for the ith element is written as

[Muo)  [Myw] [Myg)
(M) = [[Mw] [Muw] [Myg] (c.1)
[Mgo]  [Mgu]  [Mag]

where

I
[Muy] -A m{H’}{H}sz.-
[Mvw] b [0]
I
[Mu¢] = _./o‘ mey sin oo{H}{H}szi.

Iy
(Mol = [ mi} ()T de
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oy
[Mug) -/.. meg cos bo{H) (H)T dz;

Iy
[Mya] = "m0y (11T ey

Damping Matrix

The element damping matrix for the ith element is written as

[Cu] [Cuul [C,,¢]
(€] = [[Cus] [Cuu] [Cug]
[Cou] [Cou] [Cp4]

whero

k ”
[Cov] = ./; 2me, coslo[{H'}{H}j - {H}{HI}T] dz;
[Cow] = [—2mﬂp (H}{(H)T - 2megy sin o ~ {H}{HI}T] dz;
[Cv¢] = (0]

[Cww] = [0]
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[Cug) = 0]
[Cg4] = 0]
‘[va] [Kuw) [K,,¢] \
K] = |(Kuwo] [Kuwo] [Kug] (C.3)
[Kgo) [Kgu] [Kgpgl
where

— T
. 1.2 2\(H"}{H")
Kyl ./". [Fo' {H"} {H’}T + (EI, cos® 0 + Ely sin? 6 — E.Aeg cos 00){}1 HH")
vy :
0

- m{H}{H}T] dz;

0 l

ARt o I
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X .
[Kog) = L [(EAeakii ~ BBy )th cos bo{H") { , }
+ Foeq sin 00{H”}{H¢}'T
T

- ECz sin 6 {HII} {Hrg}
+ meysindo{H} {H¢}T
~ megz sin oo{H’}{H¢}T

—(EI, — Ely)sin 200{ "} {H"}T (vi}{H}T
+(EI, - EIL) cos 200{ H"}{H"} T (w§}{H,)T

+ GJ{H"}{H'}T{wa}{H;}T] dz;

< k ) _ T
~ Foeq cos bo{H"} {H¢}T
T
P———

+ megx cos 0o { H'} {H¢}T :
+(EX, - EI,) cos 200{H"}{H"}T {v§} {H,}"
+ (EL, - El)sin 280 {H"} (H"}T (w8} {Hy)"

+ c:.r{H'}{H"}T{v:,}{H;}T] dz;

T

i 9
(K} = fo ' [(G'J + Fok} — EAKN6G + EB# ){H'¢} {Hg}

T
+ sor{mms]

+ M(ksn?’ - kg"l) cos 290{H¢} {H¢}T] dz;

The column vectors {H}, {Hy}, and {v§} are defined as
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()T =|H Hz Hy Hy
{H¢}T-lH¢| H‘g]

{”5}T-l”01 ”‘)l Yo ”62J

A similar definition holds good for {w$} and {3;}. Also g is defined as

8 =0+ dg

- 68 -~




ORIGINAL PAGE IS
OF POOR QUALITY

APPENDIX D. EQUIVALENT-BEAM PROPERTIES

Mathematical expressions of equivalent properties for modelling twin beams

(Fig. 17) as an equivalent beam are presented here.

(EA), = (EA), +(EA),
(Bly), = (EL), +(EL),
(EL), = (EL), + (EL); + ni(EA), + n3(EA),

_ (m—m) (EL),(EL),
(G)e = (GO0 +(G0 + B2 157y "+ (Bhy)g

(a), = (akd), + (ak3), +nias +nfae

(mk?,,)c - (mk?,,)‘ + (mk?,,)2 +nimy + n3mg
me == m) + ma

The subscripts e,1, and 2 refer, respectively, to the equivalent beam, flexbeam one,
and flexbeam two; and L; is the length of the flexure. These expressions become

simpler for the present case where the two beams are identical.
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Table 1. Values of parameters of uniform blade for numerical results

Parameter Numerical Value

El,/mO*RY 0.014486 (w,, = 1,15)

El/mQ?R* 0.026655 (w, == 0,7)
0.166908 (w, = 1.5)

GJ/mO2R | 0.000025 (wg = 2.5)
0.005661 (w, = 5)

km /R 0

kme/R 0.025

ka/km 1.5

¢/R x/40

By 0.05 rad

o 01

it 5

a 6

o 0

()Y 6

do 0.0095

dy 0

da 0

CMa, 0

kx 1.16




Table 2. Steady tip deflections of a hingeless rotor blade

Number of vo,, /R wo,;, /K %o, i
elements
2 -0,00350 0.00487 «0,04388
3 <0.00342 0.00459 «0.04334
4 «0,00338 0.00446 «0.04315
5 =0.00337 0,00440 =0.04307
(] =0.00336 0./)436 =0,04302
7 +0,00335 0.00434 -0.04299
8 -0,00335 0,00433 -0.04207

(Cr/o m 0.1, 5, = 0.05rad, ¥ == 5.0, wy, = 1,50, wy = 1,150, wy = 2.50)




Table 2, Fundamental Coupled natural frequencies of a hingeless rotor blade

Number of wy /0 wu/0 we/0
elements
2 1.5196 1.1251 2.5105
3 1.6184 1,1221 24872
4 1.5182 1.1214 2.4787
5 1.5181 1.1212 2.4746
] 1.5181 1.1211 2.4724
7 1.5181 1.1211 2.4710
8 1.56180 1.1210 2.4702

(Cr/o = 0.1, §, = 0.05rad, 7 == 5.0, Wy = 1,50, wy, = 1,150, wy = 2.50)



Table 4. Real pricts of the flutter eigenvalues of a hingeless rotor blade

Number of Lead-lag Flap Torsion
modes

3 «0,03074 =0,31488 +0.35148

4 =0,03049 -0,31383 -0,35049

) «0,03034 =0.31443 =0.35207

6 «0.03034 -0,31442 -0,35200

7 -0,03034 -0.31448 -0.35209

(Cr/o = 0.1, fy = 0.05rad, 7 == 5.0, wy = 150, wy = 1,150, wy = 2,5(1)



Table 5. Steady tip deflections of an articulated rotor blade

Number of vo,,,/R oy, /R Bouis
elements
2 -0.06040 0.01274 «0.04476
3 =0.06001 0.01238 <0.04425
4 «0.05987 0.01224 =0.04405
5 -0.05980 0.01217 =0.04396
6 =0.05977 0.01212 =0.04391
7 <0.05975 0.01210 -0.04388
8 -0.,05973 0.01208 -0.04386

(Cr/o = 0.1, §, = 0,05rad, 7 = 5.0, Hinge offset = 0.06R, wy = 2.50)
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Table 6. Fundamental Coupled natural frequencies of an articulated rotor blade

Number of wy /0 we/0 we /0
elerrents
2 0.2099 1.0440 2.5285
3 0.2909 1.0440 2.6049
4 0.2999 1.0440 2.4963
5 o,;zsoo 1.0440 2.4923
6 0.2099 1.0440 2.4901
7 0.2999 1.0440 2.4889
8 0.2099 1.0440 12,4878

(Crfo 0.1, By = 0.05rad, 7 = 5.0, Hinge offset == 0.06R, wy = 2.50)

*



Table 7. Real parts of the flutter eigenvalues of an articulated rotor blade

Number of Lead-lag Flap Torsion
modes

3 -0.00055 «0.33926 -0.39160

4 <0.00951 -0,34108 +0,30338

5 -0.00957 -0.34498 -0.39471

6 <0.00953 -0.34232 +0.39448

7 «0.00953 +0.34230 +0.39449

(Cr/o = 0.1, f, == 0.05rad, ¥ = 5.0, Hinge offset = 0.06R, wy = 2.5Q)

.




Table 8. Structural properties of a bearingless blade

Property Qutboard blade Each flexbeam Torque tube

EI,/moQ*R* 0.026655 0.013328 0.001
0.014486 0.007243 0.001

EIL/mo*R* 0.166908 0.083454 0.001

GJ[/moO*R 0.000925 0.000463 0.02
0.005661 0.002830 0.02

km,/R 0 b 0

kms/R 0.025 0.025 0.01

ka/km 1.5 1.5 1

m/mq 1 0.5 0.1

R S A



Table 9. Steady tip deflections of a twinbeam model

(Zero inboard pitch)

Number of elements

Flexbeam | Flexbeam | Outboard |  uo,,,/R vou,/R wo,,, /R %o, »
one two blade
1 1 2 0.001613 =0.003750 0011214 +0.030734
2 2 1 0.001614 -0.003794 0011289 <0.030634
2 2 2 0.001613 «0.003750 0.011213 -0.030735
2 2 3 0.001613 <0.003747 0.011206 -0.030732
3 3 2 0.001613 =0.003750 0011213 -0.030735

(Cr/o = 0.1, 8, = 0.05rad, 7 = 5.0, w, = 1.870, w, = 1.150, wy = 2.910)

s TR Y g e
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Table 10. Fundamental natural frequencies of a twinbeam model

(Zero inboard pitch)
Number of elements
Flexbeam | Flexbeam | Outboard wy /0 we /02 we/0
one two blade
1 1 2 177973 1.15018 2.88149
2 2 1 1.78825 1.15027 2.89491
2 2 2 1.77962 1.14977 2.88144
2 2 3 1.77877 1.14971 2.88094
3 3 2 1.77961 1,14974 2.88141

Cr/o == 0.1, §, = 0.05rad, 7 == 5.0, w, = 1.870, wy = 1,150, wy = 2.91Q
{ J




Table 11. Real parts of the flutter eigenvalues of a twinbeam model
(Zero inboard pitch)

Number of Lead-lag Flap Torsion
modes

3 0,00506 <0.35029 -0.38113

4 0.00450 -0.35228 -0.38094

5 0.00445 <0,35267 -0,38119

] 0,00445 -0.35267 -0,38119

(Cr/o = 0.1, §, == 0.05rad, 7 = 5.0, w, = 1.870, wy = 1.15Q, wy = 2.910)

R I



Table 12, Fundamental natural frequencies at various thrust levels
(Zero inboard pitch)

Lead-lag Flsp Torsion
Crlo

Twin Eqvit. Twin Eqvit. Twin Eqvit,
0 1.870 1.866 1.149 1.149 2910 2910
0,04 1.864 1.886 1,152 1.142 2921 2,900
0.08 1.851 1.896 1,167 1.120 2.930 2.887
0.12 1.830 1.804 1.161 1.112 2.934 2.875
0.16 1.806 1.878 1.163 1,001 2.930 2.864
0.2 1.775 1.849 1.162 1.066 2.916 2.854
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structural stiffness terms of nonlinear origin suppressed
in flutter analysis); wy = 1.8700, wy = 1.150, wy = 2.9102,
v = 5.0, fp ==".d5rad.
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Fig. 22 Root locus plot of lead-lag mode of stiff-inplane, stiff-in-
torsion twinbeam model (zero inboard pitch); w, = 1.87Q,
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