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A 3STRA.CT

The flutter stability of flap bending, lead-lag bending, and torsion of helicopter

rotor blades in hover is investigated using a finite element formulation based on

Hamilton's principle. The blade is divided into a number of finite elements. Quasi-

V steady strip theory is used to evalua lw the aerodynamic leads. The nonlinear

equations of motion are solved for steady ,.state blade deflections through an iterative

procedure. The equations of motion are linearized assuming blade motion to be a

small perturbation about the steady deflected shape. The normal-mode method

based on the, coupled rotating natural modes is used to reduce the number of

equations in the flutter eigenanalysis. First the formulation is applied to single-

load-path blades, for example, articulated and hingeless blades. Numerical results

show very good agreement with existing results obtained using a modal approach.

The second part of the application concerns multiple-load-path blades, namely

bearingless blades. The flexure of a bearingless blade consists of multiple beams

(flexbeams and torque tube) leading to redundancy. The formulation is modified so

that the multibeams of the flexure could be modelled individually. Numerical results

are presented for several analytical models of the bearingless blade. Results are

also obtained using an equivalent beam appraoch (the common approach) wherein

a bearingless blade is modelled as a single beam with equivalent properties. The

Y

	 comparison between the two sets of results show that the equivalent beam modelling
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1. INTRODUCTION

Helicopter dynamics is a complex problem involving nonlinear structural, in-

ertial, and aerodynamic forces, For efficient blade designs, there is an increasing

trend toward nonuniformity in structural and aerodynamic properties, The root
N.	

geometry is complex.

Most of the helicopters in service employ either an articulated or a teetering

rotor. In recent years, there has been considerable interest in alternate designs with

an eye toward mechanical simplicity and increased maintainability. The hingeless

and bearingless rotors are the outgrowth of such efforts. A conventional articulated

rotor blade has mechanical flap and lag hinges, a lag damper and a pitch bearing,

Figure 1 shows the schematic of an articulated blade hub and root. A hingeless

blade, as the name implies, lacks the hinges and is cantilevered at the hub, It does

have a pitch bearing for pitch control. A bearingless design eliminates the hinges

and the pitch bearing as well. Only some hingeless and bearingless designs include

lag dampers. The bearingless blade has an elastic flexure consisting of flexbeams

and a torque tube to facilitate pitch changes. An example (Fig. 2) that has been	 I
1

tested in flight and wind dunnel is the Boeing- Vertol designed Bearingless Main

Rotor, BMR (Dixon and Bishop (1080); and Warmbrodt and McCloud (1981)]. The

BMR flexure (Fig, 3) extends from the hub to about 25%blade radius where it

is connected to the outboard blade by a rigid clevis. The flexure consists of two	 I

parallel, torsionally-soft, open-section beams and a torsionally-stiff (flexurally-soft)

torque tube. The inboard end of the torque tube is connected to a pitch link via	 q

a pitch horn at the hub; and the outboard end is attached to the clevis. The	 a

pitch control to the blade is applied through the torque tube by rotating the blade-

root clevis which elastically twists the flexbeams. The 'blade outboard of clevis

is of airfoil section and is similar to a conventional blade.: The articulated and

x^
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hingeless blades are referred to as single-load-path blades and the bearingless blade

as multiple-load-path blade, This is because the blade loads can be transmitted to

the hub by redundant paths of the flexure in the case of a bearingless blade.

To help in the design of helicopter rotor blades, it is necessary to solve for trim

deflections and to determine the aeroelastic stability in hover and forward flight.

The aeroelastic stability of articulated blades is well understood, 1n the case of

hingeless and bearingless blades, the absence of hinge motion modifies the dynamic
R

characteristics of the blade and may significantly influence the aeroelastic stability.

Not enough is known about the parameters affecting the aeroelastic behavior of

bearingless blades. The influence of multilple load paths on aeroelastic stability is

not fully understood,

The simplest form of roptor blade representation is the rigid blade _model with

spring restrained hinges (Ormiston and Hodges ( 1972) and Kaza and Kvaternik

(1076)J. For this model, the trim solution is generally obtained from coupled linear

or nonlinear flap-lag equations and the Butter stability is determined assuming linear

perturbation motion about the trim solution. This type of modelling is satisfac-

tory for simple blade configurations such as articulated. A more appropriate repre-

sentation is to treat the rotor blade as an elastic beam. Houbolt and Brooms (.1958)

have derived the differential equations of motion for the combined bending and

torsion of an elastic blade. Several authors (Hodges and Dowell (1974), Kvaternik

and Kaza (1976), and Rosen and Friedmann (1078)j have modified. these equations

to consistently include nonlinear structural and inertial terms fnr moderately large

deflections. A number of researchers have mialysed the aeroelastic stability of hinge-

less blades with elastic-beam modelling. Examples are Hodges and Ormiston (1676)

and Johnson. (1977). The common approach for calculating the trim deflections,

as well as the aeroelastic stuff .ii ^; is the modal method (for example, the Galerkin

method) using coupled natural modes. In general, the trim deflections are assumed	
I
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to be large and obtained by solving nonlinear steady-state equations; and the flutter

equations of motion are linearized about the trim state. This linearization simplifies

w
the stability analysis. There have been some attempts at determining the stability

using a complete nonlinear analysis such as the limit cycle analysis. These have

been for simple blade models. For example, Friedmann and Tong (1973) consider a

flap-lag blade; and the analysis of Chopra and Dugundji (1979) inclVes the torsion

degree of fraedom but the blade is modelled as rigid with spring restrained hinges.

The theoretical analysis of a bearie less blade is more involved than that of a

hingeless blade primarily due to the redundancy of the flexure. Several authors have

examined the aeroelastic stabililty of bearingless blades. Bielawa (1976) has given a

theoretical analysis for composite bearingless rotor blades and experimental results

from dynamically scaler' models. The formulation is made for a blade with one

flexbeam and a torque tube. Hodges (1979) has analyzed bearingless configurations

with single flexbeam. The bending stiffness of the torque tube is neglected. The

outboard blade is treated as rigid. Hodges has used an equivalent-beam approach

to model the twinbeam root flexure of the BMR blade. Harvey (1976) has modelled

a single-flexbeam bearingless blade by lumped massed connected by elastic beam

elements. If any of the analyses mentiond above are used to study the BMR blade,

then the twinbeams of the the flexure has to be modelled as single flexbeam with

equivalent properties. The equivalent properties can be obtained by matching the

fundamental frequencies of the equivalent-beam model with that of the multibeam

blade.

With the modal approach, it becomes increasingly difficult to handle geometric

coomplexities. For example, it is difficult to electively model the multibeam flexure

of a bearingless blade. The finite element method [Gallagher (1975)] has been

extensively used in linear structural analysis. The structure is divided into a number

of finite elements and the application of energy principles, or the method of weighted

_g_



residuals, yields approximate expressions for forces (inertial, elastic, etc.) over

each element, The global equations of motion are obtained by assembling the

elements. Nonuniform properties can be easily accommodated. The finite element

method is very flexible and the formulation can be adapted to different rotor blade

configurations with a few modifications. Multibeams of a bearingless blade can be

modelled individually.

The finite element method has been applied for the determiniation of free

vibration characteristics of rotating one dimensional (flap bending) beams by many

authors.. A few examples are Nagaraj and Shanthakumar (1975), Putter and Manor

(1978), and Hodges and Rutkowski (1981). It is common practice to use simple beam

elements (represented by end nodes) satisfying the continuity of displacement and

slope between elements. Refined elements with internal nodes may be used instead.

One can attain a desired accuracy by using either simple or refined beam elements,

but, if simple elements are used, a greater number of them may be necessary.

However, the assembly of simple elements results in narrowly banded matrices; the

assembled matrices for refined elemnts are more populated. Murty and Raman

(1980) have used the finite element method for computing the nonlinear response

of a rotating beam under prescribed forces.

Yasue (1978) has obtained the natural-vibration characteristics of a hingeless

blade in combined flap bending, lag bending, and torsion using a finite element

formulation.. The normal mode method based on these natural modes is utilized to

calculate the trim solution and the response of the blade under gust loading. Yasue's

finite elements exhibit the interelement continuity of the torsional deflection as well

as its slope; and hence a blade with jumps in torsional rigidity cannot be handled.

Friedmann and Straub (1980) and Straub and Friedmann and Straub (1981) have

0

I

i
a

applied a finite element formulation based on the method of weighted residuals to
9

calculate the free-vibration characteristics of a flap-lag hingeless blade. Then, the
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trim state, flutter stability, and response of the blade in hover and forward flight

have been computed using a modal approach. These three rdeferences use the finite

element method just to obtain the natural modes; the trim solution is based on a

modal approach.

In the present research, a finite element formulation is developed to investigate
Y

the flutter stability of flap bending, lead-lag bending, and torsion of rotor blades in

hover. The formulation is made for a nonuniform blade with pretwist and precone,

and having chordwise offsets of the center of mass, aerodynamic center, and tension

center from the elastic axis. The deflections considered a,re the axial, lead-lag, and

flap deflections of the elastic axis and a torsional deflection about the elastic axis.

The spatial dependence of the deflections is made discrete by dividing the blade

into a number of elements. Approximate expressions for element forces are obtained

applying Hamilton's principle; and the assembly of elements results in the global

equations of motion in terms of the nodal degrees of freedom. The aerodynamic

loads are based on quasi-steady strip theory. The trim solution is computed from

nonlinear steady state equations without making a modal transformation. The

coupled rotating natural-vibration characteristics are calculated about the trim

condition. The flutter motion is assumed to be a small perturbation about the

trim state. The normal mode method based on the rotating natural modes is used

to solve the linearized flutter equations as an eigenvalue problem. Flutter stability

is inferred by studying the flutter eigenvalues.

n Here it should be pointed out that the emphasis of the present study is on the

feasibility of the application of the finite-element method to rotor blade aeroelas-

ticity; and hence, importance is not given to certain aerodynamic aspects such as

compressibility effects and the effects of preceding and returning wakes. A brief

review of the research in these areas follows. It is popular to use a quasisteady

strip theory approximation without wake effects for estimating the unstemdy loads

- 5 -



on a rotor, one of the main reasons being the difficulties involved in accuractely

representing the Theodorsen function c(x). The difficulties arise because, unlike

that of fixed wings, the wake of one rotor blade interacts with that of the others.

The first significant attempts at unsteady aerodynamic theories for rotary wings in

incompressible flow are due to Loewy (1957), Timman and Van De Vooren (1957),

and Jones (1958). A theory to study the compressiblity effects including wake is

presented by Jones and Rao (1970); aerodynamic coefficients for certain Mach num-

bers and frequencies are given in this paper. In another study, on the effects of tip

vortices on rotor blades in hovering flight, Jones and Rao (1971) colclude that the

use of two-dimensional strip theory would not result in serious error provided the

blades oscillate at several cycles per rotation. Murthy and Pierce (1976) formulate a

technique for the prediction of flutter of a helicopter rotor in hover and axial flight

in such a manner that various unsteady aerodynamic theories and various types of

coupling between the degrees of freedom could be accommodated. Kato and Yamane

calculate the rotor impedence of articulated-rotor helicopters in hover (1979a) and

forward flight (1979b) using a quasisteady approximation that neglects the effects of

preceding and returning wakes. In trying to correlate their theoretical results with

experiments, Kato and Yamane (1981) find that the quasisteady theory does not

predict the amplitude peaks and clefts which appear near the multiples of the blade

passage frequency bfl (where b is the number of blades) whereas an analysis with

Loewy's function agrees fairly well with the experiment. Various dynamic inflow

models are included in a flap-lag stability analysis of a rigid blade in forward flight

by Peters and Gaonkar (1980). Their study concludes that unsteady perturbations

in the induced flow have a significant effect on both the flap and lead-lag damping,

particularly for the regressing mode.

The application of the present method consists of two parts. First, numerical

results are obtained for uniform single-load-path blades. Results are compared

— 6 —
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with that of a previous research based on a modal method. Comparisons with

experimental results are also made. The second part of the application concerns

multiple-load-path blades. The formulation made for single-load-path blades is

modified here to include the multibeams of the root flexure of bearingless blades.

Each of the flexbeams and the torque tube are modelled as individual beams. The

displacement compatibility conditions, at the clevis, between the inboard beams and

the outboard beam are used in the modelling of the bearingless blade. Refined finite

elements with internal nodes are used, Numerical results are obtained for several

analytical models of the bearingless blade in hover. To determine the accuracy of

the conventional equivalent-beam approaches, results are obtained for a blade with

equivalent properties, Comparisons are made between the results of the present and

equivalent-beam models.

This is the first attempt to solve the nonlinear trim equations of a flap-lag-

torsion rotor blade using the finite element analysis directly. This approach enables

the coupled natural rotaing modes to be calculated about the steady deflected

positon of the blade. This is the first research to apply the finite element method

to bearingless blades; and the first one to model t^° ^^^^^^^^ ^^^° ^^ *k-

individually.

i



t

and ' to second order is

ei =e+

x

J v
frw' da

0

(2.1)

3

t

(2.2)

t

a

-707

xi

2. HAMILTON'S PRINCIPLE FORMULATION

2.1 Coordinate Systems

The coordinate systems used are shown in Fig. 4. The rotor blade is treated as

an elastic beam rotating at constant angular velocity n. be rectangular coordinate

system z, y, z is attached to the undeformed blade which is at a precone angle of Pp.

The origin is at the root of the blade, the x axis coincides with the elastic axis, and

the y axis is in the plane of rotation pointed towards the leading edge. The deformed

position of the'Aade is defined as follows. A point P on the undeformed elastic axis

undergoes displreements u, v, w in the x, y, z directions, respectively, and occupies

the position P1 on the deformed elastic axis; u is the axial deflection, v the lead-lag

deflection, and w the flap deflection. Then the blade cross section containing P1

undergoes a rotation 9 1 about the deformed elastic axis. The orientation of the

deformed-beam cross section with respect to the undeformed-beam cross section is

described by a sequence of three rotations. This analysis uses the lag-flap-pitch

sequence of rotations defined in Hodges, Ormiston and Peters (1980). The thrid

angle in the sequence., $ I , is written as

where 8 is the pretwist, ^ is the geometric twist, and 0 is the elastic twist due to

torsion. Th_e orthogonal coordinate system, q, s is attached to the deforemed blade

—8—
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such that the F axis is tangential to the deflected elastic axis and the rl and axes

are the principal axes of the cross section. The transformation between the two

coordinate systems is given as

f^ r

h

E

(T)	,y	 (2.3)

i

	where t , Iq l IV and iz j iy, a', are the unit vector systems in the two coordinate frames,	kF
R

The transformation matrix is defined in Hodges et al (1080 ) and is reproduced ir.

appendix A.  ̂'

i

2.2 Hamilton's Principle

The formulation is based on Hamilton's principle:

A
 f

t2

1 (au — aT — awl d^ o	 (2.4)

f

where 6U, 6T, and bW are, respectively, the variation of strain energy, the variation

[ '	 of kinetic energy, and the virtual work done by external forces. Hodges and Dowell
4

`



 (1974). 	give expressions for W, and bT. The expression for the variation of the strain	 z

energy is

_9_
V̂



M

and the section constvmts are

1	 a

R	 OF POOR QUALITY
bU = f (F` bu' + v'bv' + wlbwl)

r
` `	 n

+ I GJO' + EAkq(6 + ^Y (u' + 
2 

v12 + 2 w1"^

++ EB16i — EB261(vN cos 61 + wn sin 81)J6¢^

+ [EC10N+ EC2(w"cos 81 —vNsin61)jbQN

+ ff EIz (v ^1 cos 6 1 + w ^^ sin S1 — EAca(u l + 
2 v

12 + 
2 

W ,2 — EB2 01011 cos 01
^l	\	l	\	J	J

+ [EIV  
(

VII  sin 8 1 — wN cos 6 1 )—EC20N1 sin B1 (6vN + w116¢)

+I Elz w 11 cos 9 1 + war sin 0 1 ^ — EAea u? + 1 v12+	2 wp — EB26401

J 
sin 81

— [Eiv (V
N  

sin 01 — wN cos B1)—EC20 J cos 91)(bwN — 04)) dx	 (2.5)

where the axial force F is defined by

4

F = EA I+.j + 'v'2 +v 	
2 

wr+ 	
kg6r0'

 — ea(vN cos 61 +w" sin 61),
	

(2.8)

 k
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A = f fA dq ds

Aea s f fA q dq ds

Iy : r
J fA 12 drl ds

iz M f fA q2 dry dS

Akj = f fA (11 2 + s2) dq ds

j f fA

111Y

!	
r

[(11— as	+\s+an^

Bl 
m f fA(V2 +f 2) dq ds

B2
f f+2 + s2) dq 

do

CI M
f fA

a2 dgds

C2 M f fA sa dq ds

i

a

M

1

The blade cross-section area effective in carrying tension is A. IV and I are,

respectively, the Aapwise and chordwise area moments of inertia of the cross section;

Ak, is the polar moment of inertia of the cross section; J is the torsional constant

including cross-section warping; ea is the offset of the tension axis from the elastic

axis, positive forward; B t , B2i C1 , and C2 are other section constants; X is the warp

function which is assumed to be antisymmetric about the chord. The cross section

is assumed to be symmetric about the chord.

The variation of the kinetic energy for the elastic beam is

11 —

u
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(M(jj2XbT	
R 
+ 2W 4)6u

+ [M(12(v + ey cos 0 1 ) + 2mn(ppty — u)

+ 2megrl 61 Cos 0 1 + u? sin 0 1 ) — mii + meg sin 01 J6v

— [Mpp(jj2X  + 2(16) 
+ mw + mega cos 01

1 
bw

— [mk2 " + m02(k2	k2m1! 
Cos 0 1 sin 01r

+ Meg 02x(w f cos 01 — v1 sin 0 1 ) + megn2V Sin 01

+ Megn2 ppx Cos 91— me9 (ii sin 9 1 — ti cos 01)Jb^

— Meg 02Zcos 0 1 + 2W cos 0 1 )6V'

— Meg 02 x sin 01 + 2N sin 01)b W') dx

Where tine section integrals are defined by

M Z= f fA ' p dq d5

Meg 39 f fA pn dry dS

mk,2„ 1 M f fA  052 do dS

mkt Mf fA 092 do ds

k2,„ =kM1+ km2

(2.8)

(2.9)

>I

The blade mass per unit length is m; e9 is the center of mass offset from the

elastic axis, positive forward; and km 1 and k,,,2 are the flapwise and chordwise mass

moments of inertia per unit length.

The virtual work bW of the external forces may be expressed as

— 12 —
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(Lu6u + L„6v+ Lw6w + M¢60) dz	 (2.10)

where Lu, Lv, Lw, and lt10 are the external loads distributed along the length of the

blade in the axial, lead-lag, flap, and torsion directions respectively and the virtual

rotation 60 as defined in Hodges et al (0 , 80) is

t

60 P_-^ 6¢ + w1 6VI(2,11)

Since 6U, 6T, and 6W, as given in Eqs. (2.5), (2.8), and (2.10), are independent of

the time derivatives of 6u, bv, 6w, and 6¢, Eq. (2,4) can be written as

0=6U-6T-6W =0	 (2.12)

2.3 Elimination of the Axial Displacement

For single load path blades, the axial displacement u can be eliminated in terms

of the other deflections v, w, and 0 and the centrifugal force F. This is possible

only for single-load-path blades since the force equilibrium equation in the axial

direction can be solved a priori,

Equation (2.12) would result in four equations of motion representing 6u, 6v,
3

6w; and 6o, respectively. The 6u equation is
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Integrating by parts and noting that	OF POOR QUALITY

6u=0 at z-0

and

Fe0 at x—_R,

the above equation can be written as

f

R

(F'+Mjj2X+2m(16+Lu)6udx'M0
0

Since this equation is true for arbitrary values of 6u,

0

(2.14)

F1 + mf22x + 2mf16 + Lu — o	 (2.15)

The external loads are of aerodynamic origin and the radial drag force L„ is negli-

gible in hover. So neglecting Lu and integrating Eq. (2.15) results in

F(a) — fzR +2x + 202 ) dx	 (2.18)

The displacement u is eliminated from 6U, 6T, and 6W using Eqs. (2.6) and (2.16).

2 .4 Non dimensionalisatio q

Alter eliminating u, the 6U, 6T, and 6W are nondimensionalised by dividing the

f

expressions by m0fl2R 3 , where mo is _a reference mass per unit length (for example,
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the value of rn at 4,54 This is done to see the i

each term. The nondimensional displacements v/I

be of order t where a is a small nondimensional quantity such that e" « 1. The

other nondimensional quanities and their assumed orders of magnitude are given in

Appendix B. The lowest order (i.e, first order) terms in 6U and 6T are of order E2,

Terms of order e2 and 0 are retained while neglecting all terms of order e4 (i.e., third

order) and higher, excepting some linear third order terms which are important for

the torsion equation. The following simplified nondimensional expressions for 6U,

and 6T, and 6W result. The symbols are retained after nondimensionalisation.

6U _ ft
(F

m f U 	
w ^ 6v ^ + Ow ^)

0

+ G#6^^ + ^'Ov" + ^^ v^^ 6w^ + VV601)

+ [Fkq(8^ + ^̂ ^ ) — ,,Akg9^r O^ + EAeakg@̂ (v^^ cos 0 1 + w" s n Al)

+ EBl 0
^2 

^ — EB20(v ^^ cos 01 + w^^ sin 91)
1
6 ^

+ LECI ^" + EC2(w" cos 91 v" sin 01)J6^"

+ Pt. cos 0 1 + (EIz  cost (B + j) + Ely sing (B ,+, j)jV ^

+ 2( EIz—EIy)w ^^ sin2B1 EAea! v^^ cos`B1 + 2w" sin 211^

(.pAe,,k2 — E82)B ^ ^ cos$1 —EC2^"sinh]60

+ f —Fea sin 61 + EIz sine (B + ¢) + EIy cost (e + j)jw ^^
l^ ^

2 (EIz — Ety)v" sin 291 — EAea^w ^^ sin"'$,+!   1r" sin 281

(EAeakA2 -- E62)8^ 0 sin B l —E C2 * of cos P116w^^

+ [Fea (VII sin $l — w^^ cos B1 f

+ (EIz .- EIy)i 2  w"` — v ^^`) sin20 j +v11w#f cos20j 6^ dx (2.17)
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6 2 ,^ ••^ 
Jot 

m u + co cos S1 + 2flpw + 2^ (uv^ + w"'^) dx^,^R^	{C0 1

+ 2co(O' cos 01 + ivy An 01 ) -- ii + cf^ sin 1116u

[^p(x + 26) + w + io^ cos 01]6w
[k2

M ^ + 2 (k2 2 — 
k2 1 ) sin 201 + cox(w1 cos 01 — vo sin 01)

+ cou sin 01 +cg#px Cos /l --co(u sin 01 -ib Cos 
01)14

— 90 (x cos 01 + 26 cos 01)6v?

— to(x sin 01 +V sin /1)6W,)dx (2.18^

and

6W	1
F	

2 s	
(L„ 6v + Lw6w + M^60) dx	 (2.19)

n'o^ R

The singly underlined terms are nonlinear and the doubly underlined terms are

third order (E4) linear torsion terms.



3. AERODYNAMIC LOADS

The exter al loads L,,, Lw, and M4, of Bq. (2,19) are of aerodynamic origin,

The expressions for these aerodynamic loads in hover, distributed along the length

of the blade, are obtained based on a quasisteady strip-theory approximation. The

flow is assumed to be incompressible and inviscid, The induced inflow is assumed

to be uniform and steady. Virtual inertia effects are included. The variation in free

stream velocity due to flap, lead-lag, and torsion motions are taken into account.

Blade angle-of-attack stall is neglected.

3.1 Circulatory Forces

The forces L, and L,u are in the y and z directions respectively (i.e., in the

undeformed coordinate frame). In the present analysis the strip theory is based on

sections in the deformed frame. As a result, forces obtained in the deformed frame

have to be transformed to the undeformed frame. The magnitude and direction

of the relative wind over the blade section is obtained by vectorially adding the

negative of the blade velocity to the induced inflow.:

V' — —Vb+V	 (3.I)

where Y is the relative wind, Yb the blade velocity, and V; the inflow velicity. Hodges

and Dowell (1970 present the expression for Vb in terms of the unit vectors in the

undeformed frame.

Vb a (ii — fly( Cos #P )1z ♦ wl + (zl Cos #P = zl sin #P)j,Y

+ (l + flyl sin#P ) 1 t	 (3.2)

t,
— 17 —
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The following approximations are made.

(a) 1^ is obtained at a reference point ( tlr,0) o

(6) $in,$p r ,Bp; cos Op s:W 1.

(c) Terrnq of ordfr d and higher are neglecter..

Then Eq. (3.1) is written as

V=Uz z+Ug y +uzIZ	 (14)

where

Uz — --u + 61 flr cos 0 1 + lAr ain 01 + 11(v + hr cos 01) vi#p

Uy — --6 + ^qr ain 0 1 — O(x + u — v'nr cos Bl — Wier sin $ 1 ) + f1 flp ( w + Fir sin 01) (3,5)
A

uz — —tu + Oqr cos 0 1 n#p(v + fir CUs e1) - vi

"We are interested in expressing V in the deformed frame since the airfoil section

v., considered in that frame. So if is written as

V - UR: f — UT Iq Upis	 (3.6)

Then
k

-18--
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X 1	x+u X ^'— V(rl cost j — S sin/1)

Y 1	v + n cos 01 — i! ain Al
«1 = m + 9 sin S l + s COS 01
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—CIR	UX

— UZ, — (Tj Uy

—UP)	l uz i

The axial velocity UR is negligible in hover; the expressions for UT and Ut

UT — flxK 1 — 
2 v
j r f cos 01 v?wI sin 81

+ O [u cos 0I + (vv' — rpp) cos $i + (w' + pp)v sin 01

+u Cos $ I +(iu +v,) sin 01

and

rn.

Up	—rlxl (1 — 2 v^r^ sin $I + vowt Cos Bl^

+ tlPu sin 9i — (vv' — w#p)sin 0 j + (w, + Q11, + a cos 11)]

—u sin $1+(w+ Vi) Cos 0l+q,^

According to the quasisteady approximation of the thin airfoil theory, the

circulatory forces are based on the angle of attack at the three-quarter-chord point

(e.g., see Fung (1969) pp. 1931. Therefore UT and Up are evaluated at the three

quarter chord point; that is, n, is the n coordinate of the three-quarter-chord point.

Figure 5 shows the aerodynamic environment in the deformed frame. Tile

circulatory forces Z„,, Zw,, and ht^, in the n, s, and ^ directions, respectively, can

be written as

_19_
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Zuc — L sin a - D cos a

4C — —Leosa — Dsina	 (3.10)
Moe " Mae -` LW'cd

where L, D, and Mae are, respectively, the lift, drag and pitching moment (about the

aerodynamic center) per unit length, a is the angle of attack at the three-quarter-

chord point, and ed is the aerodynamic center offset from the elastic axis. The

expressions for L, D, and Mae are

L-CLjpV2c

D _ CD 
2 

pV'e	 (3.11)

Mae CMae 
2 

pV 
Y

with

v'-' -• Uf UP
a

and

a

UPtan o 
UT

where CL, CD and CMae are the section 'lift, drag, and pitching moment coefficients,

and c is the section chord. Substituting Eqs. (3.11) in Eqs. (3,10) yields	 41

-20`
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Eve ° 2 
Pe(CLUPV — CD

Tnuc — 2Pe(CLUTV +GDvpv l

M 0 2PC2CM4ev2 — edLwc

3

With the assumptions

t

CL= co +cla

CD — do+dia+d2a'

a9Wein a Yp
VMWUT

(3.13)

Eqs. (3,12) can be written as

Zoo 2 pckdoUll + (co — d1)UTUp + (c, — d2)UP]

Zeuo 
° —2pe[`oUT 

+(el + do)UTUp + diU^
J

1 n	n	n
MOc '^ 2 Pc.cmac(4 + 4) — tdT,wc

(3.14)

T
The assumed order of magnitude is unity for cl and d2 ; E for co, d i , Cm.,, and a;

10P for ed; and e2 for do. The circulatory forces Lo, and L, ,1e in the undefo;

frame are obtained from Zoc and Lwe using the transformation matrix.

Luc	p

L„ c	(TIT	hoc

Lwc	 11we



ORIGINAL PAGE IS
OF POOH QUALITY

Thus, the circulatory aerodynamic force components to order E2 are

Ly c = 
2 ( 

cos 91
 I—

pc	 doil2x2 cost B1 + (co — d l )(-2 n2X2 sin 29 1 + t1xv; cos 201

+ (c1 d2+(1x sin 91 — v; cos 91)2 — 2n2 xnrgp sin 91^^

+ sin 9 2 [C0(fj2 x2  cost 9 1 + nxvi sin 291)

+ (c l + do )I nx cos 9 1 (—nx sin 91 + v; coa 0 1 + nt^r ,Bp) — nxv sine 91 + v sin 2011

+d1(n2x2 sine 91 — nxv; sin 29 1 ) }

— un2 x(do + d2 ) sin 291 sin 01	
1

— vn2 xflp((c1 — d2) sin 20 1 cos 01 + (e1 + do) sin 01 Cos 2011

+ w02x#p(do + d2) Ain 291 sin 91

+ w 1tl2 X11r(—c l + do + 2d2) sin 91 cos 01
i

+6 (Cos  911 -2nxdo cost 91 M(co — d1) sin 291 + (cl — d2)(2nx sing 91 — v; sin 201)
1

+ sin 9 1 12nxco cost 91 — (e1 + doXnx sin 291 — v, cos 291) + 211xd l siu2 
811}

+ ti{ cos 91I—nxdo sin 291 + nx( co — dl) cos 201 + (c1 — d2) (— nx sin 291 + 2v* cost 91A

+ sin 9 1
 1
0=0  sin 29 1 + (c1 + do )(nx Cos 29 1 + v; sin 201)—nxdl sin 29

11 }

+ 0 i1xnr(—c 1 + do + 2d2) sin 9 1 cos 01

111

vv 1n2x(d0 + d2) sin 9 1 sin 291

vwtn2x(—( c1 — d2 ) sin 291 cos 01 + (c1 + do) sin 91 cos 20i1

— ur n2 x2 2(do + d2) sing 9 1 cos 91

— vfwfn2x2 [(c1 - d?,)(sin201 cos 01— sin 3 91)

+ (c 1 + do)(— sin 201 cos 91 + sin 3 91)^- (3.18)

i'

41

A
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Gw c = 2 pe( sin 01
 I— 

dofl2 x2 c052 B1 + (co d l )
(—$ 

n2 x2 sin 20 1 + flxv; cos 201 1
+ (cl — d2)I(flx sin 01 — v; cos 01)2 — 2112 X?lr#p sin 01J^

— cos 01 (co (
112 X2  cost e l + flxv; sin 201)

+ (c 1 + do)I nx cos 01(—Qx sin 01 + v; cos 01 + flgr flp) — flxv, sing Il + 2 v sin 	201
1

+dlPX2 sin` of — nxvi sin 201) }

u 2n2xl( c l  -- d2 )sin3 0 1 + (e l + do)sin 0 1 cos` 01

— vfl 2 X#p((c l — d2) sin 01 sin 20 1 + (cl + do) cos 0 1 coos 2011

— w2f2x#p1(cl d2 )sin3 01+(c1+ do) sin01cos"01^

wffl2 xnr12(c1 — d2)sin2 01 + (cl + do) CO52 
011

+ v sin 01 I —2fZzdo cos3 .01 _ flx(co -= dl) sin 20 1 + (cl — d2) 2flx sin e 01 vi sin 201)
1

— cos 0 1 [2nxco cos' 01 — (Cl + doKflx sin 20 1 — v; cos 201) + 2f]xd l sing 01 1

+ w{ sin 0 1 I —ilxdo sin 20 1 + flx (co — d Z ) cos 201 + (c1 — d2 )(— flx sin 201 + 2v; cos' Ol)^
111̀

1

cos O 1
 l

flxco sin 201 + (cl + do)(flz cos 201 + v; sin 20 1)—flxdl sin 2011}
J i

— ilz ^2(ed..,) sin B + + d ros2 0qr	l — .,	1e(10)1

1
— vvi fl`x12(cl  — d2) sin3 Ol + (cl + do) sin 20l cos 011

— vw^n2 x((cl — d2 )sin 0 l sin 20 1 + (cl + do)co5 01 cos 20 1 1	 j

v^^fl2 x2 l( c1 — d2)s n3 of +(cl + do) sin 0 1 cost 01
1

a
l

+ v^w^fl`x2 [(cl d2) sin 01 sin 20l + ( cl + do) cos 01 cos 2011

r 2 . r


sin3 0 1 + esin 0 cost B	 "'' )— w it x^ 2 I (cl — d2 ) ^(t + do)11, (^-- )

i3

x

1
r
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(
CCMacrMoe — 2 pc(il'x' 	— ed l (e j + do) sin / 1 cos /1 — d i sin ce 11
 l 111

— Oxed( e l + do) 6 sin 211 — w cos 201) (3.18)

The singly underlined terms are nonlinear and the doubly underlined terms are

third order damping terms.

3.2 Noncirculatory Forces

The noncirculatory components are obtained from unsteady thin airfoil theory

(Fung (1969), pp 209-2101. To order e2, they are

Lwne
 — xpa,

1
—w + ilx^ + ( 4t -1- td/"I

`!	l	 (3.19)
Mont — 4 7rpc L \" 4 e + ad iv — ( I e +'d Inx^^

The expressins for the complete aerodynamic forces in the lead-lag, flap, and

torsion directions are given by

L„ — L '

LW — Lwe + Lwne	 (3.20)
M

O 
—

 
Moe+Mono

I

a

In the derivation of the above aerodynamic forces, nonlinear rate product terms

such as u2 , w` , vw are neglected while retaining other nonlinear terms up to order

E". This is necessary for a linearized perturbation analysis about the steady state.

r



Some damping terms of order c o , which may be important for the stability analysis,

are retained. The uniform induced velocity is based on the momentum theory.

The pitet, of the blade is obtained by combining the momentum and blade clement

theories.

F(3.21)

0,75R OCTad
+ 1 5xi

where kh is an empircal factor, CT the thrust coefficient, v the solidity ratio of the

rotor, and 0,75R the blade pitch at three-quarter span.

t
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4, FINITE ELEMENT DISCRETIZATION

4,1 Equations of Motion in Terms of Nodal Degrees of Freedom

The finite element analysis is used to discretize the spatial dependence of the

equations of motion, The blade is divided into a number of beam elements, Every

element consists of two nodes, denoted by mode-1 and node (Fig. 6), with five

degrees of freedom namely v, V, w, wl, and at each node. The reason for choosing

over ¢ as the torsional degree of freedom is as follows. The aerodynamic loads

depend explicitly on ^. If 0 is chosen as the torsional degree of freedom, then

the presence of the integral term jo v"w1 dx [Eq. (2,2)] makes the global matrices

nonbanded because of the coupling of the degrees of freedom of one element with

that of the other Elements. The choice of yi eliminates this integral and thus

preserves the banded structure of the global matrices.

Hamilton's principle, Eq. (2.12), is discretized as

n
OMEaj-0
	

(4.1)
im l

with

A j mbUi — bTi — Mi	(4.2)

where Wi, bTi, and Wi are respectively the strain energy, kinetic energy, and the

virtual work contributions of the ith element and n is the total number of elements.

The distribution of the deflections v, w, ^ over an element is represented in terms

of the nodal displacements using shape functions. For the ith element (Fig. 6),
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where the shape function matrix [771 is

	

Hi H2 Hs H4 0 0 0 0 0
0

1111 — 0 0 0 0 H1 H2 H3 H.1

	

0014.4)

0 0 0 0 0 0 0 0 H^ 'Ho"

and the vector of element degrees of freedom (q;) is defined as

	

(qs} ^.- Lvl vl v2 u2 wl w1 w2 w2 01 02j	(4.5)

The nodal degrees of freedom at node-1 of the element are v i , vi, wt, WO ^, and

those at node-2 are v 2 , v2, w2, WI	The shape functions in Eq. (4.4) are the

	

Hermite polynomials defined as
	

ti

Y

	

Hl(xs)	̂̂ )3 — 3Cx
ti + 1

C
2

	

HAZO
Zs ^ — 2 xti + Xi

Ii

3x;	3 z;1

32(xi l	rx;

r,

H02(xi) a I
9

— 27 —

Ir



I

where l; is the length of the ith element and xi is the local axial coordinate for

the ith element, measured from the left end of the element ('Fig, 6). Similar to

Eq, (4.3), the distribution of the virtual displacements 6v, 6er, and 6^ over the ith

element is assumed to be

6v

6W	1771 094	 (4.7)

6

The substitution of Eq. (4.3) and Eq. (4.7) in Eq. (4.2) results in

Di ^ f(4ii 4i: gip 6qi)	 (4.6)

which is nonlinear in qi. This function can be conveniently written as

A i' M (6gi)T jM%jgi)](gi) + (6gi)T[Ci(gi))(4i)

+ (6gi ) TjKi(gi)j (gi) '  (6gi)T(Qi) (4.9)

i

where [Mi(gi)], (C,{qi)), and [ (qi)), represent the element inertia, damping and

stiffness matrtees, respectively and (Qi) is the element load vector for the ith

{	 element. The global matrices are obtained by the assembly of the element matrices n
3
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The global degree of freedom vector is denoted by (q) and the global virtual	='z

displacement vector by (bq). The global load vector (Q) is formed by combining	y

the element load vectors (Q;). The assembly of element inertia matrices (M;(q;))

results in global inertia matrix (M(q)) as shown below.	 i

RNs-sal

IM
MZ]

[M(q)] M3]

0
CM-1

The matrix [M] is a square matrix of order 5(n + 1) it is also banded with the

semibandwidth N. equal to 10. The global damping and stifness matrices )C(q)) and
i

{K(q)) are obtained in the same manner. The matrix )K] also is banded, whereas
A

the matrix )C] is nonbanded because of the presence of the double integral term

t^	x

JO ) (6w V + V.f) dx dxi

in the expression for 6T; ]Eq. (2.18)]. Matrix )M) is symmetric; the presence of

terms in [C] and [K] due to the nonconservative aerodynamic forces makes them

asymmetric. The process of assembling element matrices to obtain global matrices

can be mathematically indicated by substituting Eq. (4,9) in Eq. (4. 1),

4
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A (6q)TjM(q))(q) + (6q) T (C,(q))(q)

	

+ (6q)T[K(q))(q) " (6q)T (Q) - p	
(4,1Q)

Since the virtual dispalcements 6q are arbitrary, Eq. (4,10) leads to the equations

of motion

	

IM(q))(4) + IC(q))(4) + (K(q))(q) — (Q)	 (431)

These equations are nonlinear in q. The bandedness of (M) and (KJ helps reduce

the storage space needed in computer programs since the zero elements aB the band

need not be stored,

4.2 Boundary Conditions

The formulation of the problem is based on energy prieniples; and hence, the

force boundary conditions, which are imbedded in the formulation, do not have to

be considered separately. The nature of the displacement boundary conditions at

the root determines the configuration of the rotor. For example, v, VI , a,, w, and 0

are zero at the root for a hingeless rotor blade; and for an articulated blade, v, w,

and are zero at the hinge.

i
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b. SOLUTION PROCEDURE

.5.1 Trim Solutim

The steady trim condition of the rotor in hover is determined first since the

flutter stability equations are linearized about the trim state. The nonlinear steady-

state equations are obtained by dropping all time-dependent terms from Eq. (4.11).

(Ko(go)l{ qo} _ (Qo)
	

(5.1)

The matrix (Kol is asymmetric, banded, and a function of the steady displacement

qo. The contribution to the matrices (Kol and (Qo) is from both structural and

aerodynamic forces. The expressions for the terms of the steady-state element

matrices are given in Appendix C. These matrices , are evaluated numerically us-

ing Gauss quadrature formulas. The numerical solution of the nonlinear steady-

state equations is evaluated iteratively using Brown's algorithm [Brown and Dennis

(1972)].. This algorithm is a modified form of the Newton-Raphson method and the

solution is estimated such that the sum of the squares of the errors in the equations

is a minimum. The linear solution of Eqs. (5.1) is used as the initial estimate in

the solution procedure. The nonlinear stiffness matrix (Ko(go)l is updated at every

V 

step of the iteration using the estimate from the previous step. The bandedness of

(Kol is useful in two ways. The storage space needed in the computer program is

less since only the elements within the band are stored. The number of computer

operations is reduced considerably since the matrix operations corresponding to the

zero entries of (Ko', outside the band, are skipped.

For a given level of thrust, the collective pitch required at three-quarter span

(0 ,758) is calculated from Eqs. (3.18). The steady elastic twist modifies the pitch

- 31
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distribution of the blade. The now pitch at three-quarter span is 8,758 + 0,7511 and

corresponding to this pitch vallue, a new thrust level is calculated.

5.2 Flutter Stability

The flutter equations of motion are linearized about the steady-state solution.

The displacement q is written as the sum of a steady component (90) and an unsteady

perturbation (q).

q—qo+4	 (5.2)

Substituting Eq. (5.2) into Eqs.. (4.11), subtracting Eqs. (5.1), and keeping only

linear perturbation terms, the flutter equations are obtained as

[if(go)]{9} + [&(go)] I q-* ) + [k(o)](4) _ (0)	 (5.3)

The inertia, damping, and stiffness matrices are functions of the steady deflection

qa. The expressions for the terms of the perturbation element matrices are given in

Appendix D.

The flutter stability is determined by studying the eivenvalues of Eqs. (5.3).

The normal mode method (which considerably reduces the number of equations) is

used to calculate the flutter eivenvalues; and hence the natural modes are needed,

The coupled rotating vibration characteristics about the equilibrium position are

evaluated by dropping the damping matrix and removing all aerndvnamie terms

from Egs. (5.3). The resulting equations are

r

IMOI {91 + [K.J(g) _ (0)
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The inertia and stiffness matrices [M.] and (K,1 are sym

(frequencies) of Eqs, (5,^) are real.

The flutter equations of motion, Eqs. (5.3), are transformed to the modal space

by writing

(q) °'- (I l(p) (5,5)

where 1(P1 is the matrix of the first N eigenvectors ( colulmnwise) and (p) is the

vector of N generalized coordinates in the modal space. Substituting Eqs, (5.5)

into Eqs. (5.3) and premultiplying by 14^1 T yields the modal-space equations

(M"1(0) ` 1' (C'1(0) + (K`l(p) — (0) (5.8)

The matrices (M'1, (C'l, and [K'] are asymmetric and of order N. These

equations can be written as a first order system of 2N equations.

[A](r) — [BI (r)	(0 )	 (5.7)

where

(Al s
IMO ) (C'1

	

(01V]

3n

(ol (K' l`^t
3

[B]

	

[V)101
!3

and	
,.

1

{



E

9

t l^

^F
i

f(p)

By writing r as

r — feXt

Eqs. (5.7) becomes

[A] (F) _ X(B) (r)

These equations are solved as an algebraic eigenvalue problem. The e _o__._._^

are complex.
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8. APPLICATION TO SINGLE-LOAD-PATH BLADES

To show the fesibility of the finite element formulation, the method is first

applied to single-load-path blades; a hingeless blade and an articulated blade with

a hinge offset of B%are considered. Convergence studies with respect to increasing

number of finite efiements and natural modes are presented. For the hingeless blade,

comparisons are made with previous theoretical results obtained by modal methods

and with some experimental results.

The numerical results obtained are for blades with uniform spanwise poperties.

The chordwise offsets of the center of mass, aerodynamic center, and tension center

from the elastic axis are considered to be zero. The section constatnts EB I , EB2,

and the warping constants F.,CI, EC2r are taken to be zero. A precone (#p) of 0.05

rad' (2.0 deg), Lock number (-I) of 5, and solidity ratio (o) of 0.1 are used.

6.1 Hingeless Rotor Blades

The uniform blade properties selected for the stability analysis of a hingeless

rotor blade are given in Table 1. The stiffnesses EIy, EIz, GJ, and the inertial

parameters k,,, l , k,,,2 , kA are chosen such that the rotating frequencies corresponding

to given values. The rotating Hap frequency of the blade is taken to be 1.15f2. Two

different lead-lag frequencies are considered; a frequency of 0.70 represents a soft-

inplane blade whereas 1.50 represents a stiff: inplane blade. Similarly a torsional

rotating frequency of 2.5n represents a torsionally -soft blade and 5f) a torsionally-

stiff blade.

The convergence of the steady state deflections using different numbers of finite

elements is presented first. Table 2 shows the steady tip deflections vaitp wo , p

(nondimensionalized with respect to the rotor length) and ^0,,p (in rad) as the total

number of finite elements is varied from 2 to 8. The results are for a thrust level,
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CT/v, of 0,1, The results show, for the case coi

sufficient for good convergence (three to four digit a,......,,.

the stiffness matrix reduces both the storage space and computation time required.

For example, if eight elements are used, the full storage mode would require 2025

storage locations whereas the band storage mode needs only 855 locations for the

stiffness matrix. Furthermore, the number of arithmetic operations involving the

stiffness matrix is reduced by about 60%. The use of the linear solution as the

starting vector makes the nonlinear iterative solution converge rapidly; only three

or four iterations are needed for a converged solution. As a result, the computation

time required for the trim solution is small.

Figure 7 shows the steady tip deflections of a stiff -inplane hingeless blade as the
j

thrust CTJv, (and hence the pitch 8) is varied. The torsion frequency corresponds

to a torsionally-stiff blade for these results. The magnitue of the flap and lead-lag

tip deflections increase with thrust. The magnitude of the torsional tip deflection

increases first and at higher thrust levels decreases. The torsional deflection is

primarily due to nonlinear flap-torsion and lag-torsion couplings. The steady-state

aerodynamic torsional moment is zero since CM,, and ed are assumed to be zero

[see Eq. (3.18)]. At low values of CT/o, both the flap and lead-lag deflections are

negative. At high values, the flap deflection is positive while the lead-lag deflection

is Negative. The results of Hodges and Ormiston (1976) are also shown in this figure.

Hodges and Ormiston use a modal method with five nonrotating beam modes for

each one of the deflections vo, wo, and Oo . The agreement between the two results
K

is excellent except at high trust levels where a slight deviation appears. This may

be due to the assumption by Hodges and Ormiston that sin B P^e B and cos B mze 1 (not

assumed here) for the claculation of aerodynamic loads, which may not be very

accurate at high values of B. The steady tip deflections with respect to thrust for
F

a soft-inplane blade are shown in Fig. 8. The flap, lead-lag, and torsion curves	' x
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are similar to that of the previous case. The flap deflections are almost identical

to that of the stiff,-inplane blade. The lead-lad deflections are higher in magnitude;,

as expected, since the lead-lag stif fness is lower. The torsional deflections also are

higher in magnitude than for the still inplane blade, which can be explained as due

to the coupling between lead-lag and torsion modes. Corresponding results from

ro	
Hodges and Ormiston (1076) are included in Fig. S. Comparisons show that, as

before, the agreement between the two results is very good at low thrust levels and
ro

the deviation increases with the thrust,

The rotating coupled natural frequencies of the stiff inplane blade about its

steady deflected position are investigated for convergence as the number of finite

elements is varied. Table 3 presents the fundamental lead-lag, flap, and torsion

frequencies with increasing number of elements, It is seen that six elements are

sufficient for four digit accuracy. The bandedness of the inertia and stiffness

matrices is used effectively to mimimize computation time.

The solution of the flutter equations results in complex eigenvalues. The normal'

mode method is examined for convergence as the number of modes is varied, keeping

the number of elements fixed at six. The real parts of the first three eigenvalues for

different numbers of modes is given in Table 4. This table shows that five modes

result in a well-converged solution (five-digit accuracy). Figure 0 shows the root

locus plot of the fundamental lead-lag, flap, aad torsion modes as CT/O' is varied

from 0 to 0.3. Even though blade angle-of-attack stall has been neglected, such

high thrust levels are included for comparision with other theoretical results. Six

finite elements and five normal modes are used in obtaining these results. The flap
3

and torsion modes are stable over the entire range of CT /o considered, whereas the

lead-lag mode is unstable for CT /o between 0.01 and 0.05 and above 0.17. The

complete solution using sic elements and five normal modes at a particular thrust

level requires about 7 s of computation time on a CDC 7600 machine. Figure
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10 shows the flutter stability boundaries as the lead-lag frequency is varied. The

results of Hodges and ormiston (1076) are also shown for comparison in this figure.

In this reference, the stability results are calculated using the normal mode method

with five coupled rotating modes. There is general agreement between the two

results, The differences that appear between the two results may be due to changes

in aerodynamic forces by including all second-order terms (order 0) in the present

analysis.

Figure 11 shows the root locus of the lead-lag mode of a stiff-inplane hingeless

blade when the blade pitch is varied from -10 deg to 12 deg, The blade precone

is zero for this case. Experimental results from Sharpe (1985) are also shown in

this figure. In the theoretical analysis structural damping is included such that the

results match that of the experiment at zero pitch. It is seen that the agreement

between the present analysis and experiment is good at low pitch settings and not so

good at higher pitch settings. Other theoretical analyses show similar discrepencies.

The same blade properties as given in Table 1 are used for the stability analysis

of an articulated blade with a hinge offset of 6%. The convergence characteristics

for the nonlinear steady solution, natural frequencies, and flutter eigenvalues are

presented in Tables 5-7, respectively. These results confirm the conclusions reached
	3

for the hingeless blade that about eight elements and five normal modes are adequate

for four-digit accuracy. As before, only a few iterations result in a converged

nonlinear trim solution. The equilibrium tip deflections are plotted with respect

to thrust in Fig. 12. The lead-lag tip deflections are much higher than that for

the corresponding Wngeless rotor blade because the lead-lag stiffness is lower when

the blade is hinged. The root locus of the flutter eigenvalues obtained using six
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elements and five normal modes is shown in Fig, 13, All three modes are

over the range of CT le, shown,



7. MODIFICATIONS FOR ANALYSIS OF MULTIPLE-LOAD-PATH BLADES

Having shown that the finite element formulation can be successfully applied for

the determination of the aeroelastic stability of single-load-path blades, the analysis

is extened to include the more complex multiple-toad-path blades. As indicated in

the Introduction, the flexure of a bearingless blade contains one or two flexbeams

and a torque tube. The analytical model of a bearingless blade is shown in Fig. 14.

Each of the flexbeams and the torque tube are modelled as individual beams, For	4

this purpose several modification have to be made to the formulation presented in

the previous chapters.

7.1 Inclusion of Axial, Degree of Freedom

In the analysis for single-load-path blades, the axial deflection u has been

eliminated in terms of the other deflections and the expression for the centrifugal

force. The force equilibrium equation in the axial direction cannot be solved a priori

for multiple load-path blades; and hence the u deflection has to be included as a

degree of freedom.

7.2 Refined Finite Element

The beam element considered for discretizing multiple-load-path blades is shown

in Fig, 15. This element is more refined than the simple beam element used for

single-load-path blades. The element includes the axial degrees of freedom. Each

element consists of two end nodes and three internal nodes with a total of fifteen

degree of freedom. Each of the end nodes (1 and 2) have six degrees of freedom,

namely u, v, v1 1 w, ud, and î . There are two internal nodes for u and one inter-

nal node for ^. Two internal nodes are needed for the axial degree of freedom

to accurately represent the centrifugal force distribution over the element. With

-{0-
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two internal nodes, the distribution of u over the element is cubic. Hence, the axial

force distributiion is quadratic and of the same order as that of the centrifugal fore.

The internal node for the torsional deflection assures that the torque approxima-

tion over the element is of the same order as the flap and lead-lag bending moment

approximations.

7.3 Displacement Compatibility Conditions at the Clevis

The element matrices are assembled, by considering displacement compatibility

conditions at interelement boundaries, to form global matrices. Except at the clevis,

the displacement compatibility conditions generally imply the continuity of u, V, V,

W ? WI, and across element boundaries. The root element of the outboard blade is

connected to the outermost elements of the flexbeams and the torque tube through

the clevis which is assumed to be rigid (Fig. 14). The inboard beams are numbered

1,2,3, etc. The displacement compatibility conditions at the clevis can be written

as

Ui — u niVI

Vi V

Vi '. W + Qi (Sae + )

V'	V,
	

(?.1)

W   WO

and

Ol eae + 0 (for flezbeame)

Oi : 0	(fortorquetube)	 (7.2)
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f	
where ui, u„ wi, and O; are the deflections at the clevis for the ith inboard 'beam; and

u, t,, , w, and 0 are the deflections at the clevis for the outboard beam, The n; is the

elastic axis oflset of the ith inboard beam from that of the outboard beam (positive

r	 forward) and 0., the difference between the collective pitch and the pretwist at the

clevis (Fig. 16). Equation (7.2) for the flexbeam indicates that a rigid body pitch

'r	 .rotation of the outboard blade is transferred to the flexbeam as an elastic twist.

7.4 Modifications in Solution Procedure

In addition to the differences noted above, there are two major differences in

tk - -wl ;ion procedure for nonlinear trim solution. Some of the terms of the matrix

[Kol depend on the centrifugal force F. The centrifugal force distribution is known

a priori only over the ouboard blade; it is unknown over the flexure because of

the multiple load paths involved. In obtaining the linear estimate of the steady

equations, it is assumed that the centrifugal force in each of the inboard beam is

in the ratio of its tensile stiffness EA. Then, at successive iterations the centrifugal

force distrubution is updated using Eq. (2.6).

The lead-lag and flap stiQnesses depend on the orientation (pitch) of the cross

section. The pitch distribution is known a priori for the outboard blade. For the

flexbeams, the resultant pitch is the sum of the pretwist Bpe and the elastic twist due

to Bay at the clevis (Fig. 16). For the first iteration of the nonlinear trim solution,

the pitch distribution along the flexbeams is assumed to be linear. This distribution

is updated at successive iterations based on the torsional deflection. a

A
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8. APPLICATION TO MULTIPLE-LOAD-PATH BLADES

The formulation modified for multiple-load-path blades is applied to several

analytical models of bearingless rotor blades in hover. The outboard blade, the

flexbeams, and the torque tube are considered to be uniform. The chordwise offsets

of the tension center, mass center, and aerodynamic center from the elastic axis are

assumed to be zero. The section constants EB I , EB2, and the warping constants

ECI, BC2 are taken to be zero. The aerodynamic forces over the flexure is neglected.

A precone (pp) of 0.05 rad (2,9 deg), Lock number (-i) of 5, and solidity ratio (v) of

0,1 are used. The offset of the elastic axis of the flexbeams (Fig. 14) from that of the

outboard blade (raj a —113) is taken to be 0.4c, where c is the chord of the outboarad

blade; the torque tube offset (pz) is zero. The length of the flexure is 0.25R. The

blade structural poperties are given in Table 8; the ac, ^ odynamic properties are the

same as given in Table 1. Stiff and soft-inplane and torsionally-stiff and soft blades

are considered.

8.1 Twinbeam Model with Zero Inboard Pitch

To understand the behavior of multiple-load -path blades, a simple analytical

model is considered first. This mode l has an inboard flexure cosisting of two identical

flexbeams; the torque tube is not included (Fig. 17). The pitch of the flexure is

fixed at zero while the pitch of the outboard blade is varied. This is equivalent to

a physical model with a pitch bearing at the clevis. First, a convergence study is

made to determine the number of finite elements needed to obtain the nonlinear

trim solution to a desired accuracy. Table 9 shows the steady -state tip deflections

uo t sr , Vo ttip , wo, lp ( nondimensionalized with respect to the rotor length), and ^0, p (in

rad) as the number of both the flexbeam and the outboard elements is varied. The

blade considered is stiff inplane and soft in torsion. A thrust level, CT/o, of o.1 is

used. The results show that two elements each for the flexbeams and two elements

J



for the outboard blade are sufficient for five digit accuracy, The nonlinear iterative

solution converges rapidly since the linear solution its used as the initial estimate;

only four or five iterations are needed for a converged solution.

The rotating coupled natural frequencies of the blade about its steady deflectd

position are invelitigated for convergence as the number of finite elements is varied,

Table 10 presents the fundamental lead-lag, flap, and torsion frequencies with	k

increasing number of elements. Again, it is seen that a total of six elements, two
g

for the outboard blade and two each for the flexbeams, are sufficient for Ave digit

accuracy.

The solution of the flutter equations results in complex eigenvalues, The normal

mode method is examined for convergence as the number of modes is varied, keeping

the total number of elements fixed at six. The real parts of the first three eigenvalues r

for different numbers of modes is presented in Table 11. This table shows that five ^^	a

modes result in a converged solution ( five digit accuracy).

Figure 18 shows the root locus plot of the fundamental lead-lag mode as CT /v

is varied from 0 to 0.2. It is seen that the lead-lag mode is unstable for CT/O' higher 3	{

than about 0.05. In this figure, the results from an equivalent -beam model are also
r;

shown.	In general, the properties of the equivalent -beam model are obtained by

matching the fundamental frequencies of the equivalent - beam model with that of

the multibeam blade. For flexbeams with uniform spanwise poperties, analytical

expressions for equivalent properties can be obtained. These are given in Appendix

D. The two results shown in Fig. 18 differ from each other, particularly at low

and high levels of thrust. The results at low thrust levels are of significance to tail
w

rotors. A careful study has been made to determine the cause of the differences

between the two results. The equivalent-beam model does not accurately simulate

the cross-coupling stiffness terms which are nonlinear in nature and depend on the
N

steady deflections. Results have been computed by suppressing, in the perturbation

t
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analysis, nonlinear cross-coupling terms of nonlinear origin from the structural

stiffness matrix of the flexure, for the twin- beam as well as the equivalent beam

model, These are shown in Fig, 19.: Both sets of results are identical.

For the same model but considering a soft-inplane, torsionally-stiff blade, the

root locus of the lead-lag mode is plotted in Fig. 20, The behaviur of this blade

is very different from that of the still inplane blade. The coressponding equivalent-

beam model results are also included in this figure. The discrepency between the

results of the two models are more pronounced, particularly at high thrust levels,

than that of the sti&inplane blade. Again the removal, in the perturbation analysis,

of the cross-coupling terms of nonlinear origin from the structural stiffness matrix

of the flexure makes the results identical (Fig. 21). Similar conclusions are reached

from the root locus plots of the lead-lag mode of a torsionally-stiff blade (Figs. 22

and 23).

8.2 Twinbeam Model with Same Pitch For Inboard and Outboard Segments

This blade model also has a flexure consisting of two identical flexbeams; and

there is no torque tube. Both the inboard and the ouboard segments are maintained

at the same uniform pitch distribution. This represents a physical model with pitch

bearings at the hub end of the flexbeams. The root loci of the lead-lag mode with

respect to increasing level of thrust are shown in Fig. 24 for both the twinbeam and

the equivalent-beam models. The results are for a stifl=inplane and torsionally-soft

blade. The two results are in major disagreement with each other. This disparity

a

i

a

r:^

is explained as follows. The fundamental frequencies of the equivalent-beam model

are matched with that of the twinbeam model at a chosen pitch setting (zero in the

present example). As the pitch is changed, the effective flap and lead-lag stiffnesses	
i

^i

 vary because of flap-lag coupling. This modifies the frequencies of the blade; and
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the frequency match no longer exists. This phenomenon is clearlyl seen from Table

12 where the fundamental frequencies are presented for various thjrust levels. As

the thrust (and hence the pitch) increases, the difference between the frequencies

of the two model widens. Thus, the equivalent-beam simulation is not accurate

with changing pitch. The results of Fig. 25 are for a soft-inplane blade. Again the

discrepency between the twin-beam and the equivalent-beam models is big. Similar

effects see observed from the results of a torsionally-stiff blade (Fig. 26).	.

8.3 Bearingless Model with Torque Tube

This blade has a root flexure consisting of two identical flexbeams and a

torque tube in the middle. This model is a more appropriate representation of

the bearingless blade, Pitch control of the blade is achieved via the torque tube

by rotating the clevis. Due to the piltch application at the clevis, there is an

elastic pitch distribution over the flexbeam and this is determined iteratively. As

a result, the number of iterations required Ivr convergence of the nonlinear trim

solution is increased. Now it takes about ten iterations for five digit accuracy,

whereas, four or five itereations have been adequate for the two previous models.

The convergence characteristics are similar to the one presented for the previous

models in tables 9-11. The results have indicated that a total of eight elements -

two elements for the outboard blade, two for the torque tube, and two each for

the flexbeams - are adequate for five digit accuracy. The root loci of the flutter

eigenvalues (fundamental lead-lag, flap, and torsion modes) are shown in Fig. 27

as CT/o is varied from to 0.15. The flap and torsion modes are stable while the

lead-lag mode becomes unstable at high levels of thrust (CT /of greater than about

0.13). This is a weak instability and the introduction of a small amount of structural

damping would stabilize the mode.
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9. GENERAL CONCLUSIONS

The finite element method has been successfully applied to determine the

nonlinear trim deflections and the, flutter stability of sing.) ,^- and multiple-load-path

blades in flap bending, lead-lag bending and torsion. The formulation is based on

Hamilton's principle, The spatial dependence of the equations of motion is made

discrete by dividing the blade into a number of beam elements. Nonlinear trim

deflections are evaluated iteratively, solving the complete set of of global equations,

without making a modal transformation. The solution procedure is made efficient

using the bandedness of the stiffness matrix and the linear solution as the starting

vector. The coupled rotating natural modes are calculated about the trim condition

of the blade. The normal mode method based or., these modes is used to solve the

linearized flutter equations as an eigenvalue problem.

The formulation is first applied to uniform single-load-path blades, namely

hingeless and articulated. Six finite elements are sufficient to determine the trim

deflections, and the free vibration characteristics. Five coupled rotating modes

are adequate for the normal mode solution of the flutter equations. The steady

tip deflections agree very well with that of a previous research which used modal

method based on a total of fifteen nonrotating uncoupled modes; the flutter stability

boundaries also show excellent agreement with that previous research based on a

modal approach. The root-locus plots of flutter eigenvalues as a function of the

pitch are generally in good agreement with experimental results.

Suitable modifications have been made in the formulation so as to consider

multiple-load-path blades. Numerical results are presented for several baringless

models. Results of the redundantbeam analysis are compared with that of the

equivalent-beam modelling; and the following important conclusions are reached.

The equivalent beam does not simulate the nonlinear structural coupling terms ap-
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prapriately. Also, the properties of the equivalent beam are estimated by matching

frequencies with the bearingless blade at a particular pitch setting. At other pitch

settings, the frequencies change and the match no longer holds. As a result, the

stability results obtained using the equivalent-beam model are inaccurate.

Future extensions may include forward Right, ground and air resonance, and

consideration of composite blades.
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APPENDIX A. NONDIMENSIONAL QUANTITIES

The nondimensional quantities in 6U, 6T, and 6W (Eqs. (2.17),

(2.18), and (2.10)) are defined here. These symbols are retained

after nondimensionalisation.

Old quantity New quantity

Assumed order

of magnitude

x/R x 1

0/n ^) 1
v/R v E

w/F? w E

^ ^ E
e e i
F/mo112R2 F 1

EIV /mof22R4 EIS, 1
Elx/mo f]2R4 El, 1

GJ/mofl?R' GJ i
EA/monoR2 EA 1 /E2

EBl /mof22R° EBr to
EB2 /mof32Ra EB2 E

EC, /mof22R6 ECl E2

EC2 /mof22R6 EC2 E
kA IR kA e
km, /R km, E

kma/R k's 6

e, /R e. E3/2

e0 /R e0 E3/2

#pI #p E

p
+

{

r
t
x;
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APPENDIX B. STEADY-STATE ELEMENT MATRICES

The expressions for steady-state element stiffness matrix and load vector are
derived from the steady part of Eq. (4.2).	 M

r
1

I

Y.

AOi 6Uoi — 6Tps —'Wpi	(B.1)

The strain energy, kinetic evergy, and the virtual work contributions of the ith
element in steady state are obtained from E,j3. (2.17), (2.18), and (2.19) by dropping
all time dependent terms and writing

$in (B + ¢) sin e + ^ cos 8

cos (B + 0) CO3 0 — ^ sine
(B.2)
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o--- p 1 ^Fo(,,0 -1- wpdw)

OF POOR QUALITY

+ Gj(i ,+ ^pw I bVI, + 0pupdw, + upwp6

[Fokj(01  + p — EAkgBA of + EAeakg9'(vp cos 0 + wg sin 0)

+ EB 1 0' Oo — EB2 0'(up cos 0 + woo ) sin 0)J d

(ECI^lof + EC2(w0 cos 9 — vp sin B)Jd0

+ [—Foe. cos 0 + (EIS cost 0 + EIy sine 0)up

+ (Eh — EIy)^ O (wp cos 20 — vp sin 20)

+ 2 (EIz — EIy)w p sin 20 — EAea(vp cost A -}^ 2 wp sin 28)

-r (EAe,, kA — EB 2)0'00 cos 0 — EC24 sin 016V

	 a

• Poea sin 0 + (EI, sine 0 + EIy cost 0)A

• (EIz — EIy)0p(vp cos 20 -#- woo - iin 20)

• 2 (Er, — EIy)vo sin 20 — EAta1 w" ep sin 0 + 2 vo sin 20^

• (EAc,,k,2, — EP)01^1 sin 0 — EC2^p cos 0 dw"

• lFbea (vp sin 0 — wp cos 0)

• (EI, — EIy){ 21 wp2 — vp 1 ain 26 + vpwp ccys 21 } d^ dz;	(B.3)
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ô̂r
1

moil.
Jp ` to [vo + cg cos B — ^o ain o 6v

_ #px6w

[ 2 ( m2 kim)(2 sin 2000 cos 2I^ + cpx(W0 cos B — vp sin /)

+ epvo sin B + eD #px cos 91b^

— esx(cos _0 — ¢o sin 0)6v#

egx(x sin I + ^o cos 6)6w') dxs

and

^z

x

(B.4)

1

64Yo
i
	k

-- 0 = f (Lvo6v + L,6w + M0060) dx	 (B.5)
mo0

where the steady-state aerodynamic forces are
ra
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Leo _ Ccos $ — dox 2 cost 0 + (co — dl)(— 2 x2 sin 2e + AicoA
0)

+ (cI — d2)1 (x sin a} 
03 0)2 -- 2xqr flp sin e1

+ sin o
f 

co 
(

X2 cos` a +-xXisin20)

+ (c l + do)I x cos 6(—x sine + xi cos e + grAp) xXi sing e + 22 a; sin 201

+dl(x2 sing 9 — Ai sin 29))

— uox(do + d2) sin 29 sin 9  111

voxOp((cI —d2 ) sin 29 cos0+ (cl + do) sin 0 cos 201
+ woxflp(do + d2) sin 29 sin e

+ wp2xqr( —cl + do + 2d2 ) sin a cos e

+ 0o cos 9[—(co — dl)x2 cos 29 + (cl — d2)(x2 sin 29 — 2A  cos 20)]

— sin e1(co — dl )x2 sin 2e + (el + do)(x2 cos 2e + 2xX i sin 29)]

sin 0
1 — 

dox2 cost 9 + (co — d l
)(

- 1 x2 sin 29 + xXicoe2ii^

+ (cl — d2 )1(x sin _0 — Xi cos 0)2 — 2xqr#p Sin 01
+ cos e j co(x2 cost a + Aioin2e)

+ (cl + do)i x cos 9(—x sin e + X i cos 9 + gf^Bp) — Aj sin` e + Z X sin 	29
1

+di(x2 sine 9 — A i sin 2B)1

— vovox(do + d2) sine sin 2

1111110

— yowox(—(cI — d2) sin 20 cos 0 + (c l + do) sin 0 cos 201

— vp x2 2 (do +d2) sin2$cos9

- vowf 2 (cl — d2)(sin 20 cos e — sin3 e)

+ (cI + do)(— sin 2e cos e + sin3 9)]

a
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Lwo = 9 eiu o` —dox2 cost o + (co — di)` — 2x2 sin2 0 + xX icoe20
!

+ (c 1 — d2)1(z sin 0 — Xi cos 0)2 — 2x17r#p sin 01 }
— cos 0 1 eo(x2 coat 0 + xX isin20)

+ (c1 + do)I x cos 0( — x sin 0 + Xi COS 0 + pr#o) xXi sing 0 + 2 X sin 20

+d i(a2 sine 0 — xXi sin 20))

— uo 2xf d2)sin3 0 +(cl + do)siuOcos2 01

vox^p((c1 — d2)'sin0 sin 20 + (c 1 + do)cos Bcos 20J

- wo 2x#pl ( c 1 — d2) sin3 0 + (
Cl + do) sin 0 cost 0^

— w0'2xgr12(c 1 — d2)sin2 0 + (c1 + do)cos2 0
J

+ 0 sin 0 —(co — d 1 )x2 cos 20 + (c1 + do) X2 sin 20 — 2zXi cos 2B)
l

+ cos 0( (co d1 )x2 sin 20(c1 + do)(x2 cos 20 + 2xX,, sin 20)
J

+ cos 0
I— 

dox2 cost 0 + (co di ) ^— 2x2 sin 20 + aX icoW )

+ (c1 — d2)1( x  sin 0 — X, cos 0)2 — 2xtlrgp sin 011

+ sin 0{ co(x 2 cost 0 + xXein20)

+ (c1 + do) i x cos B(—x sin 0 + Xi cos 0 + rir^?p)— X,\, ain2 0 + 2 Xg sin 21
1

+d i(x2 sing 0 xXi sin 20)^l

vovpxl 2(c 1 — d2) sin B + (Cl + do) sin 20 Cos 0l

— yowpxl(cI — d2) sin 0 sin 20 + (c1 + do) cos 0 cols 201

— vp x2 [( c1 — d2 ) sin3 0 + ( c 1 + do) sin 0 cost Bl

+ yowox2 ((c 1 — d2) sin 0 sin 20 +  (c1 + do) cos 0 cos 201

— wp x2 2 ^(c1 — d2) sin3 0 + (c 1 + do) sin 0 cost 00 (B,7)
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Nfoo . ax` j cCMac — cd[(c t + do)ainl cos!

The ©o,. of Eq. (B.1) can also be written as

ooi no (6q ) (Kilo ( gs)o + (6%)

-55—

By comparing Eqs. (B.1) and (B.0) the element stiffness matrix and the load vector

can be written. The contribution from Mo
i 

and 67oi to the element stifTenss matrix

and the load vector is given as follows (the contribution from Mo i can be easily

inferred from Lvo, Lwo, and Moo).

[Kvvl JKvwl IC„

[Kilo	[Kwvl [Kwwl h'wm	 (B.10)

l[Kov] [Kow] Koo

and

(Qv)

M10	NO

where

flKvv L
l 
	

Fo (HI) 
(HI) 

T + (EI. cost B + Ely sin` 8 — EAea cos 6' {H"} {H"}T

— m(H)(H) T
I
 dxi

lKvu,l f
EI,

2 I
	— Ety EAta) sin 28{H"} {H"} T dzi
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(Kvol fo IjI
(
E A cakA2 EB2)01 cos*(Ho) H^ 

T

+ Foca sin 0(HM) (Ho)T
T

EC'2 ain 4(X11 ) 
(Hll I

+ Meg sin $(H) {Ho }T

me9 z sin 6{H} {Ho} T

(El; — aly)sin 29{H//}{H" }T  {uu}(Ho)T

+ (Elt — Ely) cos 20{H/} {H" } T  (wo) (Ho)T

+ GJ(H"}{ Hl } T {tio}I
H^)Tj

 dz,

(xwvl (Kvwl

1
(Kwwl — 

l; 
[Fo(HI)  { H } T + (EI, sing 6 + Ely cost I — EAca sing I){Hll }  {H"}T 

J 
dz;

ol

a
r

i

ii

4

(H^)'[Kwo] = I
1^ 

(EAedkq — EB2 )B'sin A{H"}

— Foe, cos 0(19") {HO }T
T

+ E02 cos O(Ho) HlN
1

+ Metz cos 9{Hl} {HO }T

+ (EIZ — EIy) cos 2B(H"){H"}T (up) {Ho}T

+ (EIz — EIy)sin20(H"){H" } T (wo){H } T

rrT

+ GJ{Hl } {H"}T (v0}{ Hl} d.—
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^; f

[Kov) "	[^EAoak^ —EB2)0' cos P(H) (H") T

+ Food sin O (Ho) (H" )T	4

—EC2einOiH^^(H")T

+ mcs sin 0(H0)!{H}T

mcozsin0 (HO)(H' )T
— 2(EIx —EIy)sin20(H0)(uo )

T (H")(H")T

+ (Elz — Ely) cos 20(H0 )(wp)
T

(H")(H"
)
TI dz;

j	1

(K^W ^ .. [(EAe,k 2 — FB2)0'sin 0{ H?, } ..(Hot

Fpca cos I (H0) (H") T	̀  J

+ E02 cos 0(H;)(H")T

+ meez cos 0(HO ) (H'}T

-- 2( Eh — EIy} sin 20(HO)(wo) T (H")(H")T

+ CJ(H 
j(V0*)T(Hjj) 

(H' 
)T I dz;

rr

[Koo] " f '
s
 [(GJ + Fgkp — EAkA4 ? + EB I Ce2#)

rr
 H )

T

rr
+ECI{H'J(H )

T	
``

+ m(k2M2 km,) cos 20(H^} {H^} T  I 
dz;

r;

NO — Jo (Focu cos 0(H") + mep cos 0(H) — megz cos O(H)} dz;

fo
(Qw } ^if qca sln 0(H") + m^BPx{H} — mryz sin 0(H')} dxi

 

Y

1

fo (-Fok 9'{ H• ^ 2 ko. — km ) sin 20{H0} mcQ flpx cos 0 H 
1 

dx;
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The column vectors {H}, (HO), and

iH}T ^ LZII "z n7 JAU

{HO}
T 

LHOI H02 1

{tJ'p}
T
 .ri lUpl U0


IV02 Vp2 j

A similar definition holds good for (WOV ,	 }
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APPENDIX C. PERTURBATION ELEMENT MATRICES

The strain and kinetic energy contributions to the perturbation inertia, damp-

ing, and stiffness element matrices are given here, The contribution of the aerodynamic

forces is easily inferred from Egs.(3.16)-(3.18). Since these matrices are linearized

. about the steady deflection, the inertia and stiffness matrices are symmetric whereas

the damping matrix is antisymmetric; but the noncanservative aerodynamic terms

will make the damping and stiffness matrices asymmetric.

Inertia Matrix

The element inertia matrix for the ith element is written as

[IVIVVI Awl [Advol

IMi1[Mwv1 IMww[ [Mwm1
	

(C.1)

[MOV1 [Mow] [M401

where

[MVVI s	m(H)(H) T dzi
—	 a

[MVW1-[01

[MU01 _ f Meg sin 00(H){H) T dzi

!i
[Mww] -^	m(H)(H) T dzi
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t;

[MWm1	met cos do {H} {H

fo

t
(?IS^^^ 	

m 
km{H}{H}T

Damping il^tatI

The element damping matrix for the ith element is written as

[CVVI [CVWI [CVOI

[C,I —[CWVI [CWWI [CWO1 (C.2)

[COVI [COW] [COO]

whw.2

[CVVI' = Jots 2mey cos Io [(Hl )  {H} — {H} {HI}T dz;
 J

[CVW1= 1-2m#p(H)(H)T— 2megsineo - (H){HI}TI dx



Stiff m Mntrix

ORIGINAL P,
OF POOR QI

[Cl

[C

I•-viiI- - „w,&--vyj

[Ki l	(ICwvl [Kwwl [Kwol

[K¢v] [Kowl [Kmml

(C.3)

^i

where

[Kvv j — f
o 

Fp{Hl}{HI } T + (Eh coat Bp + EIy Sint 60 ,— E.la cod Ap

[

m{H}{ H }T 
1 
da;

rr	 T
[Kvwl =

f

'i 
1 2 (EIZ —EIy —EAca)sin28p{H^^}{Hn}	 a

+ GJ{HN } Hj 

T 

^ 0 {H` } T dzi

kj

1
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[K„ol — Jo [(EA,,,k2 — EB2)B0 cos Ap{

+ Fpea sin 9p{H"} {HO} T
T

— E02 sin Bp {H"} F^^
1

+ meg sin 00 (H) {HO }T

— Megx sin 00(H,){ HO}T

— (Elz —Ely) sin 20o (H") {H" }T  {vo} {H0}T

+(Eh — Ely) Cos 2Bp{H"}{H^^ }T  {wo}{H0}T

r

+ GJ{HO}{H'}T {wo}(H, I

T

 dx;

r

r,

is

	JH'{Kw^^ = J (EAeak' —EB2)8°p sin 0o(1r)'I
T

— Foe, cos Bp {H"} {HO}T

T
+ EC2 cos Bp {H"} JH'^I

+ MegxCos 8p {H}{HO}T

+ (El.,— Ely) Cos 28o (H" {HN}T {u o} {HO }T

+ (El, — Ely) sin 2Bp{H M }{H" } T  {w0*}{ H0}T

r 
IT

+ G3'{H}{H"}T {uo
}(Hl10 dz{

IT

[Koo] _J ^

i 
(GJ+FpkA2 — EAkA4 $ +EBIfoXH

T
0}{HO

• ECl 
H" H^1

• Mk;,, — k,2„1 ) cos 28p{ HO) {HO} T  1 dxs

The column vectors {H}, {HO}, and { up} are defined as
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{H}
T

 — LHI H2 Hs Hd

{HO }T _ LH+1 H#21

F	f

li	k

{vo}T •- lvo, vo i X02 vo2i

•	 ' and 
to0)' 

Also so is defined asA similar definition holds good for {wo}
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APPENDIX D. EQUIVALENT-BEAM PROPERTIES

4
G

t
Mathematical expressions of equivalent properties for modelling twin beams

(Fig. 17) as an equivalent beam are presented here.

l	 (EA)e — (EA) 1 + (EA)2

(Ely)t — (EIV)1 + (EIV)2

(EIz)e (El=), + (EIz)2 + ni(EA + 172(EA )2	 t

(GJ)e (GJ) 1 + (GJ)2 + 12 (+l1 — n2)" (EIy)1(EIy)2
L j (EI0 1 + (EI1)2

(AkAI

l 	 1l
a (Ak')1 + (` k2A 2 

+ riiA l + 2A2

(mkM i (mk2M + (mk2m)2 + qI + 92m2
Me — MI + m2

F

1

i

The subscripts ej, and 2 refer, respectively, to the equivalent beam, nexbeam one,
b

and flexbeam two; and L f is the length of the flexure. These expressions become
F

simpler for the present case where the two beams are identical.
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Parameter Numerical Value

EIe/mn2 R4 0.014450(w„ +• 1.15)

Elr/mf22R4 0.026655 (ww	0,7)
0.166008(wv	1,5)

i

CJ/mf22R4 0.000025(w+ = 2.5)
0.006661(w# •• 5)

km, /R 0

king lR 0.025

kA/km 1.5

c/R x/40

4 0.05 rad

a 0,1

ry 5

a 6

ca 0

Cl 6

do 0.0035

dl 0

0

Ctif.. 0

ki, 1.15

Y

Table 1. Values of parameters of uniform blade for numerical results
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Table 2. Steady tip deflections of a hingeless rotor blade

Number of
elements

uog,,/R W011P It

2 -0.00350 0,00487 -0.04388

3 -0.00342 0.00469 -0.04334

4 -0.00338 0.00446 -0.04315

5 -0.00337 0,00440 -0.04307

6 -0,00330 O.^IW436 -0.04302

7 -0,00335 0,00434 -0.04299

8 -0,00335 0.00433 -0.04297

(CT10 m 0,1, Op — 0.06rad, y 5.0, w„ 1.512, w. m 1.15n, w1 m 2.512)



Tabip Fundamental Coupled natural frequencies of a hingeless rotor blade

Number of
elements

W, /f2 w„ /A WO/11

2 1.5196 1.1251 2.6106

3 1.6184 1,1221 2,4872

4 1.5182 1.1214 2.4787

5 1.6181 1,1212 2.4748

0 1.6181 1.1211 2.4724

7 1.5181 1.1211 2.4710

8 1.5180 1.1210 2.4702

(CT /o -0.1, Qi - 0.05rad, y-5.0,w„- IM,wW - 1.1512, w#" 2.512)



Table 4. Real prxts of tht

Number of

modes

Lead-lab Flap Torsion

3 -0.03074 -0131488 -0.35148

4 -0103049 -0,31383 -0.35049

b -0,03034 -0,31443 -0,35207

6 -0.03034 -0,31442 .0.35206

7 -0,03034 -0,31448 -0.35209

(CT /o — 0.1, Pp — 0.05 rad, I m 5,0, wy 1.5A, w„ — 1.151), w# = 2,5f2)

Lilt



L_

(CT/o s 0. 1, Pp — 0.06 rad, y = 5.0, Hinge offset s 0.06R, wo 2XII)

"I,,

'x
iî

r

Table 5. Steady tip deflections of an articulated rotor blade

Number of

elements

v004 /R w014P /R

2 -0.06040 0.01274 -0.04476

3 -0.06001 0,01238 -0.04425

4 -0.0.5987 0.01224 -0.04405

b -0.05980 0.01217 -0.04396

6 -0.05977 0.01212 -0.04391

7 -0.05975 0.01210 -0.04388

8 -0.05973 0.01208 -0,04386



4

'table 6. Fundamental Coupled natural frequencies of an articulated rotor blade

Number of
elen"ats

w./n ww/A wO/n

2 0.2999 1.0440 2.6285

3 0.2999 1.0440 2.6049

4 0.2909 1.0440 2.4963

,5 0,2999 1.0440 2.4923

6 0.2999 1.1440 2.4901

7 0.2999 1.0440 2.4889

8 0.2999 1.0440 2,4878

(C;r,'o Lai 0. 1, Ap 0.05 rad, 7	5.0, Hinge offset	0.06R, ur#	2.5(2)

t
i

'f(
1
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Table 7. Real parts of the Butter eigenvalues of an articulated rotor blade

Number of

modes

Lead-lag Flap Torsion

3 -0.00055 -0.33926 -0.39160

4 -0,00951 -0,34108 -0.39338

5 -0.00957 -0.34498 -0.39471

6 -0.00953 -0.34232 -0,39448

7 -0.00953 -0.34230 -0.39449

(CTIa = 0. 1, Pr - 0.05rud, q = 5.0, Hinge offset = 0.06R, wa = 2.511)

r
{

1

1

1

{
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Table 8. Structural properties of a bearingless blade

Property Outboard blade Each eexbeam Torque tube

Ely/mon2 R4 0.026855 0.013328 01001

0.014486 0.007243 0.001

Els/moA2R 4 0.166908 0.083454 0.001

GJ/m0 2 0.000925 0.000463 0.02'

0.005661 0.002830 0.02

k,,,, /R 0 0 0

km s /R 0.025 0.025 0.01

k A /km 1.5 1.5 1

m/mo 1 0.5 0.1



J

t'

Table 9. Steady tip deflections of a twinbeam model
(Zero inboard pitch)

Number	of	elements
r^

F lexbeam Flexbeam Outboard uo,,,/R vo,r,/R wo,,,/R ^olrp
one	two	blade

1 1 2 0.001613 -0.003750 0,011214 .0.030734

2 2 1 0.001614 -0.003794 0.011289 -0.030634

2 2 2 0.001613 -0.003750 0.011213 -0.030735

2 2 3 0.001613 -0.003747 0.011206 -0.030732

3 3 2 0.001613 -0.003750 0.011213 -0.030735

(Cr10=0.1,pp-0.05rad , ry=6A,w„ = 1.870, w, —1.1512, we=2.9112)

l

N

y^

1



r

Table 10. Fundamental natural frequencies of a twinbeam model
(Zero inboud pitcb)

Number	of	elements

Flexbeam	Flexbeam	Outboard w„ p ww/fl WO/fl

one	two	blade

1 1 2 1.77973 1.15018 2.88149

2 2 1 1.78825 1.15027 2.89491

2 2 2 1.77962 1.14977 2.88144

2 2 3 1.77877 1.14971 2,88094

3 3 2 1.77961 1.14974 2;88141

(CT/o= 0.1, pp = 0.05rad, 7 = 5.0, w, = 1.870, ww = 1.15(2, w# = 2.91(2)



(CTIo 0.1, Ar — 0.05 rad, y - 5.0, w, — 1.87n, ww = 1.15n, w# — 2.91n)

Number of

males

Lead-lag Flap Torsion

3 0.00506 -0.35029 -0.38113

4 0.00450 -0.35228 -0.38094

5 0.00445 -0.35267 -0.38119

0 0,00445 -0,35267 -0.38119

i

9

9

i

Table 11. Real parts of the flutter eigenvalues of a twinbeam model
(Zero inboard pitch)

a
i

a
v
a
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Table 12. Fundamental natural frequencies at various thrust 'levels
(Zero inboard pitch)

Lead-lag

Twin	Egvlt.

Flap

Twin	Egvlt.

Torsion

Twin	Egvlt.

0 1.870 1.866 1.149 1.149 2.910 2.910

0.0,E 1.864 1.886 1.152 1.142 2.921 2.400

0.08 1.851 1.896 1.157 1.129 2.930 2.887

0.12 1.830 1.894 1.161 1.112 2.934 2.875

0.16 1.805 1.878 1.163 1.001 2.930 2.864

0.2 1.775 1.849 1,162 1.066 2.916 2.854

_j

m

j

z
Y
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Fig. 16 Pitch distribution of a bearingless rotor blade.
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