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ABSTRACT

This paper presents a treatment of the hy-

personic aeroelastic problem, using both Euler and

Navier-Stokes aerodynamics. The approach is based

on the use of computational uid dynamics coupled

with structural �nite element analysis. The struc-

tural motion is represented by a �nite series of nor-

mal modes. Studies were carried out in the Mach

number range of 2 to 15, and for di�erent altitudes

between 5000 and 100,000 feet. The validation of the

approach is carried out by considering the aeroelas-

tic response analysis of a double wedge airfoil, using

Euler, Navier-Stokes, and piston theory aerodynam-

ics. Good comparison between piston theory and

Euler aerodynamics is observed at all the operating

points, and at higher Mach numbers, signi�cant dif-

ference is observed between the viscous and inviscid

aeroelastic response. This technique is then applied

to the generic hypersonic vehicle, and the results

presented.

NOMENCLATURE

a Parameter denoting the o�set between

the elastic axis and the origin

a1 Speed of sound

b Semi-chord

c Reference length, chord length of

double wedge airfoil

f(x) Function describing airfoil surface
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h Airfoil vertical displacement at Elastic

Axis

I� Mass moment of inertia about the

Elastic Axis

K�;Kh Spring constants in pitch and plunge

respectively; K� = I�!
2
�
;Kh = m!

2
h

L Lift per unit span

M free stream Mach number

M;K Generalized mass and sti�ness matrices

of the structure

m Mass per unit span

MEA Moment per unit span about the Elastic

Axis

P Pressure; P1 =
a
2
1
�



Q Generalized force vector for the

structure

Qi Generalized force corresponding to

mode i

qi Modal amplitude of mode i

S Surface area of the structure

S� Static mass moment of wing section

about elastic axis

T Kinetic energy of the structure

t Time

th Airfoil half thickness

U Potential energy of the structure

V Free stream velocity

vn Normal velocity of airfoil surface

w Displacement of structural surface

x� Parameter denoting the o�set between

the elastic axis and the center of gravity

x; y; z Spatial Coordinates

Z(x; t) Position of airfoil surface

� Airfoil pitch displacement about the

Elastic Axis

 Ratio of speci�c heats

� Air viscosity

� Air density

!�; !h Natural frequencies of uncoupled pitch
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and plunge motions

!1; !2 Natural frequencies of double wedged

airfoil

� Modal matrix

�i mode shape for mode i

� Thickness ratio; � = th

b

_(); �() First and second derivatives with

respect to time

()u; ()l Of the upper and lower surface,

respectively

INTRODUCTION AND PROBLEM

STATEMENT

In recent years, renewed activity in hyper-

sonic ight research has been stimulated by the cur-

rent need for a low cost, single-stage-to-orbit (SSTO)

reusable launch vehicle (RLV) and the long term

design goal of a single-stage-to-orbit, air-breathing

ight vehicle. The X-33, an example of the former

vehicle type, was a 1/2 scale, fully functional tech-

nology demonstrator for the full scale VentureStar.

Another ongoing hypersonic vehicle research pro-

gram is the NASA Hyper-X experimental vehicle ef-

fort. Other activities are focused on the design of

unmanned hypersonic vehicles that meet the needs

of the US Air Force. This study addresses the char-

acterization of the aeroelastic behavior of a generic

version of such a vehicle throughout its entire ight

envelope, which must be studied prior to the con-

ceptual design of a hypersonic vehicle.

The vehicle is a blunt nosed lifting-body de-

sign that, due to stringent minimum-weight require-

ments, will possess a exible fuselage, which provides

most of the lift, as well as exible canted �ns. Fur-

thermore, to meet the requirement of the ight pro-

�le, which can cover the Mach number range from 0

to 15, the vehicle must be capable of withstanding

severe aerodynamic heating. These factors combine

to produce unusual aeroelastic problems which have

not been explored extensively in the past. Further-

more, it is important to emphasize that testing using

aeroelastically scaled wind tunnel models, a conven-

tional practice in subsonic and supersonic ow, is

not feasible in the hypersonic regime. Thus, the role

of aeroelastic simulations is more important in this

ight regime than in the other ight regimes.

Previous studies in this area can be combined

in several groups. The �rst group consists of studies

focusing on panel utter, which is a localized aeroe-

lastic problem representing a small portion of the

skin on the surface of the hypersonic vehicle. Hy-

personic panel utter has been studied by a number

of researchers, focusing on important e�ects such as

aerodynamic heading [1], composite structure [2, 3],

nonlinear structural model [4], and initial panel cur-

vature [5]. A comprehensive review of this research

can be found in a recent survey paper [6]. A fun-

damental question associated with these studies, is

whether piston theory, which has been widely used

in the Mach number range, 1.8<M <5.0 is a suit-

able tool for modeling unsteady aerodynamic loads

on the surface of a hypersonic vehicle. This was con-

sidered in Ref. [5], where the unsteady pressure coef-

�cient on the surface of a typical panel, undergoing

prescribed oscillations at frequencies representative

of a typical panel in hypersonic ow, was computed

using third-order piston theory, an exact solution of

the nonlinear Euler equations, and a numerical so-

lution of the unsteady Navier-Stokes equations. At

a typical hypersonic Mach number (M=10), results

from the third-order piston theory are within 5% of

the exact solution of the Euler equations. However,

a di�erence of approximately 60% exists between the

Euler solution and the solution based on the Navier-

Stokes equations. This implies that the accurate rep-

resentation of the unsteady aerodynamic loading, at

certain ight conditions, will require the solution of

the Navier-Stokes equations. Another implication of

this statement is that the heat transfer problem may

have to be coupled with the aeroelastic analysis of a

hypersonic vehicle for certain portions of the ight

envelope.

The second group of studies in this area was

motivated by a focus on a previous hypersonic vehi-

cle, namely the National Aerospace Plane (NASP).

Representative studies in this category are Refs. [7-

11]. However, most of these studies were focused

on the transonic regime, because the NASA Lang-

ley researchers were interested in this region, which

was considered to be critical, and their facilities (the

Transonic Dynamics Wind Tunnel) were appropri-

ate for testing vehicle behavior in this Mach number

range.

The third group of studies is very limited

since it is restricted to recent papers that deal with

the newer hypersonic con�gurations such as the X-

33 or the X-34. Ref. [12] considered the X-34 launch

vehicle in free ight at M=8.0, and then reinter-

preted these results at di�erent ight conditions us-

ing dynamic pressure and altitude corrections. The

aeroelastic instability of a generic hypersonic vehi-

cle, resembling the X-33, was considered in Ref. [13].

It was found that at high hypersonic speeds and

high altitudes, the hypersonic vehicle is stable, when

piston theory is used to represent the aerodynamic

loads. However, utter boundaries were quite sensi-

tive to the trim state and exibility of the vehicle.
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In another reference [14], CFD-based utter analysis

is used for the aeroelastic analysis of the X-43 con-

�guration, by making use of order reduction of the

aerodynamic degrees of freedom using system iden-

ti�cation techniques. In this study, both the struc-

ture and the uid were discretized using the �nite

element approach. It was observed that piston the-

ory and ARMA Euler calculations predicted similar

results.

From the studies on various hypersonic ve-

hicles (Refs. [7, 14{16]), one can identify a reason-

able set of operating envelopes of each vehicle. By

combining these envelopes, one can obtain a conve-

nient graphical representation of operating envelopes

shown in Fig. 2. Figure 2 was used to determine the

operating points for this study, presented in Table 1.

The principal objectives of this study are to

develop a physical understanding and e�ective com-

putational techniques for the aeroelastic behavior of

a generic hypersonic vehicle in trimmed level ight,

operating throughout its entire ight envelope. This

requires consideration of the three principal ight

regimes of this vehicle, namely, subsonic, transonic

and hypersonic, with an emphasis on the hypersonic

regime. Thus, the speci�c objectives of this proposal

are:

1. Develop an aeroelastic analysis capability for

hypersonic vehicles in the Mach number range

0.5< M <15, using computational aeroelastic-

ity, i.e. computational uid mechanics coupled

with �nite element structural analysis.

2. Validate the approach by applying it to the

aeroelastic analysis of a double wedge airfoil.

3. Present trend-type results on a generic hyper-

sonic vehicle.

Clearly, achieving these objectives will make an im-

portant contribution towards advancing the state of

the art in hypersonic aeroelasticity, an important

area of aeroelasticity which is still in its infancy.

METHOD OF SOLUTION

An overview of the method of solution of

the computational aeroelasticity problem is shown

in Fig. 3. The initial step consists of creating the

vehicle geometry using a CAD software. Using this

geometry, a mesh generator is used to create a struc-

tured mesh for the ow domain around the body,

and an unstructured mesh is created for the struc-

ture using the same nodes on the vehicle surface

as generated for the uid mesh. The uid mesh

is next used to calculate the ow around the rigid

body using a CFD solver, while the structural mesh

is used to obtain the free vibration modes of the

structure by �nite element analysis. Then, using a

node-matching procedure, the modal displacements

at each structural node is matched to a correspond-

ing node on the uid mesh and the modal surface

data for the aeroelastic solver is generated. Using

the ow solution as an initial condition, and the

modal information, an aeroelastic steady state is ob-

tained. For the current geometry, this is not neces-

sary due to its symmetry about the horizontal plane.

Next, the structure is perturbed in one or more of

its modes by an initial modal velocity condition, and

the transient response of the structure is obtained.

For the current study, the CFL3D code [17] is used

to calculate both the ow around the rigid body and

the aeroelastic response. This transient response is

then analyzed to obtain its frequency and damping

content, and from a set of such transient responses,

the utter boundary can be identi�ed as either a

function of altitude or Mach number.

EULER/NAVIER-STOKES AEROELASTIC

SOLVER

The CFL3D code [17] is used to carry out

the aeroelastic analyses of the generic hypersonic

vehicle. It uses an implicit, �nite-volume algo-

rithm based on upwind-biased spatial di�erencing

to solve the time-dependent Euler and Reynolds-

averaged Navier-Stokes equations. Multigrid and

mesh-sequencing are available for convergence accel-

eration. The algorithm, which is based on a cell-

centered scheme, uses upwind-di�erencing based on

either ux-vector splitting or ux-di�erence split-

ting, and can sharply capture shock waves. For

applications utilizing the thin-layer Navier-Stokes

equations, di�erent turbulence models are available.

For cases involving a deforming mesh, an additional

term accounting for the change in cell-volume is in-

cluded in the time-discretization of the governing

equations.

The aeroelastic approach underlying the

CFL3D code is similar to that described in Refs.

[18, 19]. In this formulation, the equations are de-

rived by assuming that the general motion w(x; y; t)

of the structure can be described by a separation

of time and space variables in a �nite modal series.

The modes in this study were obtained from a �nite

element model of the vehicle. This modal series con-
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sists of the summation of the free vibration modes,

w(x; y; t) =
X
i

qi(t)�i(x; y) (1)

The equations of motion are then formulated using

Lagrange's equations,

d

dt

�
@T

@ _qi

�
�

@T

@qi
+

@U

@qi
= Qi; i = 1; 2; ::: (2)

The resulting set of equations of motion is

M�q +Kq = Q(q; _q; �q); qT = [q1 q2 :::] (3)

where the elements of the generalized force vector

are given by,

Qi =
�V

2

2
c
2

Z
S

�i
�P dS

�V 2=2 c2
(4)

From Eq. (3),

�q = �M�1Kq+M�1Q (5)

The aeroelastic equations are then written in

terms of a linear state-space equation (using a state

vector of the form [::: _qi�1 qi _qi qi+1 :::]
T ) such that

a modi�ed state-transition-matrix integrator can be

used to march the coupled uid-structural system

forward in time. The uid forces are coupled with

the structural equations of motion through the gen-

eralized aerodynamic forces. To determine the ut-

ter conditions at a given free-stream Mach number,

aeroelastic transients are computed at several values

of dynamic pressure to bracket the utter point. The

frequency and damping characteristics of the tran-

sient responses at each dynamic pressure are deter-

mined from a least squares curve �t, and the utter

dynamic pressure and frequency associated with this

Mach number can be estimated by interpolation.

The code has previously been used to ob-

tain the utter boundary for the �rst AGARD stan-

dard aeroelastic con�guration for dynamic response,

Wing 445.6. The results of utter calculations using

Euler aerodynamics are given in [20] and those using

Navier-Stokes aerodynamics are given in [21].

COMPUTATIONAL MODEL OF THE

GENERIC HYPERSONIC VEHICLE

The mathematical model employed in this

study is inspired by the X-33 hypersonic vehicle. For

the sake of simplicity, the mathematical model rep-

resents only the fuselage of a generic hypersonic ve-

hicle (Fig. 1). In the current model, lifting surfaces

such as �ns are not considered as part of the ge-

ometry. The Euler and Navier-Stokes computations

are performed on a 177�41�73 grid with 177 points

wrapped around the vehicle and its wake (97 points

on the vehicle surface), 73 points distributed from

side to side (41 points on the vehicle surface), and

41 points distributed radially outwards from the ve-

hicle surface. A coarsened view of the computational

domain is shown in Fig. 4. The computational do-

main extends one vehicular length to the upstream

boundary and the upper and lower boundaries, two

lengths to the downstream boundary, and one ve-

hicular span o� to the sides. For the Navier-Stokes

simulations, the Spalart-Allmaras turbulence model

was used, along with an adiabatic wall temperature

condition.

COMPUTATIONAL MODEL OF THE

DOUBLE WEDGE AIRFOIL

Validation of the CFL3D code for the hy-

personic regime has never been undertaken. It was

therefore essential to have reliable results for a fairly

simple con�guration for which aeroelastic stability

and response results could be generated in an in-

dependent manner. The con�guration selected for

this purpose was the double wedge airfoil depicted

in Figs. 5 and 6. Generating results for this con�gu-

ration using Euler and Navier-Stokes unsteady aero-

dynamic loads, and comparing them with results ob-

tained using an independently developed aeroelastic

code based on third order piston theory, provides a

reliable means for validating CFL3D in the hyper-

sonic regime.

The Euler and Navier-Stokes computations

are carried out using a 225�65 C-grid with 225

points around the wing and its wake (145 points

wrapped around the airfoil itself), and 65 points

extending radially outward from the airfoil sur-

face. The computational domain extends one chord-

length upstream and six chord lengths downstream,

and one chord length to the upper and lower

boundaries. For the Navier-Stokes simulations, the

Spalart-Allmaras turbulence model was used, along

with an adiabatic wall temperature condition. The

double wedge airfoil and a portion of the surround-

ing computational grid are shown in Fig. 5.

HIGHER-ORDER PISTON THEORY MO-

DEL OF THE DOUBLE WEDGE AIRFOIL

Piston theory is an inviscid unsteady aerody-

namic method used extensively in hypersonic aeroe-

lasticity, which predicts a point-function relationship

between the local pressure on a lifting surface and

the normal component of uid velocity produced by

the lifting surface motion [22, 23]. The derivation
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utilizes the isentropic "simple wave" expression for

the pressure on a piston,

P (x; t)

P1
=

�
1 +

 � 1

2

vn

a1

� 2

(�1)

(6)

where

vn =
@Z(x; t)

@t
+ V

@Z(x; t)

@x
(7)

The expression for piston theory is based on

a binomial expansion of Eq. (6), where the order of

the expansion is determined by the ratio of
vn

a1
. Ref-

erence [23] suggested a third order expansion, since

it produced the smallest error of the various orders

of expansion used when compared to the limiting

values of pressure, namely the "simple wave" and

"shock expansion" solutions. The third order ex-

pansion of Eq. (6) results in,

P (x; t)� P1 = P1

"

vn

a1
+
( + 1)

4

�
vn

a1

�2

+
( + 1)

12

�
vn

a1

�3
#

(8)

An aeroelastic analysis for a typical cross-

section for a double wedge airfoil was developed us-

ing third-order piston theory. The geometry is il-

lustrated in Fig. 6. The typical crosssection has

the usual pitch and plunge degrees of freedom for

which the equations of motion are obtained from La-

grange's equations.

m�h+ S� ��+Khh = �L(t)

S�
�h+ I� ��+K�� = MEA(t)

(9)

The unsteady lift and moment in Eq. (9) were deter-

mined using third order piston theory. From Fig. 6,

it is evident that for small displacements,

Z(x; t) = �fh(t) + (x� ba)�(t)g+ f(x) (10)

and

vn;u = �f _h+ (x� ba) _�g+ V

�
��+

@f(x)

@x

�

vn;l = f
_h+ (x� ba) _�g � V

�
��+

@f(x)

@x

�
(11)

where

@fu(x)

@x
= � : �b < x < 0

@fu(x)

@x
= �� : 0 < x < b

@fl(x)

@x
= �� : �b < x < 0

@fl(x)

@x
= � : 0 < x < b

(12)

From Eqs. (8), (11), and (12) the unsteady pressure

distribution can be determined.

The unsteady lift and moment due to this

pressure distribution can be determined by

L(t) =
R
b

�b
(Pl(x; t)� Pu(x; t)) dx

MEA(t) = �

R
b

�b
(x� ba) (Pl(x; t)� Pu(x; t)) dx

(13)

Thus, the unsteady lift is given by

L(t) = L1(t) + L2(t) + L3(t) (14)

where,

L1(t) = 4P1Mb

n
_h

V
� ba

_�

V
+ �

o
L2(t) = �P1( + 1)M2

b
2
�
�

_�

V

�
L3(t) = 1

3
P1( + 1)M3

b

n�
_h

V
� ba

_�

V
+ �

�
��

_h

V
� ba

_�

V
+ �

�2
+ 3�2 +

�
b

_�

V

�2��
(15)

Note that L1(t), L2(t), and L3(t) represent the �rst,

second, and third order piston theory lift compo-

nents respectively. Similarly, the unsteady moment

is given by,

MEA(t) =M1(t) +M2(t) +M3(t) (16)

where

M1(t)=4P1Mb
2

n
a

_h

V
�

�
b

3
+ b a

2
�

_�

V
+ a�

o
M2(t)=P1( + 1)M2

b
2
�

n
_h

V
� 2ba _�

V
+ �

o
M3(t)=�

1

3
P1( + 1)M3

b
2

n
1

5

�
b

_�

V

�3
�a

�
_h

V
� ba

_�

V
+ �

���
_h

V
� ba

_�

V
+ �

�2
+ 3�2

�

+b _�

V

��
_h

V
� ba

_�

V
+ �

�2
+ �

2

�ba
_�

V

�
_h

V
� ba

_�

V
+ �

��o
(17)

Note that M1(t), M2(t), and M3(t) represent the

�rst, second, and third order piston theory moment

components respectively.
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For comparison with CFL3D, it is convienient

to represent Eq. (9) in terms generalized coordinates

and forces. Therefore, a normal mode transforma-

tion is used such that:�
h(t)

�(t)

�
= [�]

�
q1(t)

q2(t)

�
(18)

Substituting Eq. (18) into Eq. (9), and premulti-

plying by the transpose of the modal matrix yields�
�q1(t)

�q2(t)

�
= [�]T

�
�L(t)

MEA(t)

�

�

�
!
2
1 0

0 !
2
2

� �
q1(t)

q2(t)

�
(19)

for mass normalized modes.

Note that the modal amplitudes are coupled

through the generalized forces. Equation (19) was

solved using the subroutine ODE45 in MATLAB c.

RESULTS AND DISCUSSION

Two sets of results are presented in this sec-

tion. The �rst set of results represents a validation of

CFL3D for the hypersonic regime. However, these

results are also valuable for understanding hyper-

sonic aeroelasticity. By comparing results for Eu-

ler, Navier-Stokes and piston theory over the oper-

ating envelope of a typical hypersonic vehicle, one

can identify the regions where viscosity is impor-

tant. The operating points for the vehicle are pre-

sented in Table 1, together with the Reynolds no.

per foot

�
�V

�

�
as common parameter applicable to

both geometries. The second set of results depicts

the aeroelastic response of a generic hypersonic ve-

hicle using a computational aeroelasticity approach.

AEROELASTIC BEHAVIOR OF THE

DOUBLE WEDGE AIRFOIL

The double wedge airfoil has a chord length

c of 2m., and a total thickness of 2.5% of chord, at

midchord. The mass of the airfoil is 51.833 kg/m.

The uncoupled pitch and plunge frequencies are 125

rad/sec and 50 rad/sec, respectively. The o�set be-

tween the elastic axis and the midchord is 0.1c, and

the o�set between the elastic axis and the center of

gravity is 0.05c.

Results for the operating conditions speci�ed

in Table 1 were obtained, and are shown in Figs. 7-

11. For all operating conditions, the agreement be-

tween piston theory and Euler aerodynamics based

solutions is quite good. Figures 7 (M=2.0, 5000

feet) and 8 (M=5.0, 50,000 feet) indicate that for

these ight conditions, the viscous e�ects are not

very signi�cant.

Figures 9-11 (100,000 feet) indicate that there

is a signi�cant di�erence between the results pre-

dicted from Navier-Stokes aerodynamics and the

other two theories. At M=7.0 (Fig. 9), the

Navier-Stokes solution indicates that the aerody-

namic damping present is very small. Figure 10

shows that at M=10.0, the aeroelastic system with

viscous e�ects experiences a slightly unstable re-

sponse. There is no evidence of such an instabil-

ity for the other theories. This is quite interesting

since the addition of viscosity (or damping) seems

to destabilize the system. At M=15.0, as shown in

Fig. 11, the system is very clearly unstable. Pis-

ton theory indicates that at 100,000 feet, the airfoil

section becomes unstable at M=34:0.

As indicated in Ref. [24], the thick boundary

layer in hypersonic ow can exert a major displace-

ment e�ect on the inviscid ow outside the boundary

layer, causing a given body shape to appear much

thicker than it really is. Due to the extreme thick-

ness of the boundary layer ow, the outer inviscid

ow is greatly changed; the changes in the inviscid

ow in turn feed back to a�ect the growth of the

boundary layer. This major interaction between the

boundary layer and the outer inviscid ow is called

viscous interaction. Viscous interactions can have

signi�cant e�ects on the surface pressure distribu-

tion, in turn a�ecting the stability of hypersonic ve-

hicles.

The pressure loading (P �P1) acting on the

double wedge airfoil is shown in Fig. 12 for di�erent

operating points. As can be seen, for M=2.0 and

M=5.0, the di�erence between Euler and Navier-

Stokes aerodynamics is small. However, there is a

signi�cant di�erence between the pressure loading

for the cases with M=7.0 and M=15.0. This trend

is also displayed in Figs. 13 and 14, which show

the ow�eld around the double wedge airfoil, as de-

scribed by the streamlines and contour plot of the

pressure at points in the ow. The expansion of the

ow on the rear half of the airfoil section at M=2.0

is similar for both cases. However, at M=15.0, the

interaction between the thick boundary layer and

the inviscid ow outside the boundary layer is quite

signi�cant, as shown in Fig. 14. Because of the

boundary layer, there is no expansion of the ow

on the rear half of the airfoil, which has a profound

e�ect on the stability of the double wedge airfoil.

The very good comparison of the Euler and

piston theory models indicates that the aeroelastic
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analysis technique has been validated. This tech-

nique will now be applied to aeroelastic analysis of

the generic hypersonic vehicle.

FREE VIBRATION MODES OF THE

GENERIC HYPERSONIC VEHICLE

The structural analysis of the vehicle is car-

ried out using NASTRAN c, using the �nite el-

ement model shown in Fig. 1. The modes used

for this analysis are restricted to the �rst �ve un-

restrained modes (three predominantly bending and

two predominantly torsional modes), shown in Figs.

15-19. The surface grid is the same as that used

in the simulations using CFL3D. In order to pre-

vent \breathing" modes, sti�ening elements are in-

serted into the interior of the vehicle. The model

has 7913 nodes, with 7680 bilinear plate elements

on the surface, and an additional 728 elements used

to represent the sti�eners. The material properties

and thickness of the plate elements are chosen to en-

able approximate matching of the natural frequen-

cies with those obtained from a �nite element model

of another representative generic hypersonic vehicle,

obtained using the code ELAPS [25]. This is carried

out by adjusting the thickness and density of the

material to approximately match the frequencies of

the vehicle given in Ref. [25].

AEROELASTIC BEHAVIOR OF THE

GENERIC HYPERSONIC VEHICLE

At this point, only preliminary results are

available for this geometry. Some typical results are

shown in Fig. 20, for M=7.0, at 100,000 feet where

only mode 1 has been excited with a modal velocity

of 0.001 /sec. The limited results provided do not in-

dicate a clearcut di�erence between the results from

Euler and Navier-Stokes aerodynamics. This is not

surprising since for a three-dimensional geometry,

one can expect the \3D relieving e�ect" [26] where

the ow can expand in both the vertical as well as

the horizontal directions around the body. Figure

21 shows the stream traces of the ow around the

upper left quarter of the vehicle. Thus, the shock

wave and the viscous interaction for such a geom-

etry would be much less pronounced as compared

to a two-dimensional geometry with the same lead-

ing wedge angle. Correspondingly, the growth of

the boundary layer would be much less pronounced,

leading to a smaller di�erence in the aeroelastic re-

sponse for viscous and inviscid ows, as compared

to a corresponding 2D geometry.

CONCLUDING REMARKS

The results presented for the aeroelastic be-

havior of a double wedge airfoil in hypersonic ow

corresponding to the operating envelope of a typi-

cal hypersonic vehicle were generated using a stand

alone analysis using piston theory, as well as a com-

putational aeroelasticity code obtained by combin-

ing CFL3D with a NASTRAN based �nite element

structural dynamic model. In the computational

aeroelasticity code the unsteady aerodynamic loads

were based on both Euler and Navier Stokes solvers.

The good agreement between piston theory based

results and the Euler solution in a large portion of

the ight envelope validates the CFL3D code for the

hypersonic ight regime, where it has not been used

in the past. It is also interesting to note that sub-

stantial di�erences in prediction of aeroelastic stabil-

ity behavior between Navier Stokes based and Euler

solutions exist in certain portions of the ight enve-

lope. These di�erences imply that viscous e�ects can

be signi�cant. Preliminary results based on a com-

plete three dimensional generic hypersonic vehicle,

seem to indicate that the di�erence between viscous

and inviscid solutions on the vehicle are substan-

tially smaller than on the double wedge airfoil. It

appears that this reduction in the importance of the

viscous terms can be partially attributed to three

dimensional relief e�ects.
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Table 1: Operating points for present study.

Altitude (feet) M Reynolds no.

per foot
�
�V

�

�
5000 2 1.2�107

50,000 5 3.1�107

100,000 7 7.6�105

100,000 10 1.1�106

100,100 15 1.6�106

Note: chord-length of airfoil section : 6.66 feet,

length of generic hypersonic vehicle : 76.2 feet

y

z

x
i

j

Figure 1: Discrete structural model of generic hy-

personic vehicle, (internal sti�eners not shown).
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Figure 2: Operating envelopes for several modern

hypersonic vehicles.
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Figure 3: A ow diagram of the computational

aeroelastic solution procedure.
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Figure 4: A representative view of the computa-

tional domain.
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Figure 5: Diamond shaped airfoil section, and sur-

rounding grid, to scale.

Figure 6: Two degree-of-freedom typical airfoil ge-

ometry.
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Figure 7: Aeroelastic results for the diamond-shaped

airfoil, at M=2.0 and an altitude of 5000 feet.
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Figure 10: Aeroelastic results for the diamond-

shaped airfoil, atM=10.0 and an altitude of 100,000

feet.
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Figure 13: Flow patterns around the diamond-

shaped airfoil, M=2.0, 5000 feet.
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Figure 14: Flow patterns around the diamond-

shaped airfoil, M=15.0, 100,000 feet.
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Figure 15: 1st bending mode of generic hypersonic

vehicle, 10.48 Hz

(a) Isometric view

(b) Frontal view

Figure 16: 1st torsional mode of generic hypersonic

vehicle, 10.81 Hz.

Figure 17: 2nd bending mode of generic hypersonic

vehicle, 18.71 Hz

(a) Isometric view

(b) Frontal view

Figure 18: 2nd torsional mode of generic hypersonic

vehicle, 20.39 Hz.

Figure 19: 3rd bending mode of generic hypersonic

vehicle, 24.26 Hz
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Figure 20: Aeroelastic results for the generic hyper-

sonic vehicle, at M=7.0 and an altitude of 100,000
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