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,e aeroengine control system is a piece of complex thermal machinery which works under high-speed, high-load, and high-
temperature environmental conditions over lengthy periods of time; it must be designed for the utmost reliability and safety to
function effectively.,e consequences of sensor faults are often extremely serious.,e inherent complexity of the engine structure
creates difficulty in establishing accurate mathematical models for the model-based sensor fault diagnosis. ,is paper proposes an
intelligent fault diagnosis method for aeroengine sensors combining a deep learning algorithm with time-frequency analysis
wherein the signal recognition problem is transformed into an image recognition problem. ,e continuous wavelet transform
(CWT) is first applied to seven common health condition signals in an engine control system sensor in order to generate
scalograms that capture the characteristics of the signal. A convolutional neural network (CNN) model trained with preprocessed
and labeled datasets is then used to extract the features of a time-frequency graph based on which faults can be identified and
isolated.,is method does not require modeling and design thresholds, so it has strong robustness and accuracy rate of over 97%.
,e trained model effectively reveals faults in sensor signals and allows for accurate identification of fault types.

1. Introduction

,e aeroengine control system is a piece of complex thermal
machinery which works within high-speed, high-load, and
high-temperature conditions over long periods of time. It
must have the utmost reliability and safety. It works on the
basis of obtaining accurate parameter signals from sensors
[1]; however, the inherently large quantity of sensor mea-
surement data, wide distribution, and unique installation
location make it prone to faults particularly within the high-
temperature, high-pressure, and strong vibration condi-
tions. Generally speaking, the proportion of sensor faults in
total system faults exceeds 75% [2]. Timely and effective
sensor fault diagnosis is of crucial significance in terms of the
safety and reliability of the aeroengine.

A common approach to sensor fault diagnosis is the
redundancy analysis technique, which may be model-based,
data-driven, or a hybrid of the two [3].,e earliest method is
based on an analytical model [4] wherein fault is diagnosed

without prior knowledge or experience via the observer,
particle filter, Kalman filter, or other tools. It is necessary to
build a highly accurate model of the diagnosed object to
effectively operate this method. ,e reliability of models of
complex nonlinear systems such as aeroengines decreases as
modeling uncertainty and nonlinear complexity increase;
thus, the reliability of the diagnostic system decreases.

Data-driven diagnostics that avoid model-building
problems have been developed as a response to the above
problem. Offline or online learning of test data is followed by
feature extraction, classification or regression, and other
technologies for fault detection without full detail regarding
the working principle of physical objects or the analytic
model. Among these techniques, the neural network [5] is
most widely used for fault diagnosis due to its self-learning
capability and ability to fit arbitrary continuous nonlinear
functions. For example, Botros [6] used the Laplace trans-
form-wavelet transform to extract vibration fault signal
features from an aeroengine followed by an artificial neural
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network to classify the faults. ,e shallow network is prone
to overfitting problems [2]. Moreover, the input charac-
teristics (e.g., mean value, variance and energy, and root
mean square) of the shallow neural network are selected
manually, so it is prone to other issues such as data under-
utilization, sensitivity to interference, and information loss.
,e quality of features is the key to the performance of the
diagnostic system [7, 8].

Intelligent diagnosis methods based on deep learning
[9], which can be used to automatically extract the intrinsic
characteristics of data, have attracted a great deal of research
attention. Deep neural networks are not prone to overfitting
or gradient attenuation problems. ,e convolutional neural
network [10] (CNN) is one of the commonly used deep
networks and is now the dominant method applied in
intelligent diagnosis systems [11, 12]. Verstraete [13]
extracted vibration signal representations in the time and
frequency domains as an input to a CNN and then classified
various fault characteristics of a rotating machine ac-
cordingly at up to 96% accuracy. Alaskar [14] studied a
damaged signal with noise using CNN techniques and then
generated images from MFPT data and Case Western
dataset using short-time Fourier transform. ,is trained
CNN model detected patterns in the signal with 98% and
99% accuracy, respectively. Chen [15] used a deep con-
volutional neural network (DCNN) method for the life
cycle prediction of engine units with special focus on the
late stages of the fault. ,e original features, data pre-
processing operation, and time window sample-making
process can be selected to achieve predictions very close to
the actual RUL values. Liu et al. [16] proposed an effective
and reliable method based on the convolution neural
network (CNN) and discrete wavelet transformation
(DWT) to identify the fault conditions of planetary gear-
boxes. ,e experimental results demonstrated the effec-
tiveness and feasibility of the proposed method.

In addition, for the aeroengine control system, highly
accurate sensor data are crucial for effective control of the
system. ,e real-time monitoring of sensor health status is
particularly important. Online fault diagnosis may serve to
monitor sensor data in real time so as to detect sensor faults
and inform timely maintenance decisions. Online fault di-
agnosis methods have strong adaptive ability and indeed can
enhance engine safety. ,e aeroengine is the most widely
varied thermal machine. Its working conditions are highly
complex and changeable, so online fault diagnosis for its
sensors is relatively difficult. Neural networks require an
abundance of data—and calculation processes—for training,
and the online fault diagnosis method requires the system to
be in the correct working state for a period of time to
function properly. Although the real-time performance of
offline fault diagnosis is poor, it is easy to realize and
provides relatively comprehensive analyses based on a large
quantity of historical data. Most data-driven fault diagnosis
methods adopt offline training and online operation [17].

In the recent years, development of modern aeronautical
technology leads to a complex engine control system, where
high reliability, quality, and safety are required in very harsh
environment. ,e study of efficient, reliable, and fast sensor

fault diagnosis method is of great significance for the effi-
cient and reliable operation of aeroengine and the reduction
of maintenance cost. ,e above studies evaluated the ef-
fectiveness of fault diagnosis based on CNN. Li and Qu [2]
applied CNN to fault diagnosis of aeroengine sensors.
However, they only focused on the time-domain data in the
feature learning of CNN. In the paper, we proposed a novel
fault diagnosis method combining continuous wavelet
transform (CWT) and CNN, since CWT has the charac-
teristics of fast response speed and containing a large
amount of information.,e experimental dataset consists of
a large amount of simulation fault data and the actual
aeroengine fault history data. ,e CNN uses a series of time-
frequency diagrams of the experimental dataset as the input
to explore the inner characteristics for malfunctional sen-
sors. ,e efficacy of the proposed method was verified for
aeroengine sensor fault diagnosis in the study.

,e paper is organized as follows: Section 2 elucidates
the proposed method CNN+CWT for fault diagnosis.
Section 3 introduces the dataset acquisition experiment to
collect the fault signal. In Section 4, comparative experi-
ments are conducted to verify the effectiveness of the de-
veloped method. Finally, the paper’s conclusions are drawn
in Section 5.

2. The Fault Diagnosis Method Based on CNN
and CWT

,is section introduces the process of the proposed method.
A diagram of the proposed fault diagnosis scheme, the
CNN+CWT, is provided in Figure 1. In the process, the
sensor signal x(k) is first normalized to obtain the signal
y(k). A continuous wavelet transform is then applied to the
dataset with labels to obtain time-frequency characteristics.
,e time-frequency graphs of certain types of faults are very
similar, so the simple wavelet transform cannot accurately
identify them. It is necessary to find a more effective clas-
sification method. Deep learning technology has proven
effective for data analysis, and the CNN deep learning model
is an intelligent method for deep data mining. ,e CNN can
not only distinguish the general outline of information but
also distinguish subtle differences invisible to the human eye.
,e CNN has strong multivariable processing ability, so a
time-frequency graph can be used as the input to train it.
Actual fault data from an operable engine were input into
the trained CNNmodel in this study as a verification set. Six
types of faults were classified, respectively.

2.1. Sensor Signal Preprocessing. In practice, the units of
measurement for different variables are often different. To
eliminate the dimensional effect of variables and ensure each
variable has the same expressive power, data are often
standardized prior to analysis. As shown in equation (1), the
normalization of measurement signals can make the mean
value of data approach 0 and the variance approach 1, which
reduces errors in the signal acquisition process while
bringing down the computational complexity and compu-
tation time.
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where x(k) is the sensor signal to be processed and y(k) is the
processed sensor signal.

2.2. Continuous Wavelet Transform (CWT). In sensor fault
diagnosis, the sensor signal containing time information is
recorded with data points indexed by time series [18]. ,e
sensor signal is time-varying and nonstationary, so its global
characteristics in the time or frequency domains are in-
sufficient for subsequent analysis; it is often simply im-
possible to capture the internal law of the fault state. It is
necessary to determine the changes in the signal spectrum
with time through joint time-frequency analysis (JTFA).,e
one-dimensional (1D) sensor fault signal can be converted
by JTFA into a multidimensional matrix suitable for CNN
processing [19]. ,e time-frequency graph calculated by
JTFA reflects very comprehensive information. ,e CWT is
a widely applied method under JTFA theory which we apply
here to process the input data of our neural network.

,e CWT functions use a wavelet function system to
represent or approximate a signal, which projects the signal
onto a 2D time-scale phase plane. Unlike the short-time
Fourier transform (STFT), the CWT has an adjustable time-
frequency window and can thus resolve the conflict between
time and frequency resolutions. A function called the
“mother wavelet” is shifted, and then an inner product was
created between the function and the signal which will be
processed at different scales. ,is is expressed as follows:

Wf(p, q) �
1���
|p|

􏽰 􏽚+∞
− ∞

f(x)ψ
x − q

p
􏼠 􏼡dx, (3)

where p is the scaling factor corresponding to frequency
information (i.e., the scale parameter). ,e function of the

scale parameter p is to stretch and compress the basic
wavelet. q is the translation factor corresponding to space-
time information (i.e., the transformation parameter), which
reflects the displacement of the mother wavelet. ψ(x) is the
mother wavelet. ψ(x) is the complex conjugate of ψ(x).
Wf(p, q) is the signal after wavelet transformation, and
f(x) is the mathematical expression of the signal to be
processed.

,e CWT is a linear transformation, so it has super-
position, time-shift invariance, telescopic covariance, and
other properties which allow us to use them to scale the basic
wavelet. A large scale corresponds to a large time window,
and a small scale corresponds to a small window. ,us, the
signal can be decomposed at different resolutions on dif-
ferent time and frequency scales. ,e basic wavelet scaling
and translation constitute the continuous wavelet sequence,
as shown in equation (4). ,e wavelet cluster is the basis of
the function space and acts as the observation window of the
processed signal in the wavelet transform. Signal amplitudes
vary at different times, at different frequencies, and under
different health conditions. To this effect, prominent and
comprehensive feature information can be obtained via
CWT.

ψp,q(x) �
1���
|p|

􏽰 ψ
x − q

p
􏼠 􏼡. (4)

Under different scale factors, continuous wavelet
transform produces coefficients of different parts of the
output signal of equation (4). ,ese coefficients contain the
complete time-frequency information of the sensor signal
and, combined with time series and scale series, can be used
to obtain scalograms. Next, the 2D time-frequency images
are resized so that the CNN can process them by edge
clipping and down-sampling. Figure 2 shows the conversion
process with the CWT time-frequency representation of an
aeroengine sensor as an example.

2.3. Convolutional Neural Network (CNN). Deep learning is
a complex machine learning algorithm that can reveal the
internal rules and presentation levels of sample data. It is a
very flexible and powerful tool. ,e deep learning model
used in this paper, the CNN [20], is a supervised learning
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Figure 1: Flowchart of the proposed method.
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method [10] under which a convolution layer is utilized to
extract features. ,e CNN has advantages over other net-
works due to its adoption of weight replication, receptive
fields, and subsampling [8]; it has low complexity, strong
antinoise ability, and other advantageous properties. ,e
typical structural network of a convolutional nerve consists
of an input layer, convolution layer, pooling layer, fully
connected layer, and output layer [21, 22].

Convolution is a special filtering method for significant
characteristic extraction. Under normal conditions, each
convolutional layer contains multiple convolutional kernels.
In the convolution layer, the feature maps of the previous
layer are convolved with learnable kernels and pass through
activation functions for nonlinear transformation. Finally,
an output feature map is produced that conforms to con-
volution theory. Each output map integrates convolution
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Figure 2: Schematic diagram of CWT.
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with multiple input maps. ,e convolution process is
expressed as follows:

xnk � ϕ 􏽘
i∈Mk

xn− 1i ∗ β
n
ik + b

n
k

⎛⎝ ⎞⎠, (5)

where xnk is the j
th feature graph of the ith convolution layer,

ϕ( ) denotes the activation function, Mk is the input graph
set, β is the convolution kernel, and bnk represents the
corresponding bias.

,e pooling layer compresses the input feature graph to
reduce its size and simplifies the network computation
process. Feature compression serves to extract the main
features while decreasing the dimensional complexity of the
output and its sensitivity to environmental changes while
retaining as much valid information as possible [23]. ,is
can be expressed as

xnk � ϕ wnkdown xn− 1k􏼐 􏼑 + bnk􏼐 􏼑, (6)

where down( )is the subsampling function, wnk denotes the
weight matrix, and the meaning of other parameters is the
same as in the above equation.

,e fully connected layer is similar to a traditional neural
network in that it is connected to all the neurons in the
previous layer. Many classification models, such as the
Softmax regression model as-applied in this study, can be
used as a fully connected layer. Assume there is a dataset for
training the model and the samples of the set have corre-
sponding tags in the tag sets yi􏼈 􏼉Ni�1. P(yi � k |xi) is the
probability of the sample matching the correct label, which
can be calculated by the Softmax regression model. ,e
output result is as follows:
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, (7)

where x is the input eigenvector of the ith sample and k
represents the amount of labels. θ � [θ1, θ2, . . . , θk]

T, and R
represent the parameters and output of the classification
model, respectively.

,e deep network adopted in this study is based on the
framework of LeNet-5 with some modifications, namely, a
dropout layer is added behind the fully connected layer to
prevent overfitting [23]. ,e key idea is to randomly drop
units (along with their connections) from the neural
network during training. Dropout forces a neural unit to
work with other randomly selected neural units. ,is
prevents units from coadapting too much and enhances
generalization. During training, samples from an expo-
nential number of different “thinned” networks were
dropped out. At test time, it is easy to approximate the
effect of averaging the predictions of all these thinned
networks by simply using a single unthinned network that
has smaller weights [24]. ,is significantly reduces

overfitting and simulates a neural network with a large
number of different network structures and in turn make
the nodes in the network more robust.

,e trainable parameters of the CNN model were first
initialized, and then optimized by the back-propagation (BP)
algorithm and the adaptive moment estimation (Adam)
algorithm [25] in the PyTorch deep learning framework.,e
optimization process serves to calculate the error between
the real value and the predicted value. ,e trainable pa-
rameters (weights and bias) can then be updated quickly and
fine-tuned until the training error is minimal.

Wemeasure the training error by a function called cross-
entropy loss function. Generally speaking, when using
neural networks to solve classification problems, the cross-
entropy cost is considered slightly better than the mean
square error loss (MSE). ,e MSE causes the loss of useful
information and may result in gradient dispersion. ,e
cross-entropy loss function F(θ) is expressed as follows:

F yc, yl( 􏼁 � − 1
n
􏽘
class

yc lnyl + 1 − yc( 􏼁ln 1 − yl( 􏼁􏼂 􏼃, (8)

where n indicates the dimension of training data. Class is the
tag category into which signals need to be classified. yc
represents the output of the sensor fault signal of the neural
network, and yl is the mark result of the sensor fault signal.

To summarize, we first standardized and time-frequency
analyzed the sensor signals of the aeroengine control system
for seven health conditions in order to generate scalograms.
,e input for CNN is the tagged scalograms, and the output
is the health conditions of the sensor. ,e output results can
be used to identify and isolate sensor faults.

2.4. Performance Evaluation. After training the model, we
used accuracy rate to evaluate its quality and performance.
We calculated the accuracy of training dataset after each
iteration while training the deep network and then con-
ducted a reliability test and calculated the accuracy of the test
dataset. When the predicted value and the real value are the
same, the accuracy rate calculation result is 1; otherwise, it is
0. ,e average value of numerous calculation results is the
final accuracy rate value.

AC yc, yl( 􏼁 � sum yc �� yl( 􏼁
N

, (9)

where AC(yc, yl) represents accuracy rate, the summing
function is the fault classification result of the neural net-
work output, and calculates the same number between yc
and yl; N is the dimension of yc.

3. Dataset Acquisition Experiment

3.1. Fault Signal Simulation. CNN model training requires a
large amount of data. Too small a dataset produces a trained
model that is imprecise and lacks generalization ability. ,e
real fault data of a certain engine are insufficient to effectively
train the model, so we analyzed the fault modes of sensors
used in aeroengine control systems, simulated various
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sensor faults, and obtained the output data of sensors
through a series of simulation experiments.

,e sensor fault changes the output of the sensor and
renders the control system which is unable to accurately
provide measured information, resulting in a large error in
the feedback value. ,is further degrades the performance of
the control system even to the point of failure. According to
their cause, sensor faults can be classified into different
categories. Certain sensor faults occur suddenly, where the
sensor output value changes suddenly due to structural
damage or other reasons such as open fault or short-circuit
fault. Some sensor faults occur slowly during engine oper-
ation and have smaller amplitude, e.g., bias fault, spike fault,
drift fault, or periodic disturbance fault. Table 1 summarizes
the causes for several faults and provides a simulation
scheme thereof [26].

After determining the fault simulation method, we de-
termined the sensor simulation model. In most cases, first-
order or second-order inertial elements [27] are used to
represent sensors in the simulation model. ,e latter was
selected in this study. Its transfer function is as follows:

G(s) �
w2

n

s2 + 2ξwns + w
2
n

· e− τs, (10)

where ξ � 1.25, wn � 9, τ � 0.12.
Considering the sensors of the aeroengine control sys-

tem that tend to work alongside disturbances such as am-
bient noise, we generated a Gaussian noise G(0, σ) with a
mean of zero and variance of σ for subsequent analysis. ,e
signal was then artificially mixed with the output of the
sensor simulation model to make the output result closer to
real-world signal values. We simulated the output signals of
the sensor under seven different health conditions in
MATLAB as shown in Figure 3.

,e parameter records of the engine used in this ex-
periment were obtained under different working conditions
(e.g., cruise state and maximum state) and flight conditions
(e.g., different heights, Ma). Hence, the component-level
model of an engine was used as the simulation verification
model. ,e engine mathematical model was run at the
design point working condition on the ground and the off-
design point working condition on the upper air, respec-
tively. ,e input of the aeroengine model is step signals. ,e
data obtained from the output signal of the model through
the sensor model were then used as experimental data. ,e
diagnosis performance can be evaluated effectively by ran-
dom fault simulation. ,e fault types, fault time, and fault
amplitudes of each simulation in our case are random. We
randomly changed the occurrence time and size of the fault,
as well as the slope, periodic signal frequency, and other
parameters to secure a sufficiently large amount of data.
When the simulation was complete, we sampled the sensor
signal every 0.01 seconds to build the dataset. Finally, 2,500
sets of sensor fault data were input to the MATLAB sim-
ulation platform.

3.2. Dataset Acquisition. A large amount of data is required
for aeroengine control system fault diagnosis, as discussed

above. Here, a portion of the sensor signal set was collected
from the records of a certain type of aircraft engine running
to fault under various working surroundings and fault types.
,e other portion of data was derived from the MATLAB
simulation. In this case, nine key characteristic parameters of
aeroengines that could be measured by sensors are con-
sidered: power-lever angle sensor PLA, inlet air temperature
T1, gas generator rotational speed NL, power turbine rota-
tional speed NH, compressor inlet temperature T25, com-
pressor outlet pressure P3, high-pressure power turbine
outlet temperatureT4.5, low-pressure turbine outlet tem-
perature T5, and low-pressure turbine outlet pressure P5.
Seven possible sensor health conditions are considered for
each sensor. We obtained 500 data samples for each health
condition, resulting in a total of 3,500 datasets.

,e CNN is a supervised learning method that requires
marked input and output data. In other words, in a su-
pervised learning process, the categories of each training
sample and test dataset should be known. We labeled each
type of (preprocessed) data for each sensor health condition
as shown in Table 2.

Next, we performed time-frequency analysis of the
preprocessed and labeled data. We then obtained a dataset
composed of time-frequency graphs (Figure 4). Finally, the
dataset was arbitrarily divided into two parts: a training set
and test set (about 70% and 30% of the total data, respec-
tively). We processed the time-frequency graph to treat the
images, so they suited the CNN (224× 224). ,e processed
dataset was then saved as the CNN input dataset.

4. Experiments and Discussion

4.1. Experimental Setup. In this section, an experiment was
conducted to show the effectiveness of our proposed method
based on the dataset above. ,e experiment settings are
shown in Figure 5.

4.2. Experimental Parameter Selection. In the wavelet
transform of this experiment, we used the Morlet wavelet. It
is a basic wavelet which is often used for continuous wavelet
transform. After several experiments, we found that a scale
factor setting of 1–100 worked best for our experimental
conditions. For each given scale p, the wavelet coefficients
were computed for q� 1 to q� length (i.e., the length of the
signal).

Due to the complex structure of the deep learning model,
it is difficult to select appropriate parameters to establish an
effective model. In order for the scheme we designed to have
good performance, we determined the appropriate key
parameters based on the experience of our predecessors
[2, 28] and the classical convolutional neural network model
LeNet-5. ,ese parameters include the size and number of
the filter, the ratio of the dropout layer, the learning rate, and
the size of input data (Table 3).

,e architecture of the CNN is shown in Figure 6. ,e
CNN structure designed in this study includes one input
layer, two convolution layers, two pooling layers, and three
fully connected layers. A dropout layer was added behind the
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Table 1: Common sensor types, fault causes, and simulation methods.

Fault Reason Method of simulation

Short circuit
Pollution caused by the bridge road corrosion line

short connection
Signal is close to 0.1

Open circuit Signal line is broken, chip pin is not connected Signal approaches maximum

Spike
Random disturbance in power supply and ground

wire, surge
Add a pulse signal to the original signal

Bias Bias current or bias voltage
Add a small constant or random signal to the original

signal
Drift Temperature drift Signal is offset by a certain rate

Periodic disturbance 50Hz interference from the power supply
Signal of a certain frequency superimposed on the

original signal
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Figure 3: Continued.
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Figure 3: Sensor signals of 7 health conditions. (a) Short circuit. (b) Open circuit. (c) Spike. (d) Bias. (e) Drift. (f ) Normal. (g) Periodic
disturbance.

Table 2: Fault labels.

Fault Short circuit Open circuit Spike Bias Drift Normal Periodic disturbance

Label 0 1 2 3 4 5 6
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Figure 4: Continued.
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Figure 4: Scalograms of 7 health conditions. (a) Short circuit. (b) Open circuit. (c) Spike. (d) Bias. (e) Drift. (f ) Normal. (g) Periodic
disturbance.
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Figure 5: Flowchart of the experiment.

Table 3: Network parameters.

Name Parameter ,e size of output feature

Input layer Input data 3× 224× 224
Convolutional layer (C1) 6 filters, size 5∗ 5, stride 1 6∗ 220∗ 220
Pooling layer (P1) Filter size 2∗ 2, stride 1 6∗110∗110
Convolutional layer (C2) 16 filters, size 5∗ 5, stride 1 16∗106∗106
Pooling layer (P2) Filter size 2∗ 2, stride 1 16∗ 53∗ 53
Fully connected layer (F1) 120 nodes, dropout� 0.5 44944∗120
Fully connected layer (F2) 84 nodes, dropout� 0.5 120∗ 84
Fully connected layer (F3) 7 nodes 84∗ 7
Output layer Output data 7∗1
Learning rate 0.00004 None
Training dataset 2450 None
Test dataset 1050 None
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fully connected layer to prevent overfitting.,e input data of
the network are time-frequency images 3× 224× 224 in size
and the output is 7×1. ,ere are 6 filters in the first con-
volutional layer (C1). ,e size of the output feature graph is
6× 220× 220. An output feature graph 6×110×110 in size
falls after the first pooling layer (P1).,e second convolution
layer (C2) has 16 filters. ,e size of the output feature graph
is 16×106×106. ,e output feature diagram after the sec-
ond maximum pooling layer (P2) is 16× 53× 53 in size. ,e
fault signals of sensors are classified by three fully connected
layers with dimensions of 44944×120, 120× 84, and 84× 7,
respectively.

5. Results

To validate the proposed CNN+CWT method, we used a
radial basis function network (RBF) for fault detection and
isolation of the same dataset. ,e RBF is a feedforward
neural network which maps from the nonlinear separable
pattern space to the linear separable state space. It is often
used in sensor fault diagnosis, which makes it comparable to
the proposed method.

We selected the loss curve and accuracy rate curve to
describe the quality of the trained deep network.,e abscissa
of these two graphs is the training iteration; the ordinate is
training loss, equation (8) and accuracy rate, equation (9),
respectively.,e loss curve (Figure 7) of the CNNwas drawn
by comparing the actual label and classification results of
sensor fault signals. Figure 6 shows the loss curve of 35,000
iterations.

,e accuracy rate of the CNN (Figure 8) was calculated
by each iteration, and the bias was updated after training the
weight. Figure 8 shows loss accuracy variations with the
number of iterations when different fault types were input to
the deep network.,e input of the RBF neural network is the
time-frequency signal of the aeroengine control system
sensor. We set the target error as 1 × 10− 8 and stopped the
network training process when the average error function
met the target.

,e RBF training process is shown in Figure 9. ,e
trained RBF network is very large with 1,354 neurons. For
further illustration, the final test results of the trained CNN
and RBF models are shown in Table 4.
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Figure 6: CNN architecture.
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,e CNN+CWTmethod has higher accuracy than the
RBF neural network at more than 97% versus only around
91%. ,e RBF neural network has limited ability to express
complex functions, and its input only contains the time-
domain information of the signal. By contrast, the proposed
method combines time domain and frequency domain in-
formation for the purposes of deep learning. Deep learning
expresses complex functions with relatively few parameters
in extracting essential characteristics from relatively few
sample sets, ultimately forming a very effective fault diag-
nosis scheme. ,e proposed method is indeed more dis-
criminant than the RBF; the CNN model can effectively
identify and isolate aeroengine sensor faults.

6. Conclusion

An intelligent approach combining time-frequency analysis
and CNN methodology was established in this study, the
CNN+CWT, to transform the signal recognition problem
into an image recognition problem for effective aeroengine
sensor fault diagnosis. Traditional methods require bur-
densome modeling and manual feature extraction processes;
improper threshold settings lead to false alarms. ,e pro-
posed method was designed to resolve these and other

problems with the traditional sensor fault diagnosis
methods.,e deep structure of this method allows abundant
essential characteristics of datasets to be extracted. Sensor
signals representing different health conditions were col-
lected from the records of a certain type of aircraft engine
running and simulated in MATLAB. Time-frequency graph
features were obtained by using a continuous wavelet
transform for the collected and simulated sensor fault sig-
nals. We then used historical data features to train the CNN
model. Finally, we validated the CNN+CWT by compari-
son against the RBF neural network method.,e accuracy of
our trained CNN model reached 97%, exceeding that of the
RBF neural network. Experimental results demonstrated its
feasibility.

While good experimental results have been obtained by
the proposed method, further optimization is still necessary
since the current training time is longer than most shallow
networks in the literature. In addition, further research is yet
needed to recover fault signals through in-depth learning
algorithms. It is also necessary to obtain information such as
the occurrence time and size of faults to make fully effective
fault decisions.
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