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ABSTRACT

Air quality is concerned with pollutants in both the gas phase and solid or liquid phases.�e la�er are
referred to as aerosols, which are multifaceted agents a�ecting air quality, weather and climate through
many mechanisms. Unlike gas pollutants, aerosols interact strongly with meteorological variables with the
strongest interactions taking place in the planetary boundary layer (PBL).�e PBL hosting the bulk of
aerosols in the lower atmosphere is a�ected by aerosol radiative e�ects. Both aerosol sca�ering and
absorption reduce the amount of solar radiation reaching the ground and thus reduce the sensible heat
�uxes that drive the diurnal evolution of the PBL. Moreover, aerosols can increase atmospheric stability by
inducing a temperature inversion as a result of both sca�ering and absorption of solar radiation, which
suppresses dispersion of pollutants and leads to further increases in aerosol concentration in the lower PBL.
Such positive feedback is especially strong during severe pollution events. Knowledge of the PBL is thus
crucial for understanding the interactions between air pollution and meteorology. A key question is how the
diurnal evolution of the PBL interacts with aerosols, especially in vertical directions, and a�ects air quality.
We review the major advances in aerosol measurements, PBL processes and their interactions with each
other through complex feedback mechanisms, and highlight the priorities for future studies.

Keywords: aerosol, PBL, radiation, aerosol–PBL interaction, climate change

INTRODUCTION

Aerosols are multi-facet agents that a�ect air qual-
ity, weather and climate throughmanymechanisms,
as reviewed extensively in a series of IPCC reports.
Aerosols are colloids of �ne solid particles or liq-
uid droplets suspended in the atmosphere.�rough
the e�ects of aerosol–radiation interactions (ARI),
aerosol–cloud interactions (ACI) or both, aerosols
can signi�cantly a�ect Earth’s climate by perturb-
ing the Earth’s radiation budget andwater cycle pro-
cesses [1–8]. As some observational analyses have
indicated, cloud and precipitation properties are re-
markably a�ected by elevated aerosols, which sup-
press light rainfall but intensify heavy rainfall and
lightning in the coastal regions of Southeast China
[9]. Aerosol pollution in the planetary boundary
layer (PBL) adversely a�ects human health [10,11].

Chemical reactions can occur on the surface of
non-gaseous particles or within the body of liquid
droplets, and these processes are key components of
the biogeochemistry of our planet [12].

�e ARI e�ect is concerned with the sca�ering
and absorption of solar radiation by aerosol parti-
cles. Aerosols can substantially reduce the amount
of solar radiation reaching the ground [13,14], and
thus reduce sensible heat �uxes that drive the diurnal
evolution of temperature and the PBL [15]. �is in
turn leads to weaker turbulence in the PBL, and a re-
duction of entrainment of dry air into the PBL from
the free troposphere, which leads to more moisture
in the PBL. �e combined e�ects of lowering near-
surface temperature and increased moisture can in-
crease relative humidity (RH). �e increased RH
tends to favor the hygroscopic growth of aerosols
and enhances the sca�ering of solar radiation. �e
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increased RH could also enhance the formation of
secondary aerosols. �e aqueous-phase reactions of
NO2 and SO2 in fog/clouds or aerosol water are im-
portant for sulfate formation under hazy conditions
in China [16–18].

It has been found that the discrepancy in aerosol
types leads tohugedi�erences in estimatesof aerosol
direct forcing at the top and bo�om of the atmo-
sphere over the Indian Ocean [14] and in China
[19]. Also, it is well recognized that various aerosol
types exhibit quite di�erent ARI e�ects. Among all
types of aerosols, absorbing aerosols, consisting pri-
marily of organic carbon, black carbon (BC) and
brown carbon [21], have the strongest interaction
with the PBL [22]. In a polluted environment, BC
can be transformed into fully compact particles and
becomes a much stronger absorbing agent [23,24].
As such, absorbing aerosols can alter the PBL more
e�ectively than other types of aerosol, whichmay be
another major factor on top of the formation of new
particles in triggering severe haze events in China
[25].

�e PBL is inherently connected to air pollution
because of the bulk of aerosols residing in the PBL,
and the strong interactions or feedbacks between
aerosols and the PBL [26]. �ese interactions can
considerably exacerbate air pollution, even if emis-
sion rates remain the same. Observational andmod-
eling studies suggest that aerosol–PBL feedbacks
in�uence air quality signi�cantly. Surface dimming
(by all types of aerosols) and upper-PBL warming
(by absorbing aerosols) help stabilize the PBL and
weaken turbulence mixing, leading to a decrease
in the boundary-layer height (BLH), which correc-
tively favors the accumulation of air pollutants in a
shallower PBL [15,24,27].

�e absorption of solar radiation by aerosols can
induce a temperature inversion (TI) at the top of
thePBL that is o�en associatedwith severe pollution
episodes [28]. When the temperature di�erence be-
tween the top and bo�om of a TI layer is greater
than 20◦F, severe pollution ensues [29]. Someof the
most severe pollution events in history have been as-
sociated with elevated TIs. In general, high aerosol
concentrations tend to occur in the atmospherewith
a TI [30–32]. Gas pollutants such as SO2 [33] and
NO2 [32,34] have also been found to be closely
linked to TIs.

In this article, we comprehensively review the
studies with regard to aerosol, pollution, PBL and
their interactions, starting with the section entitled
‘Overview of air pollution and aerosols in China’.
PBL processes and observations are given in the
section entitled ‘Fundamentals and observations
of the PBL’. Aerosol–PBL–convection interaction
schemes are described in the section entitled ‘Pro-

cesses governing aerosol and PBL interactions’. �e
section entitled ‘�e trend and �uctuation of air pol-
lution: the roles of circulation, PBL, climate change
and weather’ elaborates on the general roles of PBL,
climate changes and weather regimes on surface air
pollution.�e section entitled ‘Concluding remarks’
concludes the paper.

OVERVIEW OF AIR POLLUTION AND
AEROSOLS IN CHINA

Ground surface measurements

Aerosols have been measured extensively across
China, chie�y a�er 2000, through national opera-
tional networks and �eld experiments, which have
been comprehensively reviewed by Liao et al. [6]
and Li et al. [7]. Prior to 2000, a few direct aerosol
optical depth (AOD) measurements were made,
which were inferred from clear-sky radiation data
[35,36,], revealing a rapid deterioration of air qual-
ity from the 1960s to the 1990s. �is was con-
�rmed by concomitant satellite-derived AOD ob-
servations [37].More accurate AODmeasurements
can be provided by ground-based sunphotometers.
A�er 2000, several ground-based aerosol observa-
tion networkswere established acrossChina, includ-
ing the Chinese Sun Hazemeter Network [38], the
China Atmosphere Watch Network (CAWNET)
[39], the China Aerosol Remote Sensing Network
[40,41], and theCampaign onAtmospheric Aerosol
Research network of China (CARE-China) by the
Chinese Academy of Sciences [42]. Intensive �eld
experiments measuring rich aerosol properties have
been increasingly conducted in China, such as the
EastAsianStudyofTroposphericAerosols: an Inter-
national Regional Experiment (EAST-AIRE) [43]
and the East Asian Study of Tropospheric Aerosols
and Impact on Regional Climate [44].

�ese data have been widely used to derive the
nationwide distribution of AOD [38] and aerosol
single sca�ering albedo (SSA) [45]. Aerosol loading
is exceptionally heavy in the eastern half of China.
Aerosol absorption is particularly strong in central-
west China and Northeast China due to the high
consumption of coal (Shanxi is the capital of coal
mining in China).�ere is much weaker absorption
in southeastern China due presumably to its indus-
trial emissions containinghighproportionsof sulfate
and nitrate whose absorption is weak. Combining
ground- and satellite-based measurements, Li et al.
[20] for the �rst time derived the estimate of aerosol
radiative forcing at the top, bo�om, and within the
atmosphere.�edaily andannualmeanatmospheric
absorption and surface cooling due to aerosols
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(primarily in the PBL) are −20 W m−2 and 18 W
m−2, respectively.

Air pollution typically characterized by high con-
centration of aerosol particles in aerodynamic diam-
eter less than 2.5µm (PM2.5) concentrations is one
of the major environmental concerns in China. Al-
though air quality in megacities has continued to
improve since 2013, the annual mean PM2.5 con-
centration in most cities in northern China is still
much higher than the National Ambient Air Qual-
ity Standard (i.e. 35 µg m−3 as an annual average),
e.g. 70.3 µg m−3 in Beijing in 2016. �ese results
clearly indicate that air pollution in megacities in
China is still severe, and it is even worse during the
winter season because of the increased emissions by
coal combustion for residential heating along with
the frequent stagnant meteorological conditions. As
a result, extensive ground measurements have been
conductedduring thepast decade to characterize the
chemical composition, sources and formationmech-
anisms of aerosol particles, with most of them tak-
ing place in the four most polluted regions, includ-
ing the Pearl River Delta, the Yangtze River Delta,
the North China Plain and the Sichuan Basin. �is
includes several international �eld campaigns by in-
volving tens of research teams around the world,
such as the Campaigns of Air Quality Research in
Beijing and Surrounding Regions (CAREBeijing),
the Program of Regional Integrated Experiments of
Air Quality over Pearl River Delta (PRIDE-PRD)
[39], and the Haze Observation Project Especially
for Jing-Jin-Ji Area (HOPE J3A) [46].

Numerous results and �ndings on aerosol com-
position, sources and processes have been pre-
sented.Overall, organic aerosols account for thema-
jor fraction of PM2.5 followed by ammonium sulfate
or ammonium nitrate, and black carbon. While the
sources of primary emissions including tra�c, coal
combustion, biomass burning and cooking are iden-
ti�ed and quanti�ed, secondary aerosols are found
to bemore important in the formation of severe haze
episodes [16,47,48]. It has beenwell recognized that
the high anthropogenic emissions and rapid sec-
ondary aerosol formation are the key factors leading
to the frequent occurrence of severe haze episodes,
characterizedby e�cient newparticle formation and
growth [49]. �e e�cient aerosol nucleation, com-
bined with aerosol growth, is closely associated with
severe haze episodes in China. It is quite distinct
from those typically observed in the urban regions
of other countries and pristine environments world-
wide [50], which are modulated by interactions be-
tween sulfuric acid and organics [51–54]. Typically,
there exist clear diurnal variations in the PM num-
ber, size and mass concentration [55], re�ecting the
interplay between primary emissions, new particle

formation, photochemical growth, removal and the
PBL variation. In contrast, haze events in China typ-
ically exhibit a periodic cycle of 4–7 days [56].

In addition, recent studies have also illustrated
the important roles of stagnant meteorology, which
are typically characterized by low BLH, weak wind
speed, strong temperature inversion and high RH in
the formation of these events [57,58]. In fact, the fa-
vorable weather conditions induced by the increases
in greenhouse gas emissions or the changes in the
boreal cryosphere, particularly in the global environ-
ment, are mainly responsible for the more frequent
haze episodes in winter on the North China Plain
[59,60]. �e most recent results from air pollution
studies in China are summarized in [61], and the
extensive ground measurements of aerosol particles
based on real-time techniques are presented in [62].

Aerosol vertical distributions and the PBL

�e aerosol vertical distribution is key in determin-
ing aerosol radiative forcing. To date, our under-
standing of aerosol radiative forcing is still very poor
due to the assumption of vertically constant pro-
�les in radiative-transfer models, among other fac-
tors. Aerosol radiative forcing strongly depends on
the vertical distributionof aerosols relative to clouds,
especially for dust layers [63].

Using aircra� observations over the Beijing–
Tianjin–Hebei region of North China, di�erent
types of aerosol vertical distributions in association
with the PBL evolution have been revealed [64–66].
When thePBL iswell developed, the aerosol number
concentration (Na) is homogeneously distributed
throughout the whole PBL, leading to a sharp drop
above the PBL top [66]. �e vertical pro�le of
aerosol number concentration (Na) can then be ap-
proximated by a piecewise function [64].

Our understanding of the aerosol vertical
structure has been improved tremendously since
the advent of the Cloud–Aerosol Lidar with
Orthogonal Polarization (CALIOP) onboard the
Cloud–Aerosol Lidar and Infrared Path�nder
Satellite Observations satellite, which has become
increasingly recognized as a valuable sensor to
elucidate the altitude-resolved structure of aerosol
particles such as smoke, dust and polluted dust
[67]. While ground-based lidar and aircra�-borne
in situ measurements have provided major insights
into regional aerosol structure, CALIOP-based
observations have been extensively used to derive
the 3D structure of aerosols on a global scale [68].
By de�ning themost probable height (MPH)where
aerosol particles most likely reside, Huang et al. [69]
generated a global MPH distribution for dust and
smoke aerosol types.
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On regional scales, large discrepancies and un-
certainties remain when it comes to the vertical dis-
tribution of aerosols at altitudes within the PBL
up to the bo�om of the free troposphere [70],
depending on the regions and seasons of interest
[71–74]. Speci�cally, Adams et al. [75] presented
the 3D structure of aerosols across the trans-Atlantic
region. Based on 10 dust cases observed by the
CALIOP, Huang et al. [76] found that summertime
dust storms occurred more frequently than previ-
ously thought on the remote northwestern Tibet
Plateau, and that the dust layer reached altitudes
of up to 4–7 km. Based on CALIOP observations,
along with surface meteorological data and the Hy-
brid Single Particle Lagrangian Integrated Trajec-
tory Model (HYSPLIT), Guo et al. [77] found that
dust storms originating in northwestern China were
transported eastward to Beijing at a rate of 1200 km
per day, mostly at altitudes of 3–5 km. As shown in
Fig 1, two zonal transport pathways were revealed
from synergetic observations made by the CALIOP
and the Moderate Resolution Imaging Spectrora-
diometer (MODIS): one dust belt across northern
China and a smoke belt across southern China [78].
Recently, based on long-term satellite- and ground-
based measurements, both seasonal and spatial
variations of the pro�les of aerosol extinction coe�-
cients over China have been identi�ed. In particular,
the lapse rates of aerosol extinction in the polluted
regions were much greater than those in the pristine
regions, most likely due to more stable atmosphere
caused by absorptive aerosols in the polluted regions
[79].

�e aerosol vertical distribution in the PBL, sub-
ject to the PBL dynamics and large-scale weather
systems, exhibits strong temporal (seasonal and di-
urnal) variations and spatial di�erences, as revealed
in the meteorological tower measurements of PM2.5

and PM10 in Beijing in 2003 [80]. Further subse-
quent measurements were made on the same tower
to characterize the vertical distributions of trace
gases (e.g. ozone (O3), nitrogen dioxide (NO2),
and sulfur dioxide (SO2)), PM2.5 and �lter-based
aerosol composition [81–84]. �e results showed
that the mixing ratio of O3 o�en peaked at ∼120 m
and remained high in the residual layer at nigh�ime
[85], while SO2 was found to have the highest mix-
ing ratio at ∼50 m [82]. More recently, Sun et al.

[86,87] conducted simultaneous real-time observa-
tions of aerosol particle composition at two di�erent
heights on a tower, i.e. ground level and 260mabove
ground level (AGL), using two similar aerosol mass
spectrometers. �e results illustrated very complex
vertical distributions of aerosol species that inter-
act closelywith boundary-layermeteorology. In gen-
eral, the vertical di�erences between ground level

Figure 1. Annual mean 3D occurrence (color shaded) for (a)

all aerosol types, (b) dust aerosols and (c) smoke aerosols,

which are derived from level-2 CALIOP aerosol layer prod-

ucts, in combination with MODIS/Aqua AOD data (white–

black shaded) for the period October 2006–September 2014.

Note that only those with frequency greater than 5% are

shown here. (Adapted from [78].)

and 260 m AGL are reduced substantially in the
daytime due to the elevated BLH associated with
stronger vertical mixing. �ey also observed the in-
teractions of di�erent air masses at di�erent heights
that a�ect the vertical gradients. For example, the
temperature inversion during the clearing stage of a
severe pollution event results in a delay of the clean-
ing of air pollutants between ground level and 260m
AGL, while the stably strati�ed layer associated with
a fog event is o�en characterized by much higher
concentrations of aerosol species in the lower atmo-
sphere and rapid decreases on the top of the layer.
Further analysis shows that the vertical di�erences in
meteorology (e.g. T andRH) and gas precursors can
also a�ect secondary aerosol formation at di�erent
heights. For example, higher concentrations of ni-
trate at higher altitudes were clearly associated with
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the lower T and higher RH that facilitated the gas-
to-particle formation mechanisms.

Although the vertical distributions of air pollu-
tion and its interaction with the boundary layer in
the low atmosphere have been extensively charac-
terized based on the tower measurements, our un-
derstanding of these characteristics and interactions
at high altitude is far from complete. �e vertical
distribution of aerosol number concentration in the
PBL over Beijing has been found to be strongly re-
lated to di�erent weather systems, based on in situ

aircra� measurements [66]. Distinct vertical pro-
�les of aerosol sca�ering coe�cient and precursors
were found over cities in eastern, northwestern, and
northeastern China [88]. Similar vertical distribu-
tion characteristics of aerosol optical propertieswere
reported based on micropulse lidar data from the
YangtzeRiverDelta ofChina [89].Multi-layerBC in
the PBL, including local accumulation near the sur-
face and regional transport from upwind megacities
in the upper PBL, was revealed using a tethered bal-
loon platform [90]. In 2014, the vertical pro�les of
O3 and size-resolved aerosol number concentrations
were measured at a rural site on the North China
Plain using an unmanned aerial vehicle [91].�e re-
sults showed higher O3 levels in the residual layer
than themixed layer,while this is reversed for aerosol
number concentrations. Further analysis illustrated
that the vertical pro�les of air pollutants are in�u-
encedbynotonlyPBLmeteorology, but also anthro-
pogenic emissions on local and regional scales.

FUNDAMENTALS AND OBSERVATIONS
OF THE PBL

PBL processes

A comprehensive review of the theory, nature and
modeling of PBL was given in Baklanov et al. [92].
�e physical processes in the PBL are concerned
with turbulent di�usion, wind speed, the atmo-
spheric thermodynamic state (i.e. temperature, hu-
midity), and adiabatic heating due to aerosols and
other absorbing agents. �e wind and temperature
pro�les along with the BLH are the main factors af-
fecting turbulent di�usion [81]. �e PBL structure
is also dictated by large-scale weather regimes [93].

Based on the Monin–Obukhov similarity the-
ory of continuous turbulentmotion, the relationship
between �ux (e.g. momentum, sensible and latent
heat �uxes) and atmospheric pro�le (e.g. wind, hu-
midity, temperature, gradient) in the atmospheric
surface layer is key for air pollution di�usion, es-
pecially under stable strati�cation conditions. �e
structure of a stable boundary layer remains a puz-
zle in the PBL study. A series of experiments to

tackle this issue have been carried out, such as the
Stable Atmospheric Boundary-Layer Experiment in
Spain [94], the Cooperative Atmospheric–Surface
Exchange Study in Kansas [95], and the Surface
Heat Budget of the Arctic Ocean Experiment in the
Antarctic [96]. Turbulent intermi�ency frequently
occurs in a stable boundary layer, which tends to
scale up the transport of heat, water vapor, and
momentum in the vertical, as opposed to the re-
duced vertical transport in the unstable boundary
layer characterized by continuous turbulent motion
[97]. �e characteristics of such scalar quantities as
PM2.5 and NOx are a�ected by the turbulent ve-
locity �eld and present a complex, chaotic struc-
ture on spatiotemporal scales, which makes it dif-
�cult to study the turbulent transport of pollutants
[98]. �e Hilbert–Huang transform method [99]
is a valid method to solve atmospheric turbulence
problems in a stable boundary layer and has been
widely applied [100,101]. Currently, most topics
associated with generalized PBL parameterization
schemes in models are related to a stable boundary
layer. For example, a systematic overestimation of
simulated near-surface wind velocities under stable
atmospheric conditions has been reported in addi-
tion to an overestimated turbulent di�usion capacity
of air pollutants in a stable layer, resulting in the un-
derestimation of pollution [102,103]. It is therefore
imperative to explore and understand the structure
of the stable boundary layer and its interaction with
and in�uence on the air pollutant transport process.

Detection and variations of BLH

Knowledge of the PBL is crucial for understanding
the interactions between air pollution andmeteorol-
ogy. A key question remaining unclear is how the
diurnal evolution of the PBL interacts with the ver-
tical distributions of aerosols. To address this ques-
tion, we need to have a good knowledge of the BLH
and its evolution. �e determination of BLH is a
nontrivial task because it is not directly measured by
routine meteorological instruments.�e most com-
mon PBL observations are obtained by radioson-
des, which can provide vertical temperature, mois-
ture and wind pro�les from the surface up to the
∼50-hPa level [104–106]. Various algorithms have
beendeveloped to retrieve theBLH; thesehavebeen
completely summarized in Seidel et al. [107].

Guo et al. [108] obtained the �rst BLH cli-
matology in China using long-term �ne-resolution
(1-s resolution) atmospheric soundings from the
radiosonde observation network operated by the
China Meteorological Administration. In addition
to the spatial and seasonal variability of the BLH,
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Figure 2. Spatial distribution of mean BLHs derived from summertime sounding mea-

surements at (a) 0200, (b) 0800, (c) 1400 and (d) 2000 Beijing time in summers of the

period 2011 to 2015 throughout the L-band China Radiosonde Network as operated

by the China Meteorological Administration (colored dots), overlaid with those derived

from simultaneous ERA-Interim reanalyses (color shading). (Adapted from [108].)

the diurnal cycles of PBL were investigated for the
�rst time across China (Fig 2). A large discrepancy
between sounding- and reanalysis-derived BLHwas
found, particularly in North China at 1400 Beijing
time.�ismay undermine our ability to observe and
simulate surface PM2.5 because the la�er relies on
reanalysis-derived BLH data [40,109–111].

Although radiosondes are widely deployed
around the world, operational radiosonde launches
are done only twice a day (0000 UTC and 1200
UTC), prohibiting observation of the diurnal
variation of the BLH. To overcome this limitation,
various types of measurements have been used to
derive the BLH, including more frequent launches
of radiosondes that usually happen during a �eld
experiment, ground-based remote sensing using
high-resolution infrared sounder, multi-channel
microwave radiometer, lidar, sodar, etc.

Among the various observation techniques, the
lidar measurements have been most widely used to
retrieve the PBL. �e wavelet covariance transform
method is one of the widely used algorithms; this
is detailed by Davis et al. [112] and Brooks [113].
�e algorithm allows for comparisons between the
backsca�er sounding and a step function, such that
the largest gradient in backsca�er with altitude is
marked as the top of the PBL. �e wavelet co-

variance transform is suitable for the automatic de-
tection of the PBL because it requires only the li-
dar backsca�er information. However, the wavelet
covariance transform method o�en detects cloud
backsca�er and elevated aerosol plumes instead. To
avoid this problem, Steyn et al. [114] �t the entire
backsca�er pro�le to an idealized curve. �e algo-
rithm uses an iterative curve-��ing routine to min-
imize the root-mean-square di�erence between the
backsca�er pro�le and the idealized curve. Simu-
lated annealing allows the iterative process to by-
pass local solutions and returns a more robust BLH
[115]. It also introduces a small random element
that must be �ltered out to avoid occasional unreal-
istic jumps in BLH values.

Sawyer andLi [116] proposed a versatilemethod
that can be applied to any type of atmospheric pro-
�le data. Moreover, it takes advantage of the merits
of the aforementioned techniques while overcom-
ing their limitations. Figure 3 presents a compari-
son of the BLH detected by lidar, radiosonde and
temperature pro�les from a high-resolution infrared
sounder. �e BLH values derived from these di�er-
ent approaches agree generally well, although some
consistent di�erences exist.

�emast ormeteorological tower is an important
observational platform used to continuously mea-
sure pro�les of turbulent �ux (latent and sensible
heat), and pro�les of the atmospheric mixing ratio
within the lower part of the PBL at a reasonably
high resolution [84,104,117,118]. �e main short-
coming of this platform is its limited range, which is
typically below 300 m. As a simple remote sensing
instrument, the sodar is suitable for routine opera-
tions [104,119]. �e sodar can capture typical PBL
features by measuring structure parameters such as
the acoustic refractive index, irrespective of stable or
convective atmospheric conditions. With Doppler
capability, it can determine vertical velocity variance
pro�les. For instance, Yang et al. [120] characterized
the daytime evolution of the PBL based on observed
vertical velocity variance pro�les using one Doppler
sodar on the Tibetan Plateau during the dry season.
�e sodar, however, is limited to an altitude range of
500–1000 m and is highly sensitive to environmen-
tal noise [104].

Boundary-layer wind pro�lers have been widely
deployed in �eld campaigns to investigate the PBL
structure [121–123] as well. Based on wind pro-
�ler measurements, the features of low-level jets in
Shanghai and Tianjin have been elucidated by Du
et al. [124] and Wei et al. [125], respectively. �e
wind pro�ler observed backsca�er signals in clear air
are proportional to the structure function parameter
of the refractive index, which can be used to estimate
the BLH under convective conditions [126,127].

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
s
r/a

rtic
le

/4
/6

/8
1
0
/4

1
9
1
2
8
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



816 Natl Sci Rev, 2017, Vol. 4, No. 6 REVIEW

124 126 128 130

0

1

2

3

4

5
MPL PBL
AERI PBL
Sonde PBL

SGP MPL Backscatter, May 2−10, 2004

Fractional Julian Day

A
lt
it
u

d
e

 (
k
m

)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Evolution of BLHs calculated using micropulse lidar (MPL), atmospheric emitted radiance interferometer (AERI) and radiosonde data,

overlaid on the MPL backscatter �eld during a nine-day period (2–10 May 2004) at the Southern Great Plains site in the US. (Adapted

from [116].)

Orbiting around the Earth, the space-borne lidar
has the unique merit of providing global BLHs. Us-
ing CALIOP-a�enuated backsca�er observations,
the BLH was investigated over China by Liu et al.

[128] and Zhang et al. [129], in the southeast-
ern Paci�c by Ho et al. [130], and over Europe
by Leventidou et al. [131]. However, under sta-
ble PBL conditions, large uncertainties in estimat-
ing BLHs from space-borne lidar like CALIOP en-
sue due to the weak vertical gradients in the aerosol
loading [104].

PROCESSES GOVERNING AEROSOL AND
PBL INTERACTIONS

Aerosol-induced adiabatic heating in the
PBL

Togain an insight into the radiative e�ect of aerosols
on the PBL, it is essential to compute the radiative
heating rate with known aerosol vertical extinction
pro�les and SSApro�les.�eSSApro�le ismost dif-
�cult to get, although there are some aircra� in situ

measurements of SSA. Several methods have been
used to calculate the columnar SSA. One method
is to use a combination of satellite-measured spec-
tral re�ectance and surface-measured transmi�ance,
which can be collected over large regions such as
acrossChina [45]. Since the bulk of aerosols arewell
mixed in the PBL, one may assume to the �rst order
of approximation that SSA derived for the entire at-
mospheric column is the same as that for the PBL.

SSAvalues can thenbeused to compute the radiative
heating rate by virtue of lidar-observed aerosol ex-
tinction or even backsca�ering pro�les with certain
assumptions regarding the backward sca�ering ra-
tio [89]. Based on a single-channel elastic-sca�ering
lidar, the backsca�ered radiation can be calculated
according to the following equation [132,133]:

P (r ) = Oc (r )C E
β(r )

r 2
exp

[

−2

∫ r

0
σ (z)dz

]

+ Nb + A(r ), (1)

where r represents the range, and β(r) and σ (r) de-
note the backsca�ering and extinction coe�cients
caused by both aerosol and molecular factors, re-
spectively. Other variables are detailed by Campbell
et al. [132] and Welton et al. [71]. �e normalized
relative backsca�er, PNRB(r), orNRB, can be formu-
lated as

PNRB(r ) = Cβ(r ) exp

[

−2

∫ r

0
σ (z)dz

]

,

(2)
whereC can be solved using a technique constrained
by the co-located AOD at a range where molecular
sca�ering is determined above the surface-detected
aerosol layer under cloud-free conditions [71].
One can then solve for layer-averaged extinction–
backsca�er ratios and aerosol extinction coe�cient
pro�les [71,134].�e radiative forcing of aerosols at
the top, bo�om, andwithin the atmosphere has been
derived from this information [89].�e aerosol par-
ticles largely reside below 2 km AGL, most of which
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REVIEW Li et al. 817

Figure 4. Seasonal daily averaged vertical pro�les of aerosol particle heating rate (black solid lines), with their corresponding standard deviations (gray

horizontal lines) at Taihu in the central Yangtze River Delta region of eastern China in (a) spring, (b) summer, (c) autumn and (d) winter during the period

from June 2008 to May 2009. (Adapted from [89].)

(60%–80%) are within 1 km AGL. �is results in
large amounts of solar radiation trapped in the low-
est part of the PBL, which in turn heats up the lower
atmosphere (Fig 4).

Aerosol–PBL interactions due to ARI

�estrong contrast betweenwarming and cooling in
the atmosphere and the surface can drastically im-
pact atmospheric stability and the PBL, which can
a�ect weather and dynamics. By means of model
(NCAR/CAM3) tests, it has been demonstrated
that increases in aerosols ofmoderate absorptioncan
reduce wind, weaken atmospheric circulation and
even the monsoon system [7,135]. Accompanying
the rapid degradation of air quality is the steady de-
crease in surface wind speed [136] that has been at-
tributed at least partially to the e�ect of increasing
aerosols, as shown in recent studies using long-term
meteorological data [137,138].

Aerosols and the PBL interact inherently in a va-
riety of ways [7,22,26,139]:

(1) Aerosols cool the surface and lower atmosphere
by the reduction of shortwave, sensible heat,
and latent heat �uxes.

(2) Absorbing aerosols above the PBL warm up the
air of the free troposphere, and thus stabilize the
boundary-layer inversion cap, inducing andpro-
longing the temperature inversion in the upper
PBL, and suppressing di�usional dispersion of
pollutants near the surface.

(3) Absorbing aerosols within the PBL may not
strengthen the atmospheric strati�cation since
there is strong vertical mixing in the PBL due
to aerosol-induced atmospheric heating.�ere-
fore, absorbing aerosol within the PBL does not
naturally feed back to lower BLH. In this case,
the lower BLH may be caused by the decrease
of sensible heat at the surface.

(4) Aerosolsweaken surfacewinds andatmospheric
circulation within the PBL and increase atmo-
spheric circulation above the PBL.

Long-term visibility data, a proxy for aerosol
loading, have been used to infer the impact of
aerosols on meteorological variables in the PBL
[137,138,140]. Long-term (>50 years) trends in
many meteorological variables were analyzed in
central-western China, where aerosols are abundant
and strongly absorbing [45]. By virtue of the special
topography of the region (a large mountain range
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and a broad plain), changes due to background dy-
namics (mountain stations), the aerosol or pollu-
tion e�ect (contrasting trends between mountain
top and bo�om), and urbanization (the big city of
Xi’an and a rural station located on the plain) were
successfully di�erentiated. Below are the major ob-
servational �ndings and conclusions that o�er some
clues about the potential in�uences of aerosols on
thePBL andmeteorological variables inside thePBL
layer [137,138]:

(1) �e di�erence in the daytime maximum tem-
perature between plain stations (inside the
PBL) and mountain-top stations (outside of
the PBL) has decreased, implying cooling of the
surface during the daytime, due presumably to
aerosols.

(2) Wind speed has decreased over the plain sta-
tions, but increased at a neighboring mountain-
top station, with the largest di�erence occurring
around noon (most sensitive to aerosols), im-
plying a trendof stabilization inside thePBLand
destabilization outside the PBL.�is has an im-
portant implication for the dispersion of pollu-
tants from low lands, in particular, basins.

(3) �e number of thunderstorms in the plains has
decreased substantially, but li�le change is ob-
served at the neighboringmountain-top station,
implying weakening convection over the plains.

(4) �e number of rainy days has decreased, imply-
ing the likely suppression of PBL clouds, which
also has a bearing on the removal of pollutants
by rain scavenging.

�e �nding of decreasing surface winds and in-
creasing winds alo� is consistent with the hypoth-
esis originally proposed by Jacobson and Kaufman
[139] based on their model simulation with ab-
sorbing aerosols.�e �nding of decreasing thunder-
storms is at oddswith the aerosol invigoration e�ect,
suggesting a dominant role of the aerosol thermody-
namic e�ect due to strong aerosol absorption. �e
hypothesis was con�rmed using Tropical Rainfall
MeasuringMission(TRMM)thunderdata in south-
eastChina,where sulfate aerosols aremoreprevalent
[140].�e trend is opposite to that found in central
China, where aerosols are more strongly absorbing.

�e e�ect of aerosols on atmospheric thermody-
namics is more clearly revealed by the relationships
between aerosol loadings and near-surface temper-
ature inversions derived from continuous measure-
ments from an atmospheric emi�ed radiance in-
terferometer (AERI) deployed at the US Southern
Great Plains site for over a decade. Atmospheric
temperature pro�les derived from the AERI have
been used to study the climatology of tempera-
ture inversions [28]. It is expected that the thermal

inversions in the lowest troposphere, especially near
the ground, are substantially a�ected by aerosols,
particularly absorbing ones. �is was con�rmed by
the observed enhanced frequency of inversions with
increasing aerosol loading but declining frequency
of inversions with increasing aerosol SSA, as shown
in Fig 5. �is indicates that temperature inversions
tend to occur at high and absorbing aerosol con-
ditions. Among the absorbing aerosols, BC is one
of the most important categories, accounting for
∼10%–50% of the total tropospheric aerosol parti-
cles. �e atmospheric e�ects of BC largely refer to
the interference with radiative transfer, visibility im-
pairment, PBL stabilization, and alteration of cloud
formation, which are strongly sensitive to the aging
processes and mixing states with other aerosol con-
stituents [141–143].

Comprehensive measurements of atmospheric
chemical composition, the PBL, meteorological pa-
rameters and surface �ux at ground-based stations
provide opportunities to gain further insights into
aerosol–PBL interactions [144]. Based on such
measurements at the Station forObservingRegional
Processes of the Earth System (SORPES), a ‘golden’
case that occurred on 10 June 2012 was studied by
Ding et al. [15]. Compelling evidence of aerosol–
PBL–weather interactions was revealed. A mixed
layer of heavy biomass burning and urban pollu-
tionplumes substantially reduced the amounts of so-
lar radiation, latent and sensible heat �uxes, and air
temperature on the ground and in the lower PBL,
which suppressed convection and the formation of
a would-be major rain event in Nanjing. Increased
hygroscopic e�ects related to increased RH asso-
ciated with decreased air temperature [15] and a
faster secondary aerosol formation [16] could en-
hance aerosol–meteorology interactions. By analyz-
ing long-termcontinuousmeasurements of aerosols,
radiation and �uxes at the SORPES station in Nan-
jing and guided by theory, quantitative relation-
ships were established between PBL turbulence �ux,
aerosol concentration and RH [27]. Suppression of
vertical turbulence mixing con�ned aerosols to a
shallower PBL, causing a positive feedback loop be-
tween aerosols and the PBL that further lowers the
BLH [145].

Intensive measurements made throughout the
day help understand the aerosol–PBL relationship.
For example, using vertical pro�les of BC mea-
sured by a micro-aethalometer, Ran et al. [146]
found weak turbulence and an inversion layer un-
der high concentrations of aerosols in a shallowPBL.
Aerosols were diluted by the fast development of the
PBL and a uniform distribution of aerosols was typ-
ically observed during the daytime in an unstable
PBL. In the evening, aerosols quickly build up near
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R R

R

Figure 5. Impact of aerosol on temperature inversion in the lowest troposphere. Upper panel: A time series of temperature pro�les retrieved from

the atmospheric emitted radiance interferometer (AERI) measurements on 30 October 2008 over the US Southern Great Plains (SGP). Lower left: the

frequency of occurrence of temperature inversion near the surface as a function of the number concentration of condensation nuclei (CN) derived from

nine years of observations at the SGP site, which is part of the US Atmospheric Radiation Measurements (ARM). Lower right: same as the lower left

panel but as a function of aerosol single scattering albedo. The method and dataset used are described in [28].

the surface and decline exponentially with height,
followed by the collapse of themixing layer and then
the formation of a stable nocturnal boundary layer
[146,147].

Aerosol and convection interactions

PBL–aerosol interactions also a�ect convection, due
to aerosol-induced changes in the atmospheric pro-
�le of heating, and surface latent and sensible heat
�uxes that signi�cantly a�ect the evolution of the
boundary layer. Gu et al. [148] found that for East
Asia, the modeled radiative impact of boundary-
layer aerosols suppressed tropical convection.

Convective potential available energy is controlled
by boundary-layer temperature and humidity [149].
�e source of energy for both the convective bound-
ary layer and deep convective cells ultimately origi-
nates from surface heating and moisture [150,151].
�e PBL also a�ects deep convection [3,152,153],
especially if it hosts absorbing aerosols that can pro-
vide enhanced potential energy above the PBL [22].

Wang et al. [154] shows that absorbing aerosols
residing in the PBL can destabilize the lower at-
mosphere at the periphery of tropical cyclones, en-
hance convection in the rainband region, but cut
o� the energy in�ow to the eyewall. More re-
cently, the conditional enhancement of instability by
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Figure 6. Vertical cross-section of the difference in simulated O3 concentration (ppbv)

and in-plane vectors, where the vertical speed is multiplied by a factor of 10, between

urban land use and no urban land use in Shanghai simulations. (Adapted from [157].)

absorbing aerosols was simulated by Fan et al. [155]
and Lin et al. [156]. In those simulations, due to
the radiative heating caused by soot particles in the
PBL, both relative humidity and convection strength
associated with shallow cumuli are reduced during
daytime. However, the altered daytime temperature
and moisture conditions act to reserve the energy,
thereby facilitating the development of nigh�ime
deep convection.

Aerosol–PBL–chemistry interactions

Variations in the macro- and micro-physics of the
PBL may alter the photochemical and thermal
chemical reaction conditions in the PBL and thus
a�ect the near-surface air quality. Any variations in
photolysis rate, temperature, humidity and concen-
tration of species and structures of the PBL result in
the adjustment of photochemical and thermal chem-
ical reaction rates, the chemical equilibriumconstant
and even changes in chemical products. Moreover,
small modi�cations of solar radiation, atmospheric
stability and the structure of the PBL could induce
signi�cant changes in the chemical environment,
for instance in the ozone photochemistry [157]

or on new particle-formation processes [158,159].
Figure 6 shows that the circulations and boundary-
layer structures over the downstream Kunshan are
closely associated with the upstream urban sur-
face (Shanghai), which further a�ects the O3 con-
centration by redistributing O3 and its precursors.
To be speci�c, the horizontal transport of O3 and
its precursors, from upstream Shanghai to down-
stream Kunshan, are suppressed in the lower PBL
but strengthened in the upper PBL due to the strong
circulation caused by the urban heat island e�ect.

A signi�cant a�enuation (>50%) in ultraviolet
(UV) radiation due to atmospheric aerosols in pol-
luted and urban areas has been reported [160]. Such
an a�enuation of UV radiation by aerosols can ex-
ert a signi�cant in�uence on photolysis and species
chemical cycles, especially photochemical reaction
processes. �e brown carbon emi�ed from biomass
burning diminishes UV-B radiation so strongly that
it can reduce the net production rate of ozone by up
to 18% and the mass concentrations of HO2, rad-
icals OH and RO2 by up to 15%, 17% and 14%,
respectively [161]. From observations and simu-
lations using a radiative-transfer/air-quality model,
UV-sca�ering particles in the PBL tend to accelerate
photochemical reactions, as opposed to the inhibi-
tion e�ect caused by UV-absorbing aerosols [162].
�e hygroscopic growth of aerosol particles nor-
mally occurs in polluted air with relatively high hu-
midity,which can largely a�ect their SSA. In compar-
isonwith the dry state condition, the calculated JNO2

at RH = 98% at 1 km AGL increased by 30.4% due
to the UV radiation enhancement induced by the
larger-sized humidi�ed sca�ering aerosol particles
[163]. �e in�uence of aerosol hygroscopic growth
on the JNO2 pro�le inhibits photolysis at the sur-
face and accelerates it in the upper PBL by a similar
mechanismdescribed byDickerson et al. [162].�is
ampli�cation of JNO2 in the upper PBL likely brings
about high aerosol concentration and more ozone
production in the polluted upper PBL and free tro-
posphere [163].

�e direct and indirect e�ect of aerosols can al-
ter the photochemical reactions and ozone concen-
tration [164–166]. For instance, absorbing aerosols
were found to be able to reduce the photolysis
rate and weaken ozone generation, while sca�ering
aerosols showed opposite change [167,168]. Li et al.
[169] found that PBL O3 was reduced by 5% in
highly polluted regions in summertime in Central
EasternChina. Deng et al. [160] found thatUV radi-
ation/ozone is negatively correlated with PM10, and
at least half of the UV radiation was a�enuated by
the atmospheric aerosols. Li et al., [170] found a re-
duction of about 2%–17% in surface ozone during
the daytime in Mexico City due to the changes in
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photolysis rates caused by aerosols. �e simulation
by Cai et al. [171] shows that an elevated concentra-
tion of particulate ma�er can increase the AOD by
20%–40% and reduce photolysis rates of NO2 and
O3 by 20%–30%, resulting in a reduction of 30%–
40% in the net photochemical production rate ofO3.

Aerosols also exert an important in�uence on
ozone concentrations by heterogeneous reactions.
Ravishankara [172] determined the role, rates and
media of heterogeneous reactions in the tropo-
sphere. Jacob [173] proposed that heterogeneous
reactionshave an impact onO3 concentrationsby af-
fecting generation and consumption of NOx, HOx,
O3 and halogen radicals. Heterogeneous reactions
on sea salt and soot surfaces have signi�cant e�ects
on the trace gas [174–177]. Kle�mann et al. [178]
and Kaiser et al. [179] noted that BC has relatively
larger surface area, favoring heterogeneous chem-
istry.

Liao and Seinfeld [180] found that the surface
O3 concentrations in eastern China can be reduced
by 25%–30% because of the heterogeneous reac-
tions on wet surfaces of sea salt, nitrate, sulfate, am-
monium, mineral dust and organic carbon aerosols.
Overall, the heterogeneous reactions reduce annual
meanO3 in easternChinaby10%–18%[182].�ese
reactions take up ozone precursors such as NOx and
N2O5, leading to reduced O3 concentrations, which
explains in part whyO3 concentrations have kept in-
creasingwhilePM2.5 concentrations havedecreased,
which has been happening in China in recent years
as a direct result of emission control measures for
aerosols.Note that the impact of heterogeneouspro-
cesses is strongly dependent on aerosol concentra-
tions and the surface uptake coe�cients [181]. Het-
erogeneous reactions also likely play a central role in
the formation of major aerosol ingredients, includ-
ing sulfate, nitrate and organics [183–185].

Urbanization also a�ects local and downstream
air quality in two major ways. First of all, land sur-
face properties and meteorological �elds modi�ed
by urban canopies alter the chemical reaction, dry
and wet depositions, and the spatial distribution of
primary and secondary atmospheric pollutants. Sec-
ond, urbanization processes tend to enhance local
human activities, thereby scaling up anthropogenic
emissions. Both pathways will exert non-negligible
in�uences on air quality on local and regional scales.
Zhang et al. [186] showed that without an upstream
city, the urban heat island (UHI) e�ect over Balti-
more would be 1.25◦C weaker and the PBL would
be 200 m shallower, which could redistribute the
air pollutants throughout Baltimore. Anthropogenic
heat emissions can signi�cantly change theUHI and
urban-breeze circulations in cities in the Yangtze
River Delta region, which in turn changes the spa-

tial and vertical distributions of the simulated air pol-
lutants [187]. Urban aerosols may also contribute
to the UHI based on satellite observations and ur-
ban climate simulations [188]. �e urban–rural dif-
ference in haze pollution levels is one of the key fac-
tors determining nigh�ime UHI across China.

Rapid vertical mixtures in the convective
boundary layer (CBL), along with a temperature-
dependent partitioning of atmospheric nitrate
between the gas and aerosol phases, results in
complex interactions between dynamics and aerosol
formation [189]. Near the top of the CBL (cooler),
gaseous nitric acid and ammonia condense on
ammonium nitrate and the gas–aerosol equilibrium
shi�s towards the aerosol phase. Close to the
surface (warmer), ammonium nitrate evaporates
into gaseous nitric acid and ammonia, shi�ing
the equilibrium towards the gas phase. Using a
large-eddy simulation (LES) model coupled with
radiation, chemistry and the surface exchange of
aerosols, Barbaro et al. [190] highlighted that the
close connection of the gas–aerosol conversion of
nitrate to CBL (thermo-)dynamics produces highly
nonlinear concentration and vertical pro�les of
turbulent �ux.

Although a great deal of phenomena related to
aerosol–PBL–chemistry interactions have been re-
ported, most of the explanations for the underlying
mechanisms are qualitative and a deeper insight is
still warranted.

Aerosol, PBL and cloud interactions

�e interactions between cloud-nucleating aerosols
and the PBL involve complex feedbacks between
cloud microphysics, precipitation and PBL turbu-
lence. Precipitation is a key component regulating
the PBL evolution. When the aerosol concentra-
tion increases, more but smaller cloud droplets are
formed and precipitation is suppressed [2], leading
to signi�cant changes in PBL evolution [191–193].

In a stratocumulus-topped PBL, the e�ects of
heavy drizzle on PBL turbulence and structure were
simulated with a LES model developed by Stevens
et al. [191]. Signi�cant evaporative cooling in the
sub-cloud layer ensued and weakened mixing from
the cloud layer to the sub-cloud layer. Less tur-
bulent kinetic energy (TKE) was generated in the
PBL, leading to a weaker cloud-top entrainment.
As a result, the growth rate of the PBL was slowed
down and the PBL became thinner. PBL turbulence
and cloud-top entrainment can become signi�cantly
stronger with increasing aerosols [193].�e growth
rate of a stratocumulus-topped PBL increases with
aerosol loading. Because the air in the inversion layer
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above the PBL is normally warm and dry, the en-
hanced cloud-top entrainment can cause warming
and drying of the PBL and reduce the cloud liquid
water path (LWP) [194].

However, in a stratocumulus case with very weak
drizzle, the evaporative cooling andmoistening right
below the clouds can create instability for the sub-
cloud layer. �e weak drizzle then helps to produce
TKE in the PBL. When aerosols are increased, the
reduced drizzle results in weaker PBL turbulence
[192]. �is is because there is less evaporative cool-
ing and less moistening below clouds, and therefore
weaker instability in the sub-cloud layer. �e PBL
then has a less e�ective supply of surface water va-
por to clouds and therefore a much lower LWP.�e
reduced drizzle in the high cloud condensation nu-
clei case is believed to weaken the coupling between
the surface and air in the PBL, and to reduce the
vertical �uxes of heat and the transport of water va-
por. �is weakens any cloud development that may
ensue.

In a cumulus-topped PBL, the aspect ratio, the
turbulent mixing process, cloud organization and
formation mechanisms of shallow cumulus clouds
all di�er from the stratocumulus cloud case. As cu-
mulus clouds introduce liquid water into the in-
version layer, the subsequent evaporation provides
moisture and the dry inversion-layer air gradually
becomes moist and takes on the characteristics of
the cloud layer, therefore deepening the PBL [195].
Also, the non-precipitating cumulus-topped PBL
grows proportionally with time. It was hypothesized
that the precipitation from shallow cumulus can ar-
rest the growth of the PBL by the removal of liq-
uid water from the cloud top. However, to what
extent the aerosol-induced changes in precipitation
can a�ect the PBL growth rate has not been well
studied.

As aerosols increase in the cumulus-topped PBL,
PBL turbulence is a�ected by two processes. Xue
and Feingold [196] described one process in which
increasing aerosols results in smaller cloud droplets,
and therefore faster evaporation at the cloud top
and edges. �e faster evaporation tends to gener-
ate stronger evaporative cooling and stronger down-
dra�s at cloud edges,whichproducesmoreTKEand
enhances the evaporation of the clouds. �is results
in a smaller cloud fraction and thinner clouds. In an-
other process described by Grabowski et al. [197],
increasing aerosols leads to precipitation suppres-
sion, less e�cient condensate removal, and there-
fore weaker buoyancy due to the water loading, re-
sulting in shallower clouds. Although both of the
mechanisms suggest shallower clouds under higher
aerosol-loading conditions, their underlying reasons
are completely di�erent.

�e patchy precipitation in cumulus clouds can
cause a temperature anomaly (cold pool) and a
moisture anomaly (moremoisture) in the sub-cloud
layer [198]. �e evaporative cooling and associated
downdra�s lead to divergence at the center of the
precipitating cells at the surface and convergence at
the edges of theprecipitating cells.�is facilitates the
formation and development of new clouds, result-
ing in amesoscale open cellular structure [199,200].
In the polluted case, increased aerosols can sup-
press precipitation and the formation of open cellu-
lar structures.

In a cumulus-topped PBL, cumulus clouds are
also very e�cient at vertically transporting aerosols
[201].When the source is at the surface, aerosols are
transported upwards mainly through the updra� re-
gions of cumulus clouds. When the source is in the
inversion layer, which means that aerosols are trans-
ported to the studied region by the free atmosphere,
aerosols can be transported downwardmainly in the
downdra�s of the shell regions of cumulus clouds.

In summary, most studies have shown that in-
creasing aerosols can suppress precipitation, as ex-
pected from the traditional theory of cloud micro-
physics. However, it has feedbacks to PBL turbu-
lence, surface processes and radiation through sev-
eral pathways. Further studies are needed to reveal
themechanisms underlying these interactions in the
PBL.

THE TREND AND FLUCTUATION OF AIR
POLLUTION: THE ROLES OF
CIRCULATION, PBL, CLIMATE CHANGE
ANDWEATHER

Concentrations of pollutants (aerosols and pre-
cursor gases) are driven by emission, transforma-
tion (e.g. gas to particle conversion), transport and
deposition. �ese drivers may be classi�ed as being
chemical (e.g. the availability of oxidants), meteoro-
logical (e.g. wind speed, temperature, humidity, pre-
cipitation, soil moisture, solar radiation) and biolog-
ical (e.g. vegetation cover andproperties), etc.While
all these factors are at work in dictating air pollution
at any time and location, we argue that the following
factors are most essential:

(1) Emissions of precursor gases, primary and sec-
ondary aerosol particles;

(2) Gas-to-particle, or new particle formation and
growth;

(3) Large-scale circulation and local-scale aerosol–
PBL interactions;

(4) Long-term climate change;
(5) Weather regimes.
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Figure 7. A schematic �gure showing the aerosol–boundary-layer feedback loop for

scenarios without (left) and with (right) black carbon (BC) emissions in a megacity. The

black lines give air temperature pro�les (solid, dotted and dash-dotted lines for the

scenarios with BC, without aerosols, and with aerosols except for BC, respectively).

The yellow dashed lines with arrows denote the re�ection of solar radiation by the

ground surface, clouds and aerosols. The red arrows show absorption of solar radiation

by absorbing aerosols. The blue dash-dotted line indicates the top of the PBL. White

arrows show the vertical ventilation of urban plumes induced by circulations or large

eddies induced by the urban heat island effect. (Adapted from [24].)

Since the �rst two topics will be addressed in sep-
arate review articles of the same special issue, we will
just elaborate more on (3) to (5).

Large-scale circulation and local-scale
aerosol–PBL interactions

Air pollution is intimately related with large-scale
circulation and local-scale aerosol–PBL interactions
[66,202–207]. High-resolutionmesoscalemeteoro-
logical models, e.g. the MM5 and the WRF, have
been widely used to study their joint roles. For ex-
ample, MM5 simulations suggested that the evolu-
tion of sea–land breezes and PBL dynamics were
in�uenced by an approaching northwest Paci�c ty-
phoon [205]. Based on WRF-FLEXPART simula-
tions, it was found that the PBL air pollutants from
the North China Plain can be transported by cy-
clones and its associated warm conveyor belts to
the free troposphere over Northeast China [206].
�is study showed that Lagrangian modeling con-
nected to high-resolution meteorological output
from mesoscale models could well demonstrate de-
tailed air pollution transport and dispersion mech-
anisms under speci�c synoptic weather conditions.
Also, based on o	ine air-quality models [208,209],
many previous studies have been conducted to un-

derstand PBL aerosols and their impacts in typical
regions ofChina under di�erent synoptic conditions
[210–215].

In comparison with ‘o	ine’ air-quality models
that o�en underestimate extreme aerosol peaks dur-
ing severe haze episodes [215], ‘online’ coupled
models considering the aerosol–radiation–PBL–
weather feedback can improve the forecast capabili-
ties of severe pollution events taking place in Beijing
during wintertime [216,217]. For the WRF-Chem
simulation with mixed biomass burning with urban
plumes [15], it showed that daytime mixed biomass
burning plumes not only ‘burn o�’ daytime precip-
itation but also enhance nigh�ime precipitation in
downwind regions [218]. It was also found that dust
aerosols from Northwest China could have a strong
aerosol–PBL feedback and in�uence the PBL struc-
ture along transport pathways, which could even in-
�uence the emission and deposition of dust in the
source and downwind regions [219].

Using the online-coupledWRF-Chemnumerical
model,Ding et al. [24] �rst singled out the role of BC
aerosol and PBL interactions in polluted events and
a�ributed an extreme haze episode in East China to
thepositive feedbackbetween absorbing aerosol and
PBL. �e feedback tends to lower the BLH, which
was thus referred to as the ‘dome e�ect’, as illus-
trated in a simpli�ed conceptual scheme (Fig 7) that
is valid under the static state of the PBL. Under gen-
eral conditions, mixing takes place due to any in-
homogeneous heating of the atmosphere. �e extra
heating by aerosol absorption in the upper PBLmay
be mixed down into the interior of the PBL to lower
the PBL.

�e hypothesized ‘dome e�ect’ seems to prevail
even on the decadal trend of AOD retrieved from
satellites (MODIS andMISR) at di�erent altitudes.
As shown in Fig 8a, Dong et al. [145] found oppo-
site trends for AOD: decreasing and increasing be-
low and above ∼0.5 km in northern China, which
is dominated by strong absorbing aerosols with low
SSA (45). �e increase in the lower PBL is a testi-
mony to the positive feedback caused by a reduced
temperature lapse rate or even inversion that keeps
pollutants accumulating, whereas above the layer of
maximum absorption conditions the PBL becomes
more unstabilized andmore favorable for di�usional
transport of pollutants. As such, even though the
overall basin-wide column total AODmay not have
changed much, the aerosol loading near the sur-
face in the center of the basin has increased drasti-
cally. To reinforce the argument, they also analyzed
similar trends in southern China (cf. Fig 8), where
aerosols are generally less absorbing and thusweaker
feedback takes place. �e trends of AOD at di�er-
ent altitudes are much more consistent with li�le
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Figure 8. The vertical pro�les of AOD trends over the period of 2002–2014 as a function of altitude above sea level in northern (low SSA) and southern

(high SSA) China derived from MODIS AQUA. (Adapted from [145].)

change, due presumably to the lack of the positive
feedback process.

�ese �ndings suggest that absorbing aerosols
not only alter atmospheric thermodynamics and sta-
bility, but can also e�ectively push down the BLH
to severely exacerbate air pollution near the surface.
Apparently, such a deterioration of air quality has lit-
tle to dowith the emission of pollutants, butmore to
do with their accumulation in a thinning PBL. �is
could be an important mechanism that ought to be
accounted for in understanding and forecasting air
pollution.

�e mechanism may also help explain the sys-
tematic di�erence in the PBL height between the
US South Great Plains and Hefei, Anhui, China, as
shown in Fig. 9.�e two sites have somewhat similar
meteorology, but aerosol concentrations and types
are distinctly di�erent. AOD is much larger at Hefei
than at the SGP, and the opposite is true for the PBL
height. Besides, aerosols inChina are generallymore
absorbing than the rural area of US due tomuch less
consumption of coal.

�e mechanism governing aerosol and PBL in-
teractions for absorbing aerosols is illustrated in Fig.
10. As a result of reduction in surface �uxes and
atmospheric heating, the lapse rate decreases and
probability of inversion increases.�ese are unfavor-
able for the dispersion of pollutants that would fur-
ther enhance atmospheric stability, etc.

Aerosols and climate change

Increased temperature can enhance the chemical
production of sulfate [220] but reduce nitrate for-
mation through shi�ing gas–particle equilibrium
[221,222]. All aerosol species are found to be very
sensitive to changes in precipitation scavenging
[223–225].As such, understandingof any long-term
changes in air pollution must take into account the
changes in climate [6,7], as well as the day-to-day
change in air quality [103]. In Asia, the monsoon
is the most important dynamic regime dictating the
Asian atmospheric environment whose changes are
key to understanding any long-term trend of air
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Figure 9. Boxplots showing the distribution of PBL depths with increasing AOD, at SGP (left) and Hefei (right). Adapted from the Ph.D dissertation of

V. Sawyer (2015).
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Figure 10. The mechanism of a positive feedback between absorbing aerosol and

PBL interactions. T: temperature; Atmos: Atmospheric.

pollution [7]. On the other hand, climate changes in
Asia, especially inChina, are also strongly a�ectedby
anthropogenic activities.

Climate change in�uences aerosol concentra-
tions in China on di�erent timescales, including
seasonal [226], interannual [135,227–230] and
decadal variations [135,227,231,232]. Summer
monsoon rainfall, cross-equatorial �ows that carry
clean air from the oceans and the relatively higher
BLH lead to generally lower aerosol concentrations
in summer than in winter [226]. In North China
(32–42◦N, 110–120◦E), interannual variations of

11%−17% relative to the mean pollution concen-
trations were simulated over 2004−2012 [228],
indicating that the aerosol e�ect on the PBL could
vary greatly year by year. As special cases of aerosol
interannual variations, seasonal mean aerosol
concentrations in eastern China have been reported
to correlate negatively with East Asian monsoon
strength for both summer and winter [7,135,227].
For decadal variations of aerosols, Yang et al. [231]
reported that, although changes in anthropogenic
emissions dominated the increasing trend in win-
tertime PM2.5 concentrations over eastern China,
variations inmeteorological parameters contributed
17(±14)% to the overall increasing trend in PM2.5

concentrations in this region from 1985 to 2005.
Climate change also in�uences severe fog and

haze events, especially in northern China in winter.
Niu et al. [135] found that decadal and persistent
decreases in visibility were associated with a long-
term reduction in cold-air outbreaks from Siberia,
and an increase in calm or low-wind days, which
were further a�ributed to global warming by means
of global climate model (GCM) simulations [135].
Cai et al. [59] developed an e�ective haze weather
index to represent such favorable weather condi-
tions by using observed long-term PM2.5 daily con-
centrations at Beijing and daily reanalysis of meteo-
rological �elds, and showed that favorable weather
conditions for severe haze increased by 10% over
1982–2015 relative to 1948–1981, owing to global
warming by greenhouse gases. Other studies also
showed consistent conclusions. As a result of global
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warming, reductions in Arctic sea-ice cover corre-
lated with the increases in wintertime haze days in
northern China [60,233], and reduced mineral dust
aerosol emissions led to more stagnant conditions
favorable for haze days over eastern China [234]. In
addition to climate change by anthropogenic forc-
ing, natural climate variabilitywas found to in�uence
haze days. Decadal variability in the occurrence fre-
quency of wintertime haze in central eastern China
was reported to be closely associatedwith the Paci�c
Decadal Oscillation [235].

Aerosols and weather regimes

�e vertical distribution of aerosol particles is sig-
ni�cantly a�ected by meteorological conditions
[66,236] such as convective transport and removal
processes [237], and the PBL structure and pro-
cesses [238–242]. Aerosol concentrations and e�ec-
tive radii typically di�er within and above the PBL
since the BLH and the intensity of the turbulence af-
fect to some degree the 3D distribution of air pollu-
tants [243,244]. It has been observed that �ne parti-
cles (< 2.5µm in aerodynamic diameter) tend to be
wellmixed vertically during thedaytimewhile coarse
particles tend to reside close to the ground and sur-
face due to gradation se�ling [245].

Modeling studies have suggested that the verti-
cal distribution of aerosols tends to bemodulated by
local atmospheric circulations [241,246,247] such
asmountain-valley breeze circulation and sea-breeze
circulation. In mountain-valley/plain regions, the
presence of a mountain-valley breeze circulation
can modify the PBL structure over valleys/plains
through dynamic advection and the accompanying
thermal alteration [241,248,249]. Meanwhile, the
upslopewindof a valley breeze circulationmaybring
aerosols to the top of the PBL and form an elevated
pollution level there [246,250,251]. In coastal re-
gions, the updra� induced by the frontal movement
of a sea breeze may also bring near-surface aerosols
to the top of the PBL [241,252,253].

CONCLUDING REMARKS

�e PBL involves a number of chemical, physical
and dynamic processes that are closely related to
the accumulation of aerosol pollution, dispersion
and transport. �ere are complex interactions be-
tween aerosol and PBL that jointly dictate air pollu-
tion. PBL–aerosol interactions and their feedbacks
on meteorology thus complicate the forecasting of
air quality.

�is paper presents a comprehensive review of
aerosols, the PBL, their interactions and impact on
air quality. While we have learned a great deal on

all pertinent fronts, there is still a wide range of
fundamental PBL characteristics or key boundary-
layer processes that are poorly understood or over-
looked.Most work related to PBL processes is based
primarily on time series of measurements made at
�xed sites chie�y through �eld experiments that
have a poor spatial coverage. A dense network of
both aerosol and meteorological measurements is
urgently needed to gain an explicit insight into the
evolution of the PBL and the roles of aerosols played
in combination with atmospheric processes driven
by both large-scale and local-scale processes. �is
would improve PBL parameterizations and turbu-
lence closures used in themodels. Amajor challenge
lies in the observation of the vertical pro�les of at-
mospheric variables and aerosol properties, nonebe-
ing trivial at present but essential to improve our
understanding of aerosol–PBL interactions.�is re-
quires more state-of-the-art ground-based and air-
borne measurements in di�erent regions. For exam-
ple, the BLH is a key variable whose observation
is still far from being adequate. Sounding balloons
are generally launched twice per day, making it im-
possible to study the diurnal variation of the PBL
during a day, whereas space-borne lidar has a low
signal–noise ratio, and thus very large uncertainty,
due to strong a�enuation, besides being available at
nadir view only. Likewise, there is a severe dearth of
vertical pro�le measurements of aerosol absorption
that is the key for aerosol–PBL interactions.

In addition to boundary-layer measurements,
PBL modeling e�orts such as explicit PBL schemes
have to be improved in operational weather or cli-
mate models. Current aerosol–climate models are
able to simulate aerosol–climate interactions on sea-
sonal, interannual and decadal timescales, but few
studies have examined the changes in PBL from cli-
mate simulations. A�ention has mostly been paid
to atmospheric temperature, circulation and pre-
cipitation in a changing climate. PBL schemes are
generally included as sub-models in atmospheric
chemistrymodels, and numerical weather or climate
prediction models, and are typically limited to a cer-
tain scenario.�e coarse horizontal and vertical res-
olutions of climatemodels prohibit the accurate rep-
resentation of boundary-layer processes. Many PBL
schemes were developed mainly for applications in
low-resolutionmodels.�ese schemes would be dif-
�cult to apply to increasingly high-resolution mod-
els that require more detailed and explicit repre-
sentations of physical processes and physiograph-
ical features. Considering that climate models are
moving forward to higher resolutions, accurate rep-
resentations of land use, sub-grid thermal and dy-
namical structures, as well as the radiative e�ects
of aerosols on the boundary layer, are the keys to
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improving simulations of boundary layer, air quality
and climate. Continual development of PBLmodels
and parameterization schemes is thus highly recom-
mended. Forecasting of air quality may be improved
signi�cantly by accounting for the aerosol–PBL
interactions, which further require both aerosol
loading and aerosol-absorption property, including
its vertical distribution.

While the aerosol–PBL interaction plays a key
role in air pollution, it is by nomeans the sole mech-
anism dictating air pollution, which is a�ected by a
lot of di�erent mechanisms and processes, but they
are not the foci of this review. Other pertinent fac-
tors and their associations with aerosol pollution are
pursued in other review papers, such as the e�ects of
new particle formation [25], and large-scale circula-
tion associated with monsoon systems [7].
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Appendix 1: List of acronyms and abbreviations used in this paper.

Acronyms Full name

ACI Aerosol–cloud interaction

AERI Atmospheric emi�ed radiance interferometer

AOD Aerosol optical depth

ARI Aerosol–radiation interaction

BC Black carbon

CALIOP Cloud–aerosol lidar with orthogonal polarization

CBL Convective boundary layer

EAST-AIRE East Asian Study of Tropospheric Aerosols: an International Regional Experiment

HOPE J3A Haze Observation Project Especially for Jing-Jin-Ji Area

LES Large-eddy simulation
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