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Abstract. To better understand the aerosol properties over
the Arctic, Antarctic and Tibetan Plateau (TP), the aerosol
optical properties were investigated using 13 years of
CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder
Satellite Observations) L3 data, and the back trajecto-
ries for air masses were also simulated using the Hy-
brid Single-Particle Lagrangian Integrated Trajectory (HYS-
PLIT) model. The results show that the aerosol optical depth
(AOD) has obvious spatial- and seasonal-variation character-
istics, and the aerosol loading over Eurasia, Ross Sea and
South Asia is relatively large. The annual-average AODs
over the Arctic, Antarctic and TP are 0.046, 0.024 and 0.098,
respectively. Seasonally, the AOD values are larger from late
autumn to early spring in the Arctic, in winter and spring in
the Antarctic, and in spring and summer over the TP. There
are no significant temporal trends of AOD anomalies in the
three study regions. Clean marine and dust-related aerosols
are the dominant types over ocean and land, respectively,
in both the Arctic and Antarctic, while dust-related aerosol
types have greater occurrence frequency (OF) over the TP.
The OF of dust-related and elevated smoke is large for a
broad range of heights, indicating that they are likely trans-
ported aerosols, while other types of aerosols mainly oc-
curred at heights below 2 km in the Antarctic and Arctic. The
maximum OF of dust-related aerosols mainly occurs at 6 km
altitude over the TP. The analysis of back trajectories of the
air masses shows large differences among different regions

and seasons. The Arctic region is more vulnerable to mid-
latitude pollutants than the Antarctic region, especially in
winter and spring, while the air masses in the TP are mainly
from the Iranian Plateau, Tarim Basin and South Asia.

1 Introduction

As an important component, atmospheric aerosols play a
crucial role in the Earth–atmosphere system (Garrett and
Zhao, 2006; Ghan and Easter, 2006; Nabat et al., 2015; Wei
et al., 2021; Xue et al., 2020). Aerosols have a variety of
effects on Earth’s climate, including the significant direct
effect (Rap et al., 2013; Xing et al., 2017), indirect effect
(Albrecht, 1989; Liu et al., 2019, 2020a; Righi et al., 2011;
Twomey, 1977; Zhao and Garrett, 2015) and semi-direct ef-
fect (Amiri-Farahani et al., 2017; Johnson, 2005; Koren et al.,
2004). Meanwhile, different aerosol types often have differ-
ent physical, chemical and optical properties, and the bal-
ance between cooling and warming depends to some extent
on aerosol characteristics (Boucher et al., 2013). The influ-
ence of aerosols on the Earth–atmosphere system depends
on aerosol characteristics and underlying surface (Kipling
et al., 2016; McFarlane et al., 2007). The vertical distribu-
tion of aerosol is especially valuable as a signature of com-
bined impacts, including the processes of aerosol emission,
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conversion, transport and removal (Winker et al., 2013). Due
to the lack of understanding of aerosol distribution, dynam-
ics and optical characteristics, the impact of aerosols on the
global radiative budget in climate models has great uncer-
tainty (Boucher et al., 2013; Loeb and Su, 2010). Thus,
knowledge of aerosol characteristics is essential for deter-
mining the radiative forcing effects of aerosols, improving
the accuracy of aerosol optical depth (AOD) retrieval us-
ing passive satellites and quantifying the role of aerosols in
global climate changes.

The acquisition of aerosol characteristics is mainly from
two methods: ground-based monitoring and satellite remote
sensing (Giles et al., 2012; Nishizawa et al., 2007; Omar
et al., 2005; Russell et al., 2014). Ground-based remote sens-
ing, such as the Aerosol Robotic Network (AERONET), can
provide high-accuracy aerosol characteristics. The aerosol
properties from AERONET are derived from direct sun ex-
tinction and sky radiance measurements, including columnar
optical depth, single-scattering albedo (SSA), Ångström ex-
ponent (AE) and so on (Dubovik and King, 2000; Dubovik
et al., 2002, 2006). Although the aerosol characteristics can
be obtained from ground-based remote sensing with high ac-
curacy, they have some limitations in the study of global
aerosol characteristics research. On one hand, it is difficult
to acquire the vertical distributions of aerosols. On the other
hand, due to the strong spatiotemporal variations in aerosols,
the spatiotemporal representation of aerosol characteristics
measured by ground stations is limited.

Passive satellite remote sensing also can be used to ob-
tain aerosol properties. In general, passive remote sensing
can only obtain two-dimensional aerosol characteristics but
cannot obtain aerosol vertical-structure information. Several
AOD retrieval algorithms based on passive remote sensing
have been developed over the past decade, such as Dark
Target (DT), Dark Water, Deep Blue (DB), Multi-Angle
Implementation of Atmospheric Correction (MAIAC), the
structure–function algorithm and so on (Hsu et al., 2013,
2004; Kaufman et al., 1997; Levy et al., 2013; Lyapustin
et al., 2018; Martonchik et al., 1998; Tanre et al., 1988).
In terms of aerosol type, the Multi-angle Imaging Spectro-
Radiometer (MISR) instrument, which has nine view angles
along the flight path (Diner et al., 1998), is sensitive to the
size and shape of aerosols (Diner et al., 2008). The Ozone
Monitoring Instrument (OMI) includes ultraviolet bands,
which can be used to retrieve aerosol optical parameters,
such as absorbing aerosol optical depth, single-scattering
albedo and aerosol index (Marey et al., 2011; Torres et al.,
2007). Compared with passive satellite remote sensing, ac-
tive satellite remote sensing, such as the Cloud–Aerosol Li-
dar with Orthogonal Polarization (CALIOP), can acquire the
vertical profile of the atmosphere and understand the ver-
tical distribution of aerosol properties at a local or global
scale (Shimizu et al., 2017). With three elastic backscatter-
ing channels, CALIOP is the first polarization lidar in space
to provide three-dimensional atmospheric-structure measure-

ments (Granados-Muñoz et al., 2019; Peyridieu et al., 2010).
It can measure the vertical distribution and the microphys-
ical and optical properties of aerosols and clouds with a
high vertical resolution at 1064 nm and a parallel and cross-
polarized return signal at 532 nm (Kittaka et al., 2011; Ku-
mar et al., 2016). CALIOP has high sensitivity and can de-
tect weak aerosol layers with optical depths of 0.01 or less
(Winker et al., 2007). The polarization measurements also al-
low the discrimination of spherical and non-spherical cloud
and aerosol particles. Thus, CALIOP is widely used to study
aerosol and cloud characteristics (Das and Jayaraman, 2011;
Sun et al., 2018; Varnai and Marshak, 2011).

As two main cold sources of the global atmosphere, the
Arctic and Antarctic play an irreplaceable key role in global
climate change research. Located in the middle of Asia, the
Tibetan Plateau (TP) is the largest ice sheet accumulation
area except for the Arctic and Antarctic. The Arctic, Antarc-
tic and TP are representative of pristine regions, and they
are very sensitive to global climate change (Lu et al., 2011).
Associated with their different geographical environments,
human activities have different effects on them. Previous
studies have indicated that the clouds and radiation are par-
ticularly sensitive to aerosols over pristine regions (Garrett
and Zhao, 2006; Seinfeld et al., 2016; Wang et al., 2018).
The Arctic, Antarctic and TP have been undergoing unprece-
dented changes in global climate changes.

Extensive research on aerosol properties over pristine re-
gions has been conducted (Di Carmine et al., 2005; Leaitch
et al., 2020; Wu et al., 2018). The Arctic is a region with
ample spatiotemporal variability in aerosols (Schmeisser
et al., 2018). Due to the influence of pollutants transported
(e.g., forest fire smoke, dust, soot and sulfates) from lower
latitudes, the AOD in the Arctic is abnormally high in winter
and spring (Stone et al., 2014; Tomasi et al., 2007), while in
the summertime, the oxidation of dimethyl sulfide (DMS),
emitted by phytoplankton activity in the marine area, can
act as cloud condensation nuclei and exert significant con-
trol on sulfate aerosol (Leaitch et al., 2013). Meanwhile, by
employing carbon monoxide as the assumed passive tracer,
the relative contributions of transport efficiency and scav-
enging to seasonal variability in Arctic aerosol have also
been evaluated (Garrett et al., 2010). In the past few decades,
the aerosol properties in the Antarctic region, including their
concentrations, size distribution and chemical composition,
have been investigated mainly based on ground-based obser-
vations (Barbaro et al., 2017; Kerminen et al., 2000; Kopo-
nen et al., 2003). The aerosol properties of the Antarctic are
mainly controlled by the Southern Ocean primary and sec-
ondary emissions and some periodical long-range transport
(Asmi et al., 2018). Coarse-particle sea salt and fine-particle
sulfate aerosols are most abundant in the coastal Antarctic
regions and over the Antarctic continental regions, respec-
tively (Hall and Wolff, 1998; Wagenbach et al., 1998; Kermi-
nen et al., 2000). Meanwhile, there are also obvious seasonal
differences in Antarctic aerosol types. Sea salt and ammo-
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Figure 1. Geographical map of the three study areas: the (a) Arctic, (b) Antarctic and (c) TP. Among them, the white background and blue
points represent the land within the study area. In (c), the black dots represent the center of the TP inner pixel corresponding to CALIPSO
(Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) L3 aerosol data, the green pentagrams represent the site of the aerosol
back trajectory study, the red line represents the boundary of the TP, and the color represents the surface elevation data from the Shuttle
Radar Topography Mission (SRTM) at http://srtm.csi.cgiar.org/ (last access: 24 March 2021).

nium sulfate particles are dominant in the polar night months,
while sulfuric acid droplets are the main particles in the sunlit
months (Ito, 1985). The types of aerosols in the TP are com-
plex, and the dominant aerosol type varies with site (Zhao
et al., 2020). Dust aerosols in the northern parts of the TP
and polluted aerosols over South Asia can reach internal re-
gions of the TP through long-distance transport (Cong et al.,
2015; Huang et al., 2007; Lu et al., 2012; Lüthi et al., 2015;
Xia et al., 2011; Zhao at al., 2013; Zhu et al., 2019).

Although many studies have been carried out on aerosol
optical properties over the Arctic, Antarctic and TP, they are
mainly based on the short-term ground remote-sensing or
in situ observations, which has limited spatial representation
(Chaubey et al., 2011; Cong et al., 2009; Eleftheriadis et al.,
2004; Engvall et al., 2008; Pokharel et al., 2019) and inade-
quate information about the vertical distribution of aerosols.
Meanwhile, different aerosol types can result in large uncer-
tainty in estimating the aerosol radiative effect (Loeb and
Su, 2010). Thus, it is essential to investigate the long-term

aerosol characteristics over relatively large domains of the
three pole regions, including the vertical-profile information.
In this study, the aerosol optical properties over the Arctic,
Antarctic and TP were investigated systematically, including
the spatial and temporal distribution, vertical structure, and
temporal trends of AOD and aerosol types. In addition, the
back trajectory of air masses was also performed to deter-
mine the influence of ambient aerosols on the study areas.

2 Data and methods

2.1 Study regions

As shown in Fig. 1, the Arctic, Antarctic and TP are se-
lected as our study regions. The areas north of 65◦ N and
south of 65◦ S are the study regions of the Arctic and Antarc-
tic, respectively, as shown in Fig. 1a and b. The Arctic is an
ocean covered by a thin layer of perennial sea ice and sur-
rounded by land including Asia, Europe and North Amer-
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ica, while the Antarctic is dominated by the continent cov-
ered by a very thick ice cap and surrounded by a rim of sea
ice and the Southern Ocean. The TP is composed of land
and ice sheets, and the surrounding environment is complex.
As shown in Fig. 1c, there is the Taklimakan Desert in the
north and the heavily polluted South Asia in the south. Due
to the coarse resolution of CALIPSO L3 data over the TP,
the spatial and temporal distributions as well as the temporal-
variation trends were captured in a large region with latitudes
from 25 to 41◦ N and longitudes from 65 to 105◦ E. However,
the vertical characteristics of aerosol properties were only in-
vestigated in the inner region of the TP, which is marked by
black dots, as shown in Fig. 1c. In addition, 11 special loca-
tions (marked with green pentagrams) were selected for the
study of aerosol sources using back trajectories, and detailed
information of 11 sites can be found in Sect. 2.3 and Table S1
in the Supplement.

2.2 CALIOP data

The CALIPSO satellite provides new insight into the role of
how clouds and aerosols form, evolve and affect weather and
climate (Winker et al., 2007, 2010). The level 3 tropospheric-
aerosol-profile product based on level 2 aerosol extinction
profiles has the highest quality and is the most sophisticated
among all CALIOP level 2 data products (Kim et al., 2018).
Compared with the previous products, several changes in
data quality screening have been made in the latest product
to further avoid extinction retrieval errors, and the detailed
algorithm has been depicted (Tackett et al., 2018).

Compared with other sky conditions, the level 3
tropospheric-cloud-free-aerosol-profile (NL3TCFAP) prod-
uct has the highest quality as extinction retrievals are min-
imally affected by errors in retrieving the attenuation of
overlying cloud cover (Tackett et al., 2018). Meanwhile, the
NL3TCFAP product can describe in detail the near-global
three-dimensional distribution of aerosols. Thus, to investi-
gate the aerosol properties over the three polar regions of the
Arctic, Antarctic and TP, the NL3TCFAP product including
daytime and nighttime was used in this study. Up to now, the
NL3TCFAP product has contained seven types of aerosols,
which are clean marine, dust, polluted continental/smoke,
clean continental, polluted dust, elevated smoke and dusty
marine. The properties of different types of aerosols are dis-
cussed in Sect. 3.2.

The NL3TCFAP product records aerosol property data on
a uniform 2◦ latitude by 5◦ longitude grid and has a verti-
cal resolution of 60 m for heights up to 12.1 km above mean
sea level (a.m.s.l.). In this study, the mean AOD of each grid
at different temporal scales was calculated, and the seasonal
differences between the Northern and Southern hemispheres
were also considered. The spring (autumn), summer (winter),
autumn (spring) and winter (summer) are defined as March–
May, June–August, September–November and December–
February in the Northern (Southern) Hemisphere, respec-

tively. Note that the averaged aerosol properties over the TP
region in this study are only for the internal pixels of the
TP, which is marked by black dots in Fig. 1c. The occur-
rence frequency (OF) of aerosol types was also calculated
by counting the number of samples of seven aerosol types
in each horizontal grid cell or altitude layer. For the vertical
distribution of aerosol properties such as extinction coeffi-
cient of the dominant type of aerosol, the CALIOP data were
used with further data quality control by removing the out-
liers. The outliers are defined as the observed data (x) falling
outside 3 times the SDs (δ) above or below the mean (x), as
follows:

x < x − 3 · δ or x > x + 3 · δ. (1)

2.3 HYSPLIT model

The Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model has been widely used in the simulation
of atmospheric pollutant transport, dispersion and deposi-
tion (Ashrafi et al., 2014; Jeong et al., 2012; Vernon et al.,
2018; Zhao et al., 2009). To fully understand the sources of
aerosols, the back trajectories of air masses at 11 selected
sites over the three study regions mentioned above were ex-
amined using the latest version (V5.0.0) of the HYSPLIT
model (Stein et al., 2015). Simultaneously, the multiple tra-
jectories that are near each other were merged into groups
through cluster analysis. In this study, the four Arctic sites are
located in Greenland (N1), northern Europe (N2), northern
Asia (N3) and northern North American (N4). The four sites
in the Antarctic are located on the Antarctic Peninsula (S1),
Ross Sea (S2), Dronning Maud Land (S3) and Wilkes Land
(S4). The three selected sites in the TP region are located on
the northern (TP1), southern (TP2) and eastern (TP3) edges
of the TP region. The locations of these sites are shown in
Fig. 1, and detailed information of each site is shown in Ta-
ble S1. Previous air mass back trajectory simulations in the
polar regions found that it is difficult to simulate the sea-
sonal difference in the air mass with short-term back trajec-
tory simulation, while the long-term back trajectory simula-
tion has great uncertainties in the spatial domain (Hirdman
et al., 2010; Sharma et al., 2013); thus a 14 d back trajec-
tory simulation was adopted in this study (Rousseau et al.,
2006), and the simulation date was set as the 15th and last
day of each month, which can help save a lot of computation
sources while keeping the simulated back trajectories repre-
sentative.
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Figure 2. Seasonally averaged AOD distribution for 13 years (June 2006 to December 2019) over the Arctic, Antarctic and TP. Four columns
represent four seasons. Panels (a–d), (e–h) and (i–l) represent the spatial distribution of aerosols in the Arctic, Antarctic and TP, respectively.

3 Results and discussion

3.1 The spatial and temporal distribution of aerosol

properties

3.1.1 The spatial distribution of AOD

Figure 2 depicted the seasonally averaged spatial distribution
of AOD over the Arctic, Antarctic and TP, from which we
can find that the AOD averaged between June 2006 and De-
cember 2019 has obvious spatial variation. In the Arctic, ex-
cept for the island of Greenland, aerosol loadings are larger
over the continent than over the ocean. In contrast, aerosol
loadings over the Antarctic continent are lower than over the
surrounding ocean. In general, aerosol loadings are found
to be larger in the southern part of the Atlantic Ocean in
the Antarctic and to decrease with an increase in latitude,
while high AODs could exist in some regions at high lati-
tudes of the Antarctic such as the Antarctic Peninsula, es-
pecially in spring and winter. The aerosol concentration in
the TP region is generally low, while the aerosol loading in
the regions around the TP (e.g., Tarim Basin in the north,
Qaidam Basin in the northeast, Sichuan Basin in the east and
South Asia in the south) is large. In terms of regional differ-
ences, the aerosol concentration in the Arctic region is signif-
icantly higher than that in the Antarctic region. Meanwhile,
the annual-average AODs over the Arctic, Antarctic and the

Figure 3. The monthly averages (dots) and SDs (bars) of AODs for
the study period from June 2006 to December 2019 over the Arctic,
Antarctic and TP.

inner region of the TP are 0.046, 0.024 and 0.098, with SDs
of 0.003, 0.002 and 0.009, respectively.

3.1.2 The multi-year-averaged seasonal variation in

AOD

The aerosols and monsoon circulation patterns interact with
each other (Ma and Guan, 2018), making it particularly
valuable to know the seasonal variations in aerosol proper-
ties. In this study, we investigated the monthly variations in
multi-year (June 2006–December 2019) averages and SDs
of AODs for three study regions, which are shown in Fig. 3.
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4854 Y. Yang et al.: Aerosol characteristics at the three poles of the Earth as characterized by CALIPSO

As shown in Figs. 2 and 3, AOD has obvious seasonal vari-
ations, especially over the TP and Arctic, while the Antarc-
tic AOD has relatively weak seasonal variations. The TP has
a higher aerosol concentration in spring and summer. The
high aerosol concentration mainly occurs from late autumn to
early spring in the Arctic, while it occurs in winter and spring
in the Antarctic. The aerosol loading over the TP is easily
affected by the surrounding regions, where there are many
anthropogenic and natural aerosol sources. Specifically, the
dust aerosols in the Tarim Basin and Qaidam Basin have
a greater contribution to the TP in spring and summer, es-
pecially in the northern part of the TP in summer (Huang
et al., 2007; Xia et al., 2008; Xu et al., 2020). Meanwhile,
a large number of fine aerosol particles exist in South Asia
and the northern Indian Peninsula due to forest fires and an-
thropogenic burning during the dry season. The aerosols are
lifted and transported to the Himalayas under the influence
of large-scale atmospheric systems such as the South Asian
monsoon and the Siberian high, which affects the southern
part of the TP (Cong et al., 2015; Engling et al., 2011; Han
et al., 2020; Xu et al., 2014, 2015).

The high aerosol concentration in the winter and spring
Arctic is known as the Arctic haze phenomenon (Garrett and
Zhao, 2006; Mitchell, 1957; Zhao and Garrett, 2015). On one
hand, anthropogenic aerosol from low and middle latitudes
can disturb the Arctic atmosphere, especially from Eurasia.
On the other hand, stable atmospheric status with less pre-
cipitation occurs in the Arctic winter, which makes it diffi-
cult for aerosols to be removed by wet deposition (Garrett
et al., 2010; Heintzenberg, 1989). As shown in Fig. S1 in
the Supplement, the Arctic region has a smaller monthly av-
erage convective available potential energy (CAPE) in the
winter half year, while the monthly average wind speed at
10 m above the surface is higher. Among the three study re-
gions, the AOD of the Antarctic is slightly higher than that
of the Arctic in the Southern Hemisphere wintertime, while
the AOD of the Antarctic is the lowest in other months. The
slightly higher AOD shown in the Antarctic in spring and
winter compared to the other two seasons may be due to a
similar reason as in the Arctic: stable atmospheric conditions
and less precipitation make the aerosols difficult to be re-
moved in spring and winter. Meanwhile, the SD of AOD is
also calculated and shown as error bars in Fig. 3. It can be
seen that the SD of AOD over the TP is larger than that over
the Arctic and Antarctic, indicating that the variation in AOD
over the TP is more significant.

Similar patterns of multi-year-averaged seasonal variation
in AOD over the three study regions were also observed
using the AERONET data, which have high accuracy and
are widely used in aerosol characteristics and satellite-based
AOD inversion verification studies (Holben et al., 1998; Mar-
tonchik et al., 2004; Russell et al., 2010; Yang et al., 2019).
Over the TP, the multi-year-averaged AOD reaches a maxi-
mum in April and a minimum in December, while the aerosol
composition varies greatly at different sites (Cong et al.,

2009; Pokharel et al., 2019). High AOD mainly occurs in
spring, associated with the Arctic haze, and low AOD oc-
curs in summer over the Arctic (Breider et al., 2014; Grassl
and Ritter, 2019; Rahul et al., 2014). Monthly mean values
of AOD have also been investigated using the AERONET
sites (Novolazarevskaya, Dome Concordia and South Pole)
over the Antarctic, which are similar to those found using
CALIPSO data, with values ranging from 0.02 to 0.04 from
September to March (Tomasi et al., 2015). It should be noted
that due to the daytime limitation, only the AODs during
the short summer period were analyzed over the Arctic and
Antarctic using AERONET measurements.

3.1.3 The long-term trend of AOD

To study the long-term trend of AOD over the Arctic, Antarc-
tic and TP, the monthly AODs along with their SDs from June
2006 to December 2019 were calculated using valid data in
the study areas. In order to remove the clear seasonal vari-
ation in AOD as found earlier in the study regions, the de-
seasonalized trend was carried out by calculating the AOD
anomalies. The AOD anomaly here is defined as the differ-
ence between the monthly average value of AOD in each
month and the average value of AOD for that month in all
years. The results of the monthly AOD anomaly over the
Arctic, Antarctic and TP are outlined in Fig. 4. The solid
line with red color represents the monthly AOD anomaly,
the shadow region represents the single SDs, and the dot-
ted blue line represents the linear trend based on deseasonal-
ized monthly AOD anomalies from June 2006 to December
2019. Figure 4 shows that there are no significant increasing
or decreasing trends of AOD anomalies in the Arctic, Antarc-
tic and TP (slope = −0.00724 % to −0.00219 %), although
the linear trends show a high confidence level (p > 0.05).
It is worth noting that the deseasonalized monthly AOD
anomalies over the TP region are relatively high. There are
two likely reasons. First, there are anthropogenic emission
sources over the TP region (Li et al., 2016; Zhu et al.,
2019). Second, the TP is located in Central Asia, surrounded
by highly polluted areas, and is easily affected by exter-
nal aerosol transport (Hu et al., 2020; Liu et al., 2015; Xia
et al., 2021; Zhao et al., 2020). Figure S2 in the Supple-
ment also presents the temporal variation in seasonal-average
AOD from the summer of 2006 to the winter of 2019 over the
TP, Arctic and Antarctic. As expected, AOD over the three
study regions has an obvious seasonal-variation trend. For
the TP, the average AOD is about 0.15 in spring, which is
the most serious pollution season in the whole year, while
AOD is about 0.05 in winter, which is the cleanest season in
the whole year. Boreal winter (summer) and summer (win-
ter) are the most polluted and cleanest seasons over the Arc-
tic (Antarctic), respectively. In addition, the SDs of seasonal
AODs over the TP are between 0.0 and 0.12 due to the in-
fluence of transported aerosols from surrounding regions,
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Figure 4. Temporal variation in monthly AOD anomalies from June 2006 to December 2019 over the (a) Arctic, (b) Antarctic and (c) TP.
The solid red lines and shadows represent the deseasonalized monthly AOD anomalies and SDs, respectively, while the dotted blue lines
represent the linear trends.

which are greater than those of 0.0 to 0.05 over the Arctic
and Antarctic.

3.2 The properties of different aerosol types

Compared with the aerosol type information from
AERONET, MODIS, MISR and OMI, aerosol types
obtained using the CALIPSO are widely used to investigate
the aerosol characteristics at a local or global scale. However,
the uncertainty assessment of CALIPSO aerosol types is
still a challenging task (Kahn and Gaitley, 2015), especially
for aerosol types which have similar optical properties, such
as polluted dust and smoke (Zeng et al., 2021). Aerosol
subtypes from the CALIPSO V3 dataset were evaluated
with the AERONET product by previous studies, which
showed consistency of all aerosol types except for smoke
and polluted-dust aerosols (Burton et al., 2013; Mielonen
et al., 2009). In the V4 CALIPSO aerosol classification
algorithm, several refinements were conducted to improve
the accuracy of aerosol type classification (Kim et al., 2018).

3.2.1 Horizontal distribution

In order to examine the spatial and temporal variability in
aerosol types, the normalized annual and seasonally averaged
OFs of different aerosol types over the (a) Arctic, (b) Antarc-
tic and (c) TP are presented in Fig. 5 and Table 1, respec-
tively. The numbers i–vii represent OF of clean marine, dust,

polluted continental/smoke, clean continental, polluted-dust,
elevated-smoke and dusty marine aerosol, respectively.

In terms of the spatial distribution of aerosol OF among
the three study regions, it can be seen from Fig. 5 that the
annual-average OF of aerosol types is roughly similar in both
the Arctic and Antarctic. The dominant aerosol type is the
clean marine, followed by polluted continental/smoke and
polluted dust. The annual-average proportion of time with
clean marine aerosol dominant in the Arctic and Antarctic is
about 32.8 % and 37.5 %, respectively. In contrast, the domi-
nant aerosol types over the TP are the dust type and polluted-
dust type, which show a dominant role for 92 % of the time
throughout the whole year. Figure 5 also shows that there
are large differences in the spatial distribution of different
aerosol types over all study regions. However, the spatial dis-
tribution of aerosol types has a distinctive feature; that is,
the OFs of dust (ii), polluted continental/smoke (iii) and pol-
luted dust (v) over the land are significantly higher than over
the ocean area in the Arctic and Antarctic. The clean ma-
rine (i) aerosol mainly occurs in the sea area of the Arctic
and Antarctic regions, and the farther away from the land,
the higher the OF of clean marine aerosol. Clean continen-
tal (iv) aerosol only occurs in the land area, while dusty ma-
rine aerosol (vii) only occurs in the marine area. The OF of
elevated smoke (vi) does not differ significantly between land
and sea areas, which can be explained to a certain extent by
the fact that the elevated-smoke aerosols in the Antarctic and
Arctic are mainly transported from the outside.
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Figure 5. The annually averaged OF maps during the study period from June 2006 to December 2019 for seven aerosol types defined by
CALIOP products over the (a) Arctic, (b) Antarctic and (c) TP. The numbers i–vii represent clean marine, dust, polluted continental/smoke,
clean continental, polluted dust, elevated smoke and dusty marine, respectively. The pie represents the annual-average OF of all pixels for
seven aerosol types.
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Table 1. The normalized seasonal-average OF of seven aerosol types during the study period from June 2006 to December 2019 over the
Arctic, Antarctic and TP.

Region Season Aerosol types

Clean Dust Polluted Clean Polluted Elevated Dusty
marine continental/ continental dust smoke marine

smoke

Arctic Spring 0.244 0.113 0.119 0.045 0.231 0.125 0.123
Summer 0.131 0.041 0.192 0.051 0.184 0.342 0.059
Autumn 0.418 0.067 0.143 0.049 0.124 0.107 0.092
Winter 0.371 0.073 0.163 0.041 0.134 0.069 0.149

Antarctic Spring 0.344 0.143 0.154 0.054 0.137 0.052 0.116
Summer 0.612 0.137 0.082 0.007 0.052 0.021 0.089
Autumn 0.34 0.139 0.144 0.069 0.200 0.043 0.065
Winter 0.359 0.096 0.169 0.070 0.133 0.056 0.117

TP Spring 0.000 0.731 0.015 0.004 0.238 0.012 0.000
Summer 0.000 0.714 0.021 0.005 0.244 0.016 0.000
Autumn 0.000 0.554 0.053 0.008 0.361 0.024 0.000
Winter 0.000 0.331 0.144 0.014 0.463 0.048 0.000

There is also a significant difference in the OF spatial dis-
tribution of different aerosol types in each study region. In
the Arctic, dust (ii) and polluted-dust (v) aerosol has a higher
frequency of occurrence over Greenland, northeastern Asia
and northern North America. There are two main contribut-
ing sources. One is that the contribution of local emission
(e.g., Iceland) to dust aerosols in the Arctic is significant, es-
pecially in winter (Dagsson-Waldhauserova et al., 2019; Fan,
2013). The other is the transport of Asian dust into the at-
mosphere, which was subsequently transported eastward and
reached the high-latitude regions of northern North Amer-
ica (Tomasi et al., 2007; VanCuren et al., 2012). In con-
trast, polluted continental/smoke (iii) aerosol mainly occurs
in Eurasia, which is mainly due to biomass burning (e.g.,
agricultural burning and wildfires) in the Eurasian region
(Soja et al., 2004; Warneke et al., 2010). In the Antarctic,
there are obvious spatial differences in aerosol types. Specif-
ically, dust (ii) and polluted-dust (v) aerosols are the domi-
nant aerosol types that occurred in East Antarctica. The main
aerosol type in West Antarctic (Antarctic Peninsula) is pol-
luted continental/smoke (iii) aerosols, but there is also a cer-
tain proportion of polluted-dust (v) aerosol in West Antarc-
tica, similar to the findings reported by Li et al. (2008). The
clean marine aerosol mainly occurs in the Southern Ocean
and decreases drastically in occurrence frequency in the inte-
rior of Antarctica (Teinilä et al., 2014; Virkkula et al., 2006).
For the TP region, dust aerosols occur more frequently in
the north and west of the TP, which is mainly because they
are close to desert source areas, including the Tarim Basin,
Qaidam Basin and Iranian Plateau. Differently, the polluted
dust in the south of the TP has a higher frequency of occur-
rence, which may be due to the impact of South Asia anthro-
pogenic pollutants and biomass burning aerosols. Similarly,

polluted continental/smoke and elevated smoke also have a
higher frequency in the southern TP.

As mentioned above, aerosol types have a distinct seasonal
variation. We then investigated the seasonal-average OF of
different aerosol types. In this study, the number of sam-
ples of seven aerosol types in each study region was first
counted, and then the normalized OF of different aerosol
types was calculated seasonally. Similarly to the findings in
Fig. 5, in general, the dominating aerosol type is clean ma-
rine over the Arctic and Antarctic. However, the normalized
OF of aerosol types displays a substantial seasonal depen-
dence (Table 1). Specifically, the proportion of clean marine
aerosols is larger in the Arctic in autumn and winter than that
in spring and summer. This may be due to the fact that the
near-surface wind speed in the winter half year in the Arc-
tic region is higher than that in the summer half year, which
leads to more marine aerosols entering the atmosphere (Er-
ickson et al., 1986; Hughes and Cassano, 2015). In the sum-
mer fire season, the wildfires and agricultural burning occur
more frequently over Siberia and North America and can be
transported to the Arctic along with the pollutants, resulting
in a high proportion of polluted continental/smoke aerosol
and elevated-smoke aerosol. This notion is also supported by
previous studies (Stohl et al., 2006; Schmeisser et al., 2018;
Tomasi et al., 2007). In spring, meanwhile, the proportion
of dust and polluted dust increases significantly in the Arc-
tic, which is due to the transported dust from Asian desert
sources (Barrie, 1995). Similar results for the seasonal vari-
ation in aerosol type over the Arctic were also simulated by
the GEOS-Chem model (AboEl-Fetouh et al., 2020). Differ-
ently from the Arctic, clean marine aerosol was the dominant
aerosol type in the Antarctic, especially in summer, account-
ing for about 61.2 %. Similar results were reported by Quinn
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Figure 6. The vertical distribution of seasonally (spring: a–c; summer: d–f; autumn: g–i; winter: j–l) averaged aerosol extinction coefficient
at 532 nm during the study period from June 2006 to December 2019 over the Arctic (left panels), Antarctic (middle panels) and TP (right
panels), including the mean extinction coefficient (solid red line), dust extinction coefficient (solid black line), elevated-smoke extinction
coefficient (solid blue line) and polluted-dust extinction coefficient (solid cyan line) over the Arctic (a, d, g and j), Antarctic (b, e, h and k)
and TP (c, f, i and l).

et al. (1998). Meanwhile, there is a high proportion of dust
aerosols in the Antarctic except in winter. It is also found that
polluted continental/smoke aerosol in the Southern Hemi-
sphere in winter and spring has a relatively large proportion,
consistent with previous findings that there is more equiva-
lent back carbon concentrations in spring and winter than in
summer and autumn (Bodhaine, 1995; Weller et al., 2013).
Compared with the Antarctic and Arctic regions, the types of
aerosols in the TP are relatively simple, which are mainly the
dust aerosol and polluted-dust aerosol. In spring and sum-
mer, the proportion of dust aerosol is relatively high because
the dust aerosols originating from the Taklimakan Desert are
transported to the internal TP through the northwesterly wind
under the topographic blocking (Liu et al., 2015; Jia et al.,
2015). In autumn and winter, the emission of anthropogenic
aerosol increases, resulting in higher OF of polluted conti-
nental/smoke, and elevated-smoke aerosols also increase due
to the increase in biomass combustion (Carter et al., 2016;
Cheng et al., 2020). Similar results were also found by mea-
suring the concentration of polycyclic aromatic hydrocar-
bons (PHAs) in soil, which are the by-products of incomplete
combustion of organic matter (Tao et al., 2011). Correspond-
ingly, the proportion of polluted-dust aerosol, which is the
mixture of anthropogenic aerosol and dust aerosol, increases
in autumn and winter over the TP.

3.2.2 The vertical extinction coefficient of dominant

aerosol type

Knowledge of aerosol extinction coefficient is necessary to
enhance our understanding of how atmospheric aerosols im-
pact the weather and climate to a certain extent (Jung et al.,
2019). The extinction properties of the three typical aerosol
types (including dust, elevated smoke and polluted dust) and
the average value of the extinction of all aerosol types were
retrieved in the CALIPSO L3 aerosol profile product. In
this study, the seasonal-average aerosol extinction coefficient
profiles (spring: a–c; summer: d–f; autumn: g–i; winter: j–l)
over the Arctic, Antarctic and TP were calculated statistically
and are shown in Fig. 6.

As Fig. 6 shows, there is no doubt that the aerosol extinc-
tion coefficient profile has a significant regional difference.
In general, the aerosol extinction coefficient in the Arctic
has a broad vertical distribution at heights ranging from 0
to 12 km, but the vertical distribution of the Antarctic aerosol
extinction coefficient is uneven. In the Antarctic, the extinc-
tion layer can reach a maximum height of 11 km in winter
(Fig. 6k) and spring (Fig. 6b), while it is mainly distributed
below 5 km in summer (Fig. 6e) and autumn (Fig. 6h). The
vertical distribution of aerosols over the TP is more concen-
trated, with most aerosols distributed between 2 and 8 km.
The vertical distribution of extinction coefficients of different
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Figure 7. The vertical distribution of multi-year-average (June 2006 to December 2019) OF of aerosol types over the (a) Arctic, (b) Antarctic
and (c) TP.

aerosol types also demonstrates large regional differences.
The elevated smoke in the Arctic has a larger extinction co-
efficient when the altitude is greater than 2 km, especially in
summer (Fig. 6d) and autumn (Fig. 6g), while in the near-
ground area (altitude < 2 km), dust and polluted dust have
a larger extinction coefficient, which is in good agreement
with previous studies (Di Biagio et al., 2018). The extinc-
tion coefficients of aerosols in the Antarctic have obvious
seasonal characteristics. The vertical-distribution patterns of
extinction coefficients for the three aerosol types in spring
(Fig. 6b) and autumn (Fig. 6h) are basically the same, and
the extinction layers are mainly concentrated at heights be-
low 5 km. In summer (Fig. 6e), the vertical distributions of
extinction coefficients are quite different among the differ-
ent types of aerosols. The elevated smoke is mainly concen-
trated at heights of about 3 km, while the dust-related aerosol
types are more distributed at heights below 2 km. In con-
trast, in winter (Fig. 6k) the extinction coefficient of dust and
elevated smoke increases significantly above 5 km, and the
polluted-dust aerosols have large extinction coefficients un-
der 5 km. Unlike the Arctic and Antarctic regions, the extinc-
tion coefficients of smoke- and dust-related aerosols over the
TP region are larger at heights of 4–9 and 2–9 km, respec-
tively. From the perspective of seasonal variation, the extinc-
tion coefficient of dust aerosol is larger in spring (Fig. 6c)
and summer (Fig. 6f) than in autumn (Fig. 6i) and win-
ter (Fig. 6l). In contrast, the extinction coefficient profile of
polluted-dust aerosol shows larger values in spring (Fig. 6c)
and autumn (Fig. 6i). This vertical-distribution information
of aerosol can help to better understand the sources and im-
pacts of aerosols over the three study regions in the future.
For example, aerosol information below clouds could be par-
ticularly important for studying aerosol–cloud interactions.

Note that the vertical distribution of aerosol characteristics
could also be influenced by the topography in each region,
which is out of the scope of the current study.

3.2.3 Vertical distribution

Aerosol types not only have significant spatial and temporal
variations but also vary with height. CALIPSO data provide
the vertical distribution of aerosol types at 208 levels, rang-
ing from the surface to 12 km. Here we investigate the ver-
tical distribution of seven aerosol types, as shown in Fig. 7.
The results show that most of the aerosol types in the Arctic
and Antarctic regions have similar vertical-distribution pat-
terns, except for dust and polluted dust. Clean marine, pol-
luted continental/smoke, clean continental and dusty marine
mainly occur near the surface, with altitudes below 3 km.
Differently from the four types of aerosols above, the ele-
vated smoke is found more at higher altitudes extending up
to 8 and 4 km, with the highest OF at about 2.5 km, in the
Arctic and Antarctic regions, respectively, which indicates
that the main source of elevated smoke is external trans-
port. In addition, polluted continental/smoke aerosols occur
more frequently in the Arctic region than in the Antarctic re-
gion. This is mainly due to the fact that the Arctic region is
surrounded by more continents, and more continental pollu-
tants can enter the Arctic region. Compared with the Arc-
tic, the dust and polluted dust in the Antarctic region have
obvious vertical-distribution characteristics. The dust and
polluted-dust aerosols are mainly located within 3–5 km in
the Antarctic, which indicates that the dust-related aerosols
in the Antarctic area are mainly transported from outside
through the upper air (Li et al., 2008). Similarly to previ-
ous studies, dust-related aerosol layers over the TP appear
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Figure 8. The seasonal-average characteristics of the back trajectories for the study period from January 2007 to December 2019 at each
selected site over the Arctic, Antarctic and TP.

most frequently at approximately 4–8 kma.m.s.l., where the
plumes likely originate from the nearby Taklimakan Desert
(Huang et al., 2007; Liu et al., 2015, 2020b; Xu et al., 2020).

3.3 Back trajectory

In order to better understand the origins of the air masses
arriving in the study regions, the latest version (V5.0.0) of
the HYSPLIT model was used in this study to simulate the
back trajectories of air masses. A total of 11 sites listed in
Table S1 were selected in this study, and the 14 d back tra-
jectories for the Arctic, Antarctic and TP sites were simu-
lated. A total of 3432 (11 × 2 × 12 × 13: 11 sites, 2 times
per month, 12 months per year and a total of 13 years from
2007 to 2019) back trajectories were computed at a height of
500 m above the surface at all 11 sites. The seasonal clima-
tologies (January 2007 to December 2019) of air mass trajec-
tories were created, and the cluster analysis was implemented
to examine the long-range transport pathways of air masses.
The cluster analysis determines the final number of clusters

based on the total spatial variance (Draxler and Hess, 1998).
Figure 8 reveals the seasonal climatological characteristics
of the back trajectories after cluster analysis. It can be seen
that the back trajectories over different study regions have
distinctive characteristics, especially in the TP region. It is
worth noting that due to the fact that coarse-resolution re-
analysis data are difficult to use to describe meteorological
fields under complex terrain conditions, the back trajectories
of air masses simulated by HYSPLIT may have a large er-
ror over the TP region. Compared with the Antarctic, the air
mass trajectory in the Arctic region has a shorter transport
distance. This is most likely due to the fact that the tempera-
ture in the Arctic is higher than that in the Antarctic, which
decreases the pressure gradient and reduces the near-surface
wind speed. In the Arctic, the difference in back trajectories
between the summer and winter half year is obvious, with a
greater proportion of air masses from Eurasia in winter and
spring. At the same time, Asian dust storms prevail in spring,
resulting in a greater proportion of dust and polluted dust
in spring. In contrast, the influence of external transport of
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aerosols is relatively small in autumn, and the larger near-
surface wind speed allows more marine aerosols to enter the
atmosphere, which together make the contribution of clean
marine aerosols in autumn relatively large in the Arctic.

In the Antarctic region, the seasonal difference in air mass
trajectories is relatively small compared with the Arctic re-
gion, and the air mass trajectories were mainly controlled by
circumpolar westerly winds (Ravi et al., 2011). While it is not
clearly shown by the air mass back trajectory simulation re-
sults, dust and polluted dust over East Antarctica were likely
caused by the transport from South America and Africa, and
the polluted dust over West Antarctica was more likely af-
fected by the aerosol transport from South America and Aus-
tralia. Generally speaking, under the influence of steady and
strong westerly winds, dust and carbonaceous aerosols in
South America, Australia and Africa have a certain impact on
Antarctic pollution (Li et al., 2008; McConnell et al., 2007;
Zou et al., 2018).

Differently from the Arctic and Antarctic, the back tra-
jectories of air masses over the TP have significant seasonal
variation. In spring and summer, the air masses located on
the northern slope of the TP mainly come from the northern
desert area. In autumn, the air masses from the north begin
to weaken, while the air masses from the Iranian Plateau be-
gin to increase and reach a maximum in winter (93.15 %).
For the site on the southern slope of the TP, the air masses
mainly come from the Iranian Plateau in spring and winter,
while in summer they mainly come from South Asia, which
makes the TP more vulnerable to pollution from the Indian
Peninsula and South Asia. Similarly to the site on the north-
ern slope of the TP, the back trajectories of air masses at the
eastern slope site are greatly affected by the Tarim Basin and
Qaidam Basin in spring but are mainly affected by the Ira-
nian Plateau and the western part of the TP in autumn and
winter. Differently, in summer, the back trajectories of air
masses are not only from the Tarim Basin and Qaidam Basin
but also from the southern part of the TP, with about 27.54 %
of air masses.

4 Summary and conclusions

Aerosols play a crucial role in the radiative budget of the
Earth–atmosphere system, but due to insufficient understand-
ing of aerosol properties, at least partly, the uncertainty in
the total radiative forcing by aerosols in the climate mode
is still the largest. Understanding the properties of aerosols
is highly demanded. The satellite active remote sensing can
make up for the insufficiency of ground-based remote sens-
ing to obtain long-term and large-scale aerosol properties.
In this study, the spatial and temporal distribution of the
aerosol optical depth (AOD) and aerosol type over the Arc-
tic, Antarctic and Tibetan Plateau (TP) regions was inves-
tigated. In addition, 11 typical sites were selected, and the
back trajectories of air masses were simulated using the Hy-

brid Single-Particle Lagrangian Integrated Trajectory (HYS-
PLIT) model. The main findings are as follows.

The distribution of AOD over the three study regions
shows distinctive spatial and seasonal differences. In general,
the AOD over the Arctic and Antarctic decreases with in-
creasing latitude. In the Arctic, the AOD over land is greater
than that over the ocean, while the opposite is true for the
Antarctic. Eurasia and the Ross Sea are the high-AOD areas
in the Arctic and Antarctic, respectively. The annual-average
AOD over the TP region (0.098) is about twice that of the
Arctic (0.046) and 4 times that of the Antarctic (0.024). The
seasonal variation in AOD over the TP is the most distinctive
due to the influence of transported aerosols from surrounding
high-emission regions. The maximum AOD occurs in spring
and summer over the TP, while it occurs from late autumn
to early spring in the Arctic and in winter and spring in the
Antarctic.

The deseasonalized trend of AOD (called AOD anomaly)
over the three regions was also investigated. The result shows
that there were no obvious temporal trends in the AOD
anomalies over the Arctic, Antarctic and TP. Compared with
the Antarctic and Arctic, the AOD anomalies over the TP
have obvious fluctuations, which indicates that the TP is
more susceptible to the influence of highly varied aerosols
from different regions. In the Arctic, the aerosol extinction
coefficient has a broad vertical distribution at heights from
the surface to 12 km. Moreover, the extinction coefficient of
elevated smoke and polluted dust in the upper layer is large in
the Arctic, especially in summer and autumn. In the Antarc-
tic, the vertical distribution of aerosol extinction has obvi-
ous seasonal differences. Dust aerosol has a large extinction
coefficient at heights of 5–11 km in winter, while in other
seasons, the aerosol extinction coefficient is large at heights
below 5 km.

The multi-year-average (June 2006–December 2019) oc-
currence frequency (OF) of aerosol types was also examined.
The OF of different aerosol types demonstrates significant
spatial differences. In the Antarctic and Arctic regions, the
dominant aerosol type is the clean marine type, followed by
polluted continental/smoke and polluted-dust aerosol types.
Clean marine aerosol types are mainly distributed over the
seas of the polar regions, and polluted continental/smoke
and polluted dust are mainly distributed over the land re-
gions. In the Arctic, polluted continental/smoke aerosol types
are mainly distributed in the northern part of Europe, while
polluted-dust aerosols are widely distributed in the northern
parts of Asia and America along with the Greenland island
region. In the Antarctic, dust and polluted-dust aerosol types
are mainly distributed in East Antarctica, and polluted con-
tinental/smoke aerosol types are mainly distributed in the
Antarctic Peninsula. In the TP region, the main aerosol types
in the north and south of the TP are dust and polluted dust,
respectively. The normalized seasonal OF of seven aerosol
types is further investigated. The result shows that the OF of
each aerosol type in different regions has obvious seasonal
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variations. Regarding the vertical distribution of the OF of
aerosol types, dust, polluted dust and elevated smoke have
a relatively large OF at higher altitudes. And the maximum
altitude with a noticeable OF of these types of aerosols is
higher in the Antarctic than in the Arctic. Differently from
the Arctic and Antarctic, the dust-related aerosol layers over
the TP appear most frequently at heights of approximately
4–8 kma.m.s.l.

The back trajectories of air masses indicate that the Arctic
region is vulnerable to mid-latitude pollutants, especially in
winter and spring, while the Antarctic region is less affected
by the mid-latitude pollutants. Differently from those in the
Arctic and Antarctic, the air mass trajectories over the TP
have obvious seasonal variations.
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