

Open access • Journal Article • DOI:10.1080/02786826.2014.976333

Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate — Source link 🗹

Jingkun Jiang, Chungman Kim, Xiaoliang Wang, Mark R. Stolzenburg ...+6 more authors

Institutions: University of Minnesota, Desert Research Institute, National Institute of Advanced Industrial Science and Technology

Published on: 15 Oct 2014 - Aerosol Science and Technology (Taylor & Francis)

Topics: Differential mobility analyzer

Related papers:

- An approximation of the bipolar charge distribution for particles in the submicron size range
- On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere
- · Aerosol classification by electric mobility: apparatus, theory, and applications
- Ion—Aerosol Attachment Coefficients and the Steady-State Charge Distribution on Aerosols in a Bipolar Ion
 Environment
- Scanning Electrical Mobility Spectrometer

Supplemental Information

Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate

Jingkun Jiang^{1,2*}, Chungman Kim², Xiaoliang Wang^{3,4}, Mark R. Stolzenburg², Stanley L. Kaufman⁴, Chaolong Qi², Gilmore J. Sem⁴, Hiromu Sakurai⁵, Naoya Hama⁶, and Peter H. McMurry²

¹State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China;

²Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, U.S.A.;

³Desert Research Institute, Reno, NV, U.S.A.;

⁴TSI Inc., Shoreview, MN, U.S.A.;

⁵National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan;

⁶Tokyo Dylec Corp., Tokyo, Japan

*To whom correspondence should be addressed:

Email: jiangjk@tsinghua.edu.cn

Tel: +86-10-62781512

Table S1 Summary of the radioactive sources investigated

Neutralizers	Age	Number of	Nominal
(initial activity)	(Month)	half lives	Activity (MBq)
²¹⁰ Po (18.5MBq / 0.5mCi)	4	0.867	10.142
	10	2.168	4.117
	16	3.469	1.671
	28	6.070	0.275
	39	8.455	0.0527
	52	11.273	0.0075
	64	13.875	0.0012
	77	16.693	1.7×10^{-4}
	91	19.728	2.1×10^{-5}
⁸⁵ Kr 3077A (370MBq / 10mCi)	4	0.031	362.11
	25	0.194	323.37
	29.5	0.229	315.62
⁸⁵ Kr 3077	5.5	0.043	71.839
(74MBq / 2mCi)	127	0.987	37.328
⁸⁵ Kr 3012A	6	0.047	250 22
(370MBq / 10mCi)			558.25
⁸⁵ Kr 3012	6.5	0.051	71.453
(74MBq / 2mCi)	53.5	0.416	55.467
²⁴¹ Am (3MBq / 0.08mCi)	4	0.0008	2.997

Note:

1.) Bq is the SI unit of radioactivity. One Bq is defined as one transformation (or decay or disintegration) per second. Curie (Ci) is another unit of radioactivity. 1 Ci = 3.7×10^{10} Bq.

2.) The half lives of 210 Po, 85 Kr, and 241 Am are 4.6 months, 128.6 months, and 432.2 years, respectively.

3.) ²¹⁰Po and ²⁴¹Am emit monoenergetic alpha particles with energy around 5 MeV. ⁸⁵Kr emits beta particles with continuous energy distribution up to 0.69 MeV. The photon energy of soft X-ray is ~ 9.5 keV.

Figure S1 Inside dimensions of the test neutralizer housings (flow from left to right): (a) ²¹⁰Po housing of Particle Technology Laboratory (PTL); (b) ²¹⁰Po housing of Aerosol Dynamics (ADI); (c) ⁸⁵Kr housing of TSI 3077/3077A; (d) ⁸⁵Kr housing of TSI 3012/3012A; (e) ²⁴¹Am housing of Tokyo Dylec Corporation; (f) soft X-ray housing of TSI 3087. For PTL and ADI neutralizers, radioactive sources are placed in cavities of housing walls. The drawings are NOT proportional to their dimensions. Unit: mm.

Figure S2 Particle concentrations downstream of the PTL (a) and ADI (b) neutralizers corresponding to step increase in upstream particle concentrations. Sodium chloride particles were generated by atomization, and classified by a DMA to select 50 nm particles. The DMA voltage was turned on and off every five minutes to generate step changes in particle concentrations at the inlet of the neutralizers. Particle concentrations at the outlet of the neutralizers were measured by a CPC. The concentrations were normalized by the average concentration for the last 100 s at the step plateau. The error bar represents the standard deviation of 3-4 replicates for a given flowrate. The ADI outlet concentration shows significant variations in concentrations for flowrates of 1 and 1.5 lpm, indicating flow instabilities inside the neutralizer.

Figure S3 Singly charged fractions of 70 nm particles with different neutralizers as a function of the aerosol flowrate: (a) TSI 3077/3077A ⁸⁵Kr neutralizer; (b) Dylec ²⁴¹Am neutralizer; (c) TSI 3087 soft X-ray neutralizer; (d) TSI 3012/3012A ⁸⁵Kr neutralizer. For ⁸⁵Kr neutralizers, charge fractions are averaged for all tested ⁸⁵Kr sources with activity greater than 70 MBq. The error bars in (a) are the standard deviations. Numbers given on the plots are the mean charge fraction for all flowrates and the standard deviation (in parenthesis), respectively.

Figure S4 Doubly charged fractions of 70 nm particles with different neutralizers as a function of the aerosol flowrate: (a) PTL ²¹⁰Po neutralizer; (b) ADI ²¹⁰Po neutralizer; (c) Dylec ²⁴¹Am neutralizer; (d) TSI 3077/3077A ⁸⁵Kr neutralizer; (e) TSI 3087 soft X-ray neutralizer; (f) TSI 3012/3012A ⁸⁵Kr neutralizer. For the ²¹⁰Po neutralizer, charge fractions are averaged for all test ²¹⁰Po sources with the activity of 0.0527 MBq or greater. For ⁸⁵Kr neutralizers, charge fractions are averaged for all tested ⁸⁵Kr sources with the activity greater than 70 MBq. The error bars in (a), (b), and (d) are the standard deviations.