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Abstract—A group of eight Spanish lidars was formed in or-
der to extend the European Aerosol Research Lidar Network—
Advanced Sustainable Observation System (EARLINET-ASOS)
project. This study presents intercomparisons at the hardware and
software levels. Results of the system intercomparisons are based
on range-square-corrected signals in cases where the lidars viewed
the same atmospheres. Comparisons were also made for aerosol
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backscatter coefficients at 1064 nm (2 systems) and 532 nm (all
systems), and for extinction coefficients at 532 nm (2 systems).
In total, three field campaigns were carried out between 2006
and 2007. Comparisons were limited to the highest layer found
before the free troposphere, i.e., either the atmospheric boundary
layer or the aerosol layer just above it. Some groups did not pass
the quality assurance criterion on the first attempt. Following
modification and improvement to these systems, all systems met
the quality criterion. The backscatter algorithm intercomparison
consisted of processing lidar signal profiles simulated for two types
of atmospheric conditions. Three stages with increasing knowledge
of the input parameters were considered. The results showed
that all algorithms work well when all inputs are known. They
also showed the necessity to perform, when possible, additional
measurements to attain better estimation of the lidar ratio, which
is the most critical unknown in the elastic lidar inversion.

Index Terms—Aerosols, backscatter algorithm intercompari-
son, lidar, network, system intercomparison.

I. INTRODUCTION

CTIVE instruments such as lidars provide detailed infor-

mation on the aerosol spatial distribution throughout the
observation line of sight at daytime and nighttime. Satellite-
based lidars, such as the Geosciences Laser Altimeter System
onboard the Ice, Cloud and land Elevation Satellite (ICESAT,
2003) [1] and the Cloud-Aerosol Lidar with Orthogonal Po-
larization (CALIOP) onboard the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO, 2006) [2],
[3], offer global coverage but with revisit times on the order of
ten days. Coordinated terrestrial lidar networks simultaneously
offer the temporal and vertical high resolution of each individ-
ual instrument, combined with the spatial sampling within the
network area: They are a suitable tool for performing ground-
truth observations and can follow the temporal evolution of the
aerosol distribution over an extensive region.

The European Aerosol Research Lidar Network
(EARLINET) [4] was created in May 2000 within a project
from the Fifth Framework Programme (FP) of the European
Union (EU) to establish an aerosol climatology. The number
of lidar stations involved in the network was 19 in 2000 and
has risen to 25 today. Since March 2006, it is endorsed by
the coordinated action EARLINET-Advanced Sustainable
Observation System (EARLINET-ASOS) [5] from the Sixth
FP of the EU. The main objective of EARLINET-ASOS is to
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improve the EARLINET infrastructure, resulting in a better
spatial and temporal coverage of the observations, continuous
end-to-end quality control for each observation system, and
rapid availability of standardized data products.

The lidars from EARLINET present a great variety of charac-
teristics [6], and one of the specific objectives of EARLINET-
ASOS is to optimize instruments and define advanced lidars
able to operate unattended and to acquire enough data to
retrieve range-resolved aerosol optical and microphysical pa-
rameters. To concentrate their efforts on this specific objective,
the Spanish lidar community created a Spanish Lidar Network
(SPALINET). The first goal of this network is to perform an
intercomparison of instruments at the hardware and software
levels, and check the results against EARLINET quality control
tolerances.

II. SPALINET

The SPALINET (see www.lidar.es/spalinet) network is
an initiative from the three Spanish groups belonging to
EARLINET-ASOS. It officially started on January 1, 2007, and
is financially supported by the Spanish Ministry of Science and
Innovation. A total of eight research centers and universities
distributed in the Iberian Peninsula and the Canary Islands are
participating. (The first three letters in the parentheses pertain
to the abbreviation of the name of the lidar station.)

1) Universidad Politécnica de Cataluiia, Barcelona: The in-
strument is situated in Barcelona (BAR, 41.39 N, 2.11 E,
115 m asl).

2) Centro de Investigaciones Energéticas Medioambientales
y Tecnolégicas, Madrid. The instrument is situated in
Madrid (MAD, 40.46 N, 3.72 W, 665 m asl).

3) Universidad de Granada, Granada. The instrument is
situated in Granada (GRA, 37.16 N, 3.58 W, 680 m asl).

4) Universidad de La Laguna, La Laguna. The instrument
is situated in La Laguna (LLA, 28.48 N, 16.32 W,
550 m asl).

5) Instituto Nacional de Técnica Aerospacial, Torrején de
Ardoz. The instrument is situated in Santa Cruz de
Tenerife (SCT, 28.47 N, 16.23 W, 52 m asl).

6) Universidad de Valencia, Valencia. The instrument is
situated in Valencia (VAL, 39.51 N, 0.42 W, 60 m asl).

7) Universidad de Murcia, Murcia. The instrument is situ-
ated in Murcia (MUR, 38.02 N, 1.15 W, 90 m asl).

8) Universidad Politécnica de Cartagena, Cartagena. The
instrument is situated in Cartagena (CAR, 37.37 N,
0.57 W, 5 m asl).

The main characteristics of SPALINET instruments are sum-
marized in Table I, and their geographical distribution is shown
in Fig. 1. Three of them are laboratory instruments, and the rest
were purchased from specialized companies. All the systems,
except Murcia and Cartagena, are regularly measuring aerosol
backscatter and/or extinction coefficients. Murcia employs its
system mainly for determining the aerosol load when Saharan
dust intrusions occur and studying the dust influence on the
precipitation of the region. The Cartagena system employs the
DIAL technique to measure the concentration of chemical com-
ponents, such as SO3, O3, NO,, and toluene. All the systems
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are able to measure at or close to the wavelength of 532 nm
(the SCT system measures at 523 nm), and half of them can
measure at 1064 nm. Three of the systems are able to measure
the Raman channel of N5 at the 607 nm.

The network aims to promote the use of lidar instruments and
data among the Spanish scientific community. The main goals
of the network are given as follows:

1) extend and reinforce the actions of EARLINET-ASOS;

2) form a nucleus for stimulating the Spanish lidar com-
munity and promote the participation of new groups for
improving the spatial cover of aerosol vertical measure-
ments on the Spanish territory (with a possible extension
to Portugal);

3) strengthen the membership and capabilities of
SPALINET by voluntary participation in field campaigns
in support of international projects dedicated to the
study of aerosols and their impact on the global radia-
tive budget.

More specifically, in the first two years of the project, efforts
are directed to assuring the quality of instrumental data. This
goal will be achieved by performing, during the first year, an
intercomparison at the hardware level and, during the second
year, an intercomparison of retrieval algorithms using synthetic
data for a number of situations of different complexities. The
results of the first two years are presented in this paper.

III. DATA ANALYSIS
A. Normalized Distance

Before performing any type of data processing, it is useful to
estimate how well the range-square-corrected signals (RSCSs)
of two different systems agreed in a given altitude interval. This
indicates the similarity of the system responses to the same
scene at the hardware-plus-preprocessing level. The signal sim-
ilarity between two instruments labeled a and b was measured
by calculating the normalized distance d,, ,(n, m) between their
RSCS in a height interval limited by z,, and z,,, (m > n), which
is defined by

dap(n,m) =/1—04p(n,m) (1)

where o, 3 is the normalized correlation coefficient

(& Xa<zi>Xb<zz->)2

i=n

Tap(n,m) = =5 i 2
Z: X3 () Z: X3 (2)

with X, (2;) = 22P,(2;) and Xp(2;) = 22Py(z;) being the
RSCSs at altitude z; of the instruments labeled a and b, re-
spectively. P, (z;) and P,(z;) are the respective received powers
from altitude z;.

The use of the normalized correlation is necessary in order
to avoid biases due to the use of noncalibrated systems. The
resulting normalized distance will be <1 if, between the two
heights z,, and z,,, both systems have very similar RSCSs. In
turn, it will be ~1 if both RSCSs are very different.
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TABLE 1
CHARACTERISTICS OF SPALINET LIDARS SYSTEMS. SUPERSCRIPT “a” INDICATES DETECTION OF BOTH P- AND
S-POLARIZED COMPONENTS. SUPERSCRIPT “b” CORRESPONDS TO THE WAVELENGTH OF 523 nm
AND NOT 532 nm. THE BOLD NUMBERS INDICATE THE WAVELENGTHS INTERCOMPARED
Lidar station

Units | BAR MAD GRA LLA SCT VAL MUR CAR

Lidar model - laboratory laboratory | Raymetrics Eridan SES Inc. CIMEL Electronique | laboratory | Elight
LR321-D400 | LSA-2¢ | MPL-3 CAML CE370-2 UV11

Elastic IR 1064 mlJ 160 - 110 100 - - 1000 -
Elastic VIS 532 mJ 160 100 65" 50 0.01° 0.004 500 -
Elastic UV 355 m] - - 60 - - - 250 -
Elastic UV 266 mJ - - - - - - 110 -
Elastic UV 390-399 mJ - - - - - - Yes Yes
Elastic UV 255-290 mJ - - - - - - Yes Yes
Raman VIS 607 - Yes Yes - - - - Yes -
Raman UV 387 - - - Yes - - - Yes -
Raman UV 407 (WV) - - - Yes - - - Yes -
PRF Hz 10 20 10 10 2500 4600 10 20
Scanning capability - Yes Yes No Yes Yes No Yes Yes
System transportable - Yes Yes Yes No Yes Yes No Yes
Full overlap height km ~0.4 ~0.4 ~0.3 ~0.3 ~1.5 ~1 ~2 ~0.3
Maximum range km 50 15 120 10 60 5 50 S

B. Aerosol Backscatter

As all the SPALINET systems have at least one pure-
elastic backscatter channel, backscatter coefficients were
compared in the first instance. The retrieval algorithm used
is the Klett-Fernald—Sasano algorithm [7]-[9], in which the
effects of the molecules and the aerosols are separately consid-
ered. The atmosphere total backscatter coefficient 3 is retrieved
as a function of the height z from the values of the RSCS X (z)
as (3), shown at the bottom of the next page

where

Ba(2) aerosol backscatter coefficient;

B (2) molecular (Rayleigh) backscat-
ter coefficient;

Zm, range from which the inversion

is started;
aerosol lidar ratio given by the
ratio between the aerosol ex-

Sa(z) = aa(z)/ﬁa(z)

tinction coefficient «,(z) and
the aerosol backscatter coeffi-
cient 8,(2);
molecular lidar ratio that is
given by the ratio between
the molecular extinction coef-
ficient «,, and the molecular
backscatter coefficient (3,, and
is independent of the height.
The term ((z,,) represents the boundary condition where
the total backscatter coefficient is assumed to be known. Here,
only the backward solution was considered as the intercom-
parison dealt only with ground-based systems. The molecular
coefficient profiles were calculated using the ground values
of temperature and pressure, and standard atmosphere condi-
tions [10]. All the aerosol backscatter coefficients presented in
the intercomparison at the hardware level were retrieved with

Sm = Olm/ﬂm = 87T/3 sr
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Fig. 1. Geographical distribution of the SPALINET lidar systems. Circles
and squares indicate transportable and untransportable systems, respectively.
(Black) Systems involved in EARLINET-ASOS. (White) Locations of the three
field campaigns, as numbered in Table II.

the Klett—Fernald—Sasano algorithm and assuming a constant
aerosol lidar ratio of 30 sr. For each pair of profiles inverted,
the same boundary condition ((z,,) was chosen at the same
height z,,.

C. Aerosol Extinction

In one case, the Raman channel of A\r = 607 nm, arising
from a vibrational-rotational Raman transition of the N5 in the
atmosphere under the excitation at 532 nm, was simultaneously
measured by two systems. By using data from both Raman
and elastic channels, it is possible to overcome the assump-
tion of an a priori unknown lidar ratio [11]. The solution of
Ansmann et al. [11] for the aerosol extinction coefficient at
laser wavelength «, ), is repeated here for the reader’s con-
venience, i.€.,

L <1f:>’“
{dd [ln Nr(2)

Xig (Z )
where Np(z) is the atmospheric nitrogen molecule number
density, and oy, 3, and oy, are the molecular extinctions for
the laser and the Raman wavelengths, respectively.
The backscatter coefficient can also be derived from the
expression of ¢, », without assuming an a priori lidar ratio

Qa, N (Z) =

} — Qmr (2) — am,AR(Z)} 4)
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but by choosing a boundary condition 3(z,,) to eliminate the
system constant.

IV. INTERCOMPARISON FIELD CAMPAIGNS

The intercomparison campaigns had two main objectives:
1) identify the hardware problems and limitations of each
system and 2) identify the limitations of the preprocessing
software used by each group. Three campaigns were carried out
in the following places:

1) El Arenosillo (37.10 N, 6.70 W, 17 m asl) in the
southwest of peninsular Spain during June 28, 2006—
July 2, 2006 in the context of the DAMOCLES field
campaign [13];

2) Barcelona (41.39N, 2.11 E, 115 m asl) during February 6,
2007-February 8, 2007,

3) La Laguna (28.48 N, 16.32 W, 550 m asl) in the Canary
Island of Tenerife during June 24, 2007-June 28, 2007.

They are summarized in Table II, and the sites where they
took place are shown in Fig. 1. A total of six systems have
been intercompared. The Valencia system, which was present
in Campaign 1, had to repeat the experiment in Campaign 2.
In the first campaign, technical problems that are mostly related
to the alignment of the emission and the reception optics
made the measurements useless. The Cartagena system also
deployed in Campaign 1 could not perform any measurements
because of a software problem. The third campaign took place
in La Laguna, because the system from the University of
La Laguna is not transportable. Originally, the campaigns lasted
five days. In Campaign 2, the first two days of measurement
were very fruitful, and as the weather forecasts were bad for
the rest of the week, the measurements were stopped around
midday on the third day.

The fourth intercomparison campaign took place in Murcia
during May 26, 2008—May 30, 2008 in order to compare the
last two systems. Unfortunately, the Cartagena system was not
operational because of a laser problem. The Murcia system,
in spite of the relatively strong power it can emit, was unable
to deliver invertible signals. The signal-to-noise ratios were
indeed too low because of the slowness of the acquisition
system, a gated integrator, which acquires one point of the
profile per pulse.

All three field campaigns were carried out in coastal regions
where a sea-breeze regime usually settles during daytime. The
atmospheric boundary layer (ABL) was usually not higher than
1.5 km. In Campaigns 2 and 3, aerosol layers were detected
above the ABL up to 3 km but not decoupled from it. On
one day in Campaign 3 (June 25, 2007), an aerosol layer was
detected in the free troposphere decoupled from the ABL.

6(2) :ﬁa(z) + ﬁm(z)

B(zm)X (2) exp {2 f;m [Sa(u) — S ﬂm(u)du}

X (Rin) +2B(zm) [7 Sa(u) X (u

Yexp {2 [ [Su(v) — Sl B (v)dv} du

(€)
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TABLE 11
PLACE AND DATES OF THE FIELD CAMPAIGNS CARRIED OUT, AS WELL AS
THE COMPARED QUANTITIES BESIDES THE NORMALIZED DISTANCE

Lidar station
Campaign # Campaign place | BAR MAD GRA VAL LLA SCT
and date
1 El Arenosillo Yes Yes Yes Yes
28/6-2/7/2006 - Ba 532, 0a 532 | Ba 532, Ba 104 | -
2 Barcelona Yes Yes
6-8/2/2007 - Ba s
3 La Laguna Yes Yes Yes
24-28/6/2007 - Ba, 532 Ba 532
TABLE III
MAXIMUM ALLOWED ABSOLUTE AND RELATIVE DEVIATIONS FOR THE COMPARED
AEROSOL BACKSCATTER AND EXTINCTION COEFFICIENTS
Quantity Mean deviation Standard deviation Minimum height
interval (m)
Aecrosol backscatter at 532 nm | 0.5 x 108m™sr!/20% | 0.5x 108m™sr'/25% | 2000
Aerosol backscatter at 1064 nm | 0.5x 10m™"-sr'/30% | 0.5x10%m™"sr'/30% | 2000
Aerosol extinction at 532 nm 0.5x10%m™"/20% 1.0x 10*m™/25 % 1000

A. Objectives and Methodology of the Intercomparisons

The first objective of the field campaigns was to com-
pare in situ the range-square-corrected profiles from different
instruments pointing at the same atmospheric target to evi-
dence differences in the acquisition and preprocessing. In all
the campaigns, the systems were never located further than
20 m apart from each other. This task led to many interactions
between all the participants and helped them to adjust their
system in both hardware and software aspects [12]. Most of the
problems encountered during the field campaigns are described
in Section V.

The second objective of the campaigns was to quantitatively
compare the backscatter (pure-elastic backscatter lidar) and
extinction (Raman lidar) coefficients retrieved by the same
inversion algorithm. The comparisons were made against the
Barcelona system, which was regarded as assured quality since
it passed the EARLINET instrument intercomparison exercise
in 2001 [6]. When a value of sun-photometer aerosol optical
thickness (AOT) [14] was available, the lidar-derived AOT
was compared with it in order to check the coherency of the
magnitudes found by the lidars.

Diurnal cycle measurements were performed from 0800 to
2000 Coordinated Universal Time (UTC) at the maximum
number of elastic wavelengths possible with a 1-min time res-
olution. By default, the deliverable profiles had to be integrated
over 10 min. Since the Valencia system uses a low-energy

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on June 04,2010 at 10:36:53 UTC from IEEE Xplore. Restrictions apply.

laser, the comparison of that system was made by integrating
the profiles over 30 min. All the groups with Raman channels
also performed night-time measurements starting at 2130 UTC
with a 1-min time resolution. The deliverable profiles were
integrated over 120 min. All systems performed the measure-
ments pointing at zenith and delivered the profiles with a spatial
resolution of 15 m (except the Instituto Nacional de Técnica
Aeroespacial system, which has a resolution of 30 or 75 m).

B. Compared Quantities and Quality Criteria

Color maps of the normalized distance were plotted to have a
first hint on how well two instruments compared in the ABL and
to have an idea of the maximum height where the agreement
was good. A total of three optical coefficients were compared
(see Table II), i.e., the aerosol backscatter coefficients at 532
and 1064 nm, and the aerosol extinction coefficient at 532 nm.

The conditions of the inversion to retrieve the backscatter
and extinction coefficients were given in Sections III-B and C,
respectively. The extinction coefficient was retrieved in only
one case.

The quality criteria used for the optical coefficients are those
described by Matthias et al. [6], which were derived from
former experiments performed by the German lidar network
back in 1998. The backscatter and extinction coefficients were
compared in terms of the absolute and relative mean deviations
and in terms of the absolute and relative standard deviations
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TABLE 1V

INTERCOMPARISON OF OPTICAL COEFFICIENTS. THE ABSOLUTE DEVIATIONS ARE EXPRESSED IN m ™!

-sr—1 AND IN m~! FOR THE BACKSCATTER AND

EXTINCTION, RESPECTIVELY. THE AOT WAS MEASURED BY SUN-PHOTOMETERS. THE ASTERISKS IN THE “DATE AND TIME” COLUMN INDICATE THE
CASE SHOWN IN FIG. 2. THE MAXIMUM ALLOWED DEVIATIONS ARE SHOWN ON THE LINES ABOVE EACH SET OF COMPARISONS

Date and time Wavelength Mean deviation Standard deviation Height interval AOT
(UTC) (nm) (x 10/ %) (x 10/ %) (m)
BACKSCATTER <0.50/30.0 <0.50/30.0
at 1064 nm
28/6/2006, 1856-1906" | 1064 0.02/1.9 0.15/255 500-1600 0.06
GRA-BAR 29/6/2006, 0847-0857 1064 0.13/17.5 0.22/29.5 500-1800 0.06
29/6/2006, 1042-1052 1064 0.10/13.1 0.21/269 500-1700 0.06
BACKSCATTER <0.50/20.0 <0.50/25.0
at 532 nm
28/6/2006, 0835-0845 | 532 0.14/2.9 0.69/14.5 500-2000 0.32
GRA-BAR 28/6/2006, 1623-1633" | 532 0.26/11.4 0.42/183 500-1600 0.17
28/6/2006, 1856-1906 | 532 0.04/2.0 0.33/19.8 500-1700 0.14
28/6/2006, 1448-1458" | 532 0.22/8.7 0.26/10.3 500-2000 0.21
MAD-BAR 29/6/2006, 0847-0857 | 532 021/12.4 0.37/22.1 500-1800 0.15
29/6/2006, 1042-1052 | 532 0.04/1.9 0.47/24.0 500-1700 0.17
6/2/12007, 1514-1544" 532 0.26/13.8 0.33/17.7 800-1800 0.33
VAL-BAR 7/2/2007, 0852-0922 532 0.10/282 0.13/36.3 800-1800 -
7/2/2007, 1215-1245 532 0.23/20.8 0.25/22.9 800-1800 0.11
24/6/2007, 1940-1950 | 532 0.31/452 0.38/55.4 500-2400 -
LLA-BAR 26/6/2007, 1520-1530 | 532 0.09/15.0 0.20/36.2 500-2500 0.04
26/6/2007, 1605-1615" | 532 0.08/14.0 0.10/18.6 500-2500 0.04
24/6/2007, 0859-0909 | 523 0.02/2.2 0.17/19.6 500-2800 0.1
SCT-BAR 24/6/2007, 1645-1655 | 523 0.11/16.1 0.17/25.8 500-3200 0.08
26/6/2007, 1605-1615" | 523 0.11/20.8 0.14/26.5 500-2500 0.04
EXTINCTION <50/20.0 <100/25.0
at 532 nm
MAD-BAR 28/6/2006, 2101-2301 532 48/47.6 60/59.6 900-2500 -

of inverted profiles between two heights hp,i, and hy,.x Where
aerosols were present. hy,;, was selected as the lowest height
where both systems intercompared had reached full overlap,
and h,,x Was selected as the top of the aerosol layer just before
the free troposphere. For the reader’s convenience, the expres-
sion of the four quantities compared is repeated. If we denote
the difference between two quantities m; and my (which could
represent either aerosol backscatter or extinction coefficients) at

a given height as Am, the mean deviation between two heights
z; and z; is defined as

J
> Am
Am="="— 5)
n

where n is the number of points between z; and z;. If we denote
the mean value of quantity m (i.e., the quantity m; or ms taken
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GRA - BAR, 1064 nm - 28/6/2006 at 1856-1906 UTC
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(Top) Map of the normalized distance (d, (., ™)) and (bottom) intercomparison of the aerosol backscatter profiles between (a) Granada and Barcelona

(1064 nm), (b) Granada and Barcelona (532 nm), (¢c) Madrid and Barcelona (532 nm), (d) Valencia and Barcelona (532 nm), (e) SCT and Barcelona (532 nm), and
(f) La Laguna and Barcelona (532 nm). The minimum and maximum heights used to calculate the mean and standard deviations are indicated by dashed lines.

as reference) between z; and z; as T, then the relative mean

deviation (in percent) is

Am

Amye = 100 x

The standard deviation and the relative value of the standard

deviation (in percent) are calculated as

> (Am)?
Sm = | 4=
n—1

and

(6)

respectively.

5
51 = 100 x 228
m

®)

The intercomparison between two instruments was regarded

as successful if either the absolute or the relative values of both

the mean and standard deviations stayed below the maximum
allowed values fixed by Matthias et al. [6]. Those values are
given in Table III, as well as the minimum height intervals (also
fixed in the same reference) over which the deviations had to be

calculated.

)

As earlier said, in almost all cases, the aerosol structure was

limited to an ABL and a coupled layer on top of it. In those
conditions, to guarantee that all systems could actually detect
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MAD - BAR, 532 nm - 28/6/2006 at 2101-2301 UTC
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Fig. 3. Intercomparison of the aerosol extinction profiles between Madrid and
Barcelona at 532 nm. The minimum and maximum heights used to calculate the
mean and standard deviations are indicated by dashed lines.

aerosols within the ABL where the highest aerosol load can be
found, minimum values were fixed [6].

1) Ba > Bamin =2 % 1079 m™! - sr~! at 532 nm.

2) Ba > Bamin =1 x 1079 m™1 - sr! at 1064 nm.

3) @y > agmin =1 x 107* m~1 at 532 nm.

V. SYSTEM INTERCOMPARISON: RESULTS

The field campaigns showed the importance of the pre-
processing that each group applies to its data. In approximately
half of the cases, the first profiles provided could not be
intercompared, because the system was not correctly set up for
the measurement (detector saturation, overlap factor incorrectly
adjusted, electronic interferences, etc.) or the preprocessing was
wrong (incorrect background calculation, inappropriate use of
smoothing techniques, etc.). In all these cases, the measurement
and/or preprocessing was repeated until the intercomparison
went well.

A total of 131 profiles were inverted, from which 112
fulfilled the condition on the aerosol load on 3, > 35 min OF
Qg > Qg.min- In order to reduce the length of this section, the
intercomparison results are listed for only three cases when
the aerosol load condition was fulfilled for each instrument
and each wavelength (Table IV), and the results are illustrated
by plotting the normalized distance and the optical coefficient
intercomparison in only one case (Figs. 2 and 3). The visual-
ization of the color maps of d, ;(n, m) as a function of z,, and
Zm gives qualitative information on how well the two compared
systems agree in that altitude interval. The quantitative results
are first presented in terms of aerosol backscatter and then
aerosol extinction.

A. Aerosol Backscatter

The intercomparison between the Granada and Barcelona
systems took place during Campaign 1. The results at 1064 nm
on June 28, 2006 at 1856—1906 UTC and at 532 nm on June 28,
2006 at 1623-1633 UTC are shown in Fig. 2(a) and (b),
respectively. In both maps of d, ;(n, m), the normalized dis-
tance is clearly well below 0.1 (dark gray) between the two
heights hpyin and hpax. At 1064 nm, the agreement very
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quickly deteriorates above hp,.x due to random noise since the
molecular signals at that wavelength are very weak and the
detectors are less sensitive, compared with those in the visible
region. At both wavelengths, the comparison of the backscatter
coefficient profiles is very good in the height interval selected,
and all the relative deviations (see Table IV) are well below
the maximum allowed values. In only one case at 532 nm,
corresponding to the day with maximum AOT, the absolute
standard deviation exceeded 0.5 x 107¢ m~! - sr1, which is
the maximum allowed value. The height intervals oscillated
between 1100 and 1500 m; therefore, the requirement on the
minimum height interval was not strictly fulfilled. However, in
Campaign 1, high aerosol loads were observed in the ABL.

The Madrid and Barcelona systems at 532 nm were also in-
tercompared in Campaign 1. The map of d, (1, m) on June 28,
2006 at 1448-1458 UTC in Fig. 2(c) shows low values of
the normalized distance in the height interval selected. The
color map jumps twice to a darker gray when increasing the
minimum height z,, of the distance computation range, i.e.,
at approximately 600 and 1400 m, coinciding with two peaks
observed on the backscatter profiles. The intercomparison of
the backscatter coefficient is very good, even though the Madrid
system’s overlap factor seems to increase more slowly than
expected: If compared with the Barcelona profile, the full
overlap seems to be reached at 1250 m, instead of the expected
400 m (see Table I). In the three cases listed in Table IV about
the MAD-BAR intercomparison, all the absolute and relative
values of both deviations stay well below the maximum allowed
values. The height interval varies between 1200 and 1500 m.
As for the GRA-BAR intercomparison, the minimum height
interval requirement is not fulfilled, but high aerosol loads were
observed in the ABL, i.e., an AOT in the range of 0.14-0.32 at
532 nm during the campaign.

The Valencia system participated in Campaign 1, but as it
was the first deployment of the instrument, some problems
that could not be solved within the five days of the cam-
paign occurred. The experiment was repeated in Campaign 2.
As the Valencia system uses a very low energy laser (4 uJ at
4.6-kHz pulse repetition frequency), the intercompared profiles
were integrated over 30 min. In those conditions, the molecular
signal could be detected up to 3000 m with the Valencia system.
If started above 3000 m, the inversion could suffer from large
errors if it is initiated in a noisy cell or a nonaerosol-free region
of the troposphere. As far as our analysis is concerned, this
aspect did not limit our intercomparison since no aerosol layer
was observed above 2800 m during Campaign 2. However, this
limiting aspect of the Valencia system should be taken into
account when the instrument is to be used for the observation
of high-altitude (> 3000 m) aerosol layers. In Fig. 2(d), the
map of the normalized distance clearly shows the limitation
of the system below 800 m due to the “afterpulse” effects and
above 2500 m because of the low sensitivity of the system to
molecular signals. The “afterpulse” is a detector noise induced
from the firing of the laser [15], [16] that occurs when the
emission and reception optical axes are not totally decoupled,
i.e., when some optical components are common to the emis-
sion and the reception layouts. When the laser pulse is emitted,
the detector saturates. The saturated signal is then corrected
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Stage 1, Case 3, 355 nm
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Fig. 4. Retrieved aerosol backscatter coefficient profiles at all three wavelengths, compared with the simulation input profiles of case 3 for (a), (d), and (g) stage 1
and (b), (e), and (h) stage 3. The exact profile is shown in dashed lines. (c), (f), and (i) Relative errors for case 3 and stage 3.

with a calibration profile. However, even after the correction
has been made, the minimum height of confidence given by
the manufacturer is about 800 m. Between the two heights
selected hpmin = 800 m and hp,.x = 1800 m, the backscatter
coefficient profile compares very well with that of Barcelona.
In the three cases listed in Table IV, all values are well below
the maximum allowed values, except the relative value of the
standard deviation on February 7, 2007 at 0852-0922 UTC.
In that measurement, a very weak aerosol layer (8, < 0.1 X
107¢ m~! - sr 1) located above the ABL between 1200 and
1800 m was taken into account. The low sensitivity of the
Valencia system may explain the bad agreement in terms of the
absolute values. This case emphasizes the difficulties of that
system to accurately retrieve weak aerosol optical coefficients
at least with a relatively short (30 min) integration time. Like
in Campaign 1, the minimum height interval requirement was
not fulfilled, but high aerosols loads were observed in the ABL,
i.e., an AOT in the range of 0.11-0.39 at 532 nm during the
campaign.

Because the La Laguna system is not transportable, the
Barcelona system was shipped to the Canary island of Tenerife
during Campaign 3. The 1064-nm detector of the La Laguna
system, which is a cooled photomultiplier tube with very poor

sensitivity, had reached the end of its lifetime by the time of
the campaign. Its replacement could not be made on time;
therefore, the 1064-nm channel of the La Laguna could not
be intercompared. The map of d, ;(n,m) on June 26, 2007
at 1605-1615 UTC shown in Fig. 2(e) shows a very low
normalized distance up to the range of 2500-2800 m, which
means a very good signal similarity between the La Laguna
and Barcelona systems. Between Ay, = 500 m and hpyax =
2500 m, the backscatter profiles agree very well. The aerosol
load during Campaign 3 was lower in terms of AOT (< 0.1 at
532 nm during the campaign), compared with that of the two
previous campaigns, but the aerosol layers were thicker. The
height intervals vary between 1900 and 2000 m (see Table IV).
All the absolute values of both deviations are well within the
maximum allowed values. In turn, the relative values are quite
high: Most of the time, they are higher than the maximum
allowed values, because they reflect variations relative to a
small magnitude (8, < 0.3 x 107 m~! - sr~! between 1500
and 2500 m).

The SCT system, which is usually dedicated to routine
measurements within the Micro Pulse Lidar Network [17], [18],
was also brought to La Laguna for the time of Campaign 3.
Two points have to be noted: 1) The elastic wavelength of that
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system is 523 nm, and no spectral correction was applied to
compare with the 532-nm channel of the Barcelona system.
2) It is the only system to which an overlap factor correction
was applied. The SCT system reaches its full overlap at a very
high altitude (1.5-2 km), and the overlap correction appeared
to be the only way for the system to participate in the inter-
comparison experiment. The map of the normalized distance
shown in Fig. 2(f) is very similar to that from the La Laguna
system [Fig. 2(e)]. The intercomparison of the backscatter
profile shows a very good agreement between both systems,
with small discrepancies observed around 500 and 1000 m at
the top of the ABL. The minimum height interval requirement
was fulfilled since the height interval varied between 2000 and
2700 m (see Table IV). All absolute deviations stayed well
below the maximum allowed values, and all the relative values
were below or very close to the maximum allowed values.

B. Aerosol Extinction

The aerosol extinction could be retrieved only in one case,
i.e., on June 28, 2006 at 21012301 UTC. A second nocturnal
Raman measurement was performed on the next day, but strong
synchronous interferences prevented inversion of the Barcelona
profile. The extinction profiles of Madrid and Barcelona are
shown in Fig. 3, and the deviation values are given at the bottom
of Table IV. hyiy and hpy.x Were set up to 900 and 2500 m,
respectively. Some artifacts such as the sudden extinction step
at 2100 m observed on the Barcelona profile are purely algorith-
mic and are due to the partitioning of the profiles in successive
ranges where a different fitting length (inversion resolution) is
applied. In this particular case, 2100 m is precisely the height
delimiting the second and third partitions. On the one hand,
both profiles have a similar shape with two peaks at 1150
and 2000 m observed approximately at the same height on
both profiles. On the other hand, their magnitudes are quite
different, and in general, the retrieval of the extinction from the
Madrid system seems to be underestimated, compared with that
from the Barcelona system. However, the absolute deviations
stay within the maximum allowed values and, in that way,
validate the extinction intercomparison. In turn, the relative
values are quite high, particularly the standard deviation, which
reaches 59.6%. In Matthias et al. [6], the largest relative values
also occurred for the standard deviations. One of the main
difficulties in accurately determining the extinction coefficient
lies in the calculation of the derivative of the logarithm of the
Raman signal, which was particularly noisy in the measurement
presented here.

VI. BACKSCATTER ALGORITHM INTERCOMPARISON:
METHODOLOGY AND RESULTS

In order to assure the quality of backscatter algorithms used
by each member of the network, an intercomparison exercise
similar to that in [19] was performed. All groups (except
Cartagena) inverted with their own algorithm the aerosol
backscatter profiles at 355, 532, and 1064 nm from a set
of profiles of simulated elastic lidar signals under two at-
mospheric conditions (cases) and three situations (stages). Both
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atmospheric conditions are fully described in [19] (cases 2
and 3).

1) In case 2, realistic extinction profiles were simulated
with height-independent but wavelength-dependent lidar
ratios.

2) In case 3, realistic extinction profiles were also simulated
with height-dependent but wavelength-independent lidar
ratios.

Since the conditions in case 3 correspond to the most realistic
atmospheric conditions, only the results from that case are
presented in this paper. In all stages, the simulated signals and
the standard atmosphere used were distributed along with the
following:

no further information (real-life situation);
prescribed lidar ratio profile at all wavelengths;
prescribed lidar ratio profile and the reference value
at the calibration height at all wavelengths.

Stage 1:
Stage 2:
Stage 3:

The backscatter algorithm comparison presented here also
demonstrated what Bockmann et al. [19] concluded: “The
effect of the reference value was rather small.” For that reason,
only the results from stages 1 and 3 are presented next, with the
difference between stages 2 and 3 being negligible.

Fig. 4 shows the retrieved aerosol backscatter coefficient
profiles from all groups for stages 1 and 3 at all wavelengths.
In the layer of lower aerosol load (0.6-3.3 km), the difference
between stages 1 and 3 is barely visible at 532 and 1064 nm,
whereas it is clearly visible at 355 nm. This emphasizes that, in
low aerosol loading, the accuracy of the retrieved backscatter
coefficient at 532 and 1064 nm does not strongly depend on the
knowledge of the lidar ratio used in the inversion. Fig. 4(c),
(f), and (i) represents the relative errors for stage 3 at 355,
532, and 1064 nm, respectively, calculated using [19, eq. (7)].
In detail, the mean relative errors calculated over the range of
0.3075-3.0075 km and over all groups for wavelengths of 355,
532, and 1064 nm are approximately 0.9%, 0.9%, and 0.22%,
respectively. For stages 1 and 2, the respective mean relative er-
rors were approximately 9.7%, 5.6%, and 4.9%, and 0.9%, 1%,
and 0.22%, respectively. As expected, the differences between
stages 2 and 3 are very small (< 0.1 %). In general, the errors
for case 3 are somewhat larger than that for case 2 (not shown
here), mainly because the lidar ratio is height dependent in
case 3. Note also that, below the full overlap height (250 m),
none of the algorithms is able to correctly retrieve the aerosol
backscatter. In the range of 3.0225-15.0675 km, the mean
absolute error for all groups is smaller than 1 x 107° km ™! -
sr~1, indicating that all the algorithms retrieved the molecular
profiles relatively well.

VII. CONCLUSION

A nucleus of eight lidar groups was recently created the
Spanish lidar network. In the long run, one of the main
objectives of this small network is to be able to perform
coordinated reliable measurements of the aerosol vertical dis-
tribution in terms of backscatter and extinction coefficients.
Since the systems present many differences at the hardware
level, a system intercomparison experiment was carried out in
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the period 20062007 between six of the systems in order to
gain enough confidence to rely on the signals provided by each
system. Additionally, a backscatter algorithm intercomparison
was performed.

Three intercomparison campaigns were carried out. Five
systems were compared with the Barcelona quality-assured
lidar. Four of them met the quality assurance criterion from the
beginning. In one case, a new campaign had to be organized
after the system was better controlled by the owner group,
and the system finally met the quality assurance criterion. The
meteorological conditions met during the campaigns restricted
intercomparisons to the height range of 500-3500 m, i.e., in
the ABL and just above it, since no lofted aerosol layers were
found in the free troposphere. In high aerosol loads, all absolute
deviations (except in one case) of the backscatter coefficient
were well within the limit of 0.5 x 1076 m~! - sr=1, and all
the mean deviations were smaller than 0.26 x 107 m~! - sr~ 1.
The relative deviations were also usually within the maximum
allowed value fixed by EARLINET, and in general, the standard
deviation presented higher percentages, compared with the
mean deviation. For the same instrument, the absolute values
are smaller, and the relative values are higher at 1064 nm than
at 532 nm, which was a predictable result since backscatter
coefficients are smaller and noise is usually higher at 1064 nm
than at 532 nm. In low aerosol loads, all absolute deviations
of the backscatter coefficient stay well within the limit of
0.5 x 107% m~!-sr™!, and a significant number of relative
values exceeded the relative limits, which was also a predictable
result since the backscatter magnitudes are smaller as a whole.

In one case, the extinction coefficient at 532 nm was also
compared. Even though the profiles retrieved were similar
in shape, the magnitudes were quite different. The absolute
deviations stay below the limit fixed by EARLINET, whereas
the relative values were approximately twice larger than the
maximum allowed values. The Raman signals, which were
particularly noisy on the night of the measurements, resulted
in retrieved extinction coefficients with large error bars, hence
the difference between both profiles.

Although all intercomparisons satisfactorily ended, the field
campaigns showed the importance of having each group know
and control their system at the hardware level (detector satura-
tion, overlap factor, electronic interferences, temperature insta-
bility, etc.) and estimating how the preprocessing (background
calculation, afterpulse correction, smoothing techniques, etc.)
affects the resulting inversions. One major concern once a
subset of instruments has been intercompared is the question
of the maintenance of the quality-assured signals. In that sense,
satellite-borne lidars could be a key instrument as, once vali-
dated, they could play the role of the reference instrument.

The intercomparison at the software level, i.e., here, in terms
of backscatter algorithm, was very satisfactory: When all inputs
were given, the relative error was less than 2% for all groups
and all wavelengths. The average over all groups is less than
0.9% for all wavelengths. These results demonstrate that all
algorithms work well and can reproduce the profiles of the
two atmospheric conditions that were simulated if all input
parameters are known. The exercise showed that the knowledge
of the lidar ratio was the critical factor for the algorithms to get
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closer to the solution, whereas the knowledge of the reference
value at the calibration height had almost a negligible effect on
the retrieved backscatter.
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