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Abstract: Increasing concern over air pollution has led to the development of low-cost sensors
suitable for wide-scale deployment and use by citizen scientists. This project investigated the AirU
low-cost particle sensor using two methods: (1) a comparison of pre- and post-deployment calibration
equations for 24 devices following use in a field study, and (2) an in-home comparison between
3 AirUs and a reference instrument, the GRIMM 1.109. While differences (and therefore some
sensor degradation) were found in the pre- and post-calibration equation comparison, absolute
value changes were small and unlikely to affect the quality of results. Comparison tests found that
while the AirU did tend to underestimate minimum and overestimate maximum concentrations of
particulate matter, ~88% of results fell within ±1 µg/m3 of the GRIMM. While these tests confirm that
low-cost sensors such as the AirU do experience some sensor degradation over multiple months of
use, they remain a valuable tool for exposure assessment studies. Further work is needed to examine
AirU performance in different environments for a comprehensive survey of capability, as well as to
determine the source of sensor degradation.

Keywords: particulate matter; low-cost sensors; exposure assessment; sensor degradation; citizen
science

1. Introduction

In areas that experience sustained and/or severe air pollution episodes, the ability
to monitor levels on a day-to-day basis has increasingly become a priority for both pub-
lic health professionals and the general population [1]. One such area in need of daily
monitoring is the Salt Lake Valley in Utah, where a high population density and unique
geographical makeup (i.e., surrounding mountain ranges that can “trap” polluted air
during temperature inversion episodes) contribute to high exposure to air contaminants,
including particulate matter (PM) sized 2.5 µm or less (PM2.5) [2]. Over the past ten years,
local concentration levels have regularly exceeded the PM2.5 limits set by the United States
Environmental Protection Agency (EPA) [3].

Research suggests that chronic exposure in this vein may have profound health im-
pacts, including increased rates of cardiovascular disease, pulmonary disease, and respira-
tory outcomes such as aggravated asthma and decreased lung function, all of which may
culminate in early mortality [4–8]. Vulnerable populations, such as children, the chronically
ill, and the elderly are particularly at risk due to increased particulate pollution [9–13]
PM2.5, which results primarily from combustion activities (e.g., traffic, cigarette smoking,
coal burning), poses a particularly high health risk [14]. The small size of PM2.5 results in
the particles remaining in the air longer, thereby increasing the likelihood of inhalation. In
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addition, particles of this size penetrate deeply into the respiratory system and bloodstream,
creating long-term damage to the respiratory system as well as systemic effects [7,15].

The effects of chronic PM exposure have been long observed in residents of the
Salt Lake Valley. Historically, higher amounts of PM in the Salt Lake Valley have been
associated with greater numbers of hospital admissions, with one recent study estimating
that at least 200 pneumonia cases per year in Utah can be linked to episodes of increased
PM pollution (III 1991). Horne et al. (2018) reported that following exposure to high levels
of PM, patients were 16% more likely to suffer a heart attack or chest pain ([16,17], while
Leiser et al. (2019) associated air pollution with increased rates of spontaneous pregnancy
loss [18] Similarly, from the 2019 American Thoracic Society report, Salt Lake City would
experience 46 fewer deaths annually if PM2.5 air quality goals were attained [19]. Per
Utah clinicians and researchers, there are numerous other consequences of Salt Lake City
PM2.5 air pollution, including an excess of 50,000 lost work and school days annually due
to air pollution-related health issues [20,21]. Access to air quality monitoring can help
implement preventive actions, such as limiting recess and outdoor activities on poor air
quality days and use of household air filters [22,23]. Consequently, researchers, government
officials, and individual citizens have worked to develop extensive air quality monitoring
programs. Among these is the Environmental Influences on Child Health Outcomes
(ECHO) multi-site project, a National Institutes of Health (NIH) funded program, which
includes exposure assessment monitoring of ambient air quality in and around households
of enrolled children (NIH).

In recent years, air quality monitoring initiatives such as these have begun to incor-
porate low-cost sensors useable in citizen science initiatives rather than reference-grade
instrumentation suitable for laboratory research [24]. Low-cost sensors encompass a wide
variety of brands and technology but are generally economical and consumer-friendly
devices designed to monitor aspects of air pollution (including PM) (Lung). The University
of Utah has developed an addition to the low-cost sensor market, an integrated air quality
sensor named the AirU (Utah). These sensors have been deployed in multiple ongoing
research studies, including at the University of Utah ECHO local study site.

The performance of low-cost sensors has been evaluated in several laboratory studies
with good results including Dylos vs. TSI DustTrak [25]; Dylos vs. GRIMM [26] and Shinyei
vs. TSI instruments [27–29] with moderate to strong correlations when compared to the
reference instruments. A few studies have investigated the use of low-cost sensors to
examine indoor air quality with moderate to good results when compared to reference
instruments deployed in the same environment [30,31], and Hegde et al. [32] co-located
various low-cost sensors with reference instruments demonstrating the utility of the low-
cost sensors in characterizing the indoor air quality.

However, the long-term performance of low-cost sensors and sensor units m, such
as the AirU has yet to be fully validated. Field research reveals that low-cost sensors can
experience performance issues, including variability within units of the same sensor brand
and differences between laboratory and field test performance [26,33,34]. Prior studies
have suggested that sensor degradation of data accuracy over time needs to be further
characterized to fully understand the potential and limitations of low-cost sensors [35,36] It
is presently unknown how much time may pass before a sensor becomes inaccurate in its
readings, and furthermore, it is not well understood what causes inaccuracy over time. At
least one study has postulated that measurement degradation results from an accumulation
of dust over the course of time [35] while another study examined relative humidity during
performance periods to account for variation [37].

As low-cost sensors become increasingly integral to air quality monitoring, it is critical
to validate sensor measurements in absolute and practical settings to ensure data qual-
ity [38]. The purpose of this study was to examine low-cost sensor performance using
two metrics: (1) pre- and post-deployment calibration equations from laboratory tests,
and (2) long-term residential field validation with reference-grade instrumentation for
comparison. By comparing pre- and post-deployment calibration equations derived from
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laboratory tests we can investigate if the low-cost sensors underwent a measurement vari-
ation over time. As these low-cost units lack sophisticated pre-filters or even flow-rate
monitoring of the sampled air moving through the sensor instrumentation, comparing pre-
and post-deployment calibration equations will evaluate how these units performed over
several months of continuous operation in homes. The long-term field study conducted in a
single residential home with multiple low-cost units co-located with a reference instrument
will provide an opportunity to compare the ability of the low-cost sensors to accurately
estimate PM over the extended operation (time-series) in an indoor environment.

2. Methods

This project quantitatively evaluated the performance of the AirU by two means.
First, pre-deployment calibration equations (henceforth referred to as “pre-calibration”)
were compared to post-deployment calibration equations (henceforth referred to as “post-
calibration”) following varying periods of deployment in the homes of participants vol-
untarily engaged in a longitudinal research study conducted in the Salt Lake Valley, Utah.
Secondly, three AirU units not previously deployed were compared to a reference-grade
instrument in a long-term field validation inside a single Salt Lake Valley household.

2.1. AirU Units

AirUs are integrated low-cost, Wi-Fi and GPS-enabled devices containing sensors
for temperature, relative humidity, and particulate matter (PM); the particle counter used
inside the AirU is the Beijing Plantower Company’s PMS 3003 sensor. The PMS 3003 model
uses a fan to draw air into its chamber, which is then exposed to a laser estimated to be
650 ± 10 nm with a Lambda 35 spectrometer. Using a MIE theory for the processor, the
light scattering sizes particles into three separate bins: PM1, PM2.5, and PM10 ([39]. The
PMS 3003 model can detect particles in the range of 0.3 µm to 10 µm [26,40]. The limit
of detection (LOD) for this device, as reported by others, is ~5 µg/m3 [26,41], which, in
practice, can be considered a limit of quantification (LOQ). The PMS 3003 sensor was placed
in an injection-molded plastic housing that allows for the inlet fan to draw air through it
and a USB charging cable to be plugged into power the sensor.

2.2. Pre- and Post-Calibration Equations

In order to assess sensor differences between baseline and following a period of
extended use, a subset of AirU sensors (n = 24) were analyzed that were deployed as part of
the University of Utah’s ECHO study site in the Salt Lake Valley. These sensors were in the
field for varying lengths of time over the period of January 2018–October 2018. Each sensor
was calibrated prior to deployment and at the end of its deployment, which occurred at
varying times throughout the research period for different sensors.

A calibration equation is a linear regression equation that relates the concentration
measured by the AirU to the concentration measured by a reference instrument. The
calibration protocol was identical for pre- (i.e., prior to field use) and post-deployment
calibrations. In this way, sensors were re-calibrated prior to returning to field use. All
post-deployment calibrations and analyses for this research period took place from March
2018 to October 2018. This process is described in detail in Kelly et al. (2017); relevant
methods are briefly described below.

Each Plantower PMS 3003 sensor was evaluated in a cylindrical wind tunnel calibration
chamber located in the Merrill Engineering Building on the University of Utah campus [42].
The chamber can hold 8 sensors and has an entry hole for the reference instrument, which
was a Dust Trak II Aerosol Monitor 8530. This instrument is capable of measuring PM1,
PM2.5, respirable, and PM10 size fractions (TSI). The Dust Trak was selected as a reference
instrument in part due to its use of a sheath air system to isolate the aerosol, which keeps the
optics clean for improved reliability. It also possesses automatic zeroing by the instrument,
which minimizes the effect of zero drift [8]. The wind tunnel calibration chamber and
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method were created specifically to calibrate the Plantower PMS 3003 sensors, and this
standard operating procedure was followed [42].

Per the calibration process developed by Sayahi et al. [42], ammonium nitrate was
aerosolized and entrained in air that had passed through a high-efficiency particulate
air (HEPA) filter, which was then evenly distributed throughout the chamber [2]. This
compound was used because it was the most common particle type found in filters from
sensors used during Utah winter inversions (Engineering). Chamber aerosol concentrations,
as measured by the Dust Trak, of 0, 50, 100, 150, 200, and 250 µg/m3 were obtained by
allowing more particles to enter the HEPA-filtered air. When each aerosol concentration
was attained and sustained, as indicated by the Dust Trak, at least 10 min of continuous
measurement was recorded before adjusting the aerosol to the next concentration. The
entire calibration process lasts approximately 1.5 h, with additional time required for
measurement data retrieval and calibration equation generation.

The data were then extracted, via SD card for the AirU and through USB for the Dust
Trak, and converted to Microsoft Excel files (Microsoft Corporation, Redmond, WA, USA).
The data were averaged into 1-min increments for both the AirUs and the Dust Trak, and
converted to µg/m3 where necessary. It was also necessary to apply a correction factor to
the Dustrak for comparison to the AirU, based on research that indicates the Plantower
sensor (used in the AirU) tends to underestimate concentrations [41,43]. Only data obtained
during stable concentration levels were used for generating the calibration equation. The
data for each individual sensor were compared against the Dust Trak data to obtain a linear
regression equation. That equation was then used to adjust the raw AirU data to more
accurately reflect estimated air concentrations.

2.3. Statistical Analysis

All statistical analysis for this portion of the study was performed in Microsoft Excel
and SAS (SAS Institute, Cary, NC, USA). Due to non-normally distributed data, a Wilcoxon
signed-rank test was performed on the parameters of the pre- and post-calibration equations
for each individual sensor, including Y-intercept, slope, and R2, to determine if there were
any statistical differences from the baseline calibration. The percentage differences for the
Y-intercept, slope, and R2 were averaged for each of the 24 AirUs and then categorized into
deployment time ranges of <3 months, 3–5 months, and >5 months.

2.4. Field Validation

In addition to the pre- and post-calibration analysis described above, a field validation
test was conducted to examine differences in performance between the AirUs and reference-
grade instrumentation over time. Three AirUs that had not been previously deployed were
calibrated and used alongside a GRIMM Aerosol Monitor 1.109 (GRIMM Aerosol Technik
GmbH & Co. KG, Ainring, Germany). These instruments were placed in a residential home
between 8 November 2018 and 31 March 2019. The GRIMM is a portable laser aerosol
spectrometer designed for continuous measurement of airborne particle concentration as
well as particle size distribution (with 31 discrete size bins from 0.25 µm to 32 µm). This
instrument also has a backup filter that collects all sampled material and can be used for
further analysis if desired [44]. The GRIMM accomplishes its measurements with a light
scattering method for single particles using a semiconductor laser, allowing it to detect
particles as small as 0.25 µm [44].

All four instruments were placed inside a living room, which was chosen because
it was the location of most day-to-day activities. The sensors were placed in a triangular
configuration, with the GRIMM in the middle (see Figure 1) of the AirUs. Due to ventilation
patterns and to prevent devices from interfering with each other’s air flow, sensors were
placed apart from one another in a triangular configuration (ACGIH 1998). The GRIMM
uploaded data every minute onto a laptop computer, while the AirUs stored data on their
respective SD cards, which were later extracted.
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Figure 1. Photograph of AirU and GRIMM configuration for comparison in residential home. The
GRIMM (labeled) was placed in an elevated position and the three AirUs (124, 125, 127) were
triangulated around it.

The field validation was performed during the winter inversion season for 144 days.
There was a self-test at start-up and twice during the trial. For those tests, the GRIMM
was turned off, which initiated a self-check taking 39 s before it began to continue taking
measurements. As the AirU began recording 15 s after powering on, the AirUs were
powered off and then back on 24 s after the GRIMM was initiated in order to synchronize
the time stamps.

2.5. Statistical Analysis

All analyses for the field validation were performed in R (Bell Laboratories, Mur-
ray Hill, NJ, USA). Maximum, minimum, mean, and median concentration measure-
ments for the three AirUs and the GRIMM were calculated with no adjustment factors
applied.Scatterplots were generated to examine the fit of the unadjusted AirU data with
GRIMM data to establish how well the AirU could predict the true air concentration, as
provided by the GRIMM. Time series were also created (using unadjusted data) to examine
any deviation of the AirUs compared to the GRIMM over time.

For further comparison with the GRIMM, a linear regression model was created using
the relationship between the PM2.5 concentrations measured by the GRIMM and the AirUs.
30 days of data were used to generate a calibration equation which was then applied to
the following 30 days of data. This process was carried out sequentially for all data. This
represents an on-site field calibration, which was deemed to be sufficient for adjusting data
in lieu of using a calibration chamber [26]. Changes in the parameters from each of these
field calibration equations (R2, Y-intercept, and slope) were also evaluated to investigate
if these components changed over the course of the field validation test. In this way, the
analysis examined calibration changes from month to month. Additional analyses were
carried out on these adjusted AirU data to identify (a) how often the GRIMM and AirU were
both measuring below the LOQ and (b) to how often the AirU and GRIMM measurements
were within ±1 µg/m3.

3. Results
3.1. Pre- and Post-Calibration Equations

A Wilcoxon Signed Rank test found that changes between pre- and post-equations
were not statistically different in terms of slope (p = 0.1753), but both the R2 (p = 0.0187),
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and Y-intercept (p ≤ 0.0001) were statistically different. Differences between regression
parameters stratified based on the amount of time each AirU was deployed in the field can
be seen in Table 1. There were no significant associations between time in the field and
changes to calibration equation parameters.

Table 1. Changes in calibration equations among AirUs deployed in Project ECHO.

Time in Field Avg. Slope % Difference Avg. Y-Intercept % Difference Avg. R2 % Difference

<3 months (n = 6) 14% 433% 1%

3–5 months (n = 13) 18% 608% 3%

>5 months (n = 5) 11% 512% 1%

An example of one of the 24 deployed AirU’s pre- and post-calibration line and
regression equation are depicted in Figure 2. This particular sensor was deployed for
189 days and reflects trends in the overall findings. Overall, for the 24 sensors which were
deployed for more than five months, the actual average change for the Y-intercept was
512%, 11% for the slope, and 1% for the R2.
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3.2. GRIMM and AirUs Field Validation

Some AirU data from the field validation were excluded due to a hardware/software
issue that caused the device to record a PM2.5 concentration of −1.0 µg/m3. Additional
data were missing due to a problem with the SD card (i.e., it was not fully inserted) for one
of the AirUs (Sensor 125). Although this was discovered and corrected during the quality
control check in December, approximately one month of data are missing from the results.
Finally, the limit of quantification (LOQ) for the AirU is ~5 µg/m3 [35,43] and each AirU
had a majority of their measurements below this limit: AirU 124 (83% < LOQ), AirU 125
(89% < LOQ), and AirU 127 (80% < LOQ). However, the AirU did provide concentration
values below this LOQ, so those data were still included in the analysis.

Prior to application of a correction factor, the raw maximum measurement for the three
AirUs tended to be around four times the GRIMM measurement (see Table 2). Comparison
of raw data, using AirU R2 as an indicator of the strength of the relationship with the
GRIMM, revealed R2 values of 0.82 (Sensor 124), 0.97 (Sensor 125), and 0.935 (Sensor 127).
See Figure S1 in the Supplementary Materials for comparisons between individual sensors
and the GRIMM. While the graphs shown in Figure S1 of the Supplementary Materials are
not of optimal quality, the reader should keep in mind that they are included to just show
general clustering, trend, variability, and slope.

Table 2. Descriptive statistics for AirU and GRIMM comparison study (all values in µg/m3).

AirU 124 AirU 125 AirU 127 GRIMM

Min 0.04 0.01 0.03 0.23

Max 58.86 57.37 61.93 16.89

Mean 11.38 6.14 9.88 2.82

Median 5.15 2.05 4.61 1.87

Figure 3 depicts the time series of the three AirUs (unadjusted measurements) and the
GRIMM measurements over the study period. Of note are the empty areas in the series,
which represent data gaps due to AirU circuit board errors. The graphical depiction of the
time series data from the instruments PM2.5 exposure estimates visually demonstrates large
agreement between the reference and low-cost monitors measurements when co-located in
the same home environment. Periods of low-level PM2.5 aerosol are appropriately recorded
by all the data logging instruments. Moreover, pollution events, where PM2.5 aerosol
measurements increase are also captured by all the instruments alike. When examining the
time series data of the co-located GRIMM and AirU instruments, considerable synchronicity
between the GRIMM PM2.5 aerosol measurements and the adjusted AirU PM2.5 aerosol
measurements was observed; i.e., for AirU 124, 106/133 (79.7%) of GRIMM and AirU
measurements were both <5 µg/m3 when comparing the instrument’s measurement data
recorded at the same time (with the same time/date stamp). Similarly, AirU 125 had 63/72
(87.5%) of measurements when both were < 5 µg/m3. Lastly, AirU 127 had 90/117 (76.9%)
of measurements when both were < 5 µg/m3.

Further analysis with this adjusted data revealed that for AirU 124, 108/132 (81.2%) of
measurements were within ±1 µg/m3 of the GRIMM measurement. AirU 125 had 69/72
(95.8%) of measurements within ±1 µg/m3 of the GRIMM. Finally, AirU 127 had 102/117
(87.2%) measurements within ±1 µg/m3 of the GRIMM. See Table 3 for a comparison
between each AirU and the GRIMM.

Moving average calibration models (see Figure S2) between the months of November
to March indicated a change in Y-intercept, slope, and R2 over time. These charts show
that over the course of the field validation, there were changes in the Y-intercept, slope,
and R2. However, both the slope and R2 were relatively stable over this study period,
which agrees with the findings of the pre- and post-calibration tests using a laboratory
calibration chamber. While the graphs shown in Figure S2 are not of optimal quality, the



Toxics 2023, 11, 56 8 of 13

reader should keep in mind that they are included to just show variability and general
changes in Y-intercept, slope, and R2 over time.
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Table 3. The GRIMM analyzed against the AirUs for a −1 µg/m3 and +1 µg/m3 change in con-
centration measurement. This chart shows the number of observations in which the AirU and the
GRIMM agreed.

AirU 124 AirU 125 AirU 127

GRIMM value within ±1 µg/m3 of AirU
108

(81.2%)
69

(95.8%)
102

(87.2%)

GRIMM value outside ±1 µg/m3 of AirU 24 3 15

4. Discussion

Overall, findings from this study suggest that sensor degradation is possible among
low-cost sensors used continuously for multiple months, which has been found by other
researchers [35,43,45]. The pre- and post-equation laboratory comparisons suggested a
gradual loss in the AirU’s precision and accuracy from the baseline calibration. However,
for the deployment duration investigated here, these changes were overall minimal and
not necessarily relevant for practical applications.

These findings were reinforced in the field comparison of the AirU to the GRIMM.
The individual AirUs demonstrated a similar slight decrease in accuracy and precision
between deployment and the end of the field validation. However, results indicate that
at least 81.2% of the measurements from the AirU were within ±1 µg/m3 of the GRIMM.
This suggests that given its cost-effectiveness and user-friendly design, the AirU remains a
useful exposure assessment tool with only minimal sensor degradation over time.

4.1. Pre- and Post-Calibration Equations

Close examination of the pre- and post-equation comparisons revealed average per-
centage changes among the R2 to be 1–3% and Y-intercept to be ~300–600%. These were
the two components that were statistically significantly different, while the slope, with
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an average percentage change of ~10–20%, was found to not be statistically significantly
different over the course of this study. During the deployment period of January 2018 to
October 2018, even though the R2 was statistically different, it is likely not meaningful in
practice because the values were still greater than 0.9, which indicates a strong relationship.
With the slope not being statistically different, but with the Y-intercept changed by over
300%, this suggests that the calibration has shifted upwards. However, it should be noted
that all parameters of the linear regression calibration equation should be considered to-
gether to provide an understanding of calibration changes over time. The separation of the
calibration equation into individual parameters, which are then analyzed independently,
may not provide an accurate picture of sensor degradation. Another related important
finding was that increased time in the field did not correspond to significant changes in
absolute values of pre- and post-calibration equation parameters. In essence, while the av-
erage percentage change in Y-intercept was substantial, in terms of absolute measurements,
the AirU did not demonstrate changes that would invalidate their measurements for most
practical uses. This was demonstrated and reinforced by the field validation, in which the
majority of AirU values were within ±1 µg/m3 of the “true value” (i.e., the GRIMM). In
practice, this discrepancy does not present a meaningful difference for typical field-based
exposure assessments.

4.2. Field Validation with GRIMM and AirUs

For household exposure assessment, the results found here indicate that the AirU is
able to develop a useful characterization of air pollution. For the purposes of this type
of work, an absolute change, as opposed to a percentage change, is arguably a more
meaningful measure. However, it should be noted that without the linear regression model
applied, the raw AirU data showed an underestimation for the lowest concentrations;
a finding that was perhaps unsurprising due to previous findings that the LOQ for the
AirU was approximately 5 µg/m3 [35,42]. Issues with the LOQ suggest that perhaps the
AirU is more ideally suited for monitoring air pollution episodes, which have high PM
concentrations, rather than day-to-day fluctuations in the home, which typically have lower
PM concentrations unless a calibration curve is applied. Additionally, other long-term
fields and laboratory evaluations of Plantower sensors have found both overestimation and
underestimation, suggesting that constant calibration may be key to its effective use [42].

Previous studies have suggested that perhaps sensor variation was due to dust ac-
cumulation on the laser used for particle measurement [35]. The field comparison of the
AirUs and GRIMM carried out in this work included maximum PM concentration levels
of approximately 16 µg/m3 for the GRIMM and approximately 60 µg/m3 for the AirU
and average PM concentration levels of 2.8 µg/m3 for the GRIMM and approximately
8.6 µg/m3 for the AirU. These low PM concentration levels indicate that dust accumulation
may not be the primary cause of sensor variation. These findings indicate that sensor varia-
tion, although small, exists, and can occur even in low indoor PM concentration conditions,
as opposed to previous studies that have recorded variation in outdoor evaluations [42].
Another study measuring sensor variation in the Dylos DC1100 low-cost particle counter
found measurement variation even after the sensor was cleaned, indicating either a cleaning
method issue or sensor degradation via hardware changes from continuous usage [36].

4.3. Limitations

In spite of existing knowledge that the AirUs may report negative concentrations
(−1.0 µg/m3) under certain hardware situations, as well as an update to all circuit boards
that took place prior to this study, this continued to affect measurements in this study.
Another design flaw of the AirU was its current lack of direct reading capability to immedi-
ately report data, which prevented the immediate realization that the SD card was loose,
resulting in the loss of a month of data. During the course of this project, secure wireless
internet connectivity and a web-based and mobile application have been developed to pro-
vide real-time measurement in this device. The GRIMM instrument posed some technical
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difficulties as well; in spite of typically reliable reporting, the GRIMM randomly skipped
minutes or hours of data at a time. This is to be noted for future research that requires
continuous measurements using the GRIMM.

Ambient conditions also posed some limitations to the study, particularly humidity
readings. Higher relative humidity is associated with higher PM2.5 concentrations ([46]. In
the case of the field comparison, relative humidity stayed low throughout the time range,
with a maximum humidity percentage of ~25%. However, because it was relatively dry
(<25%) throughout the field test, electrostatic discharge was more likely to have occurred,
which could have affected overall PM levels (Manufacturing 2014).

4.4. Recommendations for Future Work

With the growing proliferation of low-cost sensors, it is critical to test sensors in a
number of different environments and contexts to determine the limits of sensor capabilities.
Since the AirU has proven to be a reliable tool in this and previous studies, future research
should continue to determine the conditions in these sensors are most accurate and reliable.
In particular, future work should seek to validate the usefulness of the AirU in indoor
and outdoor settings. A previous study on indoor air quality found that there were
low concentrations of particulates despite being a fully occupied office [47]. This raises
questions about the particle of choice used in calibration. Arizona road dust or ISO test
dust has been frequently used in aerosol research and may be more representative of and
can simulate what is seen in indoor air pollution [48,49]. Therefore, if AirU sensors are
to be used to assess indoor air in future studies, it is recommended to use Arizona road
dust or ISO test dust in instrument calibration, rather than ammonium nitrate, because it is
more relevant for indoor air and has been shown to provide adequate calibrations for other
low-cost sensors [26]. Findings from this study and previous research indicate that sensor
variation was likely, although changes might not be due to dust accumulation, as has been
previously posited. A future study based on dust accumulation is therefore suggested to
further investigate this finding.

Another recommendation for future work is the development of a direct-reading
tool for the AirU, which is currently in the process of implementation. A smartphone
application designed to report readings directly from the AirU to the user is due to be
released in 2020. With this application, homeowners and/or citizen scientists can closely
track their own exposures and be more actively involved in their own exposure assessment.
In addition, researchers would be able to increase the quality of research by immediately
addressing missing data or malfunctioning equipment.

5. Conclusions

This study examined AirU sensor measurement degradation over deployment
periods of up to six months. The absolute concentration values, both measured over
time and in comparison with the GRIMM, suggest that while sensor variation does
exist, it was likely not large enough to result in meaningful differences in practical
applications. Economically, an AirU sensor costs orders of magnitube less than reference
instruments (approximately 250 USD at the time of this writing). This places the AirU in
the unique position of being economically viable to individuals interested in monitoring
their indoor air quality and for mass deployments for environmental epidemiological
studies investigating the relationship between indoor air quality and health outcomes.
The AirU is therefore still recommended as a useful low-cost particle sensor for use
in air quality research. However, additional research is needed to fully understand
the performance capabilities and environments in which to use the AirU. This may
necessitate a change in calibration procedures and an experiment focusing on dust
accumulation to better understand the limits of this device.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/toxics11010056/s1, Figure S1: Scatterplot comparing AirU daily averages
(in µg/m3) to daily Grimm measurements, showing each linear regression line and its associated
R2. Figure S2. Changes in AirU/Grimm calibration elements over the study period for (a) AirU124,
(b) AirU 125, and (c) AirU 127.
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