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Abstract 

Recurrent challenges of the theoretical estimation of aerosol optical thickness (AOT) are traceable to bogus 

assumption in its mathematical model. The objective of this paper is to propound a model that could describe the 

aerosol distribution sizes per time. The physics of the salient properties of aerosol within the Stokes regime was 

discussed. The mathematical model was applied to six locations within 335 ˟ 230 Km2 area of a selected portion 

of south-west, Nigeria. Though the climatic change is evident via thirteen years ground data set assimilation, the 

sensitivity of the proposed model was proven to increase by 0.1%.  The research affirmed the use of some 

parameters (e.g. minimum temperature, cloud cover, relative humidity and rainfall) to estimate aerosol optical 

thickness and by extension the aerosol distribution size over an area.  

Keywords: aerosol optical thickness, forecast, minimum temperature, cloud cover, relative humidity, rainfall, 

model 

1. Introduction 

1) Aerosol optical thickness is a dimensionless parameter that indicates the attenuation of radiation as it passes 

through layers of the atmosphere- containing aerosols.  Aerosols resides in distinct layers of the atmosphere i.e. 

stratospheric or Junge layer (contains volcanic sulfuric acid aerosols), tropospheric layer (composed primarily of 

dust, smoke or occasional industrial haze) and planetary boundary layer (composed primarily of sources and 

sinks of atmospheric aerosols). The effect AOT can be quantified by its magnitude. For example, there is crystal 

clear sky if the AOT is less than 0.1. Also, AOT of magnitude of 1 indicates very hazy sky of poor visibility. 

Models are propounded to maximize the functionality and accuracy of the measuring instruments (Zhang et al., 

2008; Hollingsworth et al., 2008). Unfortunately, these model needs improvement in several areas e.g. adequate 

estimation of aerosol dispersion and deposition (Emetere et al., 2013; Emetere, 2013; Emetere, 2014), rates of 

new particle formation and their dependence on controlling variables e.g. growth and aging. Modeling AOT in 

the PBL is challenging because of the expansion and contraction of PBL sub-layers during day and night. For 

example, the PBL eliminates aerosol via a mechanism which operates either as wet deposition, dry deposition or 

chemical reactions. These processes can occur individually or simultaneously.   Von Hoyningen-Huene et al., 

(2008) calculated aerosol optical thickness by using phase function and single scattering albedo. Wang et al., 

(2006) and Bockmann (2001) calculated AOT by using aerosol size distribution. This means that a higher AOT 

value indicates higher column of aerosol loading and lower visibility (Wang et al.,, 2003). Hoff et al., (2009) 

monitored the PBL activities via the aerosol size distribution; he concluded that it was inadequate to estimate 

AOT using fine particulate matter (PM2.5). The leading description of the aerosol optical thickness was given as 

                              ߬௔ =  ఈ                     (1)ି(ߣ)ܥ

Here, α is the Angstrom parameter, τa is the aerosol optical depth, C is the concentration of aerosol and λ is the 

wavelength. Eck et al., (1999) redefined the above equation as 
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ߙ                       = − ௗூ௡(ఛೌ)ௗூ௡(ఒ)                      (2) 

The application of this model showed inadequacy in near and middle infrared channel because of the presence of 

water vapour in the atmosphere (Tanre et al., 1988). The relative humidity (Fitzgerald,1989) and temperature 

(Bird,1984) will also be affected in the near and middle infrared channel. Here, we propose that the cloud cover 

would be affected. Since all these parameters are dependent on the wavelength during measurement, we assume 

that if the same wavelength could determine water vapour or rainfall, temperature, then the near and middle 

infrared channel  could determine the relative humidity and cloud cover. For example, the minimum 

temperature is important to this study because it is measured at the lowest temperature layer called Ramdas layer. 

This parameter expresses the aerosol microphysical properties and transport. Another parameter is the cloud 

cover. This is the portion/fraction of the sky obscured by clouds which defines the interaction of thermal 

radiation effects on atmospheric aerosols. Relative humidity measures the amount of moisture in the air relative 

to the total amount of moisture the air can hold. Rainfall eliminates aerosol in the PBL. 

In this paper, thirteen years ground data set assimilation was carried-out to observe the consistency of the data 

and the effect of climate change. This enables a comparative formulation of a model which is based on the 

peculiarity of the weather parameter. The uniqueness of the model was tested in six locations of the south-west 

Nigeria. The main objective is to propound a model that (that is climate change dependent) to give a rough 

estimate of aerosol distribution size over an area/location. 

The research sites (shown in Figure 1) transverses the coastal region to the sub-Sahel region of Nigeria. The 

wind transport mechanism in this region is dynamic and can be described by the Reynolds' number which 

defines turbulent or laminar flow stress in the PBL. For example, during harmattan, the wind transports large 

quantities of dust particles from the Sahara Desert (from the north) to the south and aerosol from  bush burning 

from the south to the north. During the non-harmattan, the West African Sub region is washed by the humid SW 

Monsoon winds from the Atlantic Ocean (see Figure 1) towards the north. In this paper, six locations were 

considered across the 335 ˟ 230 Km2 area shown in Figure 1. We adapted a new technique i.e. Arithmetic 

translation of pictorial models (ATOPM) to reduce unnecessary mathematical assumptions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location of study area in the enclave of Nigeria 
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2. Thirteen - Years Ground Data Assimilation 

The ground data set assimilation was carried-out using the MATLAB.  Using the satellite imagery, it can be 

deduced that an increase in cloud cover leads to a decrease in AOT and vice-versa. This trend extends to other 

features of the cloud cover and its corresponding AOT. Hence, cloud cover is a valid parameter to estimate AOT 

in any area. Further, the ground data set shows that Ilorin has the highest cloud cover in the period of 2000-2012. 

The cloud cover for Abeokuta was not included in Figure (2) because it has a uniform cloud cover (i.e. 7) for 

fourteen years. The rainfall trend (Figure 3a-f) shows an inverse relationship i.e. an increased volume of rainfall 

(not frequency) leads to a decrease in the AOT output. An increased rainfall eliminates aerosol at the PBL.  
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Figure 2. Yearly cloud cover for five locations. 'a' is Ilorin,'b' is Ikeja, 'c' 

is Ibadan, 'd' is Oshogbo, 'e' is Ondo 
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The relative humidity trend (Figure 4a-f) reveals a direct relationship between the relative humidity and AOT.  
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Figure 3. Yearly rainfall for six locations,  'a' is Abeokuta, 'b' is Ilorin,'c' is Ikeja , 'd' is Ibadan, 'e' 

is Oshogbo, 'f' is Ondo 
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The minimum temperature trend (see Figure 5a-f) showed an unstable relationship with the AOT. The stability of 

the relation between minimum temperature and AOT is sectionalized.  
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Figure 4. Yearly relative humidity for six locations.   'a' is Abeokuta, 'b' 

is Ilorin,'c' is Ikeja , 'd' is Ibadan, 'e' is Oshogbo, 'f' is Ondo 
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The minimum temperature is discarded because of its instability shown in Figure 5. Though in the past, 

Fitzgerald (1989) related the minimum temperature to AOT. However, with the results obtained from the six 

locations, no mathematical assumptions can practically capture all the known and unknown forces responsible 
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Figure 5. Yearly minimum temperature for six locations. 'a' is Abeokuta, 'b' is Ilorin,'c' is 

Ikeja , 'd' is Ibadan, 'e' is Oshogbo, 'f' is Ondo 
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for the thermal abnormally (Emetere, 2014). The best explanation for discarding minimum temperature is the 

realities of climate.  

3. Mathematical Formulations 

The success of the Kumierczyk-Michulec (1993) model was the mathematical translation of weather parameters 

in an equation given as 

           ߬௔(ߣ) = ܽ ൤ ா೟೚೟(ఒ)ிೞ(ఒ)ఉషభ ୡ୭ୱ(ఏ) ೝ்(ఒ) − (ଵି ೝ்್(ఒ))௖ ೝ்(ఒ) ൨ ೏೘
                            (3) 

Here, a=0.145, b=0.95, c=2, d=0.945, ܧ௧௢௧(ߣ) is the total irradiance, λ is the wavelength, ௥ܶ(ߣ) is the 

transmittance functions for Rayleigh scattering, ܨ௦(ߣ) is the extra-terrestrial spectral irradiance, β is the 

correction factor for the Earth-Sun distance. 'm' is single scattering albedo. 

The data assimilation section enables the reconstruction equation (3) as  

               ߬௔(ߣ) = ܽ ൤ ா೟೚೟(ఒ)ீೞ(ఒ)ఉషభ ୡ୭ୱ(ఏ) ೝ்(ఒ) − (ଵି ೝ்್(ఒ))௖ ೝ்(ఒ) ൨                               (4) 

Here  d≈m,  ܩ௦(ߣ) is the extra-terrestrial index which can be determined by  

(ߣ)௦ܩ          = ቀீு௃ ቁ                                      (5) 

G is the cloud cover index, H is the relative humidity index, J is the rainfall index. The constants highlighted in 

equation (3) can be contested based of regional weather peculiarities and global climate change. Hence, the 

determination of constants should not be theoretical but practical. The spread of the events illustrated by the 

MATLAB simulation may be a vital clue towards generating the required constants. In this paper, we defined the 

constant by the events ratio during a specified period. For example, from Figure (6), we can deduce the constant 

from the individual index i.e. G, H and J shown in equations (6-8). 
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The cloud cover for each location is highlighted in equation (6), the relative humidity for each location is 

highlighted in equation (7) and the rainfall for each location is highlighted in equation (8). The vertical 

arrangement of the location in each equation is in order, Abeokuta, Ondo, Oshogbo, Ibadan, Ikeja and Ilorin. 

              
ீ(௛ି௛బ) =

ହଶ଻଴ݔ ଵݔ + ଷ଻଴ ଶݔ + ହ଻଴ ଷݔ + ଶ଴଻଴ ସݔ + ସ଴଻଴ ହସହ଻଴ݔ ହݔ + ଶଷ଻଴ ଺ݔ + ଶ଻଴ ଻ଷଽ଻଴ݔ ହݔ + ଷଵ଻଴ ଺ଵସ଻଴ݔ ଷݔ + ଷସ଻଴ ସݔ + ଶଶ଻଴ ହଷ଻଴ݔ ଷݔ + ଶ଻଴ ସݔ + ସସ଻଴ ହݔ + ଶଵ଻଴ ଺ݔ ۙۖۖۖ
ۘۖ
ۖۗۖ

                               (6) 

 

              
ு(௛ି௛బ) =

଻଼଴ ସݕ + ଵସ଻଴ ହݕ + ଶଶ଻଴ ଺ݕ + ଶ଺଻଴ ଻଺଻଴ݕ ସݕ + ଵସ଻଴ ହݕ + ଶ଴଻଴ ଺ݕ + ଷ଴଻଴ ଻ଵଶ଻଴ݕ ସݕ + ଵ଴଻଴ ହݕ + ଶଵ଻଴ ଺ݕ + ଶ଻଻଴ ଻ଽ଻଴ݕ ସݕ + ଵଷ଻଴ ହݕ + ଶ଻଻଴ ଺ݕ + ଶଵ଻଴ ଻ଷଵ଻଴ݕ ହݕ + ଶଷ଻଴ ଺ݕ + ଵ଺଻଴ ଻ସ଻଴ݕ ଵݕ + ଺଻଴ ଶݕ + ଺଻଴ ଷݕ + ଻଻଴ ସݕ + ଵଷ଻଴ ହݕ + ଵଷ଻଴ ଺ݕ + ଶଵ଻଴ 	଻ݕ ۙۖۖ
ۖۘ
ۖۖۖ
ۗ

                    (7) 

            
௃(௛ି௛బ) =

ଶଵ଻଴ ଵݖ + ଻଻଴ ଶݖ + ଵଷ଻଴ ଷݖ + ଵ଻଻଴ ସݖ + ଵଶ଻଴ ହଵଷ଻଴ݖ ଵݖ + ଽ଻଴ ଶݖ + ଵଷ଻଴ ଷݖ + ଽ଻଴ ସݖ + ଶ଴଻଴ ହݖ + ଺଻଴ ଺ଵହ଻଴ݖ ଵݖ + ଵ଴଻଴ ଶݖ + ଻଼଴ ଷݖ + ଶ଼଻଴ ସݖ + ଽ଻଴ ହଵହ଻଴ݖ ଵݖ + ଵ଴଻଴ ଶݖ + ଽ଻଴ ଷݖ + ଶଽ଻଴ ସݖ + ଻଻଴ ହଵ଴଻଴ݖ ଵݖ + ଵସ଻଴ ଶݖ + ଵଽ଻଴ ଷݖ + ଵ଺଻଴ ସݖ + ହ଻଴ ହݖ + ସ଻଴ ଺ݖ + ଷ଻଴ ଻ଶଶ଻଴ݖ ଵݖ + ଺଻଴ ଶݖ + ଵଵ଻଴ ଷݖ + ଶଽ଻଴ ସݖ + ଶ଻଴ ହݖ ۙۖۖ
ۖۘ
ۖۖۖ
ۗ

                        (8) 

ℎ − ℎ଴ height difference from ground. x1-x7 , y1-y7 and z1-z7  represents the distribution sizes obtained from 

the diagram for each indices. The generalized constants obtained from the research site can be estimated via the 

summation of all the events in each index as shown in equation (9). 

 

            

ீ(௛ି௛బ) = ଶ଻଴ ଵݔ + ଷ଻଴ ଶݔ + ଶଶ଻଴ ଷݔ + ହ଺଻଴ ସݔ + ଶଶ଴଻଴ ହݔ + ହଶ଻଴ ଺ݔ + ଶ଻଴ ଻ு(௛ି௛బ)ݔ = ସ଻଴ ଵݕ + ଺଻଴ ଶݕ + ଺଻଴ ଷݕ + ସଶ଻଴ ସݕ + ଺ସ଻଴ ହݕ + ଵ଴ଷ଻଴ ଺ݕ + ଵହହ଻଴ ଻௃(௛ି௛బ)ݕ = ଽ଺଻଴ ଵݖ + ଺ଵ଻଴ ଶݖ + ଻ଷ଻଴ ଷݖ + ଵଵ଻଻଴ ସݖ + ହହ଻଴ ହݖ + ଵ଴଻଴ ଺ݖ + ହ଻଴ ଻ݖ ۙۖۘ
ۖۗ

                     (9) 

From the proofs on wavelength dependence on aerosol optical depth (Angstroms,1929; Eck et al., 1999), we 

assume a formular whose relation to the wavelength is divergent (if directly related) ݔ௡ = ௡ݕ ,(ߠ݊)	sinߣ =ఒ௡ sin	(݊ߠ), and convergent (if inversely related) ݖ௡ = ఒమ௡ cos	(݊ߠ). The proof on the effect of angular shift (݊ߠ) 

on results in equation (4) is affirmed in the individual weather parameter shown in Figure (7-9). n is the number 

of particles (1/cm3).  
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Figure 9. Satellite angular shift effect on the Rainfall 

 

Recall that the objective of the paper is to determine the rough estimation of the aersol distribution sizes. In 

Figures 7-9, a microscopic analysis of each parameter was investigated. We observe the progression of each 

parameter from the negative to the positive value. Cloud cover is negatively linear while rainfall is positive 

linear on their positive ordinate. Relative humidity has both positive and negative linearity at positive ordinate. 

The weather parameters were considered i.e. cloud cover index at 20m above the PBL, relative humidity index at 

20m above the PBL, Rainfall index at 20m above the PBL and extra-terrestrial index are illustrated below in 

tables 1.The index was obtained by converting equation (9) into polynomial. For example the index for Abeokuta 

is shown in Figure (10). 

As shown below, the maximum indexes are inscribed in Figure (10). The positive parabola relationship between 

Figure 7. Satellite angular shift effect on the cloud cover 
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the indexes and its weather parameter (e.g. cloud cover index and cloud cover) shows that they are directly 

proportional to one another. Also, the depth of relationship depends on the steepness of the parabola and the 

magnitude of the index. The 3D Figure (10) shows the effects of control constants to maintain the AOT below 1. 

The control constants are applied in the simulation to restrict the AOT to 0 and 0.8. The control constant for 

rainfall index is denoted as 'a', the control constant for relative humidity and cloud cover is denoted as 'b' and 'c' 

respectively. 'b' and 'c' were kept constant throughout the experiment and 'a' varied. The result of other locations 

is summarized in table 1. Ondo has the highest relative humidity index (RHI), Oshogbo has the highest cloud 

cover index(CCI), Ondo has the highest rainfall index (RI) and Ilorin has the highest controlling constant  'a'. 
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Figure 10. Polynomial analysis of Index-Abeokuta 
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Table 1. Index table of parameters 

Location CCI RHI RI a 

Abeokuta 3.3 X 105 5.8 X 1019 2.1 X 1010 2.0 X 108 

Ondo 1.2 X 106 6.7 X 10
19

 1.7 X 10
12

 3.0 X 106 

Oshogbo 1.36 X 10
7
 6.1 X 1019 1.38 X 107 2.0 X 109 

Ibadan 1.0 X 107 4.7 X 1019 2.1 X 1010 1.5 X 109 

Ikeja 7.3 X 105 3.6 X 1019 7.3 X 105 2.0 X 104 

Ilorin 7.1 X 106 4.7 X 1019 7.3 X 106 3.0 X 10
9
 

 

The index reveals the cumulative effect in numerical value. High index shows a region of lower activity of its 

parameter and vice-versa. For example, in descending order, the CCI-according to location is listed as follows 

Osun, Ibadan, Ilorin, Ondo, Ikeja and Abeokuta. This means that Abeokuta is more prone to cloud cover than 

osun. 

4. Application of the Model to Practical Problems 

Equation (4) was tested by generating series of AOT values shown in table 2.  The AOT was generated via a 

changing angular range. 

 

Table 2. AOT predictions over the area 

Angle Likely data sets of Aerosol Optical Thickness (AOT) for 10m-1Km vertical profile 

Pi/2 0.0286 0.0571 0.0857 0.1142 0.1428 0.1713 0.1999 0.2284 0.257

2Pi/3 0.5425 0.571 0.5996 0.6281 0.6567 0.6852 0.7138 0.7423 0.779

pi 1.0564 1.085 1.1135 1.1421 1.1706 1.1992 1.2277 1.2563 1.2848

3pi/2 1.5703 1.5989 1.6275 1.656 1.6846 1.7131 1.7417 1.7702 1.7988

2pi 2.0843 2.1128 2.1414 2.1699 2.1985 2.227 2.2556 2.2841 2.3127

Angle Likely data sets of Aerosol Optical Thickness (AOT) for 10m-1Km vertical profile 

Pi/2 0.2855 0.3141 0.3426 0.3712 0.3997 0.4283 0.4568 0.4854 0.5139

2Pi/3 0.7994 0.828 0.8566 0.8851 0.9137 0.9422 0.978 0.9993 1.0279

pi 1.3134 1.3419 1.3705 1.399 1.4276 1.4561 1.4847 1.5132 1.5418

3pi/2 1.8273 1.8559 1.8844 1.913 1.9415 1.9701 1.9986 2.0272 2.0557

2pi 2.3412 2.3698 2.3983 2.4269 2.4555 2.484 2.5126 2.5411 2.5697

 

The sensitivity of the model was tested (in table 3) to show a clear distinction between seemingly AOT locations. 

The positioning of the indexes and the cumulative performance is shown below. 

 

Table 3. Forecasting via index positioning 

Location CCI P RHI P RI P a P R 

Abeokuta 3.3 X 105 6 5.8 X 1019 3 2.1 X 1010 3 2.0 X 108 4 216

Ondo 1.2 X 106 4 6.7 X 1019 1 1.7 X 1012 1 3.0 X 106 5 20 

Oshogbo 1.36 X 107 1 6.1 X 1019 2 1.38 X 107 5 2.0 X 109 2 20 

Ibadan 1.0 X 107 2 4.7 X 1019 4 2.1 X 1010 3 1.5 X 109 3 72 

Ikeja 7.3 X 105 5 3.6 X 1019 6 7.3 X 105 6 2.0 X 104 6 1080

Ilorin 7.1 X 106 3 4.7 X 1019 4 7.3 X 106 2 3.0 X 109 1 24 

 

The multiplication of the positions is expressed in the column-marked 'R'. We propose that region of exceeding 
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high value of 'R' (i.e. R>100) symbolizes region prone to errors. Therefore, Lagos and Abeokuta are highly prone 

to errors. Ondo and Oshogbo lies almost on the same horizon. They possess low 'R' (i.e. R<100) showing that the 

inclusion of either theoretical or practical constant would be almost accurate. Ilorin and Ibadan are almost in the 

class of Ondo and Oshogbo. Hence, when compared to previous models (De et al., 2003; Falaiye et al., 2013), 

the sensitivity of this model is about 0.1% higher. 

4. Conclusion 

The aerosol optical thicknesses within the research site shows dependence on the wavelength and satellite 

angular shift. The validation of the mathematical connection between AOT and weather parameters has been 

established. The type of relationship between AOT and weather parameters can be direct or inverse.  The 

assimilation of the fourteen years ground data set shows that some parameters like minimum temperature have 

been overtaken by the global climatic change. However, the sensitivity of this model was comparatively 

analyzed to be 0.1%. Hence, the south-west Nigeria aerosol activity may be the highest compared to northern 

Nigerian. Therefore more attention should placed on Lagos and Ogun state as its aerosol content may increase 

beyond control. 
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