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PART I

AEROSOUND FROM CORNER FLOW AND FLAP FLOW.*

BY

W.C. Meecham, _ School of Engineering and Applied Science

University of California, Los Angeles, California 90024

ABSTRACT

The model consists of a vortex moving around a corner in an

imcanprelsible, potential flow. A possible explanation of the typically

small Strouhal numbers seen here is the vortex image retarding-effect.

The model surface pressures, sound pressures (using Curle's theory) and

Mach number dependencies agree well with wind tunnel experiments. A

double pressure peak is found in the model (credited to image action)

which is qualitatively similar to measured sound correlations. We

discuss incompressible-flow aerosound calculations.

*Presented as Paper 81-2039 at the AIAA 7th Aeroacoustics Conference,

Palo-Alto, CA, Oct 5-7, 1981

* This work was supported by the Lowspeed Aircraft Research Branch

of the NASA-AMES Research Center

Cop vwrlght (c) 1981 by W.C. Meecham

+Professor, Department of Mechanics and Stt_ctures; Associate Fellow, AIAA.



Introducti_

Residents around airports are often exposed to high noise levels

by ccamerical jet planes during landing operationB. The problem is

aggravated by the small glide angles necessary during approach.

(Though the noise produced at take-off is much greater, it doesn' t last

as long at ground level because of higher climb-out angles.)

It is also true that at landing, engines ere operated at reduced

thrust, and consequently high lift, airframe c_ponents, such as slots

and flaps, may become noise sources of importance. Recent work by

Ahtye, Miller and Meecham [i], Fink and Schlinker [2] and Kendell and

Ahtye [3] has indicated that of the various possible airframe noise

sources, the side edges of flaps seem to dominate. This is presumably

because of the span-wise flow caused by the pressure d/fferential

between the high pressure, lower flap surface and the lower pressure,

upper flap surface. The importance of this noise source is emphasized

by the fact that the eddy structure in this side edge region shows a

correlation length of order the flap chord, which is considerably

greater than the typical turbulent eddy correlation lengths found else-

where in the flow. Such larger correlation lengths enhance the radiated

sound as will be seen below, see Miller, Meecham and Ahtye [4] and

Miller [5].

Earlier work (Hayden [6] ) had emphasized as an important noise

source region the trailing edges of flaps and wings. However, our

measurements, [i], indicate that the noise from the trailing edges of

flaps is small (in our case undetectable) except at the very corners of

the flap, inboard and outboard. Earlier, more extensive measurements by

Yu and Tam [7] also indicated that such trailing edge noises were quite

small. This result may be regretted, for it is clear that the geometry

of a trailing edgu is considerably simpler than that of separated flow

around corners. In the latter case we must contend with swirling flows,

corners and other complications.



We present here a model problem calculation which, hopefully, will

be applicable to other problems involving the generation of asrosound by

tuzhulont flow around corners. Our application is of course the flap

edge, and we use the language of that problam.

To begin the treatment, and we must flrst deal with the flow

_round a blunt o_ect. One could construct an elaborate, empirical

treatment for the discussion of aezosound from such flows; obviomoly

a more analytical approach would be desirable. One simplified model fo=

these flow processes involves the use of moving vortices imbedded in

potential flows (for an inviscld, incompressible fluid}. The main

advantage here is that one has available conformal mapping procedures.

The treatment leads naturally to a two dimensional statement of the

problem. This type of develo_nent fo_ns but a model of the actual,

very complicated flow problem.

The physical flow consists of distributed vorticity with all of the

complexities inherent in the inh_ogeneous turbulent process. If we

are to make progress using an analytical treatment a simplier model

such as described above is clearly needed. Among paper.- _dopting such

methods we may cite: For the fluid mechanics, Clements [8] ; for flow

about a half-plane with application to aerosotmd, Howe [9], [10] and

Hardin [11]. In Refs. [9] and [11] a special and simple procedure due

to Howe is employed in the calculation. This pzocedure, if complete,

permits a considerable simplification in the determination of the

aerosound. However, if we use it, when the two dimensional problem is

adapted to three dimensional geometries it appears that the sound power

goes as the fourth power of the flow Mach number; as is known, Lighthill

[12] finds for volume sound an eight power of the Math number and

Curle [13] produces the well-known sixth power dependence for surface

sound. These apparent difficulties persuaded the author to carry out

calculations here using standard Lighthill-Curle theory. As will be

seen below the surface sound yiolds a sixth power dependence, with a

dipole augular distribution.

A further difficulty with some earlier work is the following: In

an exact theoretical statement of the problem, the fields for an

incompressible flow should be recovered. Thus, if exactly
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incompressible quantities are used, one shou -1.d find no radiated sound

when including both volume and surface sound. That doesn tt appear

to be the case in the cited references. It is expected for the

Light_Lll-Curle theory that such a result should follow."

We propose to usa incompressible flow quantities for the calcula-

tion of ae_osound radiated by the flap surface.

In the standard treatment of the problem one finds sound radiated

as a result of two source machanismsz Volume sound and surface sound.

If we use the state_ent of the radiated sound in teems of density

changes, then for incompressible flow these two integral contributions

should be equal and opposite, since of course there is no density change

in an incompressible fluid. In the couzse of the Lighthill-Curle

discussion, what is really an arbitrary para_meter, a 0, is introduced.

It is convenient ordinarily to choose for that parameter the ambient

speed of sound. For an incompressible flow problem we are free to make

an arbitrary choice. If one does so, then the surface and volume sound

must just cancel one another. We will here calculate the surface sound

radiated by our model of the process. We do so using incompressible

flow quantities. The rationale which we employ, and which is implicit

in other similar treatments of the problem, is that the field quantities

near the surfaces producing dipole sound, are approximately the same for

an incompressible fluid and for a slightly compressible one under

similar conditions. Thus we may use the simpler incompressible

quantitites in the calculation. These questions are discussed more

fully in Appendix A.

Figure 1 shows a sketch of the wing and deployed flap, viewed from

the underside of the wing. Two average, streamlines are shown. Viewed

from the aircraft, the flow proceeds along the win% and then spills (or

is pushed by the high pressure on the underside of the flap) around the

outboard blunt edge of the fl._p. Figure 2 is a close-up of the flow

around this blunt edge and also shows the coordinate system used: The

x I axis lies along the trailing edg6 of the flap; the x 3 axis lies along

the outboard, lower edge of the flap and x 2 is perpendicular to th_

underside of the flap. A field point x is shown. The dotted line f_om



x_iS its projection on the x I - x 2 plane, _ is the (azimuthal) angle of

that projection fr_ the x 2 axis and @ is the polar angle, measured from

the x 3 axis. Figure _a_ shows the model, potential flow about the flap

corner, with an imbedded voztex. Figure _b_ shows t_te unifozm flow with

the vortex _and its image) in the transformed plane (see below).

In the spanwise flow about the blunt end of the flap, it was found

in Refs. [I], [4] and [5], that most of the sound was radiated from the

underside of the flap, that is the surface on which the flow first

impinges! the horizonial surface in Fig. (3a}. This was determined

through the use of cross-correlation techniques. The upper side of the

flap showed little detectible, radiated sound. Our model here will

consist of a vortex moving around from the lower horizonal surface to

the vertical surface. We make no effort to construct the flow around

the upper horizonal surface, the dashed line in Fig (3a), for reasons

Just cited. Typically one thinks of flow separation at the corners,

producing vortices. In our case, from the cross correlation measurements

taken at the lower surface, it's clear that the vortex when formed is

large enough and diffuse enough so that it has a major effect on the

lower surface, thus not appearing _ at the corner. The qualitative

characteristics of the flow to be used here are similar to those

measured around edges by Francis and Kennedy [14]. In our experiments

we didn't actually place pressure sensors at the blunt edge of the flap,

in Fig. _3a) the lower Portion of the vertical surface. But we expect

that when such experiments are performed, applicable sound will be found

originating from this region as well. We include it in our treatment.

II. Theor_ of Airframe Surface Noise

It is not necessary to review completely the standard aerosonic

theory. We content ourselves with a few points of importance in the

discussion and with results. Lighthill [12] begins with the exact

equations of motion for a fluid. In his treatment he models the pro-

pagation of sound in a fluid at rest. He has, at an intermediate stage,



ORIGINAL PAGE IS

OF POOR QUALITY

2 2 ;)2

_t---_ - ao_ _- Tij
_x i _xj

Ti: j - pui.u, i -I. PiJ - a2 p6_.::) (1)

where p : density, Pij " ¢_mpressive stress tensor, a 0 ,, speed of sound

in the ambient fluid (though a 0 may be chosen arbitrarily), v i - the

c_mponent_of the fluid velocity in the direction x i (i = 1,2,3,); we

sum over repeated indices. Equation (1) is solved for free-turbulence

flows by Lighthill and for turbulence in the presence of rigid boundaries

by Curle [13]. Curle obtained, for the surface contribution to the

density change ( in the situation where x>>k>>L with k the wave length

of the most strongly radiated sound and L a typical dimension of the

solid body of Interest)a the following

r ) dS (_t-
s

wh_ __is _e sour.ceposition wctor, r = I _--- Y-I

and x is the field point. The source system is said to be compact if

A>>L. Below it is understood that the radiated signal is delayed by

r/ao; we shall not always show the delay expliaity.

The Pi are the components of the force exerted by the surface on

the surrounding fluid. The integral is to be carried out over the

entire surface. For simplicity in our application we ,'ssume that the

chord, C, is small compared with the sound wavelength and that we are

far away compared with C. The dimension of the flap in the span-wise

direction may be larger than the sound wavelength. However, our noise

producing eddies have a scale in the span-wise direction of order the

thickness of the flap, see Refs. [1] and [4] ; it is known that the

dipole sound vanishes for turbulence over a flat plate. Thus, far

from the flap edge, we expect little surface-sound contribution.

Consequently, we have assumed that the sources are compact for the
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Our model consists of a vortex (plus its image) imbedded in a

potential flow around a corner. We introduce a complex variable

iy 2 Pa le ,Z=Yl+ " (-_ <8<_ _ _).

Physical space may be transformed, as shown in Fig. 3b, with

A = _ + i_, using

A - (ze i_> 2/3 (3)

Assuming a uniform flow in the _=ansformed plane, the complex potential

is
I

w(A) = - A_ iF if'
-2-'g L_ (A-A o) +_-._- L_ 0,- _.0"),

(4a)

here _0 = t0 + in0 the transformed vortex position, A determines the

magnitude of the uniform flow in the negative _ direction and the com-

plex conjugate is indicated throughout by an asterisk. The r is

the circulation strength of the vortex. Also z 0 = Y01 + iY02 = R0 ale0

is the vortex position in the physical plane and is related to AO by

Eq. (3). We write the equations in dimensionless form using for velocity

8% where in our physical problem U 0 is the speed of the free stream and

8U 0 is the speed of the flow in the span-wise direction (rolling over

the edge of the flap). Here 8 is typically of order unity and is to be

determined later. For the dimension of length we use D the thickness of

the flap, and for the mass, PoD 3. O/r measurements, see Refs. [I] and

[4], show correlations with lengths of order D in the span direction.

We suppose from the known characteristics of the vortices generated by

separation, and from the physics of the problem that

I

\,

and

A = 8UoDI/3

(4b)

(P/2_) = 8UoD

setting th_ onstants of proportionality equal to one. It will be noted

that we retain but one adjustable parameter, 8 9 thus limiting the (some-

times suspect) freedom to adjust the theory to the experiments. The

6
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equations may be convenlently made dimensionless by setting

A = F/2_ - PO = I. The Eq. (4a) then becomes

w(X) =- X + i in [(_. - XO*)/(,_- ).0)]. (5)

To avoid the dread notational proliferation we use the same hotatlon for

dimensional and for dimensionless quantities; the latter may be identifi-

ed by the apparent failure of dimension checks.

We find the components of the velocity in the physical plane in the

usual way

--_f dz = - 2 , z (6)
3

In the absence of the vortex the flow is steady and from Eq.(6) (with-

out the vortex terms) we see the speed falls off as R -I/3. The flow

becomes time dependent; with a vortex present because the vortex moves.

Its motion is essentially the velocity of its center as determined by

the potential flow and the image vortex plus a correction term, accord-

ing to Routh's rule [see Ref.(8)]; we find

(7)

taking real and imaginary parts,

9oI 2 2

Y02 " _ - + RO sin _ (@ 0 + _,

1

I cos_ (27T- eo) 1

l-sin _ (27 - 80 )

(8)
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where upper and lower quantities go together. We solve these Eqs.(8)

numerically, Fig. 4; note that the solution depends upon the initlal

position of the vortex; in our case we take t = 0 when the vortex crosses

the _metry line, %= - 450° The orbit (a) has R0= 4 initially; the

orbit (b) has R0= 2 initially and shows the vortex moving more slowly

than (a) because of the retarding effect of the vortex image; the orbit

(c) approaches the wall closely enough so that the vortex is returned upstream

and doesn't circumnavigate the corner; the orbit (d) shows the vortex

close enough to the wall so that it moves counter to the motion of the

potential flow. Orbits farther out show rapidly reducing sound fields:

closer orbits return upstream and don't produce important characteris-

tics of the flow. We may introduce additional vortices on the chosen

orbit to model the flow process. We introduce them at a rate equal to

the peak frequency observed in the sound field. We measured (see Refs.

[I], [4] and [5]) the cross correlation of the surface pressure with the

radiated sound pressure. In Appendix B we show that oscillations in the

correlation function can be used to determine this peak frequency.

III. Aerosound Generated By Corner Flow

First note that Eq.(2) in dimensionless form becomes

p - 1 =

0

i-I (Pl + P2) dYl
3x2 i2_t Y2 - 0

4_a o

" _il _ i + P2)dY2 Yl = 0 "

(9)

The pressure for inviscid flows is given by

p= l -

II "1 2 ^

Pl = -_t ' P2 = " --2 u , _u = Yl i + 2 j

(._.0)

8
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The force exerted on the fluid by the boundary [components Pi in

Eq. (2)] is given by the pressure force normal to the surface.

Note that the positive direction for the field point x is downward

and to the left, left being upstream in the flow, as indicated in Fig.3a.

In such two dimensional problems the pressures and velocities are in-

dependent of the coordinate direction along the edge of the flap, that

is normal to the page in Fig. 3a. Consequently the surface integral

along that direction is simply the (nondJJnensional) chord length C as

indicated by the coefficient in Eq. (9)° In Eq. (I0) _ and _ are unit

vectors along the axes. For this flow the velocity potential is obtained

from

$ = Re W, (11)

where Re stands for real part, and below Im for imaginary part. Using

Eqs. (5) and (11) we have

_ [(_ _0 )-I _--6-__=- 2 Im

(12)

Note that the time dependence is contained entirely in the position of

the vortex in the physical plane, z0, or equivalently in its position

in the transformed plane, l O. For the integrals we need, see Eq.(9), the

derivative of the pressure from Eqs.(10) and (12) is

2 2 + (_._ Xo)-I " "'o I
m:2J

(13)

Think of substituting Eq.(13) for the derivative of Pl in Eq.(9) (note

that the derivatives of _0 are parameters in the integration). Both

integrals of the second term in Eq.(13) will be divergent, referring to

Eq.(5). Of course we might cut off the integrals by recognizing that

the compactness of the source is violated for z sufficiently large. But

if so these terms would dominate the result, being dependent as would be

the case on a length of order the wave length of the sound, or the dis-

tance to the field point, both much larger than other lengths in the

9
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calcuation. This would not yield a sensible physical result for the

radiated sound.

But the volume has a correspondingly divergent contribution (see

the discussion in Appendix A) just cancelling this surface contribution.

Accordingly we drop the second term in Eq.(13).

We designate the contribution of Pl to the density change by

(P - 1) 1. The integrals involved are of elementary form.

We find for this part of the density change

- J;

(14)

Turn now to the pressure contribution from velocity ch_ges, de-

signated P2' see Eq.(10)

For this contribution of the surface pressure, P0' to the dipole,

surface sound we need the square of the fluid velocity. Of course by

construction the normal Component of fluid velocity will vanish on the

horizonal and vertical surfaces.

We take the square of the absolute value of Eq.(6); since after

intergrating the pressure we must take the time derivative, we may

neglect the term independent of _0" It is seen that all of the inter-

grals may be evaluated using standard contour integration methods. We

find for the pressure integrals over the surface the result

P2 (YI' Y2 = O) dy I + i _ /0 P2 (Yl = O, y2 ) dy 2

= _ [40-1/2 (4i - 2i Aoil + A O-I)_

(15)

where A0 = XO r + iA
oi

I0
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Substituting and drawing theae rolultl togethez we have for the

density change in the sound field the results w An dlmens_onlesa form w

P- I - [C Jin OtCa 3. x)] • [GH 2os +
CV

sen

(Z6)

with

- G M " FIll + F2H, - Gv " Fly + F2v

2

Flvl " 6_o \-sin [2_)0 + 00]/

(17)

F2HI. u° (9 R04/3) -I
_'2_/

• - 2 + _0_1 -co'` [_ eo)

1

sin [-_ (,r + 0O) - _01

3 -2/3 l-sin (40 - ())\

+ _ Ro _ co._, (40 0o°))

+ -- [cos _0 + sin 40 cot 00) I _" (" + eO) '

lOi _ ,,in 1 1_ + 80 )

3

eo" tan -I (_o21_oi) _ °o (20)

• 2 • 2 1/2
Uo " (YOl + Y02 ) (21)

1l



Here _0 is the angle between the vortex velocity vector, which lies in

the first quadrant, and the vortex radius vector. In Eqs. (17)-(19)

upper and lower values go together, respectively. The angle 8 here is

the polar angle measured from the (outboard} corner of the flap edge_

is the azimuthal angle. The _enses of the angles are indicated in the

sketch, Fig.2. We also show there the axes and their senses for the

field vector x. The application of most interest here is that of a flap

deployed from a wing surface. We have than approximately _ = 0, an

e - (0, u)ibeing zero when the fleld point is up stream. For this

application the dipole sound generated by the edge, of width D, of the

flap sIrrface (what we have termed the vertical-surface contribution)

will vanish, as we see from Eq.(16) with _ = 0. We concentrate our

attention on this simplified case.

The surface pressure, P0' is readily found using Eq.(10) substitut-

ing using Eqs.(6) and (Ii) for the velocity potential. The result is,

up to an arbitrary hydrostatic pressure, on the surface [where by Eq.(3)

we see that k is real]

P0 _ - 2 (9R2/3) -I [- 1 + 2A0i I A - A0 1-212

4u 0

+ 3RJ A_AJ2 [AA0i cos _0 +A_r sin _0- IA0i 2sin _0]

(22)

The pressure due to the potential flow alone may be obtained by letting

R 0 be indefinitelylarge- In our pressure plots in the next section we

we use this latter pressure as the reference.

As suggested earlier, in our model we may use a series of vortices,

essentially set up by the separation process but, in the nature of the

geometry, reaching back upstream from the separation point. These

vortices are, from measurements in Refs. [i] and [4], found to be

essentially, statistically independent of one another; thus we can add

intensity effects. The instantaneous sound intensity at a distance x

12



from the corner is easily found to be, now using _U0, D and P0 to define

the dimensions ( for one vortex )

6

(6 U 0) P0 C 2 2

Z - 2 3 (sin e)[GH cos _ + G sin _]2

x a 0 v (23)

The mean intensity is found by averaging this function over theperiod

of the vortex shedding and including the overlap of the tails of the

other vortex functions which may occur. In our applications, and in

general for directly-overhead, flyover flap noise, we take as indicated

= 0, 0 = (0, W), see Fig. 2. In the result, Eq.(23), the quantities

G H and G v are universal functions of dimensionless arguments varying

only with the initial position of the orbit of the vortex. Even this

position, as discussed, may not be widely varied.

IV. Computation Compared with Experiments r and Conclusions

The computations required for the theory described here are not

extensive. What we report was done conveniently on a hand

calculator.

The vortex orbits shown in Fig.4, calculated using Eq.(8), emphasize

regions nearer to the corner. Generally speaking when R0>> i, we no

longer expect the model to represent the important characteristics of

the physical flow, so the orbits then'are not of interest; we do not

show those portions. A further comment or two on the orbits will be

be helpful. We shall choose the orbit (b) as the one with the qualita-

tive characteristics for the radiated sound most closely approaching the

observed ones. _here is a metastable point for the vortex at R 0 = 1.4

and @0 = - 450; the vortex (b) approaches this point, oscillates sl_ghtly

near it (not seen on the scale of Fig.4) and then is sent back upstream.

As explained, in these pressure plots we choose t = 0 when the vortex

passes the line = - 450 .

Consider the near field pressure P0 calculated using the orbit in-

formation already discussed and Eq.(22). We show P0 in Fig.5 (using

13



the right hand vertical scale). The pressure is measured on the surface

at the point Yl "- 0.5, Y2 " 0. This position corresponds roughly

to our flap measurement positions in the experiments reported in Refs.

[I], [4] and [5]. We show the surface pressure in Fig.5 for the orbits

(a) and (b). The larger orbit shown in the figure, indicated by

R 0- 4, shows a single peak in time, along the horizontal axis (all

quantities in dimensionless form).

As the vortex approaches the surface point the Potential flow is

modified by the vortex flow. The velocities at the surface are reduced

and thus the pressure is increased. (It should be noted that we have

taken for the pressure reference the potential flow value with no vortex,

at the point in quest/on. It amounts, in dimensionless form, to adding

0.35 to the calculated values.) The more interesting surface pressure

for the closer orbit (b) is also shown in the figure. It is noted that

there are two peaks; they appear for the following reason: As the vortex

approaches the surface the combination of it with its image reduces the

flow speed (by cancelling some of the potential flow) thus increasing

the pressure. As the vortex moves past the hisecting line the images are

poorly defined and the result is a reduction in the pressure because of

increased fluid velocities at the measuring point. Then as the vortex

passes the corner the image aga/_ becomes better defined and a corze-

spending increase in pressure is seen again. It should be noted here

that the speed of the vortex is considerably slowed by the action of its

images. Consequently the time of occurrance of these effects is rela-

tively large, as can be seen in the dimensionless forms and as shown in

Fig.5 ; thus in dimensionless form the time delay between the two peaks

mentioned here is approximately 25 units.

This last characteristic leads to an interesting conclusion from

this work for general fluid flows. The time characteristic Just des-

cribed is the inverse of the Strouhal, St, number. As is known St

numbers are typically less than one for many flows, sometimes consider-

ably less. The vortex street behind a cylinder has a St number of 0.2,

a dimensionless period of 5. The reason for such low St numbers may in

general be the phenomenon observed here: The vortex image slows the

vortex motion, thus increasing the period of the fluctuating process.

14



Turn now to the aerodynamic sound generated by these fluctuating

pressures. We show in Fig. 5 the dimensionless and normalized density

change, see Eq. (16),

(24)

(p - I) a_ x/(C sin e) = GH

. - (FIH + F2H )

Th/s As proportional to the density change for $ - 0. This we observe

the sound in the plane of the flat edge. This is approximately the plane

in which most of our measurements have been made. (Also note the ch_ge

of sign, An Eq.(24), in the sound field density.) Radiated sound for the

farthest orbit (a) shows one negative and one positive peak, widely spaced

and very broad. This orbit does not approximate well the vortex activity

around the flap edge. We shall emphasize the closer orbit (b), calcu-

lations for which are also shown in Fig.5.

For this preliminary application of the theory to the available

data we restrict to but one vortex. Referring to Fig.5 in the orbit

R 0 - 2 we see an oscillation in P0' noted above. New vortices must

appear (not being discussed here) with a period something llke this

oscillation. Thus, for estimation purposes we estimate a pressure

variation with a value peak to peak, see Fig.5_ of about 0.05. This

would give an RMSpressure normalized by dynamic pressure (which intro-

duces another factor of two) of

-1/2

• I 2 0.0258 _2
Po I (_ OoUo) =

. 0.035_ 2

2

(25)

recalling that our pressure As normalized using 8U 0 the span-wise flow

speed. The values measured in Refs. [4] and [5] show that P0 was

2

approximately proportional to U 0 , as predicted here. The normalized

coefficients there ranged from 0.026 to 0.059 in typical circumstance.

Obviously the theory fits these experiments quite well. It is difficult

to determine thQ value of _, the span-wise flow intensity, from this

port,on of the experiment without further treatment of the additional

vortices in the problem (a quasi-vortcx street).

15



onz sound z_asureme,ts in _sfs. [1], [4] and [5] were of cross

correlations between PO the surface, near field, hydrodlmamic pressure

and p the radiated sound pressure. Consider our lazes-scale 40 x 80 -

Foot Wind Tunnel experiments, see Refs. [4] and [5]. In Fig.6 we show

one measured cross correlation. The random fluctuation _nderlying the

correlation peaks is due to the high levels of extraneous noise within

the wind tunnel. That background could be removed by taking considerably

longer t/me records during the correlation process. Wlth the funds

available we were satisfied with the results shown. The thickness of

the flap producing the correlation shown in Fig 6 is approximately 3.2

centimeters. The free stream speed was U 0 - 39.5m/see. The surface

sensor was placed at mid-chord on the first, upstream flap. The far-

field _/crophone for the measurement was locate_ approximately per-

pendicular to the lower flap surface,in our notation 8 = 900. The

Fig. 6 shows that the normalized cross correlation coefficient is quite

small, because of the large background noise levels. There is quali-

tative resemblance between this cross correlation and the predicted

double peak radiated sound, the negative of the R 0 - 2 curve shown in

Fig.5. The duration time for the double peak affect is longer, by a

factor of five or more, than that measured. To introduce other para-

meters in the model flow (e.g., shaping the underlying potential flow in

the transformed plane) would require other velocity or length scales in

the physical flow problem, and at first it seems that none are avail-

able. But recalling for example flow around a cylinder we know that

behind the object, for Re < 60, there is a pair of vortices bound to

the vicinity of the surface--a recirculation. For higher Re (Reynolds

number) the vortices are shed and a street is formed. One way of looking

at this is the following: Only a 'weaker vortex can escape the surface

and be shed into the street. Thus in modeling the flow, using an in-

viscid fluid model, we see that the Reynolds' nigher influences the

qualitative characteristics, namely as Re increases the effective vortex

strength decreases. It is granted that our Reynolds numbers are

considerably larger than those for these flow regimes. _evertheless, a

way out of the paradox above is to adopt the view that even at higher

Re there is a weakening of the vortex strength relative to the flow.
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It is not difficult to see from Eq. (8) that such a weakening reduces the

:Image-binding effect on the vortex and speeds up the _assage time about

the corner.

The intensity of the radiated sound was deter_ in Raf. [4] using

three different theoretical methods, which agreed fairly well with one

another. We shall use here for reference one of these methods, based

upon the surface pressure fluctat/on P0" The results for the particular

flap being discussed here are shown in Table 1, refer to Eq. (23). We

have % - 0, 8-- 9001 from the experiment x 3 - 4m, a O - 340m/see,

c - 0.18m and D "_ 1 kg/m3. The value of GH, the negative of the plot

Fig. 5 for the curve R 0 = 2, is hard to determine without adding further

vortices. We take as a nominal figure the peak value of about 0.003.

Usinc, the values cited, for the three flow speeds shown in Table i we

obtaln the values of B 3 G H shown in the last column. Evidently the values

are sllghtly high. There are some modifications of the methods used to

determine the radiated sound field in Ref. 5, which improve the comparison.

We may sum up as follows: the computations are not extensive for

the simple vortex model proposed here. We use but Dne truly free

parameter. The theory predicts surface pressure fluctations well.

The predicted intensity, of the radiated sound field, agrees fairly

well with the experiments though it is a little low. Time characteristics

of the radiated field match within an order of magnitude but show somewhat

slower variation for the theory than is seen experimentally. Zt is

believed that this can be improved by Re effects on vortex strength. It

was noted in the treatment that Strouhal numbers less than 1 should be

expected in general for flow phenomena of the general class considered

here because of the retarding effect of v_rtex images upon vortex motion.

The double peaks appearing in the local and radiated pressure for orbit

(b) (in Fig.5) appear to come from the presence of vortex images when the

vortex lies near either one of the faces making up the corner. The lack

of such well defined images, as the vortex moves past the bisector of the

corner increases the surface pressure.
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form

P "PO (4_a20)-i { _X i_xj

TO compare properly with the sound angular directivity observed in

experiments it would be necessary to introduce diffraction effects

_ne presence of the wing can be expected to enhence the normal d/pole

sound radiated in the up stream direction. This was observed in our

experiments, see Ref. [5] and was earlier predicted see Refs. [16]and [17].

The diffraction effect has been recently confirmed in laboratory experi-

ments, see Ref. [18].

The author is indebted to N.M. Nguyen - Vo for the computations

presented here.

A endix A: Sound Calculations and Imcom_ressible Flow

Lighthill [12] after some manipulation with the exact equations of

fluid motion, produces the basic wave equation with source given here

in Eq. (1).

In the process of derivation, Lighthill subtracted the quantity

2 2p
a 0 V from both sides of the equation. Here a0, with dimensions of

speed, is an arbitrary parameter in the development. No matter what

speed is used, the correct result must be obtained when the fluid is

compressible. In the usual problem one of course chooses a 0 to be the

ambient speed of sound. We make use of the arbitrariness of a 0 in the

discussion below.

Curle [13] using the known solution for the wave equation with

source, after some manipulation produces the exact result in d/me_isional

_T . (Z,t

dm

v 13 _ao)Tr__

pi )

(_)

The first term is the usual volume sound, the second, the surface sound,

and

Pi = - _j Pij rA2)
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wlth _I the direction cosines of the outward normal, from the fluid.

FOr our discussion it is supposed now that we hava a flow of a slightly

compressible fluid, permit the true speed of sound for that fluid to

increase without limit, thus approaching an incompressible flow; but

suppose that for the calculation of Eq. (AI), the parameter a 0 remains

fixed at some finite, fictitious value. The result will be that the

left hand side, the density change of Eq. (I), approaches zero. We use

the incompressible flow quantities to calculate Tij and Pi" The result

is evidently that the two integrals in Eq. (AI) ere equal and opposite,

The two types of aerosound just cancel one another,

To reemphasize, we expect (using incompressible flow quantities in an

aerosound calculation with a fictitious, finite speed of sound) that the

surface and volume sound contributions just cancel one another. This

result has been checked in at least one situation and found to hold, see

Lauvstad and Meecham [15]. In that work a cylinder oscillating

(rotating) about its axis and imbedded in an incompressible, viscous

fluid produces the expected cancellation.

Appendix B: Relation Between Correlation Width and Spectrum Ma_!m_

Consider a mod_l)broad-band energy spectrum given by2

- (_- _) I_.
E(_) = e-

+ e -(/'0 + %)2/%2

where % is of order the angular frequency of the spectrum maximum.

The correlation function is found by taking the Fourier transform,

(BI)

R(t) = e E(_)d_

The normalized auto correlation is thus

(B2)

[R(t)/R(O)] = cos (_ t) _ _,m
(B3)
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We note that even though a Gaussian spectrum centered at the

origin has a monotonic correlation function, such a spectrum displaced

from the origin has an oscillating correlation function. This is

generally true; a spectrum with a maximum displaced from _ - 0 (the

typical result in experiments of our kind) will have an oscillating

correlation function. No physical model is necessary to explain the

observed correlation oscillations.
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Table 1 radiated sound as measured in the experiment of Refs [4] and [5]

from an outboard flap edge r for the upstream, dep!_yed flap.

SPL at ip_ RMS Value B3GH

U 0 _n/_) Surface Of p from Refo [4] from experiment

39°5 120dB 63dB 0°003

55.8 128 77 0.006

79.0 130 85 0.005
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Fig 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

The sketch shows a deployed flap, from the underside of

the wing. Two average stream lines are indicated.

The sketch shows an enlarged view of the deployed flap,

with coordinate system indicated. The dashed lane bhows

the projection of _ in the _ - x2 plane.

(a) A sketch of potential flow about a.corner. The dashed

line shows the nominal upper surface of the flap. A vortex

isshown circulating with the potential flow. (b) Uniform

flow in the transformed plane.

Various orbits for a vortexvimbedded in potential flow about

a corner: (a) _vortex passing with R0 = 4 at t = 0

(_0 = - 450)' (b) a vortex passing with R 0 = 2 at t = 0,

(c) vortex turned back upstream by its image, (d) a

vortex counter-circulating under the influence of its image.

The divisions between the three flow regimes lie between

(b) and (c) and between (c) and (d) respectively,

Pressure calculations for the two orbits with R0= 2 and

_0 = 4 initially [orbits (_I and _6_) of Fig. 4]. The surface

pressures, PO' are plotted using the scale on the right side

of the vertical axis and are _easured at Yl = - 0.5 and

Y2 " 0, on the flap surface; the pressure when the vortex is

distant is used as reference. The quantity FIH ÷ F2H,

proportional to the radSated sound pressure, see Eq.(16),

is plotted using the vertical scale to the left9

gives PO for the orbit (a); .____ _ - ,-- gives P0 for the

orbit (b); - - is proportional to p for the

orbit (a) and is proportional to p for the

orbit (b).

Shows the measured, normalized correlation between a surface

sensor placed on the outboard edge of the first flap, in a

triple-flap experiment described in Refs. [4] ana [5],

correlated with a far field mic, located approximately normal_

to the lower flap surface.
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PART If: FINAL REPORT

AEROSOUND FEOM CORNER FLOW AND FLAP FLOW,

INCLUDING THE EFFECTS OF MULTIPLE VORTICES AND DIYFRACTION

ABSTRACT

Previous work has dealt with surface pressures and radiated sound

pressure generated by one vortex movin E in potential flow about a corner.

We here discuss a model using those results and including the effects of

a series of vortices moving in the same idealized potential flow. The pro-

cedure essentially supposes that the vortices are statistically independent

of one another so that we can add their intensities. We do not include the

interaction of pairs of vortices here, supposing that the individual vortices

move as they did in the previous report. We take the frequency of appear-

ance of the vortices as determined from measurements. We also add here the

diffraction effects c_ ed by the presence of the wing near the dipole

sound radiators, located on flap surfaces.
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Introduction

In Part I a model of the complicated span-wlse flap flow around

outboard flap edges is proposed. It consists essentially of a potential

flow around a corner with a vortex imbedded in that flow. The vortex, of

course, generates a quasi-image vortex within the corner surface, which acts

to retard the motion of the physical vortex. This moving vortex wlth its

attendant image then produces a time varying pressure variation on the sur-

face of the model of the flap. The result, according to Curle's theory[13]

(References are in Part I) is that a dipole source is set up on the hor-

izontal, and another on the vertical, side of the corner. If we suppose

that we take our measurements mainly from the underside of the flap, then

in principle the dipole set up on the vertical surface has little effect

(since we lle approx/mately in the null plane of such a dipole when directly

underneath). Using the time varying pressure it is possible to calculate the

radiated sound. There Is some difficul_y because we use an incompressible

flow model for the process. That question is discussed at some length in

Part I.

The calculated values for Po and p, local and radiated pressures, are

shown in Fig. 5, Part I, for two different vortex orbits. The preferred vor-

tex orbit, the closer one passing the corner, is the one on which we concen-

trate here. It is designated orbit (b) in Fig. 4, Part I.

In the work here we have but one parameter S, which can be varied. It

is the nom/nal ratio of the spanwlse average flow velocity to the free

stream. We also must be given the peak frequency of the local sound pressure

variation. That frequency appears in our model as the frequency of repetition

of successive vortices. It is hoped that this one parameter and one measure-

ment will be sufficient to describe the sound radiating characteristics of

the flap surface. Of course we m/ght obtain the frequency of the local pres-

sure field using a Strouhal number estimate. Here we prefer, however, to

use the frequency as taken from measurements which we have available;

see Refs. I and 4.
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I. Surface Pressures

We suppose in this repor_ that we deal vith a sequence of eddies

passing around the corner, in the potential flow, represented in our modal

by simple line voreices. We further assum that the individual eddies,

circu_naviga_ing the corner, are statistically independent of one another.

Then to ftnd the pressure variance for the series of eddies we simply add

the variances for each individual eddy at any given time. We also assume

that the motion of each eddy is not affected by i_s neighbors.

There is e._perimental support for the assumption that the train of

vortices (eddies]ere statistlcally independent of one another: The auto-

correlation function shows but a single peak [4]. In Fig. 6 (the first six

figures are in Part I), we show a typical cross-correlation with demonstrates

the essential character of the flow process and suggests that we do not have

a coherent train of vortices.

All of the work in Part I was put in dimensionless form uslng as

dimensions SUo, D and Po; respectively, the span-wlse flow (with U the

• o

free stream), the width of the flap and the ambient density. The result-

ing pressure in dimensionless form, as measured a distance of 0.SD from

the corner on the lower, horizontal surface is plotted in Fig. 5. As said

the orbit (b) is preferred. It comes to within 2D of the surface, and is

the closest approach which is possible without producing a reverse flow for

the vortex. (see Fig. 4). The surface pressure Po for this orbit is given

in Fig. 5 and is specifically the curve for the orbit (b). The

radiated sound field pressure is the solid curve for this orbit.

We shall fit these curves using weighted Hermlte polynomials. It is

seen in Fig. 5 that Po' the near-field pressure, is approximately sy_etrlcal

about a line at time approximately -8 (in dimensional form, -gD/_U ). We
o

fit the function Po using a constant plus even-ordered, weighted Hermite

polynom/als, all in dimensionless form.

z 2

t + P4e He4 i___) (1)

The constants Po' P2 and P4 are to be detet_nined by fitting the approprlate

curve in Fig. 5. To determine these constants we use the values of Po at the
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minimum, at the maximum on the right side and at a distant point (t = 36.3).

Furthermore, we can use pressure measurements to obtain the presumed value

of S, the spanwise flow speed intensity. We shall distinguish, as discussed

below, between the value of 8 obtained from Po' call it _p , and Sp, that found

from the radiated sound field pressure. We refer to Ref. _ to see the actual

measured values of this local pressure field. The results which were presented

in Fig. 5.3 of that reference are reproduced here as Fig. 7 (Figs. 7 and 8

are at the end of this Part). One can see the dependence of pressure levels

upon the flow speed, and upon position on the flap surfaces. The positions of

the measuring points in the flap system, near outer edges, are shown in Fig.

8.

The positions P2, P 3 and P4 are essentially equivalent. They lie on the

first and second flap. Other positions show lower pressure levels. The

dependence of these levels upon the flow velocity is nearly but not exactly

quadratic. There is a slight change in the spanwise flow intensity with

Mach number (or, alternatively, an increase in turbulence intensity level

with Mach number). We find actual power laws for the velocity dependence.

Write (primes denote RMS values).

p_ = KUo7

Then using the results in Fig. 7 we find the results shown in Table I

Table I

' or U
Dependence of Po o

Measurement

Position y

P5 2.0

P6 2.3

P1 2.5

P2,3,4 2.6

For Eq. (i) we have adjusted the scales in order to have quauti_ies of order

unity. Results must be readjusted after the calculation, of course. To find

the mean square of the pressure chan_e, due to a large number of statis_ically

independent eddies, we add up the squared pressure changes due to those

individual eddies, which occur successively after one another with a period,
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T . Then the resulting pressure, which is statistically stationary in ti_e_
0

is tim= averaged and we have the relationship

T

i, E o  -O'o 1

neglecting end effects (where I tl= T) which will be possible if T is large

enough, this becomes approximately

_= dr, (3)

since all integrals are equal to one another and there are 2 T/T of them.
o

Taking the scaling into account and using the properties of the Hermite

polynomials in order to calculate the integrals and finally putting results

into dimensional form we have the following for the standard deviation (the

RMS value) of the near field pressure.

Po = Po(gUo) f 2 ) V'_ fo D2 2!p_ + 4.P4 i0 _U °
(4)

where fo is peak frequency of the flow process (in our model the frequency

of repetition of the succeeding eddies). By the described process of curve

fitting we find

2p_ + 24 p2 = 0.047 (s)

Evidentally, if the Strouhal number, St = foD/Uo , is approximately

constant or but weakly dependent on the flow speed as is to be expected for

such flows, the pressure should be proportional to the square of the free

stream velocity.

Turn now to the determination of the spanwlse flow intensity as ob-

tained from the local pressure fluctuation levels. We shall use the data

presented in Fig. 7. The dependence of the levels on flow speed has Just

been discussed, thus we use the measurements at U = 55.8 m/s roughly the
o

center of the flow speed range. Referring to Eq. (4) we see that all
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quantities are known except a B and T • To determine this period we use theo

cross correlation function reported in Refs. 4 and 5. The general nature of

the cross correlation may be seen in FiE. 6. We use the time span between

the two negative peaks as a measure of T o. Measurements from the cross-

correlations involved here for the different positions on the flap structure

yield values shown in Table If, and using those values and Eq. (4) we obtain

the values of beta also shown in that table.

Table If.

Determination of spanwise flow from near field pressure measurements,

see Fig. 7

Level _easure- To, period

of Po at 55.8 m/R ment position of vortex repre- Bpo
tion

llldB P5 0.70xlO -3 ms 0.063

123 P6 0.70 0.16

128 P1 0.61 0.22

136 p2,P3,P4 0.B0 0.45

The values of the spanwise flow intensity depend on the particular positions

on the flaps. The strongest such flows are associated with positions on

the first and second of the set.

II. Prediction of Aerosound from FI_ the Model of Part l

Using the model of Part I, the resulting density change in the acoustic

field is given by Eq. (24) of that Part. The right hand side is plotted in

Fig. 5 for two possible orbits. The one farther away from the corner, as

shown by the simple dash line of that Figure, and a second orbit (b) shown

by the solid llne. The second orbit is emphasized, for its behavior is

closer to that expected physically.

There is a diffraction effect in the geometry of the flap system. The

sources are essentially dipole and their radiation is diffracted by the wing.

In the upstream direction, crudely speaking, the wing splits the dipole into

its two component parts. As a result, on one side of the wing we see roughly

a simple source-like behavior. Down stream we look directly at the dipole,
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and far downstream we're in the null plane of that dipole. The effect of

this was first described in Ref. [16 ]. The trisonometric function in

Eq. (24) is altered. One replaces sin0 by cos(0/2).

We represent the function FIH + F2H by weighted Hermite polynom/als

as before, usln 8 the calculated results shown in Fig. 5. The representa-

tion for this function is

2

. 1 t 3

103(FlI..l + F2H) p + e _(1-'_'-) E t
= PnHen (_)

n=l

(7)

again adjusting the scales to conveniently fit the function. The four con-

stants are determined by fittin E the function at the three local maxima

and mlnima nearer the origin and at the distant point of t - -30.2.

We include the effect of a train of statistically independent eddies

as before, substitute for the diffraction effect Just discussed, and cal-

culate the average sound field intensity with due regard to the scalin E.

Furthermore we write the result in dimensional form. :e shall be inter-

ested here in sound Eeneraced by direct fly over, that is, $ = 0 (see

Part I). The result is

I 12 3 °s 2 _ D-IO -5 2 , 2 , 2
SUoT ° Pl + 2"P2 + 3"P3

X a °

(8)

with C the chord of the flap and where we drop the average value of the

pressure field, retainin 8 merely the time varyin 8 part, i.e., retaining

merely the terms in the sum of Eq. (7). Two observations can be made.

First, as suggested in Part I, the intensity is proportional to C2,

with C the chord of the flap. This gives a larger than expected intensity,

because the sound source is coherent over the entire flap edge. Second,

T ~ U-I typically (as the flow speed increases, the vortex repetition

o o U6
rate increases). Thus the intensity remains proportional to as

o

expec:ed [I0].
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For the sum of the squares of the coefficients obtained by the curve

fitting process described above, we find

2 2 2

Pl + 2P 2 + 6p 3 - 7.57 (9)

In Raf. 4 three different procedures are proposed for calculating the

sound radiated from the whole flap edge, using values measured in those

experiments. One of the methods seemed not as effective and won't be

discussed here. The other _wo are discussed in Ref. 4 and results are

given there in Eqs. (15) and (17). We shall use those results here. The

first of the methods is based upon a use of Curle's formulation [10]. His

result is cast in a correlation form and results for the radiated sound

are estimated from this form. The second method, designated by the end

result Eq. (17) of Ref. [4] relies upon the measured semi-normalized cor-

relation between near field and far field pressures. We shall use the

average prediction for these two for comparison with our theory. We'll

begin by calculating, using Eq. (8), the value of beta determined from

this combination of measured correlations (with some theoretical treatment,

in order to deduce total sound radiated by the flap edge). The values of

T O are determined as described above by the cross correlations measured

and reported in Ref. 5. The chords of the various flaps are also reported

in Ref. 5. The procedure is to use the average sound pressure level (SPL)

coupled with Eq. (8) substitute all of the appropriate parameters, and

determine the value of Sp from the relation. The results of this procedure

are given in Table III.
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Av.

SurfaCeprobeFarfieldmlc U0(m/s) dBOBs' C(m) Cos 2 e2 Sp

I
predicted

P1 M1 39.5 73 0.20 0.55 0.86

P1 M1 55 .8 80.5 0.20 0.55 0 .85

P1 M1 79.0 89.5 0.20 0.55 0.83

P1 M6 39.5 81 0 .20 0.88 i.16

P1 M6 55.8 85 0.20 0.88 0.86

P1 M6 68.4 91.5 0.20 0.88 0.90

P6 M1 39.5 63.5 0.31 0.55 0.51

P6 M6 55.8 71.5 0.31 0.88 1.80

P1 M_3 39.5 68.5 0.20 0.33 0.76

P1 M3 55.8 76.5 0.20 0.33 0.74

P3 M4 55.8 81 0.25 0.70 0.81

P3 M3 55.8 75.5 0.25 0.33 0.67

P4 M6 55.8 82.5 0.25 0.88 0.76

P2 M6 39.5 83. 0.20 0.88 1.06

P5 M6 55.8 65.5 0.31 0.88 0.32

P6 M6 68.4 77 0.31 0.88 0.50

P3 M6 68.4 86 0.25 0.88 0.70

P6 M4 55.8 72.5 0.31 0.70 0.46

P3 M_3 55.8 75.5 0.25 0.33 0.67

P1 M4 55.8 84.5 0.20 0.70 0.87
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73

85

89

73
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77

81

80

84

77

86

88

89
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8O
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Table III

Shows: measured sound levels from flaps, chord lengths,

angles, deduced _ and intensities predicted from an average
P P

- 0.81

The values of beta deduced in this way are evidently higher than the

more directly measured ones taken from surface pressure determinations. The

conclusion is that perhaps we should think of effective beta for the sound

radiation and grant chat this will be different than the true spanwise flow

intensity. It is encouraging to note the values are noc extreme. The

average valu_ of _ obtained from this table is 0.81. Evidentally there is
P

some variation in the proposed values of beta dependin 8 on particular flap

positions. One way to proceed would be Co record these variations and use

different values of beta in estimatin 8 radiated sound from the various flaps.

This, for various reasons, seems at this stage to be unnecessarily complicated.

We propose using the single average value. In addition it should be noted

that the values of beta deterndned from surface pressure measurement also

showed variation with flap position. In both cases the situation is
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complicated by the fact that there was no systemaClc change. The radlatlon

appearing to be more pronounced from the first and second flap.

We are now in a positlon to predict the intensity of the radiated

sound under the various conditions essentially using Eq. (8) with the

average value of beta, 0.81. When this is_ done one obtains the results shown

in the last colu_ of Table III. In the main the predicted sound field inten-

sity is within a declble or _-o for the first two flaps; there are some excur-

sions for the last flap indicating that a different value of S is needed

there. P

III. Discussion and Conclusionq

In Part I we considered the flap-flow model consisting of a simple

vortex movln E in a potential flow, about a corner. The surface pressure

was calculated as a function of time as was the far field sound pressure,

the latter obtained using Curle's theory for surface sound. In Part If, we

apply these results to the case of a triple flap structure which has been

measured earlier. Two main modifications are included. It is supposed

that a series of vortices, which are statistically independent, pass about

the corner and furthermore we include the effects of diffraction on the

radiated sound, the diffraction being that of a dipole source near a wing.

It was found from the measurements that the K_eatest fluctuations in

the local pressure field appeared on th_ first (leading) and second flap;

on these the effective spanwise flow speed intensity was about 1/2. The

pressure fluctuation and thus the spanwise flow was considerably less on

the third flap (downstream).

I., earlier work, the total sound radiated from a single flap was esti-

mated based upon the measured cross correlations of the near-far field

pressures. Three different methods were used in that earlier work; two of

them seemed close to one another and quite satisfactory. Those are used

here. The model which we present in Part I predicts the total radiated

sound from the flap surface including its edge and contains a parameter

If we use the theory presented here together with the result obtained

through the use of the measured cross correlations found in earlier model

work in wind tunnel, we can deduce the effective value of beta. If we use

that effective value in the theoretical model we can predict the radiated

3&



sound from the various flap surfaces. This yes done; for the strongest-

radiating flaps, namely the first and second in the upstream direction,

typically the predicted result was within two dB of the result obtained

from measurement. The predicted sound radiated from the third flap was

not so satisfactory, suggesting that a different value of beta would be

needed for that fl&p. In any event the single value predicts the _aJor

part of the radiated sound.
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