
AEROSTACK: An Architecture and Open-Source Software Framework
for Aerial Robotics

Jose Luis Sanchez-Lopez1, Ramón A. Suárez Fernández1, Hriday Bavle1, Carlos Sampedro1,
Martin Molina2, Jesus Pestana1, and Pascual Campoy1

Abstract— To simplify the usage of the Unmanned Aerial
Systems (UAS), extending their use to a great number of
applications, fully autonomous operation is needed. There are
many open-source architecture frameworks for UAS that claim
the autonomous operation of UAS, but they still have two
main open issues: (1) level of autonomy, being in most of the
cases limited and (2) versatility, being most of them designed
specifically for some applications or aerial platforms.

As a response to these needs and issues, this paper
presents Aerostack, a system architecture and open-source
multi-purpose software framework for autonomous multi-UAS
operation. To provide higher degrees of autonomy, Aerostack’s
system architecture integrates state of the art concepts of
intelligent, cognitive and social robotics, based on five layers:
reactive, executive, deliberative, reflective, and social. To be
a highly versatile practical solution, Aerostack’s open-source
software framework includes the main components to execute
the architecture for fully autonomous missions of swarms of
UAS; a collection of ready-to-use and flight proven modular
components that can be reused by the users and developers;
and compatibility with five well known aerial platforms, as well
as a high number of sensors.

Aerostack has been validated during three years by its
successful use on many research projects, international compe-
titions and exhibitions. To corroborate this fact, this paper also
presents Aerostack carrying out a fictional fully autonomous
indoors search and rescue mission.

I. INTRODUCTION

Unmanned Aerial Systems (UAS), popularly known as
drones, were historically used for missions that were too
dull, dirty or dangerous for manned aircrafts [5]. Neverthe-
less, during the last years, a large number of new civilian
and commercial applications have pushed the research and
development of the UAS.

Within the group of the rotary-wing UAS, the multiro-
tors characterized by their multiple fixed-pitch independent
propellers have attracted the interest of the UAS community
thanks to their simple, cheap and low maintenance design
as well as to their high maneuverability that allows a four
degrees of freedom movement with hovering and Vertical
Take-Off and Landing (VTOL) capabilities.

*The authors would like to thank the Consejo Superior de Investigaciones
Cientificas (CSIC) of Spain for the JAE-Predoctoral scholarships of two of
the authors and their research stays, and the Spanish Ministry of Science
MICYT DPI2014-60139-R for project funding, as well as the Spanish
Ministry for Education, Culture and Sports for funding the international
research stay of one of the authors”.

1Computer Vision Group, Centre for Automation and Robotics, CSIC-
UPM (Spain). {jl.sanchez, pascual.campoy}@upm.es. www.vision4uav.eu

2Department of Artificial Intelligence, Technical University of Madrid
(UPM) (Spain)

Fig. 1: Parrot ARDrone 2 carrying out a fully autonomous
emulated indoors search and rescue mission during an exhi-
bition in the European Night of the Researchers (described
in section IV) in front of an audience of 400 people using
Aerostack. No Motion Capture System is used.

Many research groups and companies are focused on
designing and building the hardware components that can
be used on UAS. This paper is focused on the software and
algorithms, assuming to have complete and well designed
hardware for the UAS for any desired application.

To simplify the use of the UAS, reducing its cost of
operation, as well as increasing its safety, a high level of
automation is desired. Multiple challenges limit the current
level of autonomy of the UAS for high-demanding appli-
cations such as localization and mapping on unstructured
and changing environments; precise control of the aircraft
with collision avoidance; trajectory and mission planning
with a high level of cognition and intelligence; human-robot,
environment-robot and robot-robot interaction; safety and
fault tolerance among others. A large amount of research
groups are working to solve these problems, although as
separate and individual challenges. Only a limited number
of them aim to develop a completely integrated solution for
full autonomy, combining in a single architecture a number
of highly interrelated and specialized components. Such
an integration of components creates new challenges (e.g.,
efficient multi-tasking execution, adaptability to be used in
different problems, scalability, etc.).

The software running on the computers onboard UAS can
be classified in three main software components:

• Firmware: the time-critical management of the hard-

ware.
• Middleware: the time-critical control of the system.
• Operative System: the computer-intensive non time-

critical control and management of the system.

Multiple commercial and open-projects exist that aim
to develop complete software architectures (see [14] for a
complete survey). To the best of the author’s knowledge, the
most well-known open-source commercial projects are the
“PX4 Flight Stack1”, and the “APM Flight Stack2”. Both
of them have the main software components of middleware
and operative system and they are compatible with many
UAS commercial hardware. Despite being able to achieve a
good level of autonomy of the UAS, they are not designed
to achieve a very high level of autonomy, being the operative
system software components of the architecture very limited.

The activity of several research groups has produced some
open-source architecture frameworks for UAS, being the
most relevant ones, up to the author’s knowledge:

• The “asctec mav framework”3, developed by ASL -
ETHZ, has a special focus on autonomous navigation
of Ascending Technologies Aircrafts4 and it is not
compatible with any other aircraft platforms.

• The “hector quadrotor” [13] framework, developed by
HECTOR - TU Darmstadt, focused on heterogeneous
cooperation for search and rescue (SAR) tasks.

• The “telekyb” [10] framework, developed by HRI -
MPI. It allows the fully autonomous multi-UAS naviga-
tion. Although it is very powerful, the main drawback
is its rigid architecture that even allowing to exchange
for modules with similar functionalities depending on
the user’s need, it does not allow the user to change the
architecture design for new capabilities.

• The “Paparazzi” [3] project, developed and used by
ENAC and MAVLAV - TUDelft. This project includes
not only the software framework but also the hardware
autopilot and sensors and it is not compatible with any
other commercial hardware.

• The “Twirre” [29] architecture, developed by NHL
Computer Vision proposes a hardware and software
design. It is focused mainly on hardware and it does
not report a high level of autonomy.

Even though this line of research has produced important
advances, the referred work shows that there are important
remaining challenges related to: (1) level of autonomy, more
complex hybrid architectures able to provide more degree
of autonomy and (2) versatility, more versatile integrated
solutions able to be used for different applications and
physical aerial platforms.

In order to fulfill these needs, this paper shows the author’s
recent progress and main results in this line of research.

1http://px4.io/
2http://ardupilot.com/
3http://wiki.ros.org/asctec_mav_framework
4http://www.asctec.de/en/

In this paper, Aerostack5 (a software framework for AErial
RObotics) is described. The authors have recently named
Aerostack to a framework that integrates and consolidates
results of more than three years of research work on both re-
search of components for aerial systems and their integration
in efficient architectures [23] and [25]. As a result, we have
created Aerostack as a mature, robust, reliable, documented,
tested and validated software framework.

Compared to other architectures and frameworks, the
main contribution of Aerostack is twofold: (1) a complete
multi-layered architectural organization to support fully au-
tonomous flights and (2) a versatile software framework for
multiple uses.

The multi-layered architecture includes both low-level lay-
ers for reactive behavior and high-level layers for intelligent
behaviors. At the low-level, Aerostack provides a number of
specialized reusable components for visual perception, mo-
tion controllers, etc. At the high-level, Aerostack includes a
number of components to provide a high degree of autonomy
and self-adaptation in complex and dynamic environments
with fault management procedures to increase the degree of
safety.

The versatility of Aerostack is based on the following two
main features. On the one hand, Aerostack is flexible enough
for a wide range of applications from teleoperated flights of
single UAS to highly autonomous missions of multi-robot
UAS platforms. On the other hand, Aerostack is hardware-
independent. Aerostack is focused on software development
that is designed to work as part of the operative system,
which means that it requires the appropriate hardware design
as well as its proper firmware and middle-ware software
components.

In the following sections, the paper presents and discusses
both contributions in more detail. The remainder of the paper
is organized as follows: section II presents the key aspects
of Aerostack architecture. Section III describes the open-
source software implementation of Aerostack architecture.
In section IV some tests demonstrate the power and perfor-
mance of Aerostack. Finally, section V concludes the paper
and points out some lines of future work.

II. AEROSTACK SYSTEM ARCHITECTURE

Aerostack’s architecture follows the hybrid
reactive/deliberative paradigm, i.e., an architecture that
integrates both a deliberative and reactive approaches [1]
and [15]. The presented design includes five layers: reactive,
executive, deliberative, reflective and social (Fig. 2).

The first three layers correspond to the popular hybrid
design known as the three layer architecture [9] and [20]:
(1) reactive layer with low-level control with sensor-action
loops; (2) executive layer (or sequencing layer) that accepts
symbolic actions from the deliberative layer and generates
detailed behavior sequences for the reactive layer; this layer
also integrates the sensor information into an internal state

5Aerostack webpage: http://www.aerostack.org/ and
Aerostack Github repository: https://github.com/Vision4UAV/
Aerostack

Human

Robotic agent N

Robotic agent 1

Executive
system

Supervision
system

Feature
extraction

system

Hardware
interface

Situation
awareness

system

Planning system

Actuator
interface

Sensor
interface

Mission
planner

Action
monitor

Problem
manager

Motion
Controller A

Location &
Mapping

Manager of
actions and

skills

DELIBERATIVE LAYER EXECUTIVE LAYER REACTIVE LAYER

Communication
system

Robot-robot
interface

Operator

Aerial
platform &
actuators

REFLECTIVE LAYERSOCIAL LAYER

Motor system

Event
detector

Trajectory
planner

Human-robot
interface

Sensors
Measured quantities

Extracted features

Ex
tr

ac
te

d

fe
at

u
re

s

A
ct

io
n

s
Sk

ill
s

Se
lf

 lo

ca
liz

at
io

n
En

vi
ro

n
m

en
t

 u
n

d
er

st
an

d
in

g

Self localization

Environment understanding

P
ro

b
le

m
s

In
te

rn
al

 s
ta

te
P

er
fo

rm
an

ce

Internal state

Performance

P
er

fo
rm

an
ce

Missions
Actions

Skills
Motion references

Measured quantities
Self localization

Environment understanding
Internal state

Motion
Controller B

Yaw
planner

M
o

ti
o

n
re

fe
re

n
ce

s M
o

ti
o

n

re
fe

re
n

ce
s

Feature
extractor A

Feature
extractor B

Process
monitor

M
is

si
o

n
s

Commu-
nication
system

Human-
robot

interfaces

Multimodal
user

interface

...

N
et

w
o

rk

Action
specialist

Fig. 2: Main components of the multi-layered architecture of Aerostack. The architecture is formed by N heterogeneous
robotics agents and the human operators. Every robotic agent shares the same layered architecture, although it can have
different component implementations as well as different hardware. The architecture includes five layers: the social layer
allows the robotic agents to communicate with the rest of agents. The reflective layer supervises the other layers to see
if the robot is making progress to its goals and to react in the presence of problems. The deliberative layer generates
global solutions to complex tasks using planning. The executive layer takes actions from the deliberative layer and generates
detailed behavior sequences for the reactive layer; it additionally integrates the sensor information into an internal state
representation. Finally, the reactive layer counts with low-level control with sensor-action loops.

representation; and (3) the deliberative layer generates global
solutions to complex tasks using planning (e.g., planning
optimal trajectories). The reactive layer functions in the
present while the deliberative layer uses information from
the past and projection to the future.

The reactive layer is a sensor-action loop that includes
feature extractors (in the feature extraction system) and
motion controllers (in the motor system). Feature extractors
may read simple states of sensors or may implement complex
vision and pattern recognition algorithms (signal processing,
recognition of objects and basic relationships). Examples of
feature extractors are: read bumper, extract color, compute
centroid of an image, recognize visual marker, detect power
line tower, etc. A feature extractor can integrate a set of
perception procedures using different combination methods
(e.g., fusion, sequence, etc.).

Motion controllers typically implement combinations of
Proportional-Integral-Derivative (PID) controllers (e.g., cas-
cade controllers). For example, these type of controllers can
accept orders about a desired value for a variable (position,
speed, altitude, and yaw) in form of single commands or
simultaneous commands that are translated into low level
commands to be sent to actuators.

To increase the degree of autonomy of robots, Aerostack
includes a reflective layer based on cognitive architectures
[27], [6], [2], [26] to simulate certain self-awareness able to

supervise the other layers. The reflective layer helps to see if
the robot is actually making progress to its goal and to react
in the presence of problems (unexpected obstacles, faults,
etc.) with recovery actions.

Aerostack includes also a social layer with communication
abilities, as it is proposed in multiagent systems and other
architectures with social coordination (e.g., [8]). In this level
is important to establish an adequate communication with
human operators and other robots.

The architecture is also consistent with the usual com-
ponents related to guidance, navigation and control of un-
manned rotorcraft systems [12]. In particular, the Navigation
System (NS) corresponds to our feature extraction system
and situation awareness system, the Guidance System (GS)
corresponds to our executive system, planning system and
supervision system and, finally, the Flight Control System
(FCS) corresponds to our motor system.

A. Ontology for Aerial Robotics
In order to facilitate the semantic interoperability of the

different components, we use an ontology (see table I)
for aerial robotics that has been defined specifically for
Aerostack following common terminology found in the
research literature about robotics and aerial systems. The
ontology defines the formal and explicit specification of
shared concepts. The concepts are classified according to
the input/output categories that Fig. 2 shows. The current

formalization of this ontology is based on common data
representations. A complete formal specification of this
ontology using an appropriate language (e.g., OWL) is a
pending task to be done in the future.

For example, the notion of skill is useful as an intuitive
concept to help operators express more easily what complex
abilities should be active for a particular robot. A skill is
automatically translated to a set of running processes. Skills
differ from actions in that an action (e.g., take-off, go to
a point) finishes by itself when it reaches the goal, and a
skill (e.g., interpret visual commands, avoid obstacles), once
it is activated, it is permanently active without any limit of
time, until it is deactivated by an external influence (e.g., the
mission planner, the operator, etc.).

Concept Description

Measured
quantity

Values corresponding to direct measurements
recorded by sensors. Aerostack uses platform- and
sensor-independent parameters whose values are
obtained with the corresponding interfaces

Extracted
feature

Single features extracted from images and measure-
ments of physical quantities. In general, the ex-
tracted features can include a partial interpretation
of characteristics of the environment such as lines,
intersections, visual markers, approximate pose, etc.

Environment
understanding

This includes the characteristics of the environment
and its elements as they are believed by the drone.
For example: walls, pole obstacles, other robots, etc.

Self
localization

Drone localization in the environment with its kine-
matic values (e.g., speeds) as they are believed by
the drone. For example: pose, speeds, distance to
obstacles, etc.

Internal state

States of the drone (e.g., landed/flying/hovering,
emergency, armed, autonomous/manual, etc.), states
of its components and state of communications
(e.g., online/offline), perception states (a tracked
object is inside the bounding box), etc.

Mission

Complex goal to be done by the drone (e.g. search
an object in a field, deliver a parcel, etc.). It can
be specified by human operators with a set of tasks
and subtasks that describe the different parts of the
mission to be done.

Action

Elementary task that the drone is able to perform,
for example: take-off, land, go to point, rotate yaw,
flip, wait, etc. We assume that actions are mutually
exclusive, i.e., only one action can be performed at
any given moment.

Skill

A skill expresses a particular drone’s ability, for
example: avoid obstacles, limit extreme movements,
interpret visual markers, etc. Skills can be active or
inactive in a particular drone.

Motion
reference

Motion values to be considered as goals by con-
trollers or planners. Examples of references are:
position, speed, or yaw.

Problem

A problem corresponds to an undesired situation
related to: unachievable goal due to unexpected
changes in the environment, a software error or a
hardware fault.

Performance
The operational performance of the computational
processes includes the execution state of processes
and unexpected execution errors.

TABLE I: Example concepts of the ontology for aerial
robotics to facilitate the semantic interoperability of the
different components of Aerostack’s architecture.

B. Autonomy and self adaptation in complex environments

As was mentioned before, Aerostack includes components
for a reactive behavior that provides certain level of auton-
omy (some previously published papers describe details of
such components [23]). In addition, Aerostack also includes
components to increase the degree of autonomy to operate
in complex and dynamic environments. This section presents
in more detail such components.

In general, fully autonomous robots are able to accomplish
their assigned mission without human intervention while
adapting to operational and environmental condition [11].
Different degrees of autonomy can be identified [4], [12] that
require to simulate cognitive tasks. This includes dimensions
such as the following [11]:

• Human independence. The robot can be operated with
simple commands from general human operators and
does not require highly specialized operators and tech-
nical jargon.

• Dynamic environment. The robot can operate in dy-
namic and complex environments with unexpected sit-
uations where it is required abilities such as: self adap-
tation, threat avoidance, self-diagnosis, fault tolerance,
etc.

• Complex missions. The robot can perform complex
missions (such as search and rescue missions) where
situation awereness and complex planning is required.

In particular, Aerostack provides the following compo-
nents related to these levels of autonomy:

• The planning system automatically generates the goals
in order to accomplish a particular mission. Aerostack
includes a task-oriented mission planner and other more
specific planners (trajectory planner and yaw planner).
This planning system helps to increase autonomy in
terms of human independence, complex missions and
self adaptation in dynamic environments.

• The executive system includes a behavior manager that
accepts directives from the deliberative layer and se-
quences them to be performed by the reactive layer.
The behavior manager translates requested actions and
behaviors expressed as symbolic descriptions (e.g., take-
off, move to a point, etc.) into specific orders for
the motion controllers and the activation of certain
running processes. The executive layer helps to increase
autonomy in terms of human independence and complex
missions.

• The supervision system is a key functional package
that ensures a correct behavior of the robot. The su-
pervision system helps to provide self adaptation and
fault-tolerance. This typically consists of three steps:
failure detection, notification, and recovery. The su-
pervision system includes the following processes: the
action monitor and the process monitor for failure
detection and notification, and the problem manager
for fault recovery. The supervision system helps to
increase autonomy in dynamic environments providing
self adaptation and fault tolerance.

Event detector

Action specialist

Problem
manager

Process
error

unified

Process
monitor

Distance to
obstacles

Process error
unified

Completed
action

Manager of actions
and skills

Requested action

Initiated
action

Mission planner

Action
monitor

Completed action

Initiated action

Initiated action

Completed action

Request skillRequest skill

Position ref
Speeds ref

Yaw ref

Pose

Speeds

High level
(Control command)

Set control mode

Pitch roll
dAltitude
dYaw

Setpoints

Requested action

Start/stop process

Planning system Executive system

Process list

Alive signal

Process error

Problem

Check
action
feasibility

Event Event
Visual markers

Problem

Situation awareness

Emergency
HL command

To motion
controllers

Check action
feasibility

Predict action
performance

Predict action
performance

Pose

Speeds

Supervision system

Battery
charge

Distance to
obstacles

Process list

Start mission

Load mission

Fig. 3: Detail of processes used in Aerostack related to the
supervision system. This diagram shows some components
of the reflective, deliberative, and executive layers and their
interconnectivity.

Using Aerostack, the operator can specify in advance
a mission using a xml-based language and the mission
planner interprets such a specification to generate step by
step actions to be done. Event handlers can be defined using
condition-action rules to react in the presence of certain
exceptional situations. Exceptions can change the execution
of a mission by requesting additional actions or skills and by
using particular commands (abort mission, abort task, etc.).
Aerostack’s mission planner follows the approach called
reactive planning that differs from classical planning in the
way that it computes just one next action in every instant,
based on the internal state (about goals, tasks, etc.) and the
external world state [7]. This simplification is useful to cope
with highly dynamic and unpredictable environments.

Within the supervision system (see Fig. 3), the action
monitor supervises the execution of a requested action and
informs when the action has been completed or failed. This
is important to simulate self-awareness of the degree of
completion of goals to be able to notify it to the adequate
destination (to the operator, to the mission planner, etc.).
The process monitor supervises the execution of different
processes and is responsible for acquiring and informing
about the errors produced by such processes. The process
monitor verifies that each process is alive using a watchdog
technique and to get the states of processes. The process
monitor collects errors produced by processes in order to
notify in a uniform way these errors to other components.

Aerostack also includes a problem manager that collects
the errors and unexpected events, notifies them to the ap-
propriate processes and initiates the corresponding recovery
actions (if possible). In order to manage faults, we assume
the following taxonomy of abnormal situations:

• Unachievable goal. This happens when a requested
action (from the mission planner) cannot be performed
under a correct operation. The main reasons for this
are unexpected changes in the environment (e.g., strong
wind, too obscure or too much light, an unexpected

obstacle, poor quality of wifi connection, etc.) or wrong
planning assumptions (e.g., the point to reach is too
close to static known obstacles). The problem manager
detects such problems with the action monitor and
the situational awareness system (flight monitor), and
notifies these problems to the mission planner and the
operator to initiate recovery actions.

• Software error. This corresponds to errors such as:
invalid input data, a process is down unexpectedly,
safeguard software error (internally, the execution of a
process detects an error caused by wrong programming
assumptions or programming mistakes), a process is
taking more time than expected (an infinite loop due
to programming errors). The problem manager detects
such errors with the performance monitor. In this case,
the main recovery action is to notify this error to the
operator with an appropriate error message to help the
developers correct the problem.

• Hardware malfunction. This situation happens when
hardware components (camera, gps sensor, propeller,
etc) are broken or are working partially. These type
of faults can be classified into the following categories
[18]: (1) actuator faults, i.e., partial or total loss of
actuators control action, (2) sensor faults, i.e., incorrect
readings from sensors and (3) component faults, i.e.,
faults in the component of the robot.

In general, for hardware malfunctions, different recov-
ery actions can be performed such as switching hardware
components (using an alternative hardware component), dy-
namically readjust controllers when some of the physical
actuators (e.g., a propeller) are broken, managed by fault-
tolerant control techniques [21] and emergency land.

III. AEROSTACK SOFTWARE FRAMEWORK
The presented Aerostack’s architecture has been imple-

mented as an open-source software framework, which allows
users and developers to have a flight-proven multi-aerial
collection of ready-to-use components. Thanks to this open-
source software framework, the development process of
new systems is sped up, allowing developers to test their
algorithms even in early stages of the project.

The main features of Aerostack’s software framework
(detailed in the following sections) are the synthesized in
the following:

• Fully Autonomous Operation. A fully autonomous
aerial system can be set up based on Aerostack.

• Multirobot swarming possibilities. Capability of realiz-
ing multi-aerial-robot missions.

• Modularity. Its two dimensional modularity arranges the
components by their functionality as well as by their
level of dependency.

• Scalability. It implements separately common processes
and optional processes. This allows to modify or de-
velop new optional processes without the need of chang-
ing any other process.

• Versatility. Developers are able to build new optional
processes easily by using the available common pro-

cesses and libraries in addition to the well-defined
internal messages and interfaces.

• Distributed processing. It allows the execution of the
components both in one single computer or distributed
in many computers.

• Compatibility with various multi-rotor platforms and
sensors through the usage of a well specified interface.

• Flight proven and ready-to-use components with the
capability of running simulations on big parts of the
developed architectures.

A. Multi-process modular organization

One of the main characteristics of Aerostack is modularity.
This allows to create independent modules with specific
functionalities which can be exploited once connected to the
rest of the architecture. This modularity allows the individual
testing of modules, easing the project progress. Also, under-
standing the modules as input-output systems permits to test
in simulation the compatibility of their interfaces with the
full system instance at hand.

A basic module of Aerostack’s architecture is the process.
We distinguish between the intuitive meaning of a process
(what it represents) and its computational support (how it is
implemented). A process acts through time to change cer-
tain parameters of objects (e.g., certain physical quantities),
consuming resources (e.g., time or space) to convert inputs
into outputs. It is important to note that a process has a
function, i.e., a purpose or practical use for which the process
is designed or exists (the intention or the objective of the
process). The idea of process is an appropriate concept to
describe the components of the architecture of Aerosack. It
helps to divide the whole problem of automated support for
UAS into partial functional roles. Each process in Aerostack
is named as an active processor with its functional role,
for example: mission planner (main function: planning a
mission) or obstacle recognizer (main function: recognize
obstacles).

The computational support of a process is designed as an
atomic executable unit (a data processor) that receives input
data and, as a result of a certain information processing,
generates output data. The idea of a process is also similar
to the concept of an atomic functional block used in SysML
with input/output ports. Processes are grouped in systems. A
system is a complex module that includes a set of intercon-
nected processes that provides a common functionality. The
idea of system is also similar to the concept of functional
block (composite block) used in SysML, with input/output
ports.

Aerostack is implemented as a multi-process framework
supported by ROS (Robot Operating System) [19]. A process
in Aerostack corresponds to the concept of a ROS node. Each
process that operates in a particular UAS is programmed as
a subclass of a common class called “DroneProcess” which
provides default routines. When Aerostack is running for a
particular UAS, each process is an executable instance of a
program running in a computer (each process can also call
subprocesses, child computational processes).

Aerostack uses asynchronous processing techniques (e.g.,
multitasking) that allow deliberative functions to execute
independently of reactive behaviors. Planning algorithms can
be computationally expensive, so they must be decoupled
from real-time execution and avoid slow down the reaction
time. In general, the inter-process communication (IPC) in
multitasking operating systems, where different processes
run concurrently, admits different communication mecha-
nisms such as pipes, message queues, semaphores, sockets,
shared memory, etc. Aerostack uses communication methods
provided by ROS, mainly: (1) topics (processes can commu-
nicate with each other by publishing messages to topics) and
(2) services (a communication mechanism between processes
based on a request-reply scheme). Taking advantage of ROS
features, Aerostack can perform a distributed processing,
running its components both in one single computer or
distributed in many computers and being only limited by
the hardware.

B. Division in groups of software packages

Fig. 4 shows that the Aerostack framework is divided into
seven groups of software packages. This modular division
has been done following practical reasons according to
different possible uses of the framework:

• The group of packages Aerostack library includes soft-
ware modules that implement specific algorithms (e.g.,
computer vision algorithms, SLAM algorithms). This
corresponds to ROS-independent programs that can be
reused directly by developers to build new software for
robotic platforms.

• The group of packages called Aerostack ROS library
includes software modules that implement specific al-
gorithms. This corresponds to ROS-dependent programs
that can be reused directly.

• Aerostack core gathers the necessary common software
to extend the functionalities of any process to a “Drone-
Process”, as well as the definition of Aerostack custom
messages. It also includes Aerostack-dependent helper
packages. It is ROS-dependent.

• Aerostack common processes corresponds to the neces-
sary common software to articulate a complete multi-
layered architecture. This includes the supervision sys-
tem, the executive system and the communication sys-
tem (with the human machine interface HMI).

• Aerostack optional processes includes alternative pro-
cesses related to the following functional modules of the
multi-layered architecture: the planning system, the sit-
uation awareness system, the feature extraction system
and the motor system. For example, Aerostack provides
optional modules for planning (e.g., trajectory plan-
ners), feature extraction (e.g., Aruco visual markers) and
motion controllers (e.g., trajectory controllers or visual
servoing controllers). This software implements the
interfaces between the general algorithms of the library,
ROS library groups of packages and Aerostack modules,
as well as extending “DroneProcess” capabilities.

System libraries

ROS and ROS libraries Aerostack – Library

Aerostack - ROS Library

Aerostack – Core

Aerostack – Simulators Aerostack – Hw. interfaces

Aerostack – Optional processes

Aerostack – Common processes

Type of application 1
An application using the complete framework Type of application 2

An application using
separate processes

Type of application 3
A ROS independent

application

Fig. 4: Software packages corresponding to the Aerostack
framework. The seven groups of software packages can
be observed: library, ROS library, core, common processes,
optional processes, simulators, and hardware interfaces.

• Aerostack hardware interfaces includes the correspond-
ing software interfaces for different aerial platforms,
sensors and actuators. For example, Aerostack includes
interfaces for AscTec Autopilot, Parrot AR Drone, Par-
rot Bebop, Mikrokopter Flight Controller as well as
MavLink. This also includes interfaces for sensors such
as UEye cameras and Optical Flow Sensors (Px4Flow),
Hokuyo LIDARs and standard GPS, among others.

• Aerostack simulators includes simulation modules that
are useful to test the correct behavior of the full system
or specific modules before a field test. They include
physics engines to ensure realism on the simulations.

C. System Requirements

This section briefly enumerates the system requirements
to execute Aerostack. It requires a computer with Ubuntu
Linux 14.04 or above with ROS Indigo or Jade installed. The
preferred programming languages are C++ (some packages
make use of C++11 standard) and Python.

Aerostack has been run in a wide variety of computers,
ranging from the micro-computer ODROID-XU3 (a 2.0 GHz
ARM quad core processor, 2 GB of memory), the micro-
computer AscTec Mastermind (Intel Core i7 processor, 4 Gb
of memory), and average laptops (Intel Core i5 processor, 4
Gb of memory).

D. Use Cases

This section describes different examples of use cases that
show de high level of versatility of Aerostack as well as its
scalability.

Users can take advantage of Aerostack to operate UAS
platforms in the following way:

• Perform tele-operated flights controlled by user com-
mands using the Human Machine Interface. Examples
of user commands are: take-off, move forward, move
backward, turn, move up, move down, land, etc. The

user operates with the keyboard, the joystick, and the
mouse of the ground station computer to control the
flight of the UAS.

• Tracking a selected object by visual contact. The user
can select the object to track by selecting camera images
using the Human Machine Interface.

• Following a specific mission plan, defined by the user
as a set of tasks or a set of waypoints.

• Flying within a specific spatial area, with certain limits
defined by the user.

• Use a specific physical configuration that modifies sig-
nificantly the size or weight of the UAS. Our flight
controllers can be adapted by the user to the new
configuration (in a XML file).

Developers who are familiar with software programming
can use Aerostack to operate new UAS with the following
characteristics:

• A UAS with new specific types of sensors. The de-
veloper can reuse Aerostack but the developer needs to
program and integrate new software modules to process
the information from the new sensors.

• A UAS with a different physical platform. The devel-
oper can reuse Aerostack for different UAS platforms,
but the developer needs to program the interfaces be-
tween Aerostack and the actuators of the new physical
platform.

• A UAS with one or several software components that
substitute an existing software component (for example,
a new localization and mapping) but have the same
inputs/outputs as the previous one. The developer can
reuse Aerostack, but the developer might need to substi-
tute the core algorithm used by the previous component
within the package of optional processes.

• A UAS with one or several software components that
substitute an existing software component (for example,
a new localization and mapping) that have a different
inputs/outputs map than the previous one. The developer
can reuse Aerostack, but the developer might need to
program and integrate a new software component within
the package of optional processes. Additionally, the
developer might need to extend the functionalities of
the connected components to be consistent with the new
inputs/outputs map.

• A UAS with new functionalities that needs addi-
tional software components. The developer can reuse
Aerostack but the developer needs to program and
integrate the new software modules. Additionally, the
developer might need to extend the functionalities of
the connected components to extend the functionalities
of Aerostack.

It is important to emphasize that any of the available
components of Aerostack can be replaced by a similar
counterpart at the simple cost of developing an Aerostack
interface (e.g. the trajectory controllers given by the previ-
ously mentioned “PX4 Flight Stack” could be used withing
Aerostack architecture).

IV. AEROSTACK EVALUATION

Aerostack is fully operative, validated since its birth in
February 2013, by simulations and real flight tests with
multiple UAS (more than 5) flying simultaneously, and with
five different aerial platforms equipped with diverse sensors.
In the following sections, we describe additional evidences
related to the Aerostack evaluation and its experimental and
practical use.

A. Reported uses of Aerostack

Aerostack has been used from its first pre-release, in
the development of many different projects, including two
UAS competitions: IMAV 2013 [16], and IARC 2014 [24],
both with successful results. In addition, Aerostack has been
employed in shows and exhibitions for both general and
specialized public, highlighting the European Night of the
Researchers6 (see Fig. 1) which was attended by more than
400 people.

Simultaneously, Aerostack has been used as the main
framework for other research activities: In [17], using
Aerostack, the authors demonstrated that a fully autonomous
UAS was able to follow any object using computer vision. In
[22], the authors expanded Aerostack capabilities to demon-
strate the benefit of using a coordinator to accomplish high-
level missions requested by the user with a fully autonomous
swarm of UAS. In [28] Aerostack was used for research and
development of Natural User Interfaces for Human-Drone
Interaction using hand gestures, speech, body movements
and visual cues.

Finally, Aerostack is also being used in other ongoing
projects like the participation on the IMAV 2016 Indoors
Competition.

B. Example of Real Operation

To demonstrate the operation of Aerostack, apart from the
cited works in section IV-A, a fully autonomous mission has
been executed using Aerostack.

A search and rescue mission is emulated. An autonomous
swarm of UAS departs from the rescue equipment base.
The rescue equipment operators have previously defined the
regions where they wanted the drones to search for the
victim. The drones autonomously navigate to these areas
avoiding collisions with other obstacles. Once the victim
is detected by a drone, it starts to track it, reacting to
natural commands from the victim. Once the victim gives
the “I am Ok” command, the drones autonomously return
to rescue equipment base. The rescue equipment operators
are supposed to be non-qualified personnel (in the use of the
drones, for example health-care workers), therefore a simple
GCS is needed with Natural User Interfaces.

This proposed search and rescue mission is simplified to be
able to make use of the available components of Aerostack.
The simplified mission (see Fig. 5) is described as follows:

6Webpage: http://www.madrimasd.org/
lanochedelosinvestigadores/actividad/
vuelo-de-drones-y-m%C3%A1s-robots-asombrosos?lan=
en

a single autonomous UAS takes-off from a predefined point
known as “Home”. After the take-off, the drone navigates
along pre-defined waypoints through a structured indoors
environment with pole obstacles identified by visual markers.
Once the drone arrives to the last target point it hovers until
it receives a command from the ground control station (GCS)
to start the visual following task. During this task, the drone
visually tracks a person. If the person goes out of the field of
vision of the drone, the drone hovers and informs the GCS of
the loss. If the person comes again inside the field of vision
of the drone, it automatically restarts the visual tracking.
Additionally, during this task, the drone is able to receive
visual commands from the person through visual markers.
The drone reacts to these visual markers commands by doing
flips. In the last place, the person shows the drone a visual
marker that orders it to go back to the “Home” point. Then,
the drone navigates through the obstacles until it arrives to
the “Home” point and finally lands. All the tasks done by the
drone have voice feedback. The GCS counts with a Graphical
User Interface to supervise and monitor the drone. Due to
a limitation on the flight area size, a single drone is used
instead of a swarm. Additionally, for simplicity, a Parrot
ARDrone 2 is used as the aerial vehicle, which has no extra
payload capabilities. Note that no Motion Capture System is
employed.

As it can be pointed out, there is a simplification on the
complexity of the environment and the tasks, but not in the
requirements of the mission and in the level of autonomy
required by the drone, which allows to demonstrate the
capabilities of Aerostack.

In the following link https://youtu.be/
8WtVDaJADsA the reader can find a video with the
full mission. This mission is similar to the one executed in
exhibitions like the European Night of the Researchers (Fig.
1) or the Spanish national congress Civil Drone 2016 with
a total audience of more than six hundred people, without
fails or crashes.

C. Evaluation Metrics

This section provides a number of quantitative evidences
(about modular organization, processes, etc.) based on the
previous experiments that demonstrate some performance
and quality features of the software framework.

Aerostack is a modular and specialized software with
89 software modules (defined as ROS packages), apart
from multiple standard ROS packages. Aerostack organizes
modules taking into account their functionality in different
processes and sub-systems. For the previous example, it was
necessary to use 44 software modules. In addition, Aerostack
also provides a modular organization of components (divi-
sion in groups of software packages) according to the type
of use and their level of dependency of ROS and other
components of Aerostack (see Fig. 4). The previous flight
experiment corresponds to a case of an application that uses
the complete software framework.

As described, Aerostack uses asynchronous multitasking,
where different processes run concurrently, with inter-process

communication provided by ROS. Depending on the applica-
tion, one can execute from 10 to 50 processes simultaneously
per robotic agent in a single computer or along multiple dis-
tributed computers. The computational needs are highly de-
pendent on the specific implementation of the used modules,
but, as stated in section III-C, the available components have
run in very different computers. In the example presented on
section IV-B, Aerostack was running on a single computer
with an Intel i7-2620M processor and 8 Gb of memory.
One single agent was operated with 39 processes executed
simultaneously and 158 ROS message topics were published.
Even with this huge amount of processes and information
exchanged, Aerostack worked fluidly and efficiently in real
time.

The examples where Aerostack has been used also demon-
strate other software quality features such as usability and
scalability. For example, the usability has been demostrated
with the fact that more than 30 known users and developers
(different from the Aerostack developers) have succesfully
used the software framework in different practical applica-
tions. Usability in Aerostack is provided by its modularity

Fig. 5: Snapshots of the fictional indoors search and rescue
autonomous mission carried out by a Parrot ARDrone 2 using
Aerostack. The UAS is able to navigate avoiding obstacles
while planning collision-free trajectories, and to visually
recognize and track a person. In addition, the subject is able
to interact with the drone using a Natural User Interface,
in this case, visual markers, and the drone responds by
executing a flip and returning to the “Home” point.

and a uniform documentation, both in source code and text
documents. Aerostack counts also with manuals and tutorials
that presents the main aspects of Aerostack with case of uses
and examples ranging from basic users to developers.

The experience with Aerostack has also proved its scalabil-
ity. In the last three years, since the original implementation,
Aerostack has grown gradually by including new components
for more complex problems. The first public release counted
with 41 software modules, while the presented one has more
than double this amount, 89 software modules. Currently,
Aerostack is a live and evolving product supported by our
academic team at the Technical University of Madrid that
keeps updating the software framework and adding new
components and functionalities.

V. CONCLUSIONS AND FUTURE WORK

It has been demonstrated that a fully autonomous operation
of UAS is needed with the objective to simplify their use and
to extend its utilization to a great number of applications. To
solve this challenge, many open-source architecture frame-
works for UAS have been developed, but they still present
two main weakness: (1) in most of the cases, the acquired
level of autonomy is limited, focusing on semi-autonomous
missions. (2) versatility is typically restricted, being the
available open-source architecture frameworks limited to
some applications or aerial platforms.

To fill these gaps, this paper presented Aerostack7, a
system architecture and open-source multipurpose software
framework for fully-autonomous single and multi-UAS.
Aerostack aims to help developers design their own imple-
mentation of their system architecture by having a reference
model with a full specification of the required components.
In addition, Aerostack provides a reusable open-source soft-
ware framework formed by flight proven and ready to use
executable software components and libraries which help
developers to speed up the build process of their designed
system.

Aerostack is based on the author’s previous work [23],
being the contributions of this paper twofold. On the one
hand, the evolution of the system architecture from its
control-oriented definition towards a description based on the
state of the art of intelligent, cognitive and social robotics,
based on five layers: reactive, executive, deliberative, re-
flective, and social. This formalization confers Aerostack’s
architecture more autonomous capabilities and a higher level
of versatility. On the second hand, a more mature ver-
sion of the open-source software framework of Aerostack
is presented. This software framework includes the main
components to execute the architecture for fully autonomous
missions of swarms of UAS. This release includes as well a
collection of components with two-dimensions modularity
that can be used in specific environment conditions and
mission requirements that allows the users and developers
to have a fully autonomous swarm of UAS ready-to-use

7Aerostack webpage: http://www.aerostack.org/ and
Aerostack Github repository: https://github.com/Vision4UAV/
Aerostack

and flight-proven. The provided framework counts with the
compatibility of five well known aerial platforms, as well
as a high number of sensor interfaces. Last but not least,
Aerostack’s framework includes a documentation for basic
users and developers, guiding them when using it; and also
the support of a multidisciplinary team of researchers at
the Technical University of Madrid that is actively working
with Aerostack, which ensures the continuous evolution and
update of Aerostack.

Aerostack has been tested through three years of success-
ful use on research projects, international competitions and
exhibitions. To confirm this, this paper presented Aerostack
carrying out a fictional fully autonomous indoors search and
rescue mission.

As Aerostack is alive because of its active use, three
clear lines of future work exist: On the one hand, Aerostack
architecture can be improved by incorporating deeper de-
tails in the intelligent, cognitive or social layers of the
architecture. Secondly, the main components of Aerostack’s
software framework can be improved, making it more robust
and efficient. Finally, researchers can use Aerostack as is,
limiting their contributions to new components with more
functionalities than the existing ones, such as state esti-
mators, controllers, planners, or computer vision algorithms
among others.

REFERENCES

[1] R. C Arkin, E. M Riseman, and A. R Hanson. Aura: An architecture
for vision-based robot navigation. In proceedings of the DARPA Image
Understanding Workshop, pages 417–431, 1987.

[2] R. J. Brachman. Systems that know what they’re doing. IEEE
Intelligent Systems, 17(6):67–71, Nov 2002.

[3] Pascal Brisset, Antoine Drouin, Michel Gorraz, Pierre-Selim Huard,
and Jeremy Tyler. The paparazzi solution. In MAV 2006, 2nd US-
European Competition and Workshop on Micro Air Vehicles, 2006.

[4] B. T Clough. Metrics, schmetrics! how the heck do you determine a
uav’s autonomy anyway. Technical report, DTIC Document, 2002.

[5] C. Cuerno Rejado, L. Garcia Hernandez, A. Sanchez Carmona,
A. Carrio Fernandez, J. L. Sanchez-Lopez, and P. Campoy Cervera.
Evolution of the unmanned aerial vehicles until present. DYNA DYNA-
ACELERADO.

[6] D. N Davis. Computational architectures for intelligence and moti-
vation. In Intelligent Control, 2002. Proceedings of the 2002 IEEE
International Symposium on, pages 520–525. IEEE, 2002.

[7] J. Downs and H. Reichgelt. European Workshop on Planning: EWSP
’91, Sankt Augustin, FRG, March 18–19, 1991 Proceedings, chapter
Integrating classical and reactive planning within an architecture for
autonomous agents, pages 13–26. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1991.

[8] B. R. Duffy, M. Dragone, and G. MP OHare. Social robot architecture:
A framework for explicit social interaction. In Android Science:
Towards Social Mechanisms, CogSci 2005 Workshop, Stresa, Italy,
2005.

[9] E. Gat. On three-layer architectures. In David Kortenkamp, R. Peter
Bonnasso, and Robin Murphy, editors, Artificial Intelligence and
Mobile Robots. AAAI Press, 1998.

[10] V. Grabe, M. Riedel, H.H. Bulthoff, P.R. Giordano, and A. Franchi.
The telekyb framework for a modular and extendible ros-based quadro-
tor control. In Mobile Robots (ECMR), 2013 European Conference
on, pages 19–25, Sept 2013.

[11] H.M. Huang. Autonomy levels for unmanned systems (alfus) frame-
work volume i: Terminology version 2.0. National Institute of
Standards and Technology (NIST). Special Publication 1011-I-2.0.

[12] Farid Kendoul. A survey of advances in guidance, navigation, and
control of unmanned rotorcraft systems. Journal of Field Robotics,
29(2):315–378, 2012.

[13] Stefan Kohlbrecher, Johannes Meyer, Thorsten Graber, K Petersen,
Oskar von Stryk, and U Klingauf. Robocuprescue 2014-robot league
team hector darmstadt (germany). RoboCupRescue 2014, 2014.

[14] Hyon Lim, Jaemann Park, Daewon Lee, and H.J. Kim. Build your
own quadrotor: Open-source projects on unmanned aerial vehicles.
Robotics Automation Magazine, IEEE, 19(3):33–45, Sept 2012.

[15] Robin Murphy. Introduction to AI robotics. MIT press, 2000.
[16] J. Pestana, J. L. Sanchez-Lopez, P. de la Puente, A. Carrio, and

P. Campoy. A vision-based quadrotor multi-robot solution for the
indoor autonomy challenge of the 2013 international micro air vehicle
competition. Journal of Intelligent & Robotic Systems, pages 1–20,
2015.

[17] J. Pestana, J.L. Sanchez-Lopez, S. Saripalli, and P. Campoy. Com-
puter vision based general object following for gps-denied multirotor
unmanned vehicles. In American Control Conference (ACC), 2014,
pages 1886–1891, June 2014.

[18] X. Qi, D. Theilliol, J. Qi, Y. Zhang, J. Han, D. Song, L. Wang, and
Y. Xia. Fault diagnosis and fault tolerant control methods for manned
and unmanned helicopters: A literature review. In Control and Fault-
Tolerant Systems (SysTol), 2013 Conference on, pages 132–139. IEEE,
2013.

[19] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5, 2009.

[20] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2 edition, 2003.

[21] I. Sadeghzadeh and YM Zhang. A review on fault-tolerant control
for unmanned aerial vehicles (uavs). Infotech@ Aerospace, St. Louis,
MO, 2011.

[22] C. Sampedro, H. Bavle, J.L. Sanchez-Lopez, R. Suarez-Fernandez,
A. Rodriguez, M. Molina, and P. Campoy. A flexible and dynamic
mission planning architecture for uav swarm coordination. In Un-
manned Aircraft Systems (ICUAS), 2016 International Conference on,
page 0, June 2016.

[23] J. L. Sanchez-Lopez, J. Pestana, P. Puente, and P. Campoy. A reliable
open-source system architecture for the fast designing and prototyping
of autonomous multi-uav systems: Simulation and experimentation.
Journal of Intelligent & Robotic Systems, pages 1–19, 2015.

[24] J.L. Sanchez-Lopez, J. Pestana, J.-F. Collumeau, R. Suarez-Fernandez,
P. Campoy, and M. Molina. A vision based aerial robot solution
for the mission 7 of the international aerial robotics competition. In
Unmanned Aircraft Systems (ICUAS), 2015 International Conference
on, pages 1391–1400, June 2015.

[25] J.L. Sanchez-Lopez, J. Pestana, P. de la Puente, R. Suarez-Fernandez,
and P. Campoy. A system for the design and development of vision-
based multi-robot quadrotor swarms. In Unmanned Aircraft Systems
(ICUAS), 2014 International Conference on, pages 640–648, May
2014.

[26] P. Singh and M. Minsky. An architecture for cognitive diversity.
Visions of mind: architectures for cognition and affect, 312:166, 2005.

[27] A. Sloman. What sort of architecture is required for a human-like
agent? In M. Wooldridge and A. Rao, editors, Foundations of Rational
Agency. Kluwer Academic Publishers, 1999.

[28] R. Suarez-Fernandez, J.L. Sanchez-Lopez, C. Sampedro, H. Bavle,
M. Molina, and P. Campoy. Natural user interfaces for human-drone
multi-modal interaction. In Unmanned Aircraft Systems (ICUAS), 2016
International Conference on, page 0, June 2016.

[29] J Van de Loosdrecht, K Dijkstra, JH Postma, W Keuning, and D Bruin.
Twirre: Architecture for autonomous mini-uavs using interchangeable
commodity components. In IMAV 2014: International Micro Air
Vehicle Conference and Competition 2014, Delft, The Netherlands,
August 12-15, 2014. Delft University of Technology, 2014.

