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Abstract
Graphics Processing Units (GPUs) present large potential performance gains within stream processing

applications over the standard CPU. These performance gains are best realised when high computational
intensity is required across large amounts of mostly independent input elements. The GPU’s success in
general purpose stream processing has been demonstrated in many diverse fields, though attempts to port
cryptographic algorithms to the GPU have thus far met little success. In recent years, GPU architectures
have continued to develop a more flexible and uniform programming environment. These developments
have overcome a lot of previously encountered restrictions in cipher implementations. We present novel
approaches for the implementation of the AES block cipher encryption algorithm on these GPUs. This work
also serves as a precursor for future cipher implementations on the most advanced GPU architecture, the
recently released Nvidia G80, which now includes integer support and a simplified programming interface.
Keywords: AES, Graphics Processor, GPU, Hardware Accelerated

1 Introduction
Graphical Processing Units are becoming increasingly important in the space of applications which involve data
parallel processing. Over the last few years there has been an acceleration in processing power found within
these commodity chips which exceeds both Moore’s predictions and recent advancements in CPU performance
[1]. This increase in performance is due to the distributed architecture within the GPU in the form of large
numbers of simple processing units. Other processor architectures are starting to follow this model, for example
the Cell processor [2]. Standard Intel and AMD chips are attempting to follow Moore’s curve by increasing
the number of processors available on a single die rather than increasing the core clock speed. This is the
fundamental design driver behind the GPU architecture which currently boasts up to 128 parallel processors.

A recent key development within GPU design which is pertinent to this paper is the increase in its pro-
grammability. The ability to create and run a defined program within these parallel processors is the key to
GPUs moving into the general purpose processing scene. Previously all control of graphics processors was
through parametrised function calls using graphics programming APIs. This is ill suited for the level of hard-
ware control required to implement a large array of general applications - we will see an example of this in
Section 2. The most commonly available and existing graphics processor generation provides floating point
processing capabilities only and thus encryption is not an obvious target application. This paper shows that it
is possible to achieve respectable secret key cryptographic performance using this generation of GPU.

Motivation: The motivation for targeting cryptographic ciphers for GPU processing is that certain cipher
uses show good characteristics for data parallel processing - high computation intensity and independent work
loads. Also, as security is becoming increasingly important in the public’s eyes, there is a continuing trend to
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secure data in all its uses, from communication to active and archived storage. This trend requires increased
processing power which is being met by a combination of the standard CPU and hardware extensions in the
form of cryptographic accelerators. The GPU is now ubiquitous and for the vast majority of its life is spent
grossly underutilised. Unless playing games, up to 165GFlops of processing power and 54GB/s local memory
bandwidth [1] are largely going to waste. There exists the potential to use this available power in the capacity
of a co-processor in a similar role that existing hardware cryptographic solutions play.

This co-processing can take part or fully carry out the cryptographic needs on consumer and server plat-
forms ideally for communications applications such as IPsec, SSL, though more probable, for bulk data encryp-
tion tasks such as secure backup/restore applications. This paper does not set out to show the GPU’s suitability
for each of the various security applications, but solely to demonstrate a viable possibility. A secondary mo-
tivation for employing the GPU to perform cryptographic tasks is the possibility of creating a reduced trusted
computing base which is designed to hide data from the CPU. This could be used for example in the transfer
of encrypted video/remote displays which is only decrypted once on the GPU. The potential for such a system
has been further discussed in a paper by D. Cook et al. [3].

AES: We have selected the Advanced Encryption Standard [4] symmetric block cipher as our example
cryptographic algorithm for implementation. AES was selected due to its compact nature, well documented
implementation techniques and its available optimisations [5]. We have simplified our investigation to cover
AES encryption using 128 bit key size only, which provides sufficient details to demonstrate the feasibility and
performance of the proposed implementation approaches. Another simplification is the use of the insecure ECB
[6] mode of operation. Although insecure, this mode serves as the simplest representation of modes which are
suitable for parallelisation, such as CTR [7] and CWC [8]. The ability to parallelise an application is necessary
with respect to achieving performance on the GPU architecture. All results presented within this paper use
the OpenGL [9] graphical programming API running on Linux Fedora Core 4 using both a Geforce 6600GT
AGP8x and a Geforce 7900GT PCIe graphics cards running with a 2GHz AMD CPU.

Organisation: This paper presents an overview of related work in Section 2. Section 3 covers relevant
GPU concepts which are sufficient for following the graphical processing terminology presented. Within Sec-
tion 5 we provide a brief introduction to the AES algorithm, the optimisations used and present general AES
algorithm mappings to GPU hardware. Section 6 demonstrates the fundamental operation of AES, a bitwise
exclusive or (XOR), its various implementation approaches and their performance results. We present the de-
tails for three different AES implementation approaches in Section 7 including results and analysis. Section 8
investigates the effectiveness of using a GPU as a parallel co processors and its interference with separate CPU
running processes. Finally we present our conclusion in Section 9.

2 Related Work
Using non general purpose hardware for implementing AES or other forms of cryptographic ciphers is not
new to the field of cryptography. Specific to AES recent implementations include ASIC [10] [11] [12] and
custom FPGA [13] [14] designs. Using a non custom hardware approach for the execution of any algorithm
will always under perform when compared to its custom counter part. The possible speeds of AES processing
by custom silicon designs, such as the theoretcial 30-70Gbps proposed by A. Hodjat et al. [15], will continue
to demonstrate superior performance compared to commodity approaches. The advantage of commodity ASIC
design, such as the GPU, lies in its economies of scale, allowing the possibility of cryptographic co-processing
for a low price per MB/s and also the fact that virtually all users have GPUs at their disposal by default thus
any extra effective processing gained being an advantage.

There has been little use of graphics processing technology in the space of cryptography due to its previ-
ously poor suitability to the problem space. This was due to its lack of programmability and integer processing
support. One notable attempt to use a GPU for AES implementation was made by D. Cook et al. [16]. Here
it can be seen that the imaging subset of the graphics pipeline was used to achieve its AES lookup function-
ality. The imaging subset is a fixed function part of the pipeline which allows the construction of color maps.
These color maps were used by [16] to simulate XOR instructions within the GPU. The authors [16] present a



successful implementation of AES though the reported speeds were in the range of 184Kbps-1.53Mbps. The
main obstacles encountered were due to the poor feature set available within graphics hardware at that time.
For example, there was no ability to programme the most powerful components within the GPU(fragment and
vertex processors) and thus the reliance on the underpowered imaging subset. The most advanced graphics
processor used in this research [16] was the Geforce3 Ti200 which is currently 4 generations behind.

The approaches we present rely heavily on the ability to program the pixel pipeline for round encryption
implementation. It was noted also within [16] that the CPU registers at 100% utilisation when the GPU program
is running, this is still a pertinent issue with current cards and graphics drivers. We fully explore this issue within
Section 8 and present a method and results which demonstrate how GPU programs share the CPU with other
CPU bound processes. Further work by D. Cook et al [3] has been carried out with regards to using the GPU to
encrypt video streaming showing its feasibility, however the same hardware was used as previously described
and thus the same performance issues exist.

One of the first publications [17] which shows the concept of using graphical hardware to solve cryp-
tographic problems was based on a study on cracking Unix passwords using the PixelFlow [18] architecture.
This paper provides the insight that the type of hardware suitable for solving graphical problems, which requires
large arrays of simple parallel processors, is suitable to more general stream based problems encountered within
cryptography. Buck [19] and Venkatasubramanian [20] give more contemporary insights into the use of cur-
rent generation graphical hardware for general purpose processing solving data parallel tasks. General purpose
computing on graphical hardware can now be seen across a wide array of application areas such as database re-
search [21], computer vision [22], audio and signal processing and data mining [23]. For a fuller description of
general purpose processing on graphical hardware and a survey of applicable application areas, refer to Owens
et al [24] and the active GPGPU community [25] involved in all types of general purpose computing on GPUs.

3 GPU Background
Within this section we present a brief overview of the current graphics processing architecture and its graphical
programming model. We also pay particular attention to the GPU facets which are relevant to the implemen-
tation processes presented later in the paper. The current GPU architecture designs largely follow the structure
of the programming pipeline as used by the graphic APIs. This pipeline, see Figure 1, is divided into vertex
processing, rasterisation, fragment processing and raster operations stages of operation. The general approach
to graphics programming is to provide the graphics driver with a list of vertices which exist within a 3 di-
mensional space. These vertices act as primitive descriptors, such as triangles or quadrilaterals. The vertex
processing stage is responsible for transforming vertex co-ordinates and vertex attributes before passing on to
the next stage. The rasterisation stage is responsible for accepting these primitives and generating a pixelised
view of the particular primitive. This pixelised view comes in the form of arrays of fragments, or potential
pixels, which may or may not be rendered to the screen. The rasterisation stage hands off these fragments to the
fragment processing stage, which can manipulate the fragment attributes such as its colour. These fragments are
outputted to the final stage, raster operation, which is ultimately responsible for writing the final pixel colour
values to the active framebuffer (usually the screen framebuffer).

The hardware designs map closely to this pipeline layout, the vertex processing and fragment processing
are carried out on vertex processors and fragment processors. These processors contain the majority of the
processing power found within a GPU, concerning the GPU generation under study, both processors contain 4
wide 32bit vector floating point processing units. The fragment processors traditionally have the most intensive
task within the graphics pipeline and accordingly have the most processing power. For example the GeForce
7900 comes equipped with 48 parallel floating point processing units within the fragment processing stage
compared to 8 within the vertex processing stage. The reason for GPUs outperforming CPUs in terms of per-
formance progress is due to the expenditure of transistor budget on processing power (ie. fragment processors)
rather than data movement and complex memory hierarchies. The downside to this being that the fragment
processors run independently of each other, thus with no ability for fine grained synchronisation, only naturally
data parallel tasks are suited to processing on GPUs. This is the reason for only supporting parallel modes of
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Figure 1: A simplified view of the graphics pipeline.

operation such as CTR and CWC. Attempts can be made to support chaining modes of operations, however
performance is likely to suffer unless an efficient approach can be designed which allows a large number of
multiple independent messages to be encrypted simultaneously.

The general programming model employed for general purpose processing on a GPU, and the method
followed closely for the implementations presented here, is based on rendering a quadrilateral to the active
framebuffer. The key is to ensure that the final rendering view port maps to the size of the rendering quadri-
lateral. This allows textures to be uploaded and have a one to one mapping between generated fragments from
the rasteriser and the texture elements. This sets up a streaming processing model whereby all input data in
the form of texture elements are made available individually and independently to each fragment processor.
The fragment processor is then responsible for outputting the generated result based on the input data to its
fixed output location, described below. The output can be written to the screen framebuffer or more usefully
written to another texture using the OpenGL Framebuffer Object extension. This programming model can be
implemented using the OpenGL or DirectX graphics libraries or can also use the CTM [26] or CUDA [27]
frameworks recently introduced by the ATI and Nvidia corporations. There are also higher level languages
which allow programmers to interact with GPUs using a more standardised programming approach such as
Brook [28], however when implementing complex applications on the GPU performance can be gained by
having more direct control of the graphics hardware through the aforementioned libraries/framework.

4 The GPU and AES
The GPU memory model is based on access to graphical textures, which can be viewed as 2 dimensional
arrays of memory, though 1D and 3D textures also exist. These textures are available for access from both
the vertex and fragment processors. These textures are accessed via the use of texture co-ordinates within the
corresponding dimensional space. The following are restrictions and potential bottlenecks to memory usage in
all GPU generations which are relevant to our AES implementations.

High Data Throughput: There is a high data throughput requirement, both to and from the graphics card.
This data transfer must occur across the system bus which in recent years has improved with the introduction
of the PCIe bus standard. We address this potential bottle neck within Section 6.

Texture Lookups: Our implementation approaches rely heavily on texture lookups, these lookups come
largely in the form of sequential and dependent lookups. Dependent texture lookups are those which use the
retrieved data from an initial texture lookup to form the basis of new texture coordinates to execute a further
lookup. This type of lookup generally results in random gather patterns from the accessed texture and results in
large slowdowns to performance. Example results from the GpuBench [29] tool shows the dramatic fall off in
access speed depending on the different types of texture access, ranging from over 60GB/s for sequential access
to less than 4GB/s for random access. The reason for this reduction in speed is due to the small cache sizes on
the GPUs, which are normally sufficient for graphical purposes which show a high degree of spacial locality
of reference. There is an emphasis on all implementation techniques to try to reduce the memory footprint of
lookup tables in Section 5 and 6 and to increase the reuse patterns of memory access in Section 7. With these



techniques we try to minimise the last two types of cache misses as discussed in Hill et al. [30], namely conflict
and capacity misses.

Gather and Scatter: Gather is supported in terms of texture reads from various locations, however, a
notable restriction is the common lack of native scatter support within the fragment processors. Each fragment
processor can output a small number of results (normally between 1 and 4), however these results must be writ-
ten to a predetermined memory location within the active output framebuffers. This is due to traditional graphics
programming where each potential pixel is associated with only one pixel location on the screen/framebuffer.
This as we will see in Section 7 restricts our output format for our AES implementation strategies and also
causes a further restriction on the input format for one of them.

Another relevant area of the GPU is the availability of a logical operation stage within the final stage of
the pipeline. There is hardware support for this type of operation and more specifically XOR within the raster
operations units (ROPs) of current designs. This allows the combination of the fragment processor output and
the existing data within the active framebuffer to be combined using XOR. There does not exist support for
XOR within current (prior to DirectX10 hardware support) designs of the fragment processors. ROPs can only
be used at the end of the rendering pipeline and exist in fewer numbers compared to the fragment processors.
We use this type of XOR functionality in both Section 6 and Section 7 and further discuss the restrictions
imposed by its availability in the ROP only.

The last GPU feature of note is the fragment processors ability to implement swizzle operations for free.
Data stored within textures can be addressed and operated upon within the various processing stages having the
option of being represented as groups of 4 8bit components. This is due to traditional graphics processing com-
monly requiring work on RGBA (red, green, blue, alpha) groups, each of which is referred to as a component.
Within the fragment processor there is the ability to change the ordering of these RGBA vectors during opera-
tions. This provides a useful means for cheaply executing byte rotates and ultimately leads to an optimisation
of the Rijndael cipher to further reduce active memory footprint, which we will explore in Sections 5 and 7.

5 AES Background
The Advanced Encryption Standard (AES) [4] was introduced in 2001 by the National Institute of Standards
and Technology in response to the aging concerns of DES [31]. The standard adopted a restricted version of the
Rijndael [5] symmetric block cipher which can encrypt and decrypt plaintext blocks of size 128 bits using a key
size of 128-bit,192-bit or 256-bit length. The Rijndael cipher was selected due to its compact simple structure
and suitability to commonly available 8-bit and 32-bit processing platforms. The cipher is based on executing
a number of round transformations on plaintext, each round’s output is the next round’s input. The number of
rounds is determined by the key length, 128-bit uses 10 rounds, 192-bit uses 12 and 256-bit uses 14. We have
selected to use only 128-bit and thus 10 rounds in all AES implementations within this paper.

Each round consists of largely the same steps except for an extra addition of a round key before starting
and the lack of a MixColumns step in the last iteration. These steps operate on 128 bits of data called the State
which transform the input State into 128 bits of output State ready for the next stage. The State, which consists
of a 16 byte block, is generally viewed as a 4 x 4 table of bytes. The stages within a round can be briefly
described as follows:

- Sub Bytes: a non-linear byte substitution using an S-box lookup table.
- Shift Rows: a cyclical shifting of bytes in each row.
- Mix Columns: a linear transformation which mixes column State data.
- Add Round Key: XOR addition of a scheduled round key with State data.

These rounds can be reduced into a simplified equation, see Equation 1, as presented in the original
Rijndael cipher proposal [5], which we will be using with our implementations. This equation reduces the
number of operations involved by using 4 1K table lookups whose results need to be XORed with each other
and the round key. In an attempt to reduce the active memory footprint used within each round we also have



adopted a variation of the further reduced equation shown in Equation 2 from the same proposal. We can see
that it reduces the table lookup to a single 1K table which will reduce the caching demands of this part of the
implementation. This equation incurs a penalty of three extra rotates per column per round on the output of
each table lookup, these rotates can be implemented using the free swizzle operations leading to an further
optimisation of this equation as covered in Section 7. As we can see from the two equations that have been
selected for implementation, which we describe as the noROT and ROT approaches, the operations involved are
byte selects (swizzle), XORs (denoted by

⊕
) and table lookups (denoted by Ti[]). We will separately address

the issue of efficient XOR implementation on current GPU hardware in Section 6.

ej = T0[a(0,j)] ⊕ T1[a(1,j−c1)] ⊕

T2[a(2,j−c2)] ⊕

T3[a(3,j−c3)] ⊕ kj . (1)

ej = kj ⊕ T0[a(0,j)] ⊕

Rot(T0[a(1,j−c1)] ⊕

Rot(T0[a(2,j−c2)] ⊕

Rot(T0[a(3,j−c3)]))) . (2)

As part of the results presented within this paper we include a comparative result from a CPU AES
implementation. The CPU result is based on the maximum result of the following two approaches. We have
implemented a modified version of the standard rijndael fast implementation [32] effectively running in ECB
mode, which reduces the API overhead of operating on a single message block at a time. Within a single
function it operates directly on large message arrays reducing function call overhead and pointer manipulation,
which more closely simulates the required input layout of AES running on the GPU as discussed later. The
second approach is to use the built in OpenSSL [33] speed test which encrypts memory located plaintext using
AES. We have been careful to only compare a single core single processor CPU with a single GPU so as to
provide some form of comparison base. Both CPUs and GPUs can be scaled in different ways, for example
multi core, multi way CPUs or SLI, multi GPU boards. We have used a single core 2GHz processor for the
CPU tests and single GPU processor boards for GPU tests.

6 XOR Approaches
In this section we present three approaches for implementing XOR on the GPU which will be used for the
AES implementations. First we discuss the common issues concerning all approaches, the data round trip to
and from the card and data storage formats. There are three main choices when using OpenGL concerning
texture (input/output data) storage format. They are external(cpu side) data format, external data type and
internal(gpu side) data format. For AES we will use an unsigned byte format and use the swizzled(re-ordered)
four component BGRA textures and suggest to the driver that it maintain the RGBA format and layout internally.
Note that you can only ever suggest/hint to the driver the required format for storage. The reason for using
pre-swizzled components is that internally graphics processors store 8bit components in this format, if we use
RGBA externally the driver would have to swizzle these before sending the data across the bus and thus causing
a performance slow down. Also we have used the OpenGL Pixel Buffer Object extension to transfer the data
which facilitates DMA data transfers directly from driver memory space. We have selected to use texture sizes
of 1024x1024 pixels for all data transfers in both the XOR and AES implementations, these dimensions tend
to show good performance in all cases. The performance drops for transfers as the texture size is reduced
and shows little gain when increased over that size [34]. Here we present the three different approaches used



GeForce 6600GT GeForce 7900GT CPU
8-bit 4-bit Native 8-bit 4-bit Native 8-bit 32-bit

W/O Round Trip 181.26MB/s 1068.0MB/s 4160MB/s 672.0MB/s 3510MB/s 12249MB/s 118.29MB/s 437.18MB/sWith Round Trip 79.61MB/s 126.7MB/s 141.0MB/s 334.83MB/s 472.7MB/s 475.4MB/s

Table 1: Results of the various XOR implementation approaches quoted in MBytes/s.

for performing XOR on the GPU. These approaches only concern the currently existing GPUs as the recently
introduced G80 contains integer support.

Approach 1: This approach involves the use of a lookup table to perform the XOR operation on two 8-bit
values. The table uses 65,536 (256x256) entries, representing the precomputed results of the XOR operation
for all 8-bit values. The lookup table is stored as a texture which uses the single component GL ALPHA
external and internal format. This format is used to reduce the internal memory necessary to represent the
lookup table. Two four component 1024x1024 textures are used to store the input data, each texture element
(texel) holds four bytes. The bytes at corresponding locations within these textures are XORed together, thus
using a sequential data access pattern across the input textures. For example the first component of the texel at
location x,y in texture 1 is XORed with the first component of the texel at the same x,y location in texture 2.
The approach renders a quadrilateral with dimensions 1024x1024 to match the size of the input textures. The
generated fragments from the rasteriser are sent to a loaded fragment program which is designed to load in each
pair of texels corresponding to the currently set texture coordinates. Each of the four pairs of bytes from the
pair of texels are used in turn to execute a dependent texture lookup within the 256x256 XOR lookup texture.
The result of each XOR lookup form one of the four components of the output fragment.

Approach 2: We have noted that dependent texture lookups have a severe performance penalty. One
way to reduce this penalty is to make the dependent texture lookups access a reduced lookup space and thus
ease the caching requirements. This approach uses a similar method to the above 256x256 8-bit lookup table,
however to help reduce the size of the table we split each 8 bit input value into two 4-bit values and use a
smaller precomputed 256 entry table. The issue with this approach is that there is no integer support or bitwise
operators, all values read into the fragment processor are represented as floating point numbers. Thus splitting
the input floating point values representing the high and low 4-bit values must be achieved using a different
method.

The method requires a 16x16 entry texture with the wrap mode set to GL REPEAT to store our precom-
puted XOR values. Note that all byte reads from textures within fragment programs are clamped between 0 and
1, there is no way to avoid this at present when dealing with byte values. Due to this clamping, when byte values
are used as the coordinates for a dependent texture lookup into the 16x16 XOR table, they will automatically
retrieve the XOR of the 4 high bits (most significant). We then multiply the original input pair of input values
by 16, which when combined with the repeating nature of the lookup texture, cancels out the effect of the high
bits and will retrieve the XOR of the 4 low bits. After retrieving the two 4-bit results they are recombined by
multiplying the 4 high bit value by 16 and adding the low bit resultant value.

It should be noted that the actual implementation does not use the exact value of 16 as the multiplication
factor when exposing the low 4 bits, but rather a value slightly less than 16. Due to the precision errors when
retrieving 8bit values from textures and using them as dependent lookup coordinates there is a rounding error
once the value is over 240. This is not true when the value is output as a fragment and causes no observable
rounding error, however when used via the floating point texture processor within the fragment processor this
does occur. To work around this problem all 8bit values after being retrieved must by multiplied by a correction
factor of slightly less than 1. This fixes the issue in all cases and allows 8bit values to function normally. The
authors are not sure if this is intended behaviour of the texture processor, though the consequences are negligible
as the AES implementations, which use this correction factor, are I/O bound as expected and not ALU bound.

Approach 3: We use the native XOR found in the ROP units at the end of the rendering pipeline, i.e.
the output from the fragment processors can be XORed with the values within the framebuffer. The advantage



to this is that it will perform well, however the disadvantage is that the XOR operation can only be applied
to the final stage of the rendering process meaning that to reuse previously XORed values a full render pass
must occur. In comparison, the previous two approaches which simulate XORs within the fragment processors
can immediately reuse the values for input into other operations within the fragment program. The ping-pong
method must be employed when requiring the previous render pass output to be used within the next pass input.
This involves making the output textures the input textures of the next rendering pass, and switching the current
pass’s input texture to be the output textures of the next pass.

A bi-product of the ROP stage XOR is that only a single input can be XORed to the existing results in the
framebuffer. To equalise this fundamental difference, when benchmarking all three approaches we only transfer
the data for one input texture in approaches 1 and 2, thus only one set of data is changing, as in approach 3. We
have taken this into account when reporting the amount of bytes XORed in the results section.

Results: Table 1 shows the results of the three approaches including CPU results. The 8bit and 32bit CPU
results portray the performance using bytes and integers respectively as the data units for the xor operations.
The GPU results include figures for running the approaches with full data round trip and without. As one would
expect the full data round trip approaches incurs large slow downs due to the transmission of the input and
results across the system bus. The reason for including the results for non round trip XORs is due to the reality
that when used within AES the data will not have to be transferred across the system bus after every XOR
operation. We can see that the native XOR results far exceed those of the others, however it is worth bearing in
mind the previously mentioned restrictions to using this approach. The native speeds as expected are close to
the full rendering speeds with the additional overhead of a texture lookup and a framebuffer read per pixel per
pass. Note that the theoretical pixel fill rate of the 7900GT is 7200Mpixels/s, that is equivalent to 28,800MB/s.
We can also see that there is a significant increase in XOR performance when using the 4-bit lookup table over
the 8-bit lookup table. This increase and the fact that the major difference between the table lookup approaches
and the native approach is the execution of dependent texture reads, suggest that the lookup table approaches
are memory bound.

7 AES Approaches
As previously mentioned we use the encrypt part of the AES cipher using 128-bit key length and thus 10
rounds. We have maintained the same texture size of 1024x1024 as used within Section 6. All approaches
use Pixel Buffer Objects for efficient data transfer both to and from the graphics card, this data round trip is
included in all implementations to show realistic performance results. As introduced in Section 5 both forms
of the optimised table lookup techniques of AES cipher implementation, as presented in the original Rijndael
proposal, are implemented within each approach. All approaches use a technique called multiple render target,
which involves the use of 4 output textures as output targets for the fragment programmes.

Memory Access Techniques: In general we read plaintext data from textures which have an internal
format of four bytes (components) per texture element (texel). Each texel makes up a single column within the
input block State. Each texel is written out to the destination framebuffer when the round or stage processing,
depending on the approach used, is finished and represents the new State value of the corresponding column.
Within all approaches we attempt to increase the patterns of memory access by altering the layout of the plain-
text data across the input textures. We explore three different input gather techniques which include the use of
multiple tables and single tables. These techniques are included in the implementation of each approach where
appropriate.

- In Figure 2(a) we can see that the input data is read from four different textures at the same texture
coordinate, this provides for good predictability though as Govindaraju et al. [35] points out texture memory is
read in the form of blocks of data. This would mean that 4 independent texture blocks are requesting residency
within the texture cache at all times. We label this technique as Multi Input in the results.

- In Figure 2(b) we have adopted a different memory gather approach reading all input plaintext from a
single texture. The layout of the 16 byte blocks use four component texels one after the other in a horizontal



te0 = tex1D(te0Tex, s0.z); t0.x = tex2D(xorTex,float2(t0.x,te2.x)).w;
te1 = tex1D(te1Tex, s1.y); t0.y = tex2D(xorTex,float2(t0.y,te2.y)).w;
te2 = tex1D(te2Tex, s2.x); t0.z = tex2D(xorTex,float2(t0.z,te2.z)).w;
te3 = tex1D(te3Tex, s3.w); t0.w = tex2D(xorTex,float2(t0.w,te2.w)).w;
rk = tex1D(rkTex, 0.022727*((i*4)+1)); applyCorrectionFactor();

//refer to Section 6, Approach 2 for details t0.x = tex2D(xorTex,float2(t0.x,te3.x)).w;
// on correction factor t0.y = tex2D(xorTex,float2(t0.y,te3.y)).w;
applyCorrectionFactor(); t0.z = tex2D(xorTex,float2(t0.z,te3.z)).w’

t0.w = tex2D(xorTex,float2(t0.w,te3.w)).w;
/* 4 4 byte xors for a single column */ applyCorrectionFactor();
t0.x = tex2D(xorTex,float2(te0.x,te1.x)).w;
t0.y = tex2D(xorTex,float2(te0.y,te1.y)).w; t0.x = tex2D(xorTex,float2(t0.x,rk.z)).w;
t0.z = tex2D(xorTex,float2(te0.z,te1.z)).w; t0.y = tex2D(xorTex,float2(t0.y,rk.y)).w;
t0.w = tex2D(xorTex,float2(te0.w,te1.w)).w; t0.z = tex2D(xorTex,float2(t0.z,rk.x)).w;
applyCorrectionFactor(); t0.w = tex2D(xorTex,float2(t0.w,rk.w)).w;

Table 2: Pseudocode for a single single column, single round transformation.

a) b) c)

Figure 2: Illustrations of the different gather techniques employed across the AES approaches.

fashion which we hope would require less active memory blocks within the texture cache at the one time.
The rasterisation pattern which is responsible for handing off fragments to the fragment processor in a cache
friendly order is proprietary so we can only guess at the most efficient access patterns. To reduce the overhead
in calculating the 4 different gather texture coordinates within the fragment program we construct the rendered
quadrilateral with multiple texture coordinates per vertex. We configure each texture coordinate set to be
appropriately out of line with the rendered quadrilateral so that the interpolated coordinates generated within
the rasterisation stage will automatically fall on the correct texel. This allows the rasterisation stage of the
pipeline to be utilised thus incurring no computational overhead within the fragment processors. This technique
is labeled as Single Input Hgather.

- The third approach shown in Figure 2(c) is similar to the previous technique, reading from a single
texture, however to cater for an access pattern which suits 2 dimensional block structures better we organise
the input plaintext data into a square. This has similar gather requirements to standard texture filter reads used
within traditional graphics programming. The same method involving multiple texture coordinates as stated in
the previous technique is also used here. This technique is labeled as Single Input Sgather.

The AES implementation approaches are presented here.
Approach 1: This approach is based on the 8-bit implementation of XOR as described in Section 6 and

both forms of AES optimisation as described in Section 5. Each execution of the fragment program reads
a full 16 byte block via 4 texels using the gather techniques described above. The other input textures used
within the fragment program are the round key texture, the XOR texture and the Te (using the terminology in
reference [32]) lookup textures. The round key texture is a 1D texture which contains a pre-generated schedule
of round keys which is provided by the CPU part of the implementation. The appropriate texture co-ordinates
for the round key are dynamically generated within the fragment program. There are either 5 or 2 1D Te lookup
textures, representing the first form of the cipher optimisation lookup tables (noROT) or the second form which



Gather GeForce 6600GT GeForce 7900GT CPUTechnique 8-bit 4-bit Native 8-bit 4-bit Native

Multi Input ROT 6.24MB/s 11.47MB/s 45.15MB/s 25.86MB/s 39.23MB/s 108.86MB/s

46.13MB/s

noROT 6.11MB/s 11.19MB/s 44.89MB/s 25.71MB/s 39.01MB/s 108.55MB/s
Single Input ROT 6.22MB/s 11.40MB/s N/A 26.06MB/s 39.18MB/s N/A

Sgather noROT 6.11MB/s 11.22MB/s N/A 25.92MB/s 39.12MB/s N/A
Single Input ROT 6.20MB/s 11.41MB/s N/A 25.99MB/s 39.16MB/s N/A

Hgather noROT 6.15MB/s 11.30MB/s N/A 25.69MB/s 39.08MB/s N/A

Table 3: Results of the various AES implementation approaches quoted in MBytes/s.

only involves a single lookup table (ROT). The extra lookup table is used for the last round which consists of
a precomputed set of results for this round which excludes the MixColumn step. A single execution of the
fragment program processes the 16 input bytes and produces the final round output of 16 bytes.

Table 2 contains pseudocode which represents a single column single round transformation using the
noROT optimisation. We can see the starting lines which use the previous columns represented by four 4-way
components: s0-3. These are looked up using x,y,z,w (synonymous with rgba) to access the particular row
involved in this column transformation. After the initial Te and round keys are looked up they are repeatedly
XORed with each other via the XOR texture dependent texture lookup. The final four 4-way components are
written to the active 4 output textures ready for readback after all fragments have been processed.

Approach 2: Based on the 4-bit version of XOR approach described in Section 6 the vast majority of
implementation detail is the same as the above 8-bit AES approach. The number of XOR lookups are doubled
due to both the high and low bit values being dealt with separately. The high and low bit values are only
recombined at the end of each round when necessary for use as a single 8-bit Te table lookup value. This
recombining could be further delayed by using 2D Te lookup tables based on 4-bit by 4-bit lookups though
was deemed unnecessary as the ALU instructions are not presenting a bottleneck. This could be shown by
the removal of all ALU instructions within the algorithm implementation which resulted in no performance
difference.

Approach 3: This approach is based on the ROP provided XOR native implementation shown in Section
6. As scatter is not supported within fragment programs, the output is restricted to writing to a fixed location
within the four active output framebuffers(textures). This restriction dictates that the input format must use
the Multi Input gather technique as described above. The Single Input Gather techniques are not incorporated
into the implementation of this approach. As only one XOR operation per fragment output can be executed
per pass, we require five rendering passes per round of execution plus one initial clear fragments command to
reset all output values to zero ready for the next round after the input and output textures have been swapped,
see ping-pong above. Each stage of the optimised AES implementation equation is implemented by a different
fragment program specifically written to execute the correct component based lookup within the Te textures.
To save having to read in all four input textures each render pass and due to the free nature of the swizzle
operation(ie. RotByte * n) we can rearranged the ROT version of the AES implementation technique to permit
only a single active input texture per pass, thus reducing the active cache footprint of a single pass. Equations 3
and 4 show the first two column equations suitably rotated to facilitate a single column reference per rendering
pass, note the column references are matching vertically. This in effect means that we are only referring to a
single column at each stage and generating full stage output for all columns, XORing it with the appropriately
rotated result. The OpenGL Vertex Buffer Object extension was employed when implementing this approach
to reduce the overhead of vertex transfer due to the high number of render passes.

e0 = k0 ⊕ T0[a(0,0)] ⊕

Rot(T0[a(1,1)]) ⊕ Rot2(T0[a(2,2)])

⊕Rot3(T0[a(3,3)]) . (3)
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Figure 3: Effects of packet size variation on encryption throughput.

e1 = k1 ⊕ Rot3(T0[a(3,0)]) ⊕

T0[a(0,1)] ⊕ Rot(T0[a(1,2)]) ⊕

Rot2(T0[a(2,3)]) . (4)

Results: Table 3 shows the results of the various implementation strategies described above running on
both graphics cards mentioned in Section 1. We can see that the performance figures predictably follow the
results trend presented in the XOR Approaches in Section 6. There is a consistent slight speed up when using
the ROT version of the AES implementation over the noROT version. There is no appreciable difference in
speed when using the different gathering techniques which suggests that the bottleneck lies with the XOR table
lookups or that the sequential nature of all gather techniques do not incur conflicts or capacity misses in the first
place. In general it is good practice to structure reusable memory access patterns which benefit from spacial
locality of reference. These techniques can be applied when implementing future approaches using the new
DirectX10 architectures where XOR bottlenecks will not exist. It is worth noting that the speeds of the CPU
implementations under perform when compared to 64 bit optimised versions reported on [36].

Figure 3 demonstrates the encryption throughput effectiveness of the GPUs studied when using different
packet sizes. A packet of data is defined as a separate block of data which is delivered to the GPU in isolation
and delivered back to the CPU after the entire data block is encrypted. In practice the data packet size refers
to the amount of data transferred as textures across the system bus before rendering and subsequent readback
happens. The figure quite clearly shows that as the packet size reduces the throughput also reduces. The causes
of this are the inefficiencies in transferring multiple small data loads across the system bus which leads to an
increase in the number of CPU-GPU interactions. Also in general terms, as data workloads reduce in size it
becomes increasingly difficult to ensure all processors in a highly multi processor environment are kept busy,
which in turn leads to difficulty in effectively leveraging the potential processing power. The implication of
the noted behaviour in Figure 3 with regard to cryptography is an ineffectiveness of the GPU to assist in small
data unit encryption and decryption. Applications such as IPsec rely heavily on this type of behaviour and
thus in order to assist, the small packet size throughput bottlenecks would have to be significantly reduced.
Applications which require bulk data encryption and decryption are thus more suited to the GPU.

8 GPU as an AES Co-Processor
The results shown in Section 7 are somewhat encouraging in that current GPUs can provide assistance as a
cryptographic co-processor, however it was noted that the operating system reported CPU utilisation lies at



Gather GeForce 6600GT GeForce 7900GT
Technique 8-bit 4-bit Native 8-bit 4-bit Native

Multi Input ROT 96.69% 94.19% 86.75% 87.42% 90.61% 74.84%
noROT 95.96% 94.10% 85.98% 88.79% 89.79% 74.57%

Single Input ROT 99.18% 96.75% N/A 88.06% 93.54% N/A
SGather noROT 98.24% 95.32% N/A 88.65% 92.34% N/A

Single Input ROT 98.76% 96.59% N/A 88.70% 93.02% N/A
HGather noROT 98.56% 96.46% N/A 88.49% 93.34% N/A

Table 4: % CPU Idle Time based on 16MB packet sizes.

100% during all runs of the above approaches. D. Cook et al. [16] also reported the same issue for their
implementations. There is little point in using the GPU as a cryptographic co-processor if it must be run in
series with CPU tasks. We present a formalised investigation into this behaviour and corresponding results in
this Section.

We define % CPU Idle Time as the amount of idle CPU time during the execution of a GPU task as a
percentage of the total runtime of the GPU task. For example two CPU bound programs which must run in
series would have a % CPU Idle Time of 0% and conversely tasks which can run perfectly in parallel have a %
CPU Idle Time of 100%. % CPU Idle Time for GPU tasks can be calculated as follows: create a CPU bound
task which requires a known amount of runtime, called CPU Task Time; note the length of time the GPU tasks
takes on an otherwise idle CPU, called GPU Task Time; the CPU Task Time must be sufficiently longer than
the GPU Task Time such that it starts first and always finishes last; run both the CPU and GPU tasks together,
starting the CPU task first and note the total run time of the CPU task (which should always finish last), called
the Combined Task Time; GPU Task Used CPU Time = Combined Task Time - CPU Task Time, this follows
as the amount of CPU time demanded by the GPU must be the extra time the CPU task takes to finish when
run in parallel with the GPU task; GPU Task Idle CPU Time = GPU Task Time - GPU Task Used CPU Time,
this also follows as the amount of time the GPU task consumes that it is not running on the CPU must be in the
form of idle CPU cycles; % CPU Idle Time = GPU Task Idle CPU Time / GPU Task Time * 100.

Results: In Table 4 we can see that in general the GPU performs well as a co-processor in that most of
the percentages are quite high, thus leaving a high percentage of idle CPU time for other CPU tasks. There is a
notable reduction in % CPU Idle Time for scenarios which demonstrate a high transfer rate. This is expected as
the amount of CPU overhead will remain more or less consistent across the presented GPU tasks even though
the overall transfer time has dropped: thus resulting in a high percentage of its running time occupying the CPU.
Care has to be taken when interpreting these figures given that the faster AES approaches are not necessarily
disadvantaged over the slower ones in terms of % CPU Idle Time, but rather there is a price to pay for the
increased transfer rates. The GPU tasks which transfer at faster rates can artificially generate the same % CPU
Idle Time as the slower GPU tasks by adding sleep cycles. This table clearly demonstrates that the high transfer
rates come at a price.

9 Conclusions and Future Work
Within this paper we have presented new approaches to solving AES block cipher encryption on pre G80
GPU hardware. We have compared each approach’s resulting performance to each other and to standard CPU
implementations. We have achieved rates of up to 870.8Mbits/s using a Raster Operations Unit based approach
and 313.84Mbits/s using a fragment processor based XOR simulation on a GeForce 7900GT. Comparing to
some sources of AES performance figures for optimised implementations on standard CPUs [36], the reported
GPU approaches under perform. Given that the GPU is ubiquitous and generally available by default in a
highly underutilised state, it can still act to alleviate AES or potentially similar cryptographic loads from a CPU
allowing it to spend time on other tasks. It was demonstrated that the GPU performs best using large packet
sizes and thus suits applications which require bulk data encryption/decryption. This paper also demonstrates



that the GPU can be used effectively as a co-processor contrary to the operating system reports of 100% CPU
load during GPU task execution.

Future research includes investigation into both private and public key ciphers and also full AES decryp-
tion and round key generation. Research should be performed on modifying the applicable techniques presented
within this paper to run on the new G80 architecture from the Nvidia corporation using both the OpenGL and
new CUDA programming interfaces.
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