
 

J.R. Rao and B. Sunar (Eds.): CHES 2005, LNCS 3659, pp. 427 – 440, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

AES on FPGA from the Fastest to the Smallest 

Tim Good and Mohammed Benaissa 

Department of Electronic & Electrical Engineering, 
University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK 

{t.good, m.benaissa}@sheffield.ac.uk 

Abstract. Two new FPGA designs for the Advanced Encryption Standard 
(AES) are presented. The first is believed to be the fastest, achieving 25 Gbps 
throughput using a Xilinx Spartan-III (XC3S2000) device.  The second is 
believed to be the smallest and fits into a Xilinx Spartan-II (XC2S15) device, 
only requiring two block memories and 124 slices to achieve a throughput of 
2.2 Mbps. These designs show the extremes of what is possible and have 
radically different applications from high performance e-commerce IPsec 
servers to low power mobile and home applications. The high speed design 
presented here includes support for continued throughput during key changes 
for both encryption and decryption which previous pipelined designs have 
omitted. 

Keywords: Advanced Encryption Standard (AES), Field Programmable Gate 
Array (FPGA), finite field, design exploration, high throughput, pipelined, low 
area, Application Specific Instruction Processor (ASIP). 

1   Introduction 

The research objective is to explore the design space associated with the Advanced 
Encryption Standard (AES) algorithm and in particular its Field Programmable Gate 
Array (FPGA) hardware implementation in terms of speed and area. 

The Rijndael cipher algorithm developed by Vincent Rijmen and Joan Daemen 
won the competition run by the US government (NIST) in 2000 to select a new 
commercial cryptographic algorithm and was accorded the accolade the Advanced 
Encryption Standard (AES).  This algorithm is documented in the freely available US 
government publication, FIPS-197 [1]. 

Subsequently, the AES has been the topic of much research to find suitable 
architectures for its hardware implementation.  Architectural choices for a given 
application are driven by the system requirements in terms of speed and the resources 
consumed. This can simply be viewed as throughput and area, however, latency may 
also be important as may the cipher’s mode of operation. The FIPS-197 specification 
details a number of modes of operation for the cipher, for example, the simplest is the 
Electronic Code Book (ECB). Additional resilience to attack can be gained by using 
one of the feedback modes, for example, Output Feed Back (OFB) mode 
unfortunately such modes also limit the effectiveness of pipelining. 



428 T. Good and M. Benaissa 

 

The use of FPGA has been expanding from its traditional role in prototyping to 
mainstream production. This change is being driven by commercial pressures to 
reduce design cost, risk and achieve a faster time to market. Advances in technology 
have resulted in mask programmed mass produced versions of FPGA fabrics being 
offered by the leading manufacturers which, for some applications, remove the 
necessity to move prototype designs from FPGA to ASIC whilst still achieving a low 
unit cost. 

Previous attempts [2,3] at high speed pipelined design have been to use what is an 
effectively ASIC number-of-gates-in-critical-path design flow to place the pipeline 
cuts. This is fine where the target device is an ASIC, however, does not result in 
optimal pipeline cut placement for a given FPGA fabric. This paper presents an 
alternative flow specific to FPGA which results in optimal pipeline placement thus 
increased performance. The new high speed design reported here achieves a 
throughput of 25 Gbps on a Xilinx Spartan-III FPGA and has applications in the area 
of hardware accelerators for IPsec servers. 

An additional novelty of the new high speed design presented in this paper is that 
the key may be periodically changed without loss of throughput and the operating 
mode may be changed between encryption and decryption at will. This enables the 
design to support a mode of operation where a batch of blocks may be encrypted or 
decrypted for each of a number of differently keyed concurrent channels without loss 
in throughput. 

Reported low area architectures [4,5] have been based around a 32-bit datapath.  
As the AES operations MixColumns and KeyExpansion are fundamentally 32-bit it 
was previously believed that this was optimal.  An ASIC design by Feldhofer et al [6] 
used an 8-bit datapath married to a 32-bit MixColumns operator.  However, even 
MixColumns may be rewritten in an 8-bit form accepting a higher control overhead 
and reduced throughput.  To the authors’ knowledge, no 8-bit Application Specific 
Instruction Processor (ASIP) for AES has been reported in the literature.  The results 
from the design of such a processor, which is believed to be the smallest, are 
documented in this paper. This design only occupies 60% of the smallest available 
Xilinx Spartan-II device (XC2S15) and achieves a throughput of 2.2 Mbps which is 
suitable for numerous applications in the mobile and home communications areas.  
This 8-bit design was compared to the two latest reported low area FPGA designs 
[4,5] which were based on a 32-bit architecture.  Brief details of these designs are 
included together with their area cost results.  A rival ‘PicoBlaze’ implementation is 
also presented as a benchmark to demonstrate the performance of a soft core 
microcontroller based design. 

This paper concludes with a discussion on the relative merits of each architecture. 

2   The Design 

The intention here is to contrast a number of different architectures from the highest 
speed to the lowest area. An FPGA design flow is used throughout and performance 
results are presented together with comparison with the previously known best 
designs. The designs presented all support a 128-bit key.  Xilinx ISE version 6.3 was 
used for the design flow and the results quoted are from post place and route figures 



 AES on FPGA from the Fastest to the Smallest 429 

 

including all input and output delays. The new designs were coded in VHDL and 
validated using ModelSim. 

2.1   Fully Parallel Loop Unrolled Architecture 

FPGAs are particularly fast in terms of throughput when designs are implemented 
using deep pipeline cuts [2, 3, 7, 8, 9, 10, 11, 12].  The attainable speed is set by the 
longest path in the design so it is important to place the pipeline cuts such that the 
path lengths between the pipeline latches are balanced. 

First, the algorithm must be converted into a suitable form for deep pipelining 
[2,7]. This is achieved by removing all the loops to form a loop-unrolled design where 
the data is moved through the stationary execution resources.  On each clock cycle, a 
new item of data is input and progresses over numerous cycles through the pipeline 
resulting in the output of data each cycle, however, with some unavoidable latency. 

One of the key optimisations was to express the SubBytes operation in 
computational form rather than as a look-up table.  Earlier implementations used the 
look-up table approach (the “S” box) but this resulted in an unbreakable delay due to 
the time required pass through the FPGA block memories.  The FIPS-197 
specification provided the mathematical derivation for SubBytes in terms of Galois 
Field (28) arithmetic. This was efficiently exploited by hardware implementations 
using composite field arithmetic [2,7] which permitted a deeper level of pipelining 
thus improved throughput. 

The method of placement of pipeline latches (or cuts) was to consider the synthesis 
estimates for various units within the design. In particular, for Xilinx FPGAs, the 
number of cascaded 4-input LUTs in the critical path together with routing delays 
dominate the minimum cycle period.  The first stage of optimisation is to consider the 
routing delay as constant and only consider change in the number of cascaded LUTs.  
In further optimisation design cycle iterations, the secondary effects of excessive 
routing delays and fan out load were considered. 

A simple function, such as the reduction-OR of a bit vector, can be used to 
generate LUT-levels versus cycle time results for the internal fabric of a specific 
 

Table 1. Virtex-E performance versus logic levels 

Logic Levels Path Delay, ns Max Clock Freq, MHz 

1 
2 
3 
4 
5 
6 
7 
8 

2.176 
3.321 
4.466 
5.611 
6.756 
7.901 
9.046 

10.191 

459.6 
301.1 
223.9 
178.2 
148.0 
126.6 
110.5 
98.1 



430 T. Good and M. Benaissa 

 

technology.  Table 1 shows such results for Xilinx Virtex-E.  As can be seen from the 
table having pipeline registers between each LUT would yield the fastest design, 
however, there is a compromise in terms of the amount of fan-in required by the logic 
expressions in the design, the acceptable latency and realistic routing. 

The Virtex FPGA slice consists of two LUTs and one D-type flip-flop (FD) so a 
single level of logic between FDs would under utilise cells resulting in an 
approximate factor of two increase in the design area thus an impact on speed due to 
the larger distances. Similarly, two levels of logic between FDs would not provide 
sufficient flexibility (number of input terms in an expression) for the AES algorithm 
thus is likely to result in a significant increase of area. Further, with only two LUT 
levels routing, propagation time, fan-out and congestion from a lack of suitable 
routing resources are very likely to dominate the cycle time. This leaves three logic 
levels as the aiming point for pipeline register placement. 

There is a further complication in that the slice architecture includes a number of 
multiplexer (MUX) resources in addition to the LUTs these can be used to implement 
2-input XOR and 2-input MUX functions without recourse to an extra level of LUTs.  
This factor must also be considered when placing the pipeline cuts. 

For a given set of pipeline cuts the synthesis results may be examined to verify that 
the critical path contains the correct number of cascaded LUTs.  This design process 
yielded the following optimal cut set; Figure 1 shows the composite field 
implementation of SubBytes [2] followed by ShiftRows (SR) and MixColumns (M) 
operations.  The number of LUT-levels is shown adjacent to each design unit and the 
total in a given pipeline step (represented by the dashed lines) at the bottom of the 
diagram.  From an initial implementation it was found that additional time had to be 
allowed for the excessively long routing associated with the ShiftRows operation.  
Thus both the ShiftRows and its inverse require extra time compared to the remainder 
of the design. The excess time is approximately equivalent to a time associated with 
using two LUTs. The circuit shown can perform both encryption and decryption 
operations. 

 

Fig. 1. Block diagram for each middle round 

The same treatment was given to the placement of pipeline cuts in the final round 
(Figure 2) which conveniently turned out to require one less cut than the middle 
rounds. This was used to accommodate the single cut required for the first round to 
yield a regular timing pattern. 

δ 

Α−1δ 

x2 ×λ 

x−1

δ−1Α

δ−1

SR 

SR-1 

 

M 

rk 

dk 

2 

2 1 xor 

1 

3 1

2+xor 

2+xor

3 

2 

0 

0 1 
2

1

1 

M-1 

1

1

3 3 3 3 3 3 3 



 AES on FPGA from the Fastest to the Smallest 431 

 

 

Fig. 2. Block diagram for final round 

The key expansion also required implementing and in some previous designs had 
been overlooked. One key design decision was how frequently the key must be 
changed and whether continued throughput is required. In this design, it was decided 
that throughput should be maintained during key changes and that it was desirable to 
change between encryption and decryption on each cycle with key changes made on 
similar order to the latency. 

 

Fig. 3. Block Diagram of KeyExpander 

S

FFM2 

M-1 

S

S

S

rk1 rk2 rk10 dk9dk1 dk2  

   

key 

32 

32 32 32 32

32 323232 

128 

128 128 

MSB 

LSB 
MSB LSB

MSB LSB

δ 

Α−1δ 

x2 ×λ 

x−1

δ−1Α

δ−1

SR 

SR-1 

rk 

dk 

2

2 1 xor

1

3 xor 1

2+xor

2+xor

3

2

0

0

1

1

1

3 3 3 3 3 2 



432 T. Good and M. Benaissa 

 

 

Fig. 4. Placement of design on Virtex-E (XCV2000E) 

Table 2. Performance comparison of this work with previous designs 

Design 
FPGA 
Part 

Freq.
MHz

Thro’put
Mbps 

Latency
ns 

Area 
slices 

Mbps / 
slice 

Data 
path 

Jarvinen et al [9] 
 

Virtex-E 
XCV1000e-8 129.2 16,500  11,719 1.408 Enc 

Saggesse et al [10] Virtex-E 
XCV2000e-8 158 20,300  

5810 + 
100BRAM

1.091 Enc 

Standaert et al [11] Virtex-E 
XCV3200e-8 145 18,560  15,112 1.228 Enc 

Hodjat et al [3] 
Excl. key expand 

Virtex-II Pro
XC2VP20 169.1 21,640 420 

9,446 
Excl. KE 2.290 Enc 

Zambreno et al [8] Virtex-II 
XC2V4000 184.1 23,570 163 16,938 1.391 Enc 

Zhang (r=7), [2] 
Excl. key expand 

Virtex-E 
XCV1000E-8 168.4 21,556 416 

11,022
Excl. KE 1.956 

Enc/ 
Dec 

This work, 3LUT cut, 
key change support 

Virtex-E 
XCV2000E-8 184.8 23,654 379 16,693 1.417 

Enc/ 
Dec 

This work, 3LUT cut, 
key change support 

Spartan-III 
XC3S2000-5 196.1 25,107 357 17,425 1.441 

Enc/ 
Dec 

The pipeline cuts chosen meant that a given data item will pass completely through 
the AES cipher in 70 cycles. One issue with the AES KeyExpansion is that the 
decryption process starts with the final RoundKey and the only method of obtaining 
the final RoundKey is to progress through the entire key expansion. This issue was 
resolved by having separate encryption and decryption RoundKey registers and the 
new key being supplied suitably in advance to its data (140 cycles). Although the 
additional registers occupy a sizable amount of area it does permit maintaining 
throughput during key changes. The KeyExpander takes 10 cycles to fully generate 
the required set of RoundKeys. In order to match the latency through the main 
datapath, the KeyExpander was placed in a separate clock domain running at 1/7 of 



 AES on FPGA from the Fastest to the Smallest 433 

 

the datapath clock. This allowed for many more levels of logic in the KeyExpander 
without it forming part of the critical path. 

The architecture for the KeyExpander is shown in Figure 3. The InvMixColumns 
unit (M-1) is included to maintain the order of the operations the same for both 
encryption and decryption. This is referred to in the FIPS-197 specification as 
“Equivalent Decryption”. There is no pipelining in the KeyExpander and it evaluates 
one RoundKey every clock cycle (in its clock domain). The “RCON” values, defined 
in the FIPS-197 specification, are computed using repeated finite field doubling 
(FFM2 unit). Four non-pipelined, forward transform only, versions of the SubBytes 
operation were implemented using composite field arithmetic (S units).  The output 
RoundKeys are registered to permit correct operation given key changes and selection 
between encryption and decryption (rk1 to rk10 for encryption and dk1 to dk9 for 
decryption). The first RoundKey (rk0) is obtained by directly registering the key 
input. 

The placement of the design on a Virtex-E is shown in Figure 4 and the 
comparative results in Table 2. When comparing the quoted performance figures it is 
important to recognise the differences caused by changes in FPGA technology or 
more importantly with the level of support for key agility, encryption and decryption.  
Some designs did not include the key expansion in the results and other only 
supported the encryption datapath. This design shows an improvement in throughput 
over the previously known best design [2] of approximately 10% using the same 
FPGA technology. However, further savings can be made by moving from the Virtex-
E to the lower cost Spartan-III devices with an increase in performance due to the 
more modern technology. The design achieves 25 Gbps throughput on the Spartan-III 
XC3S2000-5 device. 

Further improvement in throughput, of say 20%-30%, is possible by adopting a 2-
LUT cut, however factors such as fanout and congestion are likely to be a significant 
obstacle to obtaining an improved throughput-area figure. 

Traditionally, such pipelined designs [3, 8, 9, 10, 11] only demonstrated any key 
agility in encryption only modes such as Counter mode (CTR).  However, this design 
supports key agility for both encryption and decryption thus can support Electronic 
Code Book (ECB) mode.  In a multi channel environment the key can be changed 
once ever 70 cycles thus support batch processing for a number of differently keyed 
concurrent channels without loss in throughput. 

Further, it is a relatively simple task to extend the design by pipelining the key 
expansion, repeating its instantiation for all ten rounds and include registers 
(equivalent to approximately 15232 flip-flops) to support key changes each cycle.  
This would, in a multi channel environment, support any of the feedback modes, 
including Cipher Block Chaining (CBC) thus gaining improved security. 

2.2   Round Based Architecture Using 32-Bit Datapath 

There already exist a number of good 32-bit based designs [4, 5, 13].  In these designs 
the AES is implemented by breaking up a round into a number of smaller 32-bit wide 
operations.  Thus a number of cycles is required to complete each round. 

Such designs are based around a store for the “state” data (16 bytes for 128-bit) 
and look-up tables to perform the required AES operations of SubBytes and 



434 T. Good and M. Benaissa 

 

MixColumns.  One of the optimisations documented in the FIPS-197 specification is 
to combine the look-up table for the MixColumns and SubBytes operation into a 
single one.  This is often referred to as the “T-box”. 

One of the key optimisations used by Rouvroy [5] was to exploit the larger (18kbit) 
block memories afforded by the Spartan-III and Virtex-II series FPGAs.  This allowed 
for 4 off 32 bit x 256 word look up tables (ROMs) to be implemented per (dual port) 
block memory.  So the required number of 8 off 32 bit x 256 word lookup tables can 
be implemented in two block memories, providing the four address buses needed (8-
bits data in + 3-bits mode).  The contents of the look up tables were chosen to provide 
convenient access to SubBytes and InvSubBytes required by the key expander and the 
finite field multiplications of the SubBytes table required for the combined SubBytes 
– MixColumns operation.  The operation is completed by computing the exclusive-or 
of the four partial “T-box” values.  The values stored are given by the following 
expression for the 8-bit value, a, using the SubBytes transformation and finite field 
multiplication by the given constant: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

•
•
•
•

•

•

=

)(11

)(13

)(9

)(14

)(3

)(

)(

)(2

)(

aISB

aISB

aISB

aISB

aSB

aISB

aSB

aSB

aT  (1) 

A further block memory was used to store the RoundKeys together with several 
multiplexers to route the data and key. 

The following results (Table 3) were quoted together with a comparison with the 
previous design by Chadoweic and Gaj [4].  However, the figures quoted for  
 

Table 3. Performance of existing 32-bit FPGA designs 

 Chodowiec & 
Gaj [4] 

Rouvroy 
et al [5] 

Pramstaller
 et al [13] 

Rouvroy 
et al [5] 

Device XC2S30-6 XC3S50-4 XCV1000E XC2V40-6 

Slices 222 163 1125 146 

Throughput (Mbps) 166 208 215 358 

RAM blocks 3 3 0 3 

Throughput / Area(kbps / 
slice) ignoring block ram 750 1260 191 2450 

Bits of block ram used 9600 34176 0 34176 

Equiv slices for block ram 300 1068 0 1068 

Total equiv. slices (area) 522 1231 1125 1214 

Throughput / Area 
(kbps / slice) 318 169 191 295 



 AES on FPGA from the Fastest to the Smallest 435 

 

throughput versus area failed to take into account the size of the block memories.  
This is of particular importance as the block memories on the Spartan-II are 4 kbit 
whereas those found on the Spartan-III and Virtex-II are 18 kbit.  If these costs are 
taken into account then the result is substantially changed. 

The cost of using a block memory in terms of an equivalent number of slices is still 
a matter of some debate.  One option would be to make the comparison based on the 
physical area occupied by a slice and a block memory but quotable figures are not 
forthcoming from the manufacturers.  An alternative is to consider the number of 
slices required to implement the equivalent distributed memory, however, this varies 
depending on the functionality required (for example single or dual port).  Such 
estimates vary between 8 and 32 bits/slice.  For this analysis a worst case figure of 32 
bits/slice was used.  The relative merits of the various designs and thus conclusions 
remain unchanged when the analysis was repeated for the lower estimate. 

2.3   Application Specific Processor Architecture Using 8-Bit Datapath 

The objective was to develop a small AES implementation.  One option was to use 
the freely available Xilinx PicoBlaze soft core processor [14] for which the first 
version only requires 76 slices.  However, for a practical design a small memory was 
needed thus the larger 96 slice KCPSM3 was selected.  Additionally, the size of the 
ROM required to implement 365 instructions for the AES had to be considered 
together with an implementation for SubBytes.  This results in a final design using the 
PicoBlaze of 119 slices plus the block memories which are accounted for here by an 
equivalent number of slices (once again 32 bits per slice was used).  The resulting 
design had an equivalent slice count of 452 and with a 90.2 MHz maximum clock.  
Key expansion followed by encipher took 13546 cycles and key expansion followed 
by decipher 18885 cycles.  The average encipher-decipher throughput was 0.71 Mbps. 

 

Fig. 5. ASIP Architecture 

 
     Program
     Counter 

 
Program 

ROM 

 
Indexed 

addressing 

 
Data 

Memory 

 
Down 

Counter 

 
Special 
Register 

 
S-Box 

 
Mult. 

Accum. 

Data Mux

 
Instruction 
Decoder 

&

Asst Control lines 

Data 
Out 

Data In 

ADDR     DATAIN 

NEWADDR 

ADDR     DATAOUT 

 

ADDR 

PC-VALUE 

CNT    IDX 

JMP CTRL 

JMP 
RETN 
JSR 

JSR 
RTN 

LD 
 
DEC 

 CTRL CTRL 

8 
6 

6 8 

6 

8 

4 4 
EN 

NEW   IDX 

8 

~8 



436 T. Good and M. Benaissa 

 

An application specific instruction processor (ASIP) was developed based around 
an 8-bit datapath and minimal program ROM size.  Minimisation of the ROM size 
resulted in a requirement to support subroutines and looping.  This added area to the 
control portion of the design but the saving was made in terms of the size of the 
ROM.  The total design, including an equivalent number of slices for the block 
memories only occupies 259 slices to give a throughput of 2.2Mbps. 

The datapath consisted of two processing units, the first to perform the SubBytes 
operation using resource shared composite field arithmetic and the second to perform 
multiply accumulate operations in Galois Field 28.  A minimal set of instructions was 
developed (15 in total) to perform the operations required for the AES.  The processor 
(Figure 5) used a pipelined design permitting execution of a new instruction every 
cycle. 

Figure 6 is a pie chart depicting the balance of area between the various design 
units.  Of the processor hardware approx 60% of the area is required for the datapath 
and 40% for the control. 

Instruction 
Decode, 8

Special Register, 
3

Indexed 
Addressing, 9

S-Box, 42

FFM-Acc, 24

Data Mux, 8
I/O, 6

Program 
Counter, 15

Loop Counters, 9

 

Fig. 6. Slice utilization versus design unit 

As a good FPGA based 8-bit datapath for comparison could not be found, Table 4 
shows comparison of this design with the state-of-the-art 32-bit designs using the 
relatively low cost Xilinx Spartan FPGAs.  The two reference designs both quote 
throughput figures for a mode of operation where the key remains constant thus the 
time taken for key expansion was not included.  A throughput figure was calculated 
for each design inclusive of the time taken for key expansion.  The average for 
encipher and decipher was then calculated and is reported in Table 4 as the average 
throughput. 

Figure 7 shows the placement of this design on a Spartan-II (XC2S15) part.  The 
design requires 124 slices and two block memories.  One memory formed the 
program ROM and the second was used as the ASIP’s main memory (RAM).  The 
AES application only required 360 bits of RAM thus the block memory was only 
partially utilized and could have be implemented as distributed memory with a cost of 



 AES on FPGA from the Fastest to the Smallest 437 

 

42 additional slices and would then free up one of the block memories.  There are also 
some concerns over the particular vulnerability of the block memories to power 
attacks so avoiding their use for key and data storage may be desirable.  However, 
even avoiding use of the block memories does not negate such risks. 

Table 4. Comparison with other designs using low cost FPGAs 

 This 
design 

Picoblaze 
based 

Chodowiec
& Gaj [4] 

Rouvroy et 
al [5] 

FPGA Spartan-II
XC2S15-6 

Spartan-II
XC2S15-6 

Spartan-II
XC2S30-6 

Spartan-III 
XC3S50-4 

Clock Frequency (MHz) 67 90 60 71 
Datapath Bits 8 8 32 32 
Slices 124 119 222 163 
No. of Block RAMs used 2 2 3 3 
Block RAM Size (kbits) 4 4 4 18 
Bits of block RAM used 4480 10666 9600 34176 
Est. equiv. slices for memory 140 333 300 1068 
Total Equiv. Slices (area) 264 452 522 1231 
Max Throughput (Mbps) - - 166 208 
Ave. Throughput (Mbps) 2.2 0.71 69 87 
Throughput/slice (kbps/slice) 8.3 1.9 132 70 

Summary Smallest Software Best 
speed/area 

Fastest 

 

Fig. 7. Placement of low area design on Spartan-II (XC2S15) 

 
Mul-Acc

 
 
SubBytes

Controller 



438 T. Good and M. Benaissa 

 

3   Conclusions 

This paper has presented a number of FPGA implementations from the fastest to the 
smallest.  In terms of speed to area ratio the unrolled designs perform the best as there 
is no controller overhead.  However, such designs are very large and need a 1 – 2 
million gate device but achieve throughputs up to 25 Gbps.  These designs have 
applications in fixed infrastructure such as IPsec for e-commerce servers. 

The low area design described here achieves 2.2 Mbps which is sufficient for most 
wireless and home applications.  The area required is small thus fundamentally low 
power so has utility in the future mobile area.  The design requires just over half the 
available resources of the smallest available Spartan-II FPGA. 

10
2

10
3

10
4

10
5

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

This Work, ASIP (Spartan2)

Chodowiec (Spartan2) inc KE time
Rouvroy (Spartan3) inc KE time

6
2&3 15

This Work, PicoBlaze (Spartan2)

7 48

Area, slices

A
ve

ra
ge

 T
hr

ou
gh

pu
t,

 M
bp

s

Pramstaller (Virtex-E) excl KE time
Rouvroy (Spartan3) excl KE time

1. This Work, 3LUT (Spartan3)      
2. This Work, 3LUT (VirtexE)       
3. Zambreno (Virtex2) EncOnly      
4. Saggesse (VirtexE) EncOnly      
5. Hodjat (Virtex2Pro) EncOnly     
6. Zhang (VirtexE) Excl. Key Expand
7. Standaert (VirtexE) EncOnly     
8. Jarvinen (Virtex-E) EncOnly     

 

Fig. 8. Throughput versus area for the different FPGA designs 

The advantage of the 8-bit ASIP over the more traditional 8-bit microcontroller 
architecture (PicoBlaze) is shown by the approximate factor of three improvement in 
throughput and 40% reduction in area (including estimated area for memories). 

The 32-bit datapath designs occupy the middle ground between the two extremes 
and have utility where moderate throughput in the 100 – 200 Mbps is required. 



 AES on FPGA from the Fastest to the Smallest 439 

 

The advantage of an FPGA specific optimisation over an ASIC number-of-gates 
approach has been demonstrated by the speed improvement made in the loop unrolled 
design. 

The best architectural decision is to select the design of the lowest possible area 
meeting the throughput and operating mode requirement for the system being 
developed. Figure 8 shows the different designs in terms of their throughput and 
area. 

Acknowledgement 

This work was funded by the UK Engineering and Physical Sciences Research 
Council (EPSRC). 

References 

[1] National Institute of Standards and Technology (NIST), Information Technology 
Laboratory (ITL), Advanced Encryption Standard (AES), Federal Information Processing 
Standards (FIPS) Publication 197, November 2001 

[2] X. Zhang,  K. K. Parhi, High-speed VLSI architectures for the AES algorithm, IEEE 
Trans. VLSI Systems, Vol. 12, Iss. 9, pp. 957 - 967, Sept. 2004 

[3] A. Hodjat,  I. Verbauwhede, A 21.54 Gbits/s Fully Pipelined AES Processor on FPGA, 
12th Annual IEEE Sypmosium on Field-Programmable Custom Computing Machines 
(FCCM'04), pp. 308-309, April 2004 

[4] P. Chodowiec,  K. Gaj, Very Compact FPGA Implementation of the AES Algorithm, 
Cryptographic Hardware and Embedded Systems (CHES 2003), LNCS Vol. 2779, pp. 
319 – 333, Springer-Verlag, October 2003 

[5] G. Rouvroy,  F. X. Standaert,  J. J. Quisquater, J. D. Legat, Compact and efficient 
encryption/decryption module for FPGA implementation of the AES Rijndael very well 
suited for small embedded applications, Procedings of the international conference on 
Information Technology: Coding and Computing 2004 (ITCC 2004), pp. 583 – 587, Vol. 
2, April 2004 

[6] M. Feldhofer, S. Dominikus and J. Wolkerstorfer, Strong Authentication for RFID 
Systems Using the AES Algorithm, CHES 2004, LNCS 3156, pp. 357-370, Springer-
Verlag, 2004. 

[7] A. Satoh,  S. Morioka,  K. Takano,  S. Munetoh, A Compact Rijndael Hardware 
Architecture with S-Box Optimization, Proceedings of ASIACRYPT 2001, LNCS Vol. 
2248, pp. 239 - 254, Springer-Verlag, December 2001 

[8] J. Zambreno, D. Nguyen, A. Choudhary, Exploring Area/Delay Trade-offs in an AES 
FPGA Implementation, Proc. FPL 2004, 2004 

[9] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, A fully pipelined memoryless 17.8 
Gbps AES-128 encryptor, Proc. Int. Symp. Field-Programmable Gate Arrays (FPGA 
2003), Monterey, CA, pp. 207–215, Feb. 2003 

[10] G. P. Saggese, A. Mazzeo, N. Mazocca, and A. G. M. Strollo, An FPGA based 
performance analysis of the unrolling, tiling and pipelining of the AES algorithm, Proc. 
FPL 2003, Portugal, Sept. 2003. 



440 T. Good and M. Benaissa 

 

[11] F. Standaert, G. Rouvroy, J. Quisquater, and J. Legat, Efficient implementation of 
Rijndael encryption in reconfigurable hardware: Improvements & design tradeoffs, Proc. 
CHES 2003, Cologne, Germany, Sept. 2003. 

[12] M. McLoone and J.V. McCanny, High Performance Single-Chip FPGA Rijndael 
Algorithm Implementations, CHES 2001, Paris, France, 2001 

[13] N. Pramstaller and J. Wolkerstorfer, A Universal and efficient AES co-processor for 
Field Programmable Logic Arrays, FPL 2004, LNCS Vol. 3203, pp. 565-574, Springer-
Verlag, 2004. 

[14] K. Chapman, PicoBlaze 8-bit Microcontroller, Xilinx, 2002 http://www.xilinx.com/ 
products/design_resources/proc_central/grouping/picoblaze.htm 


	Introduction
	The Design
	Fully Parallel Loop Unrolled Architecture
	Round Based Architecture Using 32-Bit Datapath
	Application Specific Processor Architecture Using 8-Bit Datapath

	Conclusions
	Acknowledgement
	References

