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Abstract—Various real-world biomedical classification tasks 
suffer from the imbalanced data problem which tends to make 
the prediction performance of some classes significantly 
decrease. In this paper, we present an active example selection 
method with naïve Bayes classifier (AESNB) as a solution for 
the imbalanced data problem. The proposed method starts 
with a small balanced subset of training examples. A naïve 
Bayes classifier is trained incrementally by actively selecting 
and adding informative examples regardless of the original 
class distribution. Informative examples are defined as 
examples that produce high error scores by the current 
classifier. We examined the performance of AESNB algorithm 
by using five imbalanced biomedical datasets. Our 
experimental results show that the naïve Bayes classifier with 
our active example selection method achieves a competitive 
classification performance compared to the classifier with 
sampling or cost-sensitive methods.  

Keywords-active example selection; imbalanced data 
problem; naïve Bayes classifier; resampling; cost-senseitive 
learning 

I.  INTRODUCTION 
Classification is one of popular data mining methods in 

biomedical research which requires training examples to 
predict a target class of unseen examples. In the 
classification task, imbalanced data problem frequently 
causes highly imbalanced prediction performances among 
classes due to skewed class distribution [1],[2]. One of 
major reasons for the problem is insufficiency of the 
absolute amount of examples of some classes for training a 
classifier. This is fundamentally caused by the intrinsic 
rarity of the cases or by limitations on data collection 
process such as high cost or privacy problems. 

Most biomedical data often have skewed class 
distribution. The examples of interesting class such as a 
disease and interacting protein pairs are generally rare, and 
information is insufficient to learn discriminating patterns of 
the interesting class. However, the design principle of most 
classification algorithms optimizes overall accuracy.  It 
causes lower prediction performance in the minority class 
than the majority class. As a result, the minority class is 
more likely to be misclassified than the majority class and 
the false positive rate of the minority class can be extremely 
high.  

To overcome the imbalanced data problem, many 
researchers in biomedical domain have attempted to create 
more balanced class distributions using various sampling 
techniques and ensemble methods [3]-[5]. These methods 
often improved prediction performances of rare class. 
However, they also brought about some problems (e.g. 
information loss or data redundancy). 

In this paper, we present an active example selection 
strategy with naïve Bayes classifier (AESNB). To solve the 
imbalanced data problem, the AESNB attempts to adjust the 
number of examples among classes to improve classification 
performance rather than makes equal the number of 
examples for each class. The AESNB starts with small 
number of balanced training examples and actively adds 
informative examples to improve prediction performance 
regardless of the original class distribution. Although the 
first approximation may not be satisfactory, we can use this 
knowledge to select next set of examples which efficiently 
improve the current estimation. Through this incremental 
learning process, the final classifier is trained with more 
task-relevant and proper amount of examples. In this new 
learning scheme the classifier is trained on incrementally 
selected examples, rather than on all the available data. Our 
empirical results show that AESNB can be a more effective 
alternative to resampling and cost-sensitive methods for 
solving imbalanced learning problem. 

The rest of the paper is organized as follows: Related 
works are described in section II. We describe the detail 
idea of active example selection with naïve Bayes classifier 
algorithm in section III. The experimental results of the 
proposed method comparing to other methods on selected 
datasets is shown in section IV. We conclude the proposed 
method and experimental results in the final section V. 

II. RELATED WORKS 

A. Imbalanced Data Problem 
There have been many studies to solve the imbalanced 

data problems. One simple way is to make the number of 
examples for each class equal by under- or oversampling. 

In Random Under Sampling (RUS) method, the 
examples of the majority class are randomly discarded. The 
method can reduce the time complexity since it extracts a 
small part of examples from the majority class. However, it 
is possible to remove certain significant examples and it has 
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a potential disadvantage of distorting the distribution of the 
majority class. If the patterns sampled from the majority 
class do not represent the original distribution, it may 
decrease the classification performance. The potential 
drawbacks come true when the number of minority class 
patterns is very small.  

The Random Over Sampling (ROS) method works in the 
way that examples of the minority class are randomly 
duplicated from the dataset to balance the number of each 
dataset. Since oversampling does not lose the information 
on whole data patterns, it can achieve relatively high 
classification accuracy. However, it can lead to overfitting 
problems and long training time, since the number of data 
used in training is much larger than the number of the 
original patterns.  

It is possible to combine these two kinds of sampling 
methods. In this way, it produces a random subsample of a 
dataset by extraction with replacement under specified class 
distribution. Although these approaches are also interesting 
ideas trying to solve the imbalanced data problem, any 
method does not improve the classifier remarkably from 
imbalanced data. Besides to these methods, many other 
intelligent resampling techniques are proposed to solve the 
problem [6]-[9]. Recently, some experiments are performed 
to compare these resampling-based approaches to solve the 
imbalanced data problem. However, the performances of 
‘intelligent’ sampling techniques are not generally superior 
to simple sampling techniques [10],  [11]. 

Another way to solve the class imbalance problems is to 
modify leaning processes or methods. Cost-sensitive 
learning is a method for these purposes [12]. It dictates that 
misclassified examples originally belonging to the minority 
class receive larger penalty than those belonging to the 
majority class. In the learning process, it can handle the data 
imbalance problems without changing the original data 
distribution by modifying a cost function. In fact, it has been 
often reported that cost-sensitive learning outperforms 
random resampling methods in several cases [12], [13]. 
When data is highly imbalanced, however, its effect on the 
classification performance is not as good as that of 
undersampling method or oversampling method, since cost-
sensitive learning does not modify the class distribution of 
the data. 

That is, in spite of many approaches from various views, 
the limitations still remain to solve the imbalanced learning 
problems. Therefore, it is necessary to propose a new 
approach to overcome these problems.  

B. Imbalanced data problems in biomedical tasks 
Since available biomedical datasets for training and 

validating classification models often have imbalanced class 
distribution, there have been many related studies to handle 
imbalanced data problem.   

One of frequently used methods is to divide the original 
dataset into a balanced dataset for training and an 
imbalanced dataset for validating or testing the trained 

model. The method was used to diagnose myocardial 
perfusion using cardiac SPECT (Single Proton Emission 
Computed Tomography) images and to predict 
polyadenylation signals in human sequences [14], [15].  

Random undersampling of the majority class also can be 
easily applied. In discrimination task of deleterious nsSNPs 
(nonsynonymous Single Nucleotide Poly- morphisms) from 
neutral nsSNPs with imbalanced training dataset, by 
applying random undersampling method combined with 
decision tree algorithm, prediction performances were 
improved [5]. The undersampling method can be combined 
with an ensemble machine. An Ensemble of under-sampled 
classifiers was constructed for predicting the activity of drug 
molecules based on structural characteristics of compounds 
and for predicting glycosylation sites in genomic sequences 
[3], [4].   

The various cost-sensitive learning methods were also 
applied. To predict protein β-turn structure, a cost-sensitive 
k-nearest neighborhood algorithm was used [16]. The 
method manually tuned the number of minimally required 
closest training fragments by considering the imbalanced 
ratio of the natural occurrence of β-turns and non-β-turns. 
Cost-sensitive decision tree algorithm was also used to 
improve peptide-MHC class I binding prediction [17]. For 
imbalanced, multi-class and multi-labeled dataset such as 
protein localization dataset, SVDD (Support Vector Data 
Description), which is a kind of one-class classification 
algorithm, was applied [18]. 

III. ACTIVE EXAMPLE SELECTION WITH NAÏVE BAYES 
CLASSIFIER FOR IMBALANCED DATA PROBLEM 

We propose an active example selection method to solve 
the imbalanced data problem in biomedical classification 
issues. Although machine learning algorithms are useful for 
data classification, qualified training dataset is necessary to 
learn a classifier with good performance. The qualified 
dataset can be explained in terms of the nature and size of 
the training set. Because some of training examples are 
contradictory or redundant, it usually takes a long time to 
train a classifier with all the given examples. If there are no 
guarantees that classification performance is improved when 
the size of training set are increased, it means that not only 
training time is increased but also many of training 
examples are wasteful for learning. Therefore it is necessary 
to choose examples which are most likely helpful to solve 
the problem. If the training dataset contains imbalanced 
class labels, by extracting informative training examples 
from imbalanced dataset, we can improve the classification 
performance and, at the same time, solve the imbalanced 
data problems. 

The active example selection strategy was originally 
proposed as a method to accelerate training speed of 
multilayer neural networks by starting learning with a small 
subset training data and adding critical examples 
incrementally [25]. We apply the active example selection 
strategy to solve the imbalanced data problem by adjusting 
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the number of training examples among classes based on 
classification error. 

The active example selection (AES) strategy can be 
applied as a wrapper learner of classification algorithms. 
The AES strategy works well with classification algorithms 
which have following properties:  

 small number of parameters to be tuned  
 parameter estimation is possible with small amount 

of data 
 short training time  

In this study, we applied the active example selection 
with a naïve Bayes classifier. Naïve Bayes classifier is a 
simple probabilistic classifier based on Bayes’ theorem with 
independence assumptions among attributes. It selects the 
class label c* with the maximum probability which is 
calculated according to the following equation, 

* ( ) ( | ).arg max i
c C i

c P c P a c
∈

= ∏                     (1) 

where, ai represents the i-th attribute. In spite of its naïve 
design and over-simplified assumptions, naïve Bayes 
classifier has shown good performances in many complex 
real-world problems.  

The proposed incremental learning procedure is 
summarized in Fig. 1. The total training dataset (Dtotal) is 
divided into training dataset (Dtrain) for training a naïve 
Bayes classifier and validation dataset for validating the 
trained classifier (Dvalidation). The Dtrain is initialized with 
randomly selected a small set of examples which includes 
the same number of examples from each class. The Dvalidation 
is initialized with the rest of the total training dataset.  

We start learning a naïve Bayes classifier with a small 
balanced subset of training dataset. Although the first 
approximation with the initial dataset, Dinitial, may not be 
satisfactory, we can use the current classifier to select the 
next set of examples. To make up the weaknesses of the 
current classifier more effectively, some informative 
examples are selected from Dvalidation and added to Dtrain 
actively and incrementally.  

The informative examples can be selected by measuring 
classification error scores for each example in Dvalidation with 
the current classifier. The classification error score of an 
example is conceptually defined as ‘the distance from the 
decision boundary when it is misclassified’. In the case of 
naïve Bayes classifier for binary class problem, it is defined 
as the difference between the incorrectly predicted 
probability and the threshold for decision (usually 0.5). Top 
q examples which have high error scores are selected (Derror), 
and added to training dataset regardless of their original 
class labels. We can efficiently improve the overall 
classification performance, as the examples selected from 
Dvalidation are added to Dtrain iteratively. 

When the error rates for validation set are zero or the 
whole validation examples are used for training, the learning 
process is terminated. Through the incremental learning 
process, AESNB can achieve a reasonable performance 
using only a subset of examples. 

IV. EXPERIMENTS AND EVALUATION 

A. Experimental datasets 
We study performances of AESNB on several real-world 

biomedical benchmark datasets. We consider binary 
classification problems in this study. The overview of the 
datasets is given in Table I. From the interestingness of a 
class, an interesting target class is called the positive class 
and a normal class is called the negative class. From the 
quantity of examples of a class, a class which has more 
examples than the other is called the majority class and the 
other is called the minority class.  

The Diabetes dataset is extracted from a Pima Indians 
diabetes database which consists of 268 diabetes examples 
and 500 healthy examples [20]. The diagnostic target class 
indicates whether the patient shows signs of diabetes 
according to World Health Organization criteria. The 8 real-
valued features are derived from geographic data and 
characteristics of patients. The WDBC is the Wisconsin 
diagnostic breast cancer dataset which includes 212 
malignant examples and 357 benign examples [21]. The 30  

 

Figure 1.  Pseudo-code of AESNB learning procedure 

 

Data preparation 
Data for learning: Dtotal, #(Dtotal) = n 

Training data: Dtrain = {} 
Validation data: Dvalidation = Dtotal 

Data for test: Dtest 
 
Parameter setting 
Initial size of training data: c x p  
(1 ≤ p ≤ nminority,  nminority: # of examples in the minority class, c: 
# of target classes) 
Incremental size of training data: q  
(0 < q < n-(c x p)) 
 
Data initialization 
For each class in Dvalidation, randomly select p examples (Dinitial)  
Dtrain = Dinitial 
Dvalidation = Dvalidation - Dinitial 
 
Learning & active example selection 
do {  
Training 

Train a naïve Bayes classifier with the Dtrain  
Validation & updating datasets 

Validate the resulting classifier with Dvalidation 
Sort misclassified examples by error score 
Select top q examples with high error score regardless of 
class labels (Derror). If the number of misclassified examples 
is less than q, select all misclassified examples as Derror. 
Dtrain = Dtrain ∪ Derror 
Dvalidation = Dvalidation - Derror 

} while (Dvalidation != {} && Derror != {}) 
 
Test 
Test the resulting classifier with Dtest 

17



TABLE I.  OVERVIEW OF DATASETS 

Dataset # of 
Examples 

# of  
Features 

Class 
Distribution Imb. Ratio

Diabetes 768 8 Positive 268 
Negative 500 1:1.87 

WDBC 569 30 Positive 212 
Negative 357 1:1.68 

Parkinson’s 
disease 194 22 Negative 47 

Positive 147 1:3.13 

Colon 62 2000 Negative 22 
Positive 40 1:1.82 

Promoter 7,047 10 Positive 1,839 
Negative 5,208 1:2.83 

 
real-valued features are computed from a digitized image of 
a fine needle aspirate (FNA) of a breast mass.  They 
describe characteristics of the cell nuclei present in the 
image. The Parkinson’s disease is the Oxford Parkinson’s 
disease detection dataset which includes 47 healthy 
examples and 147 Parkinson’s disease examples [22]. The 
Parkinson’s disease can be classified by voice disorder 
detection. The 22 real-valued features are composed of 
biomedical voice measurements. The Colon is a colon 
cancer microarray dataset which has 2000 features and 
includes 40 tumor examples and 22 normal examples [23].  
The Diabetes, WDBC, Parkinsons, and Colon dataset are 
benchmark datasets from the popular UCI Machine 
Learning Repository. The Promoter dataset is the core 
human promoter prediction dataset to develop the 
PromSearch system by artificial neural networks [24]. The 
dataset includes 1,839 promoter examples and 5,208 
negative examples and has a set of nominal and real-valued 
features which represent probabilities of motives around the 
core promoter region. We have considered datasets with 
diversity in the number of examples. The smallest dataset 
has 62 examples, while the largest dataset has 7,047 
examples. 

B. Experiments and Evaluation 
We conducted experiments to compare the proposed 

AESNB with default naïve Bayes classifier algorithm (NB), 
naïve Bayes classifier with three random sampling 
techniques (NB with Sampling), and cost-sensitive naïve 
Bayes classifier (CSNB). Since it is known that intelligent 
sampling techniques show inferior performances than 
simple random sampling in general [10], [11], we only 
considered simple sampling methods which are random 
oversampling (ROS), random undersampling (RUS), and 
mixture of random over and undersampling (ROUS). ROUS 
produces a resampled example set with a uniform class 
distribution and an equal number of examples of original 
dataset by undersampling for the majority class and 
oversampling for the minority class. 

For all dataset except Promoter dataset, we set p, the 
number of initial training example per class as 1 and the 
incremental chunk size (q) as 2 in AESNB. In the case of 

the Promoter dataset, which is the largest dataset, we set p 
as 10 and q as 50 to speed up learning. 

To evaluate the performance of classification algorithms, 
overall accuracy, AUC (Area Under the ROC Curve), 
geometric mean, true positive rate, and F-measure were 
calculated. When dataset has highly skewed class 
distribution, the overall accuracy is not an appropriate 
measure. Since the overall accuracy tends to be 
overwhelmed by the prediction power for the majority class, 
the performance comparison with overall accuracy is very 
misleading in the imbalanced data learning case. Hence we 
used the AUC and the geometric mean which give balanced 
evaluation by incorporating measures of both positive and 
negative classes with equal weights. These measures give 
higher values only when the classifier predicts accurately on 
both classes. We also use the true positive rate (TPR) and F-
measure as the balanced evaluation measures which 
represent the classification performances per class.  

More specifically, AUC measures the area under the 
ROC curve. The ROC curve is a technique for visualizing, 
organizing, and selecting classifiers based on their 
performance [25]. The AUC incorporates the trade-off 
relation between a true positive rate and a false positive rate 
into a single value. In the imbalanced data problem, the 
AUC have been widely used. Other measures are defined as 
following in the binary classification case: 

TNRTPRMean Geometric ×=                       (2) 

FNTP
TPTPR
+

=                                     (3) 

FPTN
TNTNR
+

=                                    (4) 

RecallPrecision
RecallPrecision2meausreF

+
××=−                  (5) 

FNTP
TPPrecision
+

=                                  (6) 

FPTP
TPRecall
+

=                                    (7) 

where TP is the number of true positive, FP is the number of 
false positive, FN is the number of false negative, and TN is 
the number of true negative. Geometric mean is a geometric 
average of true positive rates and true negative rates which 
are related to a point on the ROC curve. Precision is a 
measure of exactness, and recall is a measure of 
completeness. F-measure is a harmonic average between 
prediction and recall which can measure the goodness of a 
learning algorithm on the current class. Note that TPR and 
precision are same measures with the same meaning with 
‘positive accuracy’. 

To estimate general performances of AESNB, for each 
combination of 5 datasets and 6 learning strategies, 10 
different runs of 10-fold cross validation were executed. 
Each training experiment starts with randomly selected 
initial training data. The performances of total 100 runs for 
each combination are evaluated and averaged. The 
experimental results are shown in Table II ~ Table V. Due  
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TABLE II.  COMPARISON OF AUC 

Dataset NB NB with Sampling CSNB AESNB ROS RUS ROUS 

Diabetes 0.817 0.818 0.814 0.811 0.817 0.828 

WDBC 0.982 0.982 0.983 0.983 0.982 0.990 

Parkinson’s 
disease 0.857 0.858 0.853 0.853 0.857 0.875 

Colon 0.632 0.628 0.670 0.647 0.632 0.755 

Promoter 0.984 0.984 0.984 0.984 0.984 0.985 

 

TABLE III.  COMPARISON OF GEOMETRIC MEAN (%) 

Dataset NB NB with Sampling CSNB AESNB ROS RUS ROUS 

Diabetes 70.9 73.1 73.4 73.2 73.2 73.7 

WDBC 92.6 92.6 92.6 92.7 92.6 95.0 

Parkinson’s 
disease 75.1 74.8 74.9 74.2 74.9 77.2 

Colon 58.9 58.5 61.4 61.8 58.9 70.7 

Promoter 93.0 93.7 93.7 93.7 93.7 93.0 

 

TABLE IV.  COMPARISON OF TRUE POSITIVE RATE PER CLASS (%) 

Dataset Class NB NB with Sampling CSNB AESNBROS RUS ROUS 

Diabetes Pos 
Neg 

59.8 
84.1 

68.5 
78.0 

68.8 
78.2 

69.7 
76.8 

68.9 
77.8 

66.4 
81.8 

WDBC Pos 
Neg 

89.7 
95.5 

89.9 
95.4 

90.2 
95.1 

90.4 
95.1 

90.0 
95.3 

92.4 
97.9 

Parkinson’s 
disease 

Neg 
Pos 

91.0 
62.0 

91.7 
61.1 

89.7 
62.5 

87.8 
62.7 

92.1 
61.0 

90.0 
66.2 

Colon Neg 
Pos 

72.2 
48.0 

69.7 
49.3 

75.3 
50.3 

71.7 
53.3 

72.2 
48.0 

68.5 
73.3

Promoter Pos 
Neg 

91.0 
95.0 

94.1 
93.3 

94.0 
93.3 

94.1 
93.3 

94.1 
93.3 

90.4 
95.6 

 

TABLE V.  COMPARISON OF F-MEASURE  PER CLASS (%) 

Dataset Class NB NB with Sampling CSNB AESNBROS RUS ROUS 

Diabetes Pos 
Neg 

63.0 
81.8 

65.3 
80.0 

65.7 
80.2 

65.5 
79.5 

65.5 
79.9 

66.2 
81.9 

WDBC Pos 
Neg 

90.9 
94.7 

90.9 
94.7 

90.9 
94.7 

91.0 
94.7 

91.0 
94.7 

94.1 
96.6 

Parkinson’s 
disease 

Neg 
Pos 

59.1 
74.7 

58.9 
74.0 

58.7 
74.9 

58.1 
74.7 

59.0 
74.0 

61.4 
77.7 

Colon Neg 
Pos 

53.1 
56.2 

52.1 
56.8 

55.2 
58.1 

55.1 
59.7 

53.1 
56.2 

62.6 
75.0 

Promoter Pos 
Neg 

88.8 
95.9 

88.3 
95.5 

88.3 
95.5 

88.3 
95.5 

88.4 
95.5 

89.1 
96.1 

 
to the space limitations we only provide several figures of 
the results with Diabetes dataset.  

Table II and Table III summarize overall classification 
performances in terms of AUC and geometric mean, 

respectively. AESNB outperforms other methods for the 
five benchmark datasets. Table IV and Table V show 
classification performances per class. For each dataset, 
upper line and under line are corresponding to minority 
class and majority class respectively. In Parkinson’s disease 
and Colon datasets, positive classes are majority classes, 
while in Diabetes, WDBC, and Promoter datasets, positive 
classes are minority classes. However, in the Parkinson’s 
disease and Colon datasets, prediction performances of 
majority class with naïve Bayes classifier algorithm are 
lower than those of minority class in terms of true positive 
rates (Table IV). In such case, AESNB makes remarkable 
improvement in true positive rates of the majority class. 
Table V shows outstanding performances of AESNB in F-
measure. 

Fig. 2 demonstrates an example of training, validation 
and test curves of AESNB. The plot is drawn with total 
training data (Dtotal), validation data (Dvalidation), and 
independent test data (Dtest) from one of 100 runs with 
Diabetes dataset. The AESNB learning is terminated at 105 
-th iteration step, and the validation AUC converges into 1. 
In the early part of incremental training, the training, 
validation and test curves are oscillated. However, after 
mid-part, they are increased steadily. Even though the 
learned classifiers based on AESNB seem to be overfitted to 
validation datasets, as we can see in Fig. 2, the classifiers 
are not overfitted to total training datasets. 

The iterative procedure of AESNB learning can be 
terminated when the validation dataset is exhausted or there 
is no misclassified example in validation dataset. However, 
all classifiers derived from 10 different runs of 10-fold 
cross-validation with 5 datasets are terminated in case with 
the absence of misclassified examples. Data efficiency of 
AESNB training can be demonstrated with Fig. 3 and Table 
VI. Fig. 3 shows training data distribution for each AESNB 
iteration step. The right-most bar indicates total Diabetes 
data distribution. Even though only one-third of training 
examples are used to train AESNB classifier, the classifier 
shows outstanding prediction performances as we can show 
in Table II ~ Table V. Table VI indicates the average 
number of used examples for training with AESNB. Data  

 

 
Figure 2.  Training, validation and test curves in Diabetes dataset 
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Figure 3.  Incremental patterns of trianin

TABLE VI.  THE NUMBER OF USED EX
FOR TRAINING WITH AESNB 

Dataset 

Total training 
examples 

(imbalance 
ratio) 

Used examples 
for training 
 (imbalance 

ratio) 

Diabetes 
Pos 241.2 
Neg 450.0 

(1:1.9) 

Pos 116.7 
Neg 117.1 

(1:1.0) 

WDBC 
Pos 190.8 
Neg 321.3 

(1:3.1) 

Pos 23.9 
Neg 17.6 
(1.36:1) 

Parkinson’s 
disease 

Neg 42.3 
Pos 132.3 

(1:3.1) 

Neg 11.6 
Pos 48.1 
(1:1.4) 

Colon 
Neg 19.0 
Pos 36.0 
(1:1.8) 

Neg 13.5 
Pos 19.0 
(1:1.4) 

Promoter 
Pos 1655.1 
Neg 4687.2 

(1:2.8) 

Pos 176.8 
Neg 233.8 

(1:1.3) 
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balanced dataset but selecting task-relevant examples for 
improving the prediction performance.  

In this paper, we proposed an active example selection 
with naïve Bayes classifier to solve the imbalanced learning 
problem. Unlike previous resampling techniques, our 
proposed method is not using uniform class distribution. 
Rather, the proposed method selects and adds critical 
examples regardless of original class distribution for 
reflecting the weakness of the current classifier. By focusing 
on the informative examples, the AESNB improves 
imbalanced prediction performances with the subset of total 
training dataset, and it also achieves competitive prediction 
performances.   

Our empirical results by using five real-world 
biomedical datasets help us to conclude that the AESNB 
performs better than other popular resampling or cost-
sensitive learning methods in dealing with the imbalanced 
learning problem.  

Our method can be used to select discriminative or 
representative examples of some classes. In addition, the 
AESNB can be applied for an effective active learning for 
the huge amount of dataset. 
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