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Fractals are physically complex due to their repetition of patterns at multiple size

scales. Whereas the statistical characteristics of the patterns repeat for fractals found

in natural objects, computers can generate patterns that repeat exactly. Are these

exact fractals processed differently, visually and aesthetically, than their statistical

counterparts? We investigated the human aesthetic response to the complexity of

exact fractals by manipulating fractal dimensionality, symmetry, recursion, and the

number of segments in the generator. Across two studies, a variety of fractal

patterns were visually presented to human participants to determine the typical

response to exact fractals. In the first study, we found that preference ratings

for exact midpoint displacement fractals can be described by a linear trend with

preference increasing as fractal dimension increases. For the majority of individuals,

preference increased with dimension. We replicated these results for other exact

fractal patterns in a second study. In the second study, we also tested the effects

of symmetry and recursion by presenting asymmetric dragon fractals, symmetric

dragon fractals, and Sierpinski carpets and Koch snowflakes, which have radial

and mirror symmetry. We found a strong interaction among recursion, symmetry

and fractal dimension. Specifically, at low levels of recursion, the presence of

symmetry was enough to drive high preference ratings for patterns with moderate

to high levels of fractal dimension. Most individuals required a much higher level

of recursion to recover this level of preference in a pattern that lacked mirror or

radial symmetry, while others were less discriminating. This suggests that exact

fractals are processed differently than their statistical counterparts. We propose a

set of four factors that influence complexity and preference judgments in fractals

that may extend to other patterns: fractal dimension, recursion, symmetry and

the number of segments in a pattern. Conceptualizations such as Berlyne’s and

Redies’ theories of aesthetics also provide a suitable framework for interpretation of

our data with respect to the individual differences that we detect. Future studies

that incorporate physiological methods to measure the human aesthetic response

to exact fractal patterns would further elucidate our responses to such timeless

patterns.

Keywords: aesthetics, complexity, fractal dimension, order, preference, recursion, symmetry

Frontiers in Human Neuroscience | www.frontiersin.org 1 May 2016 | Volume 10 | Article 210

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnhum.2016.00210
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2016.00210&domain=pdf&date_stamp=2016-05-20
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00210/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00210/abstract
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00210/abstract
http://loop.frontiersin.org/people/301633/overview
http://loop.frontiersin.org/people/221928/overview
http://loop.frontiersin.org/people/314999/overview
http://loop.frontiersin.org/people/28317/overview
http://loop.frontiersin.org/people/143160/overview
https://creativecommons.org/licenses/by/4.0/
mailto:alexanderbies@gmail.com
http://dx.doi.org/10.3389/fnhum.2016.00210
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Bies et al. Aesthetics of Exact Fractals

INTRODUCTION

Whereas exact fractals are built by repeating a pattern at different

magnifications, ‘‘statistical’’ fractals introduce randomness into

their construction. This disrupts the precise repetition so that

only the pattern’s statistical qualities repeat. Consequently,

although exact and statistical fractals are both physically complex

due to their repeating patterns, the two families of fractals are

not visually identical. Because of their prevalence in nature

(Mandelbrot, 1982), behavioral studies have predominantly

focused on the human response to statistical fractals (Sprott,

1993; Aks and Sprott, 1996; Spehar et al., 2003, 2015; Hagerhall

et al., 2004; Taylor et al., 2005, 2011; Forsythe et al., 2011; Spehar

and Taylor, 2013).

Sprott (1993) provided the first, systematic investigation

of aesthetic responses using fractal patterns generated with

equations based on nature’s chaotic processes. He investigated

the relationship between aesthetics and fractal dimension, D.

This parameter quantifies the relative contributions of the coarse

and fine scale patterns in the fractal mix of repeating patterns.

For images, D typically lies in the range 1 < D < 2, with

a value closer to 2 indicating a larger ratio of fine to coarse

scale patterns (Fairbanks and Taylor, 2011). Sprott found that

evaluations judged as visually appealing were most often given

to the fractal patterns with moderately low fractal dimension

(Taylor and Sprott, 2008).

Taylor et al. (1999, 2007) showed that Jackson Pollock’s

abstract paintings are composed of statistical fractals, allowing

preference studies to be extended to artistic stimuli. Preference

was found to peak in the moderately low dimension range for

Pollock’s fractals, along withmathematical fractals and for simple

fractal objects found in nature (Spehar et al., 2003), a result that

has been observed in physiological recordings as well (Taylor,

2006; Taylor et al., 2011). This preference for moderately low

dimension was then shown to generalize to the horizon line of

complex natural scenes (Hagerhall et al., 2004) as well as gray

scale and color images (Taylor et al., 2005; Forsythe et al., 2011;

Spehar and Taylor, 2013; Spehar et al., 2015). Abstract, graphical

and representational art share these scale-invariant properties

(Mureika et al., 2004; Graham and Field, 2007, 2008; Redies

et al., 2007; Graham and Redies, 2010). This mounting evidence

leads to the conclusion that there is a ‘‘universal’’ preference for

statistical fractals that have moderately low dimensionality, but

the question of whether this extends to exact fractals remains

unanswered.

To date, only Hagerhall et al. (2015) have performed

controlled experiments on exact fractals. Their results provide an

intriguing hint that non-random, recursive patterns may have a

different aesthetic than their statistical counterparts. By taking

continuous electrophysiological recordings from the scalp using

electroencephalography (EEG), Hagerhall et al. (2015) showed

that alpha-band power of the EEG signal changes as a statistical

fractal is morphed into its exact counterpart. Here, we report

the first systematic study of behavioral responses to exact fractal

patterns.

The fractal dimension of an exact fractal is quantified by

the expression D = log(NR)/log(1/SR), where N is the number

of line segments in the pattern, S is the scale factor, and

R is the number of recursions of the pattern. The number of

recursions therefore changes the observed pattern, but not its

fractal dimension, and an infinite number of patterns could

be generated which have the same dimension (Mandelbrot,

1977). Here, we manipulate these fractal parameters to identify

commonalities in response patterns to multiple fractal patterns.

Specifically, we tune D by varying the relative scaling at each

recursion. We consider various generator patterns to investigate

the impact of spatial symmetries, such as radial and mirror

symmetry, at the same levels of D across the patterns. We also

vary the level of recursion, the number of repetitions across

scales, which we call scale-invariance. Exact scale-invariance

has not been investigated previously with regard to aesthetics.

We find it worthy of consideration because many aesthetically

pleasing patterns that humans generate are strictly ordered and

exhibit structure across multiple scales of measurement. For

example, Escher’s Circle Limit series possesses mirror, radial and

scaling symmetries (van Dusen and Taylor, 2013), and represents

a recent example of the spatial symmetry and scale-invariance

that are held sacred in so many cultures’ art from antiquity

onward.

Fractals’ scale invariance represents an intriguing geometry in

terms of aesthetics. Fractals possess two features that historically

have attracted much interest—complexity and order. Birkhoff

(1933) first formalized aesthetic value as the ratio of order

and complexity. Complexity, to Birkhoff (1931, 1933), was a

physical, measurable characteristic that could be described

mathematically, as opposed to the psychological construct

that has more recently been introduced by various authors

(e.g., Attneave, 1954). We disambiguate the two by calling

the latter ‘‘perceived complexity’’ as opposed to Birkhoff’s

(1931) complexity, which we label ‘‘physical complexity.’’

Physical complexity was described by Birkhoff (1933) as

a physical property of a stimulus that requires automatic

adjustments in attention, specifically the number of indefinitely

extended lines that cover all of the segments of a polygon,

for visually presented stimuli. Birkhoff (1933) described order

and symmetry as synonymous, with order operationalized

as a linear sum of values that code for the presence of

symmetry, vertical mirror symmetry, rotational symmetry,

and an ability to be translated for tessellation, minus a

value that codes for irregularity in form. This served as

the first mathematical description of aesthetic value: the

order terms divided by physical complexity (Birkhoff, 1931).

Birkhoff’s relationship has failed to predict the response

trends in various studies (Eysenck, 1941, 1942; Munsinger and

Kessen, 1964a,b; Boselie and Leeuwenburg, 1985; Martindale

et al., 1988). As such, others have refined the relationship.

Eysenck (1941) was the first to do this, proposing that

this relationship is instead multiplicative, with aesthetic

value being driven upward by an increase in order or

complexity.

Physical complexity, as Birkhoff (1933) notes, is interesting

at the more basic level of attention and perceptual processing as

well, not just as an aesthetic concept. Attneave (1957) empirically

determined that judgments about perceived complexity are
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dependent upon two of the three factors that he varied—the

number of line segments that composed a polygon and whether

the pattern was mirror symmetric (whether the edges were

curved or straight did not contribute to perceived complexity

judgments). Berlyne (1971) extended this in the direction of

our study by considering patterns, not just polygons, as a

means to determine the factors that affect interestingness and

pleasantness. He attempted to generate a more exhaustive list

of ways that patterns may vary. Of the two factors Berlyne

concluded impact such judgments, his discussion of physical

complexity (referred to by Berlyne simply as complexity) is of

interest here. His definition of physical complexity consisted of

several pattern properties that may be classified as affecting the

numerosity of the pattern contents (e.g., amount of material,

number of independent units) and the symmetry of the pattern

(e.g., asymmetry, random redistribution, irregularity of shape).

Thus, across several decades of work, an inconsistent set of

definitions for ‘‘complexity’’ has emerged. What is evident,

having been consistently observed, is that symmetry and

numerosity of the contents of a stimulus composed of Euclidian

shapes (i.e., aspects of physical complexity) affects judgments of

perceived complexity (Cutting and Garvin, 1987; Eysenck, 1941,

1942).

With the introduction of fractal geometry by Mandelbrot

(1977) and the notion that physical complexity is affected

by the introduction of structure at increasingly fine scales

came the possibility of disrupting the implicit notion that

patterns which are not mirror or radially symmetric lack

order. Cutting and Garvin (1987) introduced scale-invariance

to the study of perceived complexity judgments by presenting

participants with images of exact fractals that varied in D,

the level of recursion, and the number of segments in the

generator, and found that these correlate with traditional

measures of physical complexity such as the perimeter-area

ratio, number of segments, and structural codes (as in Boselie

and Leeuwenburg, 1985), thereby generalizing the perceived

complexity literature to fractals. Cutting and Garvin (1987)

did not find that symmetry affected perceived complexity

judgments for their fractal patterns, but this was due to the

fact that they only used radially symmetric exact fractals. A

major limitation of their study as it relates to this discrepancy

is that their stimulus set only included exact fractals. The

distinction between exact and statistical fractals is important

here in that Berlyne’s (1971) discussion of the preference

for physical complexity includes randomization as a factor

that contributes to irregularity, with more irregularity being

less pleasing. In terms of Berlyne’s (1971) dichotomy of

more or less irregular forms, Cutting and Garvin (1987)

only used the less-irregular type, exact fractals, and so

it has remained unknown whether perceived complexity

or preference is affected by order (symmetry) in fractal

patterns.

Given that symmetric geometric patterns feature

prominently in many cultures’ traditional and contemporary

art (Voss, 1998; Graham and Redies, 2010; Koch et al.,

2010; Melmer et al., 2013) and that symmetry is detected

by the primate visual system (Sasaki et al., 2005) and

affects brain responses during aesthetic judgments

(Jacobsen et al., 2006), we hypothesized the following:

(1) across families of exact fractals, there should

be a universal pattern of appeal that varies with

physical complexity (more complexity, as quantified

by a higher D value, should be more preferred); and

(2) the visual appeal across D should be modulated by

more typically studied forms of symmetry (i.e., mirror and

radial symmetry) and the level of recursion in the pattern

(a greater number of iterations and more symmetry should

be more preferred than lower numbers of iterations or less

spatial symmetry, thus modulating the appeal of higher D

patterns).

From these aesthetics and perceived complexity studies, there

are two patterns of results describing the change in preference

across D that may reasonably be expected: a linearly increasing

relationship or a quadratic trend that peaks at moderately

low D. The first is supported by a combination of theory

and evidence. There is a strong, positive correlation between

judgments of perceived complexity and D for exact fractals

(Cutting and Garvin, 1987). Theories from Birkhoff (1933)

onward predict that physical complexity has a direct effect

on aesthetics. If the physical complexity-preference relationship

holds for exact fractals and follows from the relationship

between D and perceived complexity, then we would expect a

strong positive linear relationship between preference ratings

and D.

This contrasts with the prediction that follows directly

from the large body of literature that shows that preference

universally peaks at moderately low D in aesthetic studies of

statistical fractals (Spehar et al., 2003, 2015; Hagerhall et al.,

2004; Taylor et al., 2005; Forsythe et al., 2011; Spehar and

Taylor, 2013). If there is no sensitivity to spatial symmetry

as suggested by the Cutting and Garvin (1987) results,

spatially asymmetric and spatially symmetric exact fractals

should follow the preference patterns observed in those studies

of statistical fractals. The Berlyne (1971) aesthetics model

predicts a peak as a function of familiarity and physical

complexity, but we remain agnostic about where such a

peak would occur because there have been no studies of

the prevalence of exact fractals of various fractal dimensions.

Moreover, evidence of such a peak has not always been

observed (Martindale et al., 1990; Nadal et al., 2010; Vessel

and Rubin, 2010; Forsythe et al., 2011). Here, we show

that the universal aesthetic response to statistical fractals

does not generalize to exact fractal patterns with spatial and

scale-invariance.

EXPERIMENT 1—PREFERENCE FOR
EXACT MIDPOINT DISPLACEMENT
FRACTALS

Introduction
We first explored the role of physical complexity in determining

preference for an exact fractal pattern by varying the fractal

dimension. We held the variables recursion and symmetry
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constant for our first study, because no previous studies have

investigated the aesthetic response to exact fractals, and so we

wanted a pure test of the effects of changing D of an exact fractal

pattern.

Methods

Stimuli—Exact Midpoint Displacement Fractals
Exact midpoint displacement fractals (examples shown in

Figure 1 and described in Table 1) were generated according to

the algorithm described by Fournier et al. (1982). This process

starts with four points. As a zero-order level of recursion, a

vertex is added to the middle of the square, dividing it into four

quadrants. The vertex, V, is displaced vertically by a value that is

scaled by a factor of 1/2 raised to a power of −2(3−D)(R + 1),

where D is fractal dimension and R is the current level of

recursion. For these exact fractals, the scaling value is held

constant for each vertex at each level of recursion, such that

V = 1*2−2(3−D)(R+1). The midpoint of each quadrant then forms

a vertex for the first level of recursion that is displaced by

V. This is iterated for the desired level of recursion, which is

10× in the present study. This allowed us to produce nine

1025 × 1025 pixel images, which can be thought of as terrains

that occupy more than a 2-D but less than a 3-D Euclidian

space. To achieve a constant level of luminance, we converted

these terrains into binary images by applying a threshold at the

median. Pixels with lower values were set to zero (black), and

values higher than the median set to one (white) as can be seen in

Figure 1.

Participants
Forty-two (26 female) undergraduates participated for course

credit. Participants’ ages ranged from 18 to 49 (M = 20,

Median = 19). One participant did not report his age.

Procedure
This study was carried out in accordance with a protocol

approved by the Research Compliance Services of the University

of Oregon. All participants gave written informed consent

in accordance with the Declaration of Helsinki. Participants

were tested individually on Dell Optiplex 755 computers

with 1024 × 768 resolution and 60 Hz refresh rate. All

participants completed the preference task and then a survey

that included items about demographic and personality

variables.

At the start of the preference task, participants were instructed

to rate the visual appeal of each image using a 7-point

scale, where 1 was very low and 7 was very high. There

were three practice trials followed by 90 experimental trials.

The three practice trials sampled the range of dimension,

such that D = 1.1, 1.5 and 1.9, while the experimental

trials sampled the range of dimension at intervals of 0.1,

such that D = 1.1, 1.2, . . ., 1.9. Image presentation order

was randomized for each participant on the practice and

experimental trials.

All stimuli were presented on a gray background with

illumination halfway between the black and white portions of

the stimulus. The start of each trial was indicated by a red

FIGURE 1 | Exact midpoint displacement fractals with 10 levels of recursion at dimension (A) 1.1, (B) 1.5, and (C) 1.9.

TABLE 1 | Fractals’ characteristics.

Fractal name Fractal generator Dimension range Mirror symmetry Radial symmetry Recursions Generator segments

Midpoint displacement Raise midpoint of square 1.1–1.9 + + 10 4

Sierpinski carpet Remove square 1.1–1.9 + + 4 9

Symmetric dragon Split line segment at midpoint 1.1–2.0 − + 10 2

Golden dragon-10 Split line segment off midpoint 1.1–1.9 − − 10 2

Golden dragon-17 Split line segment off midpoint 1.1–1.9 − − 17 2

Koch snowflake-5 Raise middle third of line segment 1.1–2.0 + + 5 12

Koch snowflake-6 Raise middle third of line segment 1.1–1.9 + + 6 12
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fixation point, which remained on the screen for one second.

Then participants were presented with a fractal stimulus for

3 s. Once, the stimulus was removed, participants indicated

visual appeal by pressing the corresponding key on the keyboard.

Participants had 3 s to respond before automatically moving

to the next trial. If the participant responded before 3 s had

passed, the next trial would begin immediately following their

response.

All participants saw images with nine different levels of

dimension 10×. The images were presented in random order

without replacement.

Results

Preference for Exact Midpoint Displacement Fractals

Across Dimension
To determine the effect of dimension on preference for exact

fractals, we performed a repeated measures ANOVA with

nine levels (D = 1.1, 1.2, . . ., 1.9) using each participant’s average

preference rating for each stimulus. Mauchly’s test indicated that

the assumption of sphericity had been violated, χ2
(35) = 574.46,

p < 0.001. Therefore degrees of freedom were corrected using

Greenhouse-Geissser estimates of sphericity (ε = 0.16). The

results show that there was a significant effect of dimension

on preference, F(1.30, 51.92) = 21.71, p < 0.001, η2 = 0.35.

Within-subject contrasts showed significant linear (p < 0.001,

η2 = 0.38), quadratic (p < 0.007, η2 = 0.17), cubic (p < 0.001,

η2 = 0.34), 6th (p = 0.02, η2 = 0.14), and 7th (p = 0.03, η2 = 0.12)

order trends. Other higher-order trends were non-significant

(p > 0.05 and η2 < 0.10 for all other trends). The trend is

predominantly linear and cubic in Figure 2, suggesting that

preference increases with D for exact fractals and stabilizes at

high D.

Subgroup Preferences for Exact Midpoint

Displacement Fractals Across D
To determine whether the observed trend could be

better explained as a combination of multiple discrete

subgroups’ patterns of responses, we performed a two-

step cluster analysis and tested for an interaction between

the subgroups’ preferences and D. First, we performed

a hierarchical cluster analysis using Ward’s method to

separate individuals into groups using their preference

ratings for each level of D. The resultant agglomeration

matrix indicated a two-cluster solution. We then performed

k-means clustering analysis to form two groups. These cluster

analysis techniques are described in more detail in Norušis

(2011).

Finally, we investigated whether there was an interaction

between cluster-membership and D by performing a mixed

ANOVA with nine levels of dimension and two groups.

Mauchly’s test indicated that the assumption of sphericity had

been violated, χ2
(35) = 270.02, p < 0.001. Therefore degrees

of freedom were corrected using Greenhouse-Geissser estimates

of sphericity (ε = 0.28). The results show that there was a

significant interaction between D and group, F(2.52, 87.81) = 79.81,

p < 0.001, η2 = 0.67. Figure 3 shows that a minority of

FIGURE 2 | Mean preference ratings for exact midpoint displacement

fractals as a function of dimension (error bars represent standard

error).

FIGURE 3 | Mean preference ratings for exact midpoint displacement

fractals as a function of dimension for each subpopulation identified

with cluster analysis (error bars represent standard error).

subjects (24%, gray line) prefer lower D midpoint fractals,

with preference ratings decreasing as D increases, on average.

In contrast, preference ratings from the majority of subjects
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(76%) increase as a function of D (Figure 3, black line).

This refines our interpretation about the sample’s average

preferences.

We do not report the between-subjects test because, while

significant, it is not theoretically interesting given that the

clusters were formed through the identification of differences

between the groups. We also leave out the main effect of

dimension for this test, like the main effects of and interactions

among within-subject variables for these group-wise tests

because if they remain significant, they have been reported above,

whereas if they do not, it may be that they have lost significance

due to the loss of statistical power.

Discussion
Our results suggest that there is typicality of preference for a

particular level or range of levels of exact fractal patterns’ fractal

dimension. For most individuals, the most preferable patterns

are of the highest D, and the least preferable are of the lowest

D, as shown in Figure 2. Because a minority of individuals

prefer lower D midpoint fractals (see Figure 3), it is possible

that there are individual differences to be explored in future

studies.

The pattern of typical preferences for exact fractals differs

from that of preference for statistical fractals. Multiple studies

have shown that preference for statistical fractals peaks at

low-to-moderate levels of D (Sprott, 1993; Aks and Sprott,

1996; Spehar et al., 2003; Taylor et al., 2005; Spehar and

Taylor, 2013), whereas peak preference for exact fractals

appears to trend toward a value near D = 2 for most people

in this experiment. A particularly acute limitation of this

study is that we only presented participants with one fractal

pattern at a particular level of recursion. Our result might

not generalize to patterns where the level of recursion and

extent of spatial symmetry is different, a possibility we test in

Experiment 2.

EXPERIMENT 2—PREFERENCE FOR
EXACT FRACTALS ACROSS DIMENSION,
RECURSION AND SYMMETRY

Introduction
After finding that the pattern of typical preference for exact

midpoint displacement fractals is distinct from the pattern of

preferences that has been observed for statistical fractals, we

were intent on testing the generalizability of our first study’s

results. Here, we manipulate the variables recursion and spatial

symmetry by presenting participants with six fractal patterns that

each vary in fractal dimension as in Experiment 1.

Methods

Stimuli
For this study, we generated images of several types of fractals

for 1 to 20 recursions at multiple D values, much like Cutting

and Garvin (1987). From those, we chose four fractal generator

rules and tested one or two levels of recursion for each,

resulting in six patterns that varied in D, recursion, and spatial

symmetry, which we presented to participants. Specifically, we

presented participants with one set of Sierpinski carpets with

four levels of recursion, symmetric dragon fractals with 10 levels

of recursion, two sets of asymmetric dragon fractals—one with

10 and another with 17 levels of recursion, and two sets of

Koch snowflake fractals—one with four and the other with five

levels of recursion. Examples from these stimulus sets are shown

in Figure 4, and they are described in Table 1. For examples

of the effects of recursion, see Figure panel pairs 4G–J, H–K,

I–L, M–P, N–Q, and O–R. For a further description of these

patterns’ generation method and visualization of the process

of recursion, see Barnsley et al. (1988) or Cutting and Garvin

(1987).

Sierpinski Carpet Fractals
To generate Sierpinski carpet fractals, we start with a filled area,

for example from [0, 0] and [0, 1] to [1, 0] and [1, 1]. For the

zero-order recursion, we remove a portion, such as the middle

ninth, from [0.33, 0.33] and [0.33, 0.67] to [0.67, 0.33] and [0.67,

0.67]. This process is iterated for each region (each 1/9th) of

every section that was not removed at the previous level recursion

for a specified number of recursions. We utilized images of

Sierpinski carpets that had undergone four levels of recursion.

These fractal patterns exhibit the spatial symmetry of the exact

midpoint displacement fractals used in Experiment 1.

Symmetric Dragon Fractals
To generate dragon fractals, we start with a line segment that

extends from [0, 0] to [1, 0]. For the zero-order recursion, we

break the segment into two parts by raising a point between these

two by a particular value (e.g., [0.5, 0] may become [0.5, 0.5])

such that this new pair of line segments and the original segment

would form a triangle. The original segment is removed and the

process is iterated for each new line segment at each level of

recursion for a specified number of recursions. We manipulated

the scaling dimension of these fractals by adjusting the angle

at which the new segments are joined at each recursion. We

utilized images of dragon fractals that had undergone 10 levels

of recursion. These fractal patterns exhibit only radial and not

mirror symmetry.

Golden Dragon Fractals
We call these golden dragons because the line segments are

generated using ϕ (although their lengths do not scale at 1:1.6).

The lengths of the segments that replace the previous recursion

level’s segment are given by the equations a = (1/ϕ)(1/ϕ),

b = [(1/ϕ)(1/ϕ)]2, and c2 = a2 + b2, such that a 6= b, whereas a = b

in the symmetric dragon fractals. We manipulated the scaling

dimension of these fractals by adjusting the angle at which the

new segments are joined at each recursion as in the symmetric

dragon fractals.

We chose recursion levels of 10 and 17 to survey the range

of recursions and differentiate between moderate and high levels

of recursion for a pattern with a base of one segment, and

to provide a pattern comparable to the symmetric dragons

of this experiment and the midpoint displacement fractals of

Experiment 1.
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FIGURE 4 | Exact fractals that vary in generator rule, level of recursion and dimension. Each column shows a different level of dimension, such that the

dimension of the fractals in columns 1 (A,D,G,J,M,P) 2 (B,E,H,K,N,Q) and 3 (C,F,I,L,O,R) is 1.1, 1.5, and 1.9, respectively. (A–C) Show Sierpinski carpets, where

the middle 1/9th of the pattern has been removed at four scales. (D–L) Show dragon fractals that vary in symmetry recursion and dimension. (D–F) (Dragons) result

from 10 levels of recursion with bisection of the segments at each level of recursion. (G–I) (Golden dragons) result from 10 levels of recursion with ratio a:b, where

a = (1/ϕ)(1/ϕ) and b = a2, as the basis of the adjustment of each segment at each level of recursion. (J–L) (Golden dragons) result from 17 levels of recursion with the

same rule as (G–I). (M-R) Show Koch snowflakes that vary in recursion and dimension. (M–O) Result from bisection of the segments of a triangle and bisection of

each segment at each level of recursion for five recursions. (P–R) Are the result of an additional level of recursion (six recursions) applied to the snowflakes of (M–O).

These fractal patterns do not exhibit spatial symmetry, as

the radial symmetry, which was exhibited by the other dragon

fractals, is disrupted by our use of the golden ratio to define the

two sub-units of each level of recursion.

Koch Snowflake Fractals
To generate Koch curves, the same starting line segment is

used, but only a portion of the segment is raised. At the

first level of recursion, that rule is carried out on each of the
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sub-sections, such that four midsections are then raised on

the next recursion where a single segment existed prior to the

previous recursion.

We tessellated the final pattern twice to form a snowflake

pattern with multiple axes of reflection and radial symmetry.

Because the edge segments grow at a much more rapid rate

(twice as fast as the dragons), and because we tessellated the

pattern, we chose a priori to use the Koch snowflake images that

showed five and six levels of recursion to more closely match

the visual appeal of the asymmetric dragons which have greater

recursion.

These fractal patterns exhibit radial and mirror symmetry,

with a different number of axes of radial and mirror

symmetry than the exact midpoint displacement fractals used in

Experiment 1 or the Sierpinski carpets used in this Experiment.

Participants
Eighteen undergraduates (7 female) participated for course

credit. Participants’ ages ranged from 18 to 24 (M = 20,

Mdn = 19).

Procedure
This study was carried out in accordance with a protocol

approved by the Research Compliance Services of the University

of Oregon. All participants gave written informed consent

in accordance with the Declaration of Helsinki. Participants

were tested individually on Dell Optiplex 755 computers with

1024 × 768 resolution and 60 Hz refresh rate. All participants

completed the preference task described in Experiment 1

using the stimuli described in ‘‘Introduction’’ Section and its

subsections.

Each trial consisted of the presentation and opportunity to

rate one fractal pattern at a given level of dimension, recursion,

and symmetry. Each trial began with the presentation of a fractal

pattern that remained on the screen for 3 s. Once the stimulus

was removed, participants indicated visual appeal by pressing

a numeric key in the range of 1 to 7. Participants had 3 s

to respond before automatically moving to the next trial. If

the participant responded before 3 s had passed, the next trial

would begin immediately following their response. Trials were

presented within blocks.

Blocks consisted of only one fractal generator and recursion

level to mitigate cross-pattern comparisons. Each block began

with three practice trials. The practice trials consisted of

the presentation of an image at D = 1.1, 1.5, or 1.9, and

a subsequent fixation period during which the participant

was asked to respond. During each block’s experimental trial

period, an image from each dimension level was presented

once. There were nine experimental trials per block. Practice

and experimental trial stimulus order was randomized without

replacement.

Block order was randomized without replacement. The block

sequence was repeated three times with new random orders for

each repetition for each participant. Participants completed a

total of 18 blocks.

Participants’ responses to each stimulus were averaged to give

a continuous preference rating that could span the range 1 to 7.

Two stimuli (a 5-recursion Koch snowflake and a

10-recursion symmetric dragon), each with D = 2.0, were

presented to participants within their respective pattern-

recursion blocks, but have been left out of the analyses that

follow. They are not reported for theoretical reasons—here

we are only interested in fractals that would not fill space at

an infinite number of recursions. We are not interested in the

aesthetics of shapes that can be described by Euclidian geometry

(e.g., a Sierpinski carpet with D = 2.0 would be a black square).

Results
We performed three analyses, one on each of the sets of fractals

that we only tested at one level of recursion, and another on

the sets of fractals that we tested with two levels of recursion.

This allowed us to: (1) generalize our findings from the previous

experiment’s exact fractals to several different sets of exact

fractals that exhibit radial and mirror symmetry; (2) test whether

the results from Experiment 1 generalize to line fractals that do

not exhibit the extensively studied property of mirror symmetry;

and (3) test for interactions among dimension, recursion and

spatial symmetry.

Preference for Sierpinski Carpets—Another Fractal

with Radial and Mirror Symmetry
To determine whether the trend we observed in our first

experiment generalizes to other exact fractals, we performed

a repeated measures ANOVA with nine levels (D = 1.1,

1.2, . . ., 1.9) using each participant’s average preference

rating for each stimulus from a set of Sierpinski carpets.

Mauchly’s test indicated that the assumption of sphericity

had been violated, χ2
(35) = 91.21, p < 0.001. Therefore

degrees of freedom were corrected using Greenhouse-Geissser

estimates of sphericity (ε = 0.28). The results show that

there was a significant effect of dimension on preference,

F(2.25, 38.30) = 18.77, p < 0.001, η2 = 0.53. Within-subject

contrasts showed a significant linear trend (p < 0.001,

η2 = 0.66). All higher-order trends were non-significant

(p > 0.05 and η2 < 0.10 for all other trends). This result

is apparent in Figure 5, which confirms that preference

increases with D for exact fractals that exhibit radial and mirror

symmetry.

Subgroup Preferences for Sierpinski Carpet Fractals

Across D
To test, again, whether there are distinct subgroups who

exhibit different preference trends, we performed a two-step

cluster analysis as described in ‘‘Subgroup Preferences for Exact

Midpoint Displacement Fractals across D’’ Section using all

of the preference ratings from these participants, which again

indicated a two-cluster solution. We tested for an interaction

between the subgroups’ preferences and D by performing a

mixed ANOVA with nine levels of dimension and two groups.

Mauchly’s test indicated that the assumption of sphericity had

been violated, χ2
(35) = 87.03, p < 0.001. Therefore degrees of

freedom were corrected using Greenhouse-Geissser estimates of

sphericity (ε = 0.28). The results show that there was not a

significant interaction between D and group, F(2.20, 35.21) = 9.94,
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FIGURE 5 | Mean preference ratings for Sierpinski carpet fractals as a

function of dimension (error bars represent standard error).

FIGURE 6 |Q4 Mean preference ratings for Sierpinski carpet fractals as a

function of dimension for each subpopulation identified with cluster

analysis (error bars represent standard error).

p = 0.73, η2 = 0.02. Figure 6 shows that both groups

identified by the cluster analysis tend to indicate increasing

preferences across the range of D, having used a similar portion

of the scale for this subset of stimuli. This strengthens our

interpretation about the sample’s average preferences. This

suggests that there is a typical pattern of preference for exact

fractal patterns that are distributed across the entire image

space (here our smaller sample may have failed to include

individuals from the subpopulation which prefers lower D

fractals). The following analyses test whether this extends to

line fractals that are not equally distributed across an image

space.

Preference for Symmetric Dragon Fractals—Line

Fractals with Radial Symmetry
Because many previous studies have focused on faces and other

mirror-symmetric patterns (Rhodes et al., 1999; Thornhill and

Gangestad, 1999; Jacobsen and Höfel, 2003; Jacobsen et al.,

2006), we wanted to determine whether the trend we observed

in our first experiment and the preceding analysis was due,

specifically, to an interplay between mirror symmetry and scale-

invaraince for patterns that are equally distributed across an

image space. To test this, we again performed a repeated

measures ANOVA with nine levels (D = 1.1, 1.2, . . ., 1.9) using

each participant’s average preference rating for each stimulus

from a set of dragon fractals, which exhibit no mirror symmetry,

but retain the radial symmetry observable in the stimuli that

contributed to the results discussed so far. Mauchly’s test

indicated that the assumption of sphericity had been violated,

χ2
(35) = 120.66, p < 0.001. Therefore degrees of freedom were

corrected using Greenhouse-Geissser estimates of sphericity

(ε = 0.33). The results show that there was a significant effect

of D on preference, F(2.61, 44.39) = 6.86, p = 0.001, η2 = 0.29.

Within-subject contrasts showed significant linear (p = 0.01,

η2 = 0.33), quadratic (p = 0.009, η2 = 0.34), 5th (p = 0.02,

η2 = 0.29) and 7th (p < 0.001, η2 = 0.53) order trends. All

other trends were non-significant (p > 0.05 and η2 < 0.15 for

all other trends). This result is apparent in Figure 7, which

shows a more complicated relationship between preference and

D for exact fractals that do not exhibit mirror symmetry. Here,

it appears that preference increases with D, to a point, before

stabilizing.

Subgroup Preferences for Symmetric Dragon

Fractals Across D
To test, again, whether there are distinct subgroups that exhibit

different preference trends, we performed a mixed ANOVA

with nine levels of dimension and the two groups as described

in ‘‘Subgroup Preferences for Sierpinski Carpet Fractals Across

D’’ Section. Mauchly’s test indicated that the assumption of

sphericity had been violated, χ2
(35) = 112.09, p < 0.001.

Therefore degrees of freedom were corrected using Greenhouse-

Geissser estimates of sphericity (ε = 0.31). The results show that

there was not a significant interaction between D and group,

F(2.49, 39.80) = 1.47, p = 0.24, η2 = 0.08. Figure 8 shows that

both groups identified by the cluster analysis tend to indicate

increasing preferences across the range of D, although they

used different ranges of the scale for this subset of stimuli.

The subtle difference in trends between groups for this set of

stimuli in particular is detected by the quadratic within-subject
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FIGURE 7 | Mean preference ratings for symmetric dragon fractals as

a function of dimension (error bars represent standard error).

FIGURE 8 | Mean preference ratings for symmetric dragon fractals as

a function of dimension for each subpopulation identified with cluster

analysis (error bars represent standard error).

contrast (p = 0.02, η2 = 0.28) with all other trends non-

significant (p > 0.05, η2 < 0.15). This result further replicates

our finding of a generator-pattern insensitive effect of higher

preference for high D than low D exact fractals. The following

analyses further probe the consistency of this trend while

also allowing us to test for effects of symmetry and level of

recursion.

Preference for Line Fractals that Vary in Extent of

Symmetry and Recursion
Having confirmed that there is typicality in the exact

fractals for which the majority of individuals express their

highest and lowest preference, we now move to our second

hypothesis—that the visual appeal of scale-invariance at

different levels of D is modulated by more typically studied

forms of symmetry and the level of recursion in a pattern.

We tested this by manipulating the level of recursion in two

generators that differ in their extent of symmetry. These

golden dragons have no mirror or radial symmetry, while the

Koch snowflakes exhibit multiple axes of radial and mirror

symmetry.

Preference ratings for the golden dragons and Koch

snowflakes were subjected to a three-way ANOVA having two

levels of spatial symmetry (absent [Golden Dragon], present

[Koch]), two levels of recursion (low [Dragon 10 and Koch

5], high [Dragon 17 and Koch 6]), and nine levels of fractal

dimension (D = [1.1, 1.2, . . ., 1.9]). Degrees of freedom for each

F-test are reported with Greenhouse-Geissser correction when

assumptions of sphericity have been violated, as determined by

p < 0.05 for Mauchly’s test.

The analysis yielded a main effect of the number of recursions

F(1, 17) = 94.15, p = 0.001, η2 = 0.85, such that aesthetic

value ratings were higher for fractals with a higher number

of recursions (M = 4.7, 95% CI = [4.37, 5.03]) than fractals

with fewer recursions (M = 3.59, 95% CI = [3.25, 3.94]).

There was also a main effect of the degree of symmetry

F(1, 17) = 17.92, p = 0.001, η2 = 0.51, such that preference

ratings for dragon fractals (M = 3.61, 95% CI = [3.19, 3.03]),

which have no spatial symmetry, were lower than preference

ratings for Koch snowflakes (M = 4.68, 95% CI = [4.28, 5.09]),

which have both mirror and radial symmetry. There was also

a main effect of D F(1.76, 29.99) = 25.87, p < 0.001, η2 = 0.60,

with significant linear (p < 0.001, η2 = 0.60) and quadratic

(p < 0.001, η2 = 0.84) trends accounting for the majority of the

variance (all higher order trends were non-significant (p > 0.05,

η2 < 0.15).

The analysis also yielded two significant two-way interactions.

A significant interaction was observed between symmetry and

recursion, F(1, 17) = 95.57, p < 0.001, η2 = 0.85. When this

is considered in light of the 3-way interaction shown in

Figure 9, it is clear that while there is no difference in level

of recursion for the Koch snowflakes, the lower-level recursion

golden dragon fractal is much less preferable than its higher-

level recursion counterpart across the majority of the range

of D (see Figure 9). There was also a significant interaction

between recursion andD, F(3.10, 52.74) = 9.95, p< 0.001, η2 = 0.37.

Again, this is driven by the 3-way interaction and the lower

preference for the low-level recursion golden dragon fractal. No

significant interaction between level of symmetry and change

in D was observed F(2.19, 37.30) = 0.51, p = 0.62, η2 = 0.03.
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FIGURE 9 | Mean preference ratings for Koch snowflake and golden

dragon fractals as a function of dimension (error bars represent

standard error).

The two generators appear to follow similar linear-quadratic

trends.

These effects are driven by a three-way interaction among

dimension, recursion, and symmetry F (3.81, 64.82) = 11.58,

p < 0.001, η2 = 0.41. The Koch snowflakes with their 3-axis

symmetry were rated equivalently across changes in D at five

and six iterations (see Figure 9). Meanwhile, the golden dragon

fractal with 10 recursions was given a largely constant preference

rating across D that was much lower than the ratings given

the 17 recursion dragon fractal at most fractal dimensions.

The difference appears to increase as a function of D (see

Figure 9). These differences are characterized by significant

linear (p < 0.001, η2 = 0.57) and quadratic (p < 0.001, η2 = 0.55)

trends. All higher order trends were non-significant (p > 0.05,

η2 < 0.05).

Although we have characterized the within-participants

effects of dimension, recursion and symmetry here, the

test also yielded a large, significant between-subjects effect

F(1, 17) = 773.64, p < 0.001, η2 = 0.98. We do not have

sufficient power to investigate individual differences with

our sample size, but speculate that this, in part, is due to

some participants whose preferences diverge from those of

the majority as observed in Experiment 1 and the preceding

analyses.

Subgroup Preferences for Line Fractals that Vary in

Extent of Symmetry and Recursion
To test whether these trends varied by subgroup, we performed

a mixed ANOVA with two levels of symmetry, two levels of

recursion, nine levels of dimension and the two subgroups

as described in ‘‘Subgroup Preferences for Sierpinski Carpet

Fractals Across D’’ Section. Mauchly’s test indicated that the

assumption of sphericity had been violated for each of the effects

involving dimension, so degrees of freedom were corrected using

Greenhouse-Geissser correction. At the levels of 2- and 3-way

interaction, we only observed a significant interaction between

group and symmetry, F(1, 16) = 21.39, p < 0.001, η2 = 0.57.

This is driven by a four-way interaction among dimension,

recursion, symmetry and subgroup F (3.42, 54.69) = 7.91, p< 0.001,

η2 = 0.33. Figure 10 shows a striking difference between groups

in that the majority of individuals express low preference for

asymmetric line fractals with low levels of recursion. Interpreted

in conjunction with the effect observed in ‘‘Subgroup Preferences

for Symmetric Dragon Fractals Across D’’ and ‘‘Preference for

Line Fractals that Vary in Extent of Symmetry and Recursion’’

Sections, it seems that the majority of individuals prefer high

D fractals that exhibit symmetry and/or a high number of

recursions, while the preference ratings of the minority group

appear to saturate at moderate D. Still, it is noteworthy

that both subgroups maintain the generator-pattern insensitive

effect of higher preference for high D than low D for exact

fractals.

Effect of Symmetry in Dragon Fractals
Our data also lends itself to tests of the effects of symmetry. First,

we consider whether the presence of radial symmetry without

mirror symmetry impacts preference for a fractal, and whether

this differs across the subgroups identified in this experiment.

We compared the aesthetic appeal of 10-recursion golden and

symmetric dragon fractals to test the hypothesis that the presence

of radial symmetry would be more preferred than its absence

and that this effect would be enhanced at higher levels of

dimension.

Preference ratings for the golden and radially symmetric

dragons were subjected to a mixed ANOVA having two levels of

radial symmetry (absent [Golden Dragon], present [Symmetric

Dragon]), nine levels of fractal dimension (D = [1.1, 1.2, . . .,

1.9]), and the two subgroups. Degrees of freedom for each

F-test are reported with Greenhouse-Geissser correction when

assumptions of sphericity have been violated, as determined by

p < 0.05 for Mauchly’s test.

The analysis yielded amain effect of symmetry F(1, 17) = 23.14,

p < 0.001, η2 = 0.58, such that preference ratings for golden

dragon fractals (M = 2.54, 95% CI = [2.02, 3.06]), were lower

than preference ratings for radially symmetric dragon fractals

(M = 3.16, 95% CI = [2.63, 3.69]). There was also a main

effect of D, F(1.61, 27.28) = 6.04, p = 0.01, η2 = 0.26, with a

strong quadratic trend (p = 0.001, η2 = 0.57) and idiosyncratic

differences in preference ratings resulting in significant linear,

cubic, and 7th order trends as well (ps < 0.05); all other trends

were non-significant.

These main effects should be interpreted in light

of a significant interaction between symmetry and D,

F(3.16, 53.76) = 2.82, p = 0.045, η2 = 0.14. Figure 11 shows that asD

increases, the preference for radially symmetric dragon fractals

increases more than preference for golden dragon fractals. This

Frontiers in Human Neuroscience | www.frontiersin.org 11 May 2016 | Volume 10 | Article 210

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Bies et al. Aesthetics of Exact Fractals

FIGURE 10 | Mean preference ratings for Koch snowflake and golden

dragon fractals as a function of dimension for each subpopulation

identified with cluster analysis (error bars represent standard error).

The majority (67%) subpopulation’s preference ratings are shown in (A), while

the minority (33%) subpopulation’s preference ratings are shown in (B).

interpretation is consistent with the significant linear trend

(p = 0.02, η2 = 0.28) and likely over-fit but significant 5th and 7th

order trends (ps < 0.05); all other trends were non-significant.

FIGURE 11 | Mean preference ratings for 10-recursion symmetric and

golden dragon fractals as a function of dimension (error

bars represent standard error).

There were no significant interactions between the within-

subjects terms and subgroup factor (all F < 1.6, p > 0 .05, and

η2 < 0.10). This indicates that for low levels of recursion, the

presence of radial symmetry does not affect the preference ratings

of the subgroups differently, which is similar to our findings for

Sierpinski carpets and radially symmetric dragon fractals when

considered alone.

Subgroup Preferences for the Presence of Mirror

Symmetry Across Exact Fractals
The preceding analysis suggests that when levels of recursion

are low, there is no effect of radial symmetry on preference

ratings across the subgroups identified by cluster analysis,

but this does not preclude an effect of symmetry at higher

levels of recursion or an effect of mirror symmetry. To

investigate whether the subgroup preferences differed as a

function of mirror symmetry, we formed aggregate scores

for fractals lacking mirror symmetry (the average of all

preference ratings for dragon fractals) and fractals with

mirror symmetry (the average of all preference ratings

for Koch snowflakes and Sierpinski carpets) at each level

of D.

Aggregate score for mirror symmetric and non-mirror

symmetric fractals at each level of D were subjected to a

mixed ANOVA with two levels of mirror symmetry and

nine levels of D for the two subgroups. This revealed a

significant interaction between mirror symmetry and subgroup

membership, F(1, 16) = 37.82, p < 0.001, η2 = 0.70, but

not between D and subgroup membership F(1.72, 27.45) = 1.13,
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FIGURE 12 | Mean preference ratings for mirror symmetric (Koch

snowflakes and Sierpinski carpets) and non-mirror symmetric (all

Dragons) fractals for each subpopulation identified with cluster

analysis (error bars represent standard error).

p = 0.33, η2 = 0.07 or among D, mirror symmetry and

subgroup membership F(1.93, 30.92) = 1.16, p = 0.33, η2 = 0.07.

The subgroup consisting of the majority of individuals rated

mirror-symmetric fractals much higher than the non-mirror

symmetric fractals, whereas the minority subgroup’s ratings did

not differ with the presence or absence of mirror symmetry,

as shown in Figure 12. This result is clearly driven by

the low preference ratings given to low-recursion dragon

fractals by individuals in the majority subgroup as shown in

Figures 8, 10.

Discussion
In this study, all of our participants showed a consistent

preference for higher levels of D, affected in subtle ways

by the simplicity of the generator pattern, and the extent

of symmetry and recursion. Meanwhile, we observed a stark

difference in the subpopulation’s responses to the presence

or absence of mirror symmetry. This is an interesting and

novel finding, given that previous research indicates that

people prefer symmetric images (Jacobsen and Höfel, 2003;

Cárdenas and Harris, 2006; Jacobsen et al., 2006). We showed

that for a minority of individuals, the presence or absence

of mirror symmetry does not strongly modulate preference

ratings. Still, for most, a lack of mirror and radial symmetry

can be overcome by including more recursion and higher

fractal dimensionality. Our results underline the importance of

symmetry on preference, generally, but reveal that the number of

recursions can interact with symmetry in modulating preference

across D.

GENERAL DISCUSSION

Across these two studies we found that preference is higher for

higher D fractal patterns when they are ordered, in contrast

to studies that have found that low to moderate D fractals

are most preferred when the patterns are statistical (Sprott,

1993; Aks and Sprott, 1996; Spehar et al., 2003; Hagerhall

et al., 2004, 2015; Taylor et al., 2005, 2011; Spehar and

Taylor, 2013). The consistency of this effect across various

exact fractals lends itself to the conclusion that there is

universality of preference for higher fractal complexity for exact

fractals that contrasts with the universality of preference for

lower D statistical fractals that Sprott (1993) first began to

detect.

Typicality in preference for exact fractals allows us to extend

the predictions and theory that relate physical complexity

and aesthetics from Birkhoff onward. Consistent with Berlyne

(1971), we would suggest that aesthetics originates in part

from the physical complexity of an object. We propose that

four factors affect fractal aesthetic ratings by affecting their

perceived complexity: fractal dimension, number of elements

in the generator, recursion, and symmetry. Cutting and Garvin

(1987) identified these first three in their analysis of judgments

about fractals’ perceived complexity, and noted that there

is a strong relationship between the number of elements

and a method of describing redundancy in patterns, namely

Leeuwenberg codes (Leeuwenberg, 1971). Fractal dimension

describes the rate at which a pattern increases structure

from coarse to fine scales, with higher D patterns having

more fine structure. Similar to Birkhoff’s and Attneave’s

physical complexity descriptions for polygons, the number

of elements in the generator of a fractal describes how

many elements are introduced at each recursion. Recursion

describes the extent to which the pattern repeats itself across

scales, whereas symmetry describes this at the level of the

overall pattern. Symmetry was not included in Cutting and

Garvin (1987) model because they only showed participants

radially symmetric exact fractals. Still, studies since Birkhoff

(1933) have shown symmetry affects perceptual judgments

(Attneave, 1955; Bornstein et al., 1981; Rhodes et al., 1999;

Jacobsen and Höfel, 2003), and we have previously shown

quite different patterns of visual appeal for statistical fractals

(Spehar et al., 2003, 2015; Hagerhall et al., 2004; Spehar and

Taylor, 2013) as compared to what we show here for exact

fractals. Attneave (1957) provided evidence that symmetry

is an important contributor to judgments about polygons’

perceived complexity. We propose that the effect of symmetry

does not dissipate with recursion, but acts in complement

to it.

Traditionally, theories of aesthetics and perception have used

the term symmetry as a way to discuss spatial symmetries,

such as mirror and radial symmetry (Birkhoff, 1933; Attneave,

1954, 1955; Berlyne, 1971). Mirror symmetry in faces, or lack

thereof, is striking, and contributes to attractiveness ratings

(Rhodes et al., 1999). People prefer mirror-symmetric faces

(Thornhill and Gangestad, 1999). The preference for mirror-

symmetry extends beyond faces. It has been demonstrated that
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mirror symmetry is one of the most predictive factors when

judging if a geometric pattern is beautiful or not (Jacobsen and

Höfel, 2003; Jacobsen et al., 2006). Indeed, the preference ratings

of two thirds of our participants are reflective of sensitivity

to mirror symmetry. But this means that the responses of a

surprisingly large subgroup of our participants did not differ

as a function of the presence of mirror symmetry. As such,

there is a need for further studies to probe the question of

whether everyone is swayed by the presence of mirror symmetry

in faces and other, non-fractal patterns. Even the results of

Jacobsen and Höfel (2003) and Jacobsen et al. (2006) may

be driven by individuals who are either more sensitive to

mirror symmetry or consistently place greater emphasis on the

presence of this symmetry when rating visual appeal. Mirror

symmetry is processed differently from infancy (Bornstein

et al., 1981) and affects the human and non-human primate

brain similarly (Sasaki et al., 2005), so there are evolutionary

roots for the neural basis of its perception. These selection

pressures may or may not have allowed for variability in

sensitivity to such symmetry, but there are individual differences

in the extent of its importance for rating the aesthetics of

fractals. Spatial symmetry in geometric patterns has been

shown to drive activation in brain areas that are involved

in perception and evaluative judgment (Sasaki et al., 2005;

Jacobsen et al., 2006), yet this too could differ on an individual

basis.

We found evidence that these individual differences in

preference for mirror symmetry do not extend to radial

symmetry. Two germane possibilities may explain this finding.

First, the aesthetic value of these, relative to the mirror

symmetric fractals, was generally lower, so there may have

been a floor effect. Second, we may not have included

enough stimuli that were exclusively radially symmetric to

have found a similar effect. A third and rather more exotic

possibility is that the presence of scaling at a rate near

the golden-ratio in the non-symmetric fractals may have

a more constant appeal. The golden ratio possesses scale-

invariance when repeated, as in the Fibonacci sequence, but

lacks spatial symmetry. While several studies have shown that

a rectangle with proportions of the golden ratio is most

preferred (Fechner, 1871, 1876; Lalo, 1908; Thorndike, 1917),

these results have not always been replicated (for a more

recent review, see Angier, 1903; Haines and Davies, 1904;

Thorndike, 1917; see Green, 1995 or Palmer et al., 2013).

Still, Olsen (2006) suggests that approximations of the golden

rectangle’s proportions are ubiquitous in nature—observable

in phenomena such as shell growth, branching patterns, and

the proportions of animals’ bodies, fingers and faces, though

others contest such claims (Markowsky, 1992; Livio, 2002). If

the golden ratio, or a rough approximation of it, is ubiquitous

in natural phenomena’s rate of change across scales, it may

be of real importance to aesthetics. Di Dio et al. (2007)

disrupted the approximate golden ratio scaling of artworks

such as sculptures by manipulating images of them. By doing

this at just two scales of measurement, they diminished

the participants’ aesthetic response and changed their brains’

patterns of activity (Di Dio et al., 2007). This suggests that

repetition of scaling may play a role in aesthetic judgments,

perhaps in a way that can compensate for the absence of spatial

symmetry.

Such an interpretation is consistent with Leeuwenberg and

van der Helm’s (1991) theories and body of work describing

a mechanism by which redundancy may be processed by our

perceptual systems (Leeuwenberg, 1971, 1978; Leeuwenberg and

van der Helm, 1991; van der Helm, 2004). Although there

was never an explicit extension of their proposed perceptual

mechanisms to aesthetic responses, we will discuss it briefly,

in the context of our ability to appreciate fractals’ physical

complexity. Inherent to the physical complexity of fractals

is redundancy across scales, which we describe in terms

of the number of recursions. There is also redundancy in

their symmetry. However, the coding theories of Leeuwenberg

and van der Helm (1991) fail to explain the patterns of

results that we observe. This statement is by no means

meant as a criticism of their theories. There is a limited

and specific scope of application to which Leeuwenberg and

van der Helm (1991) have staked a claim with their theory

that elegantly explains how we may process redundancy.

Briefly, Leeuwenberg and van der Helm (1991) propose in

their more simplistic model that the unique elements of the

abstracted code for a pattern, the number of repetitions, and

any transformations of that code each contribute a single

unit of ‘‘load’’ to a pattern. The code with the lowest load

which represents the pattern may be how the human visual

system represents a redundant pattern (van der Helm, 2004).

Such a code is insensitive to changes in the abstracted code

parts. To explain this with an example from our stimulus

set, a change in the number of recursions (such as from

10 to 17 for the golden dragon fractals) does not change

the load of the abstracted pattern, though there is a striking

effect of this change, perceptually, at high levels of fractal

dimension (see Figures 4I,L). As such, Leeuwenberg and van

der Helm’s (1991) theories make the limited prediction that

the visual system will differentiate the golden dragon fractals

from the Koch Snowflakes because the abstracted codes of

these families of fractals differ, much as they differ in their

generator patterns. Their theories do not make predictions

about interactions of the abstracted code with changes in the

physical units that they represent. As such, the development

and testing of theories that predict the roles of other perceptual

processes, some of which must be involved in evaluating the

differences in physical complexity that vary underneath the same

abstracted code, and other psychological processes, some of

which must be involved in subjectively evaluating these fractals,

will play a crucial role in our understanding of aesthetic

responses.

When we look at symmetric, geometric patterns such as exact

fractals and find them visually appealing, it may be because

they balance interest and comprehensibility (Leder et al., 2004)

through the interplay between automatic and active mechanisms

(Rentschler et al., 1999; Redies, 2015) as suggested by these

recent theories of aesthetics. Individual and group differences

may be driving the different patterns of preference for statistical

and exact fractals. We have completed studies with statistical
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fractal stimuli at other universities (Spehar et al., 2003; Hagerhall

et al., 2004, 2015; Taylor et al., 2005; Spehar and Taylor, 2013),

but have not yet completed a study comparing statistical and

exact fractals using a within-subject design. Still, Hagerhall

et al. (2015) have shown different trends for alpha-band power

of electroencephalography (EEG) recordings during viewing of

exact and statistical fractals, so these may be stable differences in

response.

It would be a misguided assumption about the homogeneity

and stability of human populations over time to say that

sample differences could not play a role in the differences in

our findings. We only measured a few demographic variables

in the present study, and so it could be that our sample

is limited along some variable to which we are insensitive.

Moreover, individuals from cultures or communities outside

of ours may feel differently about exact fractals. Aesthetics

can vary with cognitive and cultural factors, which form an

important aspect of the Redies (2015) theory. It would be a

good test of this aspect of the Redies (2015) model to see

whether there are cross-cultural or other individual differences

in preference for exact fractals, or whether these are independent

of cultural filters. We observed that some individuals prefer

lower D exact fractals in our first study. While our second

sample may have been so small that it voided this population,

a clear difference emerged between those who are sensitive

to mirror symmetry and those who are not. It could be

that by sampling a larger proportion of the population, a

different trend in typical preference would be observed because

individuals who strongly prefer lowerD fractals would constitute

a greater proportion of the sample. Meanwhile, by exposing

the individuals to a broader array of fractal generators in

the second study, we may have inadvertently introduced a

factor that holds more salience: mirror symmetry. Across the

subgroups that differed in their responses to mirror symmetry

we observed a consistent effect of dimension on preference that

was modulated in magnitude, but not direction, by the presence

of symmetry and held, to varying extent, across different levels of

recursion.

This interaction between fractal dimension, recursion, and

spatial symmetry is important when considering how preference

changes across D for exact fractals, because it means that

there is not universality of preference across exact fractal

patterns within individuals. When spatial symmetry was present

at high levels of dimension, there was no requirement of

a large number of recursions to generate high preference

ratings. We discount the alternate interpretation that the

interaction is driven by the similarity in the number of

recursions of the Koch snowflakes. If that were the case,

the preference ratings for those 5 and 6-recursion Koch

snowflakes should be at or below the preference ratings for

the 10-recursion golden dragons, not equivalent with the

17-recursion golden dragons (see Figure 9 and Table 1).

Moreover, preference ratings for the radially symmetric dragons

diverged from the golden dragons at higher levels of D,

suggesting that these patterns are most pleasing when they

are symmetric in multiple ways and tend to fill more of the

space.

We postulate that the critical factor that allows preference

to rise across D in this manner is the orderliness of exact

fractals. Vitz (1966) showed that random motion traces

that filled moderate amounts of space were most preferable,

which is consistent with the preference ratings for statistical

fractals included in many other studies. A parsimonious

account of those studies’ data and our present results is that

order is a moderating factor that, when present, preserves

interpretability at higher levels of dimension. We have shown

that people prefer fractals that fill a greater extent of space

(those with higher D). Because a greater level of recursion

does not affect its base ‘‘Leeuwenberg code’’, this allows the

pattern to approach the maximum space that it can fill at

a particular level of dimension while retaining its elegance.

Higher recursion has been shown to affect perceived complexity

(Cutting and Garvin, 1987), and perceived complexity has

been theorized to modulate aesthetic responses (Berlyne, 1971).

Given our findings, we theorize that recursion can make

up for a lack of spatial symmetry and drive preference

upward at peak D levels by increasing perceived complexity

without affecting the perceived regularity of the pattern.

This prediction reflects our interpretation that there is a

modulating effect of order on preference for a specific D

range—increases in the level of recursion should drive up

preference for moderately low-D statistical fractals and high-D

exact fractals.

While previous studies of fractal aesthetics have held the level

of recursion constant (Spehar et al., 2003; Hagerhall et al., 2004,

2015; Taylor et al., 2005; Spehar and Taylor, 2013), we have

shown that it is a variable worthy of further consideration. The

interplay between fractal dimension, recursion, and symmetry is

an area that warrants further study—especially with respect to

physiological correlates by which to explain the basis of these

aesthetic responses. Hagerhall et al. (2015) suggest that there is

a difference in the processing of exact and statistical fractals.

The authors recorded EEG while participants viewed exact and

statistical fractal line drawings, and found that waking restfulness

(measured by alpha-band power of the EEG signal) was higher

for statistical fractals than for exact fractals across a portion of

the range of fractal dimension (D = 1.1, 1.3, 1.5; Hagerhall et al.,

2015).

A putative mechanism that can be tested in future studies

is that higher D exact fractals are more engaging than their

lower D counterparts, and this results in higher aesthetic ratings.

This analysis could be made more interesting by testing whether

individuals who rate low or mid-D fractals highest are actually

saturating in alpha power response of the EEG signal at that

level of D, and testing the extent to which alpha power of the

EEG signal correlates with preference ratings across the range of

D for various levels of recursion. These could be used as tests

of the Berlyne (1971) arousal model, if it is worthy of further

consideration given our results and those of others (Martindale

et al., 1990; Vessel and Rubin, 2010; Forsythe et al., 2011). We

found individual differences that preclude any conclusions in

favor of universality as opposed to mere typicality, even with

our limited sample. For those individuals who prefer lower D

fractals, perhaps there is an interaction between interest and
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arousal or other aspect of the internal experience that Marin

(2015) discusses.

Recent aesthetics models such as those put forth by Cela-

Conde et al. (2011), Marin (2015), and Redies (2015) make

less specific predictions than the models of the last century

(Birkhoff, 1933; Eysenck, 1941; Attneave, 1957; Berlyne, 1971;

Boselie and Leeuwenburg, 1985; Cutting and Garvin, 1987),

but could be tested with exact and random fractals, as

well. Perhaps some individuals find these exact fractals to

be beautiful art for which there is perceptual processing of

dimension, recursion, and symmetry that is independent of

cultural filters. And perhaps to others these are simply not

beautiful stimuli—there may be no resonance at the level of

perceptual processing. The aesthetic response to fractal patterns

could also vary across cultures. Redies (2015) suggests that such

patterns are culture-free, a testable prediction. The interplay

between perceptual and cognitive processing, modulated by

cultural filters (Redies, 2015), could be used as a framework

with which we can explain the aesthetics of exact and random

fractals. We did not collect sufficient demographic data to

test such predictions, but this is an area ripe for future

study. Future studies that collect such data may show that the

pattern of preference for exact fractals that we observed here

is ‘‘universal’’, as well. Exact fractals provide a new avenue

for studying aesthetic responses driven by fractal dimension,

recursion and symmetry—features of the patterns that occur in

the art of many cultures and in the complex environments of

nature.
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