AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

AFCRL Atmospheric Absorption Line Parameters Compilation

R.A. McCLATCHEY
W.S. BENEDICT
S.A. CLOUGH
D.E. BURCH

RiF. CALPE
K. FOX
L.S. ROTHMAN
J.S. GARING

Approved for public release; distribution unlimited.

AIR FORCE SYSTEMS COMMAND

United States Air Force

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

AFCRL Atmospheric Absorption Line

R.A. McCLATCHEY

W.S. BENEDICT**
S.A. CLOUGH
D.E. BURCH +
R.F. CALFEE
K. FOX
L.S. ROTHMAN
J.S. GARING

$$
\begin{aligned}
& \text { * University of Maryland } \\
& \text { + Fhilen Fard Corporation } \\
& \text { \& University of Tennessee }
\end{aligned}
$$

AIR FORCE SYSTEMS COMMAND

United States Air Force

N O T I $\quad \mathbf{C} \quad \mathrm{E}$

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

Abstract

The report describes a compilation of the molecular spectroscopic parameters for a number of infrared-active molecules occurring naturally in the terrestrial atmosphere. The following molecules are included in this compilation: water vapor; carbon dioxide; ozone; nitrous oxide; carbon monoxide; methane; and oxygen. The spectral region covered extends from less than $1 \mu \mathrm{~m}$ to the far infrared, and data are presented on more than 100,000 spectral lines. The parameters included in the compilation for each line are: frequency, intensity, half-width, energy of the lower state of the transition, vibrational and rotational identifications of the upper and lower energy states, an isotopic identification, and a molecular identification.

A discussion is provided separately for each molecular species, indicating the sources and accuracy of the data and a general discussion of how the data were obtained.

Contents

1. INTRODUCTION 1
2. DESCRIPTION OF COMPILAI'ION 2
3. GENERAL REMARKS ON THE DERIVATION OF PARAMETERS 9
3.1 Energy Levels and Line Positions 9
3.1.1 Linear Molecules 9
3.1.2 Nonlinear Molecules 11
3.2 Line Intensities 13
4. iNOLECULAR SPECIES 15
4.1 Water Vapor 15
4.1.1 Line Positions 15
4.1.2 Line Intrnsities 19
4.1.3 Line Widths 20
4.2 Carbon Dioxide 23
4.2.1 Line Positions 23
4.2.2 Line Intensities 26
4.2.3 CO_{2} Line Half-Widths 31
4.3 Ozone 31
4.4 Nitrous Oxide 34
4.4.1 Line Positions 34
4.4.2 Line Intensities 39
4.4.3 Forbidden Bands and Perturbed Lines 44
4.4.4 Line Half-Widths 45
4.5 Carbon Monoxide 46
4.6 Methane 47
4.6.1 Line Positions 49
4.6.2 Line Intensities 53
4.6.3 Line Widths 53
4.7 Oxygen 54
5. CONTINUOUS ABSORPTION BY ATMOSPHERIC GASES 58
Preceding page blank
REFERENCES 63
APPENDIX A COMPUTER PROGRAM LISTING FOR READING TAPE 69
APPENDIX B COMPUTER PROGRAM FOR HOMOGENEOUS PATH TRANSMITTANCE CALCULATION 71
Illustrations
6. Transitions in the ${ }^{1} \Delta_{\mathrm{g}} \quad 3 \Sigma_{\mathrm{g}}^{-}$Band of Oxygen 57
7. Normalized Continuum Absorption Coefficient for $\mathrm{H}_{2} \mathrm{O}$ at Three Temperatures 59
8. Normalized Continuum Absorption Coefficient Between 2400 and $2820 \mathrm{~cm}^{-1}$ for Pure $\mathrm{H}_{2} \mathrm{O}$ at Four Temperatures 59
t. Spectral Plot of Absorption Coefficient for Atmospheric N_{2} at Four remperatures 60
E1. Synthetic Spectrum Generated Using the Data Compilation 72
Tables
9. Concentrations of Uniformly Mixed Gases in Dry Air 2
10. Vibrational Partition Functions 4
11. Intensity Criteria for Lines Included in Compilation 4
12. Isotopic Abundances 6
13. Mean Half-width Values 6
14. CDC 6000 Series Fortran Character Codes 8
15. Summary of Principal Data Sources for Water-Vapor Energy Levels 17
16. Water Vapor Band Intensity Data and Interaction Coefficients 21
17. Vibrational Energy Levels and Molecular Constants for CO_{2} 24
18. Band Origins and Intensities for CO_{2} 27
19. Ozone Transitions Included in Data Compilation 32
20. Vibrational Energy Levels and Molecular Constants for $\mathrm{N}_{2} \mathrm{O}$ 35
21. Summary of $\mathrm{N}_{2} \mathrm{O}$ Band Systems 40
22. $\mathrm{N}_{2} \mathrm{O}$ Band Intensities 41
23. Farameters of Perturbed Lines of $\mathrm{N}_{2} \mathrm{O}$ 45
24. Rotational Constants Used in the Calculation of CO Line Positions 47
25. Intensities of CO Bands 47
26. Methane Bands Included in Data Compilation 48
27. Spectroscopic Parameters for Ground State of ${ }^{12} \mathrm{CH}_{4}$ 49
28. Spectroscopic Parameters for ν_{3} of ${ }^{12} \mathrm{CH}_{4}$ 50
29. Spectroscopic Parameters for ν_{4} of ${ }^{12} \mathrm{CH}_{4}$ 50
30. Spectroscopic Parameters for ν_{2} of ${ }^{12} \mathrm{CH}_{4}$ 51
31. Spectroscopic Parameters for ν_{3} of ${ }^{13} \mathrm{CH}_{4}$ 51
32. Spectroscopic Parameters for ν_{4} of ${ }^{13} \mathrm{CH}_{4}$ 52
33. Spectroscopic Parameters for $\nu_{2}+\nu_{4}$ of ${ }^{12} \mathrm{CH}_{4}$ 52
34. Spectroscopic Parameters for $2 \nu_{4}$ of ${ }^{12} \mathrm{CH}_{4}$ 52
35. Constants of the ${ }^{1} \Delta_{g}$ State of 0_{2} (Herzberg and Herzberg, 1947) 55
36. Constants for the ${ }^{3} \Sigma_{\mathrm{g}}^{-}$State of O_{2} 56

AFCRL Atmospheric Absorption Line Parameters Compilation

1. INTRODUCTION

About 10 years ago a program was initiated to compile spectroscopic data on individual vibration-rotation lines of water vapor in the $2.7 \mu \mathrm{~m}$ region (Gates, et al, 1964).

This work continued resulting in a publication on the 2.05 and $2.7 \mu \mathrm{~m}$ bands of carbon dioxide (Calfee and Benedict, 1966) and a third publication on the 1.9 and $6.3 \mu \mathrm{~m}$ bands of water vapor (Benedict and Calfee, 1967). Other workers have published similar results on the $15 \mu \mathrm{~m}$ bands of CO_{2} (Drayson and Young, 1967), the $9.6 \mu \mathrm{~m}$ bands of O_{3} (Clough and Kneizys, 1965), the CO bands whose fundamental is near $5 \mu \mathrm{~m}$ (Kunde, 1967), the CH_{4} bands near 3 and $7.5 \mu \mathrm{~m}$ (Kyle, 1968) and the unpublished rotational water data calculated by Benedict and Kaplan in 1959 (see Goody, 1964, p. 184).

About 5 years ago an effort was initiated at AFCRL to continue this work with the aim of providing a complete set of data for all vibration-rotation lines of all naturally occurring molecules of significance in the terrestrial atmospheres. With such data at hand, it would be possible to compute the transmittance appropriate for atmospheric paths by first computing the monochromatic transmittance many times in a finely spaced frequency grid and then degrading the results to any appropriate spectral resolution. Up to now the following molecules have been included in this compilation: (1) water vapor; (2) carbon dioxide; (3) ozone; (4) nitrous oxide; (5) carbon monoxide; (6) methane; and (7) oxygen.
(Received for publication 26 January 1973)

All of these molecules except oxygen are minor constituents of the atmosphere, but nonetheless represent most of the absorption lines in the visible and infrared. Although there is some evidence for decreasing concentration with height of $\mathrm{N}_{2} \mathrm{O}$, CO , and CH_{4}, it is probably reasonable for most purposes to assume that all of these gases except $\mathrm{H}_{2} \mathrm{O}$, and O_{3} are uniformly mixed by volume in the atmosphere unless other specific information is available. Table 1 provides concentrations and references for these "uniformly mixed gases". Water vapor and ozone are, of course, not uniformly mixed and an appropriate set of models useful in considering the radiation effects of these gases is provided by McClatchey, et al, 1972.

Table 1. Concentrations of Uniformly Mixed Gases in Dry Air

Constituent	ppm by volume	Reference
CO_{2}	330	Fink et al, 1964
$\mathrm{N}_{2} \mathrm{O}$	0.28	Birkland and Shaw, 1959
CO	0.075	Shaw, 1968
CH_{4}	1.6	Goody, 1964
O_{2}	2.10×10^{5}	Valley, 1965

2. DESCRIPTION OF COMPILATION

In order to compute the transmittance due to a given spectral line in the atmosphere it is necessary to describe the absorption coefficient as a function of frequency for each line. The four essential line parameters for each line are the resonart frequency, $\nu_{o}\left(\mathrm{~cm}^{-1}\right)$, the intensity per absorbing molecule, $\mathrm{S}\left(\mathrm{cm}^{-1} /\right.$ molecule cm^{-2}) the Lorentz line width parameter, $\alpha_{0}\left(\mathrm{~cm}^{-1} / \mathrm{atm}\right)$, and the energy of the lower state, $\mathrm{E}^{\prime \prime}\left(\mathrm{cm}^{-1}\right)$. The frequency, ν_{o}, is independent of both temperature and pressure (except for possibly very small pressure effects of less than 0.01 $\mathrm{cm}^{-1} / \mathrm{atm}$, which have been ignored here). The intensity, S , is pressure-independent, and, as discussed below, its temperature dependence can be calculated from E " and $\boldsymbol{\nu}$

The line half-width at half maximum, α, is by definition proportional to the pressure, p, and its temperature dependence can be estimated as discussed below.

The precise line shape is a matter of some uncertainty, but in the derivation of line parameters from laboratory measurements, it is customary to start from the Lorentz shape (see Goody, 1964) given in Eq. (1).

$$
\begin{equation*}
\mathrm{k}(\nu)=\frac{\mathrm{S} \alpha}{\pi\left(\nu-\nu_{0}\right)^{2}+\alpha^{2}} \tag{1}
\end{equation*}
$$

$$
\mathrm{S}=\int \mathrm{k}(\nu) \mathrm{d} \nu
$$

The validity of Eq. (1) to describe the true line shape is subjeet tw two limias tions. The first, which can be precisely estimated and corrected for by the use of the Voigt shape, occurs when $\alpha_{0} P / \alpha_{D}<1.0$ where α_{D} is the doppler line widh which varies with frequency, temperature ard molecular mass as given in ! ! (2).

$$
\begin{equation*}
\alpha_{\mathrm{D}}=\frac{\nu}{\mathrm{c}}\left(\frac{2 \mathrm{kT} \ln 2}{\mathrm{~m}}\right)^{1 / 2}=4.298 \times 10^{-7} \nu(\mathrm{~T} / \mathrm{M})^{1 / 2} \tag{2}
\end{equation*}
$$

where $\mathrm{Ml}=$ molecular weight and here $k=1301 t z m a n$'s comstant and $m=$ mass of a molecule.

For atmospheric molecules anci infrared frequencies, modifications of the Lorentz shape begin to be required at pressures below 10 to 109 mb .

The second limitation concerns possible inadequacies of the lorentz shape, especially in the distant wings oi a line ($\left|\nu-\nu_{0}\right| \gg \alpha$) (sec Winturs et al, 106t. and Burch et al, 1969) or when the long-range intermolecular forces responsible for collision broadening are dipole-quadrupole, ${ }^{\top}$ eading to an exponent 1.75 rather than 2.0 for $\left(\nu-\nu_{o}\right)$, (Varanasi, 1972). Throughout this compilation we assume the validity of the Lorentz exponent.

The line intensity is temperature dependent through the Boltzmann factor and the partition function as indicated in Eq. (3) (the induced emission ferm has intentionally been omitted here),

$$
\begin{equation*}
S(T)=\frac{S\left(T_{s}\right) Q_{v}\left(T_{s}\right) Q_{r}\left(T_{s}\right)}{Q_{v}(T) Q_{r}(T)} \exp +\left|\frac{1.439 \mathrm{E}^{\prime \prime}\left(\mathrm{T}-T_{s}\right)}{T_{s} T_{s}}\right| \tag{3}
\end{equation*}
$$

where $E^{\prime \prime}$ (in cm^{-1}) is the energy of the lower state of the transition and where Q_{v} and Q_{r} are the vibrational and rotational partition functions. The vibrational partition functions for the most abundant isotopes are given in Table 2. Partition functions for the other isotopes are similar. The temperature dependence of the rotational partition function is given by ($\mathrm{T} / \mathrm{T}_{\mathrm{s}}$) ${ }^{\mathrm{j}}$ where i is also provided in Table 2 (T_{S} is taken to be $296^{\circ} \mathrm{K}$).

It is also necessary to know the temperature variation of α. In the absence of specific indications discussed under each molecule, the equation $\alpha(T) / \boldsymbol{\alpha}\left(T_{s}\right)=$ $\left(T / T_{s}\right)^{-n}$, with $n=1 / 2$, corresponding to the assumption of temperature-independent collision diameters, may be made. The validity of the assumption is more uncertain, the larger the dependence of the diameter on the paricular rotation-vibriion transition, (that is, it is most unrealistic for $\mathrm{H}_{2} \mathrm{O}$ and the low-J transitions of the other molecules). The theory of Tsao and Curnutte (1054) when applied to the determination of line width for $\mathrm{H}_{2} \mathrm{O}$ lines gives a wide variation of n about the mean value of 0.62 (Bencdict and Kaplan, 1059). Neasurements made with a CO_{2} laser (Ely and McCubbin, 1970) indicate a value of $n=1.0$ for the P20 line of the $10.4 \mu \mathrm{~m} \mathrm{CO} 2$ band.

Table 2. Vibrational Partition Functions

Molecule	j	Tempera ture	175	200	225	250	275	296	325
$\mathrm{H}_{2} \mathrm{O}$	1.5		1.000	1.000	1.000	1.000	1.000	1.600	1.001
CO_{2}	1.0		1.0095	1.0192	1.0327	1.0502	1.0719	1.6931	1.1269
O_{3}	1.5		1.004	1.007	1.013	1.022	1.033	1.046	1.000
$\mathrm{~N}_{2} \mathrm{O}$	1.0		1.017	1.030	1.048	1.072	1.100	1.127	1.170
CO	1.0		1.000	1.000	1.000	1.000	1.000	1.000	1.000
CH_{4}	1.5		1.000	1.000	1.001	1.002	1.004	1.007	1.011
O_{2}	1.0		1.000	1.000	1.000	1.000	1.000	1.000	1.001

An examination of Eqs. (1) and (3) indicates that it is necessary to know the $\nu_{0}, S\left(T_{S}\right), \alpha\left(P_{0}, T_{S}\right)$ and $E^{\prime \prime}$ value for each line in order to compute a spectrum. The data compilation described here contains these four quantities for each of the more than 100,000 lines between $1 \mu \mathrm{~m}$ and the far infrared belonging to the seven molecular species listed in Table 3. Additional identifying information is also supplied for each line as indicated below.

Table 3. Intensity Criteria for Lines Included in Compilation

Molecule	Identification No.	Criterion Intensity** Minimum at $\mathrm{T}=296 \mathrm{~K}$	Existing Intensity Minimum at $\mathrm{T}=296 \mathrm{~K}$
$\mathrm{H}_{2} \mathrm{O}$	1	3×10^{-27}	3×10^{-27}
CO_{2}	2	2.2×10^{-26}	3.7×10^{-27}
O_{3}	3	3.5×10^{-24}	3.5×10^{-24}
$\mathrm{~N}_{2} \mathrm{O}$	4	3.0×10^{-23}	4.0×10^{-23}
CO	5	8.3×10^{-23}	1.9×10^{-23}
CH_{4}	6	3.3×10^{-24}	3.3×10^{-24}
O_{2}	7	3.7×10^{-30}	3.7×10^{-30}

*Units are $\mathrm{cm}^{-1} /\left(\right.$ molecule $\left.-\mathrm{cm}^{-2}\right)$

In order to establish the "Criterion Intensity Minimum" values given in Table 3, an extreme atmospheric path was considered, assuming the gas concentrations specified in Table 1 and maximum concentrations over the path of 3×10^{24} molecules $/ \mathrm{cm}^{2}$ for water vapor and 1×10^{20} molecules $/ \mathrm{cm}^{2}$ for ozone. This extreme radiation path was the atmospheric path tangent to the earth's surface, and extending from space to space. Using this criterion, lines yiclding less than 10 percent absorption at the line center would normally be omitted.

Although this absolute line intensity cutoff was established, it has not always been possible to achieve. In some cases it would have been unrealistic to push calculations to this limit when experimental confirmation fell far short. There are two specific areas in which this absolute cutoff has been violated: (1) In regions of very strong absorption, very weak lines above this absolute limit have beer neglected; (2) Q-branch lines below this limit have occasionally been included where it is felt that the accumulation of many weak, closely spaced lines would still produce an appreciable absorption under some atmospheric circumstances. In some cases, (for example, CO_{2}), sufficient laboratory measurements and theoretical work were available so that this limit was exceeded throughout the infrared.

In the past, line intensities have been defined in various units, different for each molecular species. It was common to define water vapor concentration in precipitable cm , or $\mathrm{g} / \mathrm{cm}^{2}$, in the path in question. On the other hand, the amount of CO_{2} and the other uniformly mixed gases in a path were often given in $\mathrm{cm}-\mathrm{atm}$ of gas at STP. In order to unify the units and ultimately to lead to less confusion, we decided to use the more fundamental quantity, molecules/cm ${ }^{2}$ as a measure of absorbing gas abundance along the path. The appropriate conversion factors are:

$$
\begin{aligned}
& 1(\mathrm{~cm}-\mathrm{atm})_{\mathrm{STP}}=2.69 \times 10^{19} \text { molecules } / \mathrm{cm}^{2} \\
& 1 \mathrm{~g} / \mathrm{cm}^{2} \text { of } \mathrm{H}_{2} \mathrm{O}=3.34 \times 10^{22} \text { molecules } / \mathrm{cm}^{2} .
\end{aligned}
$$

It was also decided, as indicated in Table 3, to define line (and band) intensities at $296^{\circ} \mathrm{K}$, the normal room temperature at which most measurements are made. Intensities of all bands are based on the total number of molecules of a given species of all isotopes in their normal abundance, not on the number of the particular isotope responsible for a given band. Isotopic abundance values for all molecules for which data are provided in the compilation are given in Table 4.

Half-widths of lines have been added where available. Details are discussed in the separate sections on individual molecules. In some cases, it is felt that insufficient data exist to warrant the inclusion of a variable half-width. In these cases, a mean, constant value has been inserted for each molecular species and values are given in Table 5.

A shorthand notation was adopted to identify the various isotopic species. It is easy to understand by considering the following examples for CO_{2} : ${ }^{16} \mathrm{O}^{12} \mathrm{C}{ }^{16} \mathrm{O} \equiv$ $626,{ }^{15} \mathrm{O}^{13} \mathrm{C}^{16} \mathrm{O} \equiv 636$, and for $\mathrm{N}_{2} \mathrm{O},{ }^{14} \mathrm{~N}^{15} \mathrm{~N}^{16} \mathrm{O} \equiv 456$, etc. This same type of code is used for the other five molecules.

Table 4. Isotcpic Abundances

$\mathrm{H}_{2} \mathrm{O}$	161	0.99729			
	162	0.000300	CH_{4}	211	0.98815
	181	0.00204	$\mathrm{CH}_{3} \mathrm{D}$	211	0.01110
	171	0.000370		0.00060	
CO_{2}	626	0.98414			
	636	0.01105	O_{2}	66	0.99519
	628	0.00402		68	0.00407
	627	0.000730		0.00074	
	638	0.0000452			
	637	0.00000820			
O_{3}	828	0.00000412			
	666	0.99279			
	668	0.00406			
	686	0.00203			
$\mathrm{~N}_{2} \mathrm{O}$	446	0.99022			
	456	0.00368			
	546	0.00368			
	448	0.00202			
CO	447	0.00037			
	26	0.98652			
	36	0.01107			

Table 5. Mean Half-width Values

Molecule	Half-width (cm	
$\left.\mathrm{CO}_{2} / \mathrm{atm}\right)$	References	
O_{2}	0.07	Yamamoto et al (1969)
$\mathrm{N}_{2} \mathrm{O}$	0.11	Lichtenstein et al (1971)
CO	0.08	Toth (1971)
CH_{4}	0.06	Bouanich and Haeusler (1972)
O_{2}	0.055	Varanasi (1971) (see Section 6.3)

A standard computer format was adopted for card or card-image input and is outlined below, the numbers between vertical lines representing the columns on an IBM card, and the letter-number combinations representing the computer format.* The first four quantities are: $\nu=$ frequency in

$\underline{\nu}$	S	$\underline{\alpha}$	E'	Rotation and Vibration ID	Date	Isotope	Molecule
1-10	11-20	21-25	26-35	36-70	71-73	74-77	78-80
F10.3	E10.3	F5.3	F10.3	5A6, A5	I3	14	I3

*In the far infrared ($\nu<100 \mathrm{~cm}^{-1}$) a different format ($F 10.6$) was occasionally chosen for the frequencies where high accuracy microwave measurements are available.
wavenumbers, $\mathrm{S}=$ line intensity in $\mathrm{cm}^{-1} /$ molecule $-\mathrm{cm}^{-2}$ at $296^{\circ} \mathrm{K}, \alpha=$ half - width in cm^{-1} atm at $296^{\circ} \mathrm{K}, \mathrm{E}^{\prime \prime}=$ energy of the lower state expressed in wavenumbers. The rotation and vibration identification are the most difficult to unify due to the differences in the quantum numbers required to define the upper and lower states for different kinds of molecules. The columns 36 through 70 are indicated below for water and ozone, both triatomic asymmetric molecules, where (') indicates upper state and (') indicates the lower state.

$$
\begin{array}{ccccccc}
J^{\prime}, K_{a}{ }^{\prime}, K_{c}^{\prime} & & J^{\prime \prime}, K_{a}{ }^{\prime \prime}, K_{c}{ }^{\prime \prime} & v_{1}^{\prime} v_{2}^{\prime} v^{\prime} 3 & v_{1}{ }^{\prime \prime} v_{2}{ }^{\prime \prime} v_{3}{ }^{\prime \prime} & \\
3 \mathrm{I} 3 & 1 \mathrm{X} & 3 I 3 & 2 \mathrm{X} & 3 \mathrm{I} 2 & 1 \mathrm{X} & 3 \mathrm{I} 2
\end{array}
$$

On the other hand, the quantum numbers specified for CO_{2} and $\mathrm{N}_{2} \mathrm{O}$ between columns 36 and 70 are given below, where again (') indicates upper state and (") indicates lower state, and where refers to Fermi resonance (see section on CO_{2} for more details). The identification system for methane differs from those described here and is described in the section on methane.

$$
v_{1}^{\prime} v_{2} \ell^{\prime} v_{3}^{\prime} r^{\prime}
$$

2x
$v_{1}^{\prime \prime} v^{\prime \prime} \ell^{\prime \prime v^{\prime \prime}}{ }_{3} r^{\prime \prime}$
512
$P\left(J^{\prime \prime}+1\right)$
A8

The remaining fields specified above include the entry date of the datum (important primarily for our purposes), the isotopic code as described above, and the molecular identification as given in Table 3.

This work has now proceeded to the point where most of the data consistent with the above-mentioned line intensity limitation are fairly complete in the $1 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$ region. The nature of the remaining uncertaintics and omissions is discussed in the sections to follow. The data are frequency ordered on magnetic tape and are contained in records of 321 ten-character words per record. An initial control wor i indicates the number of words to follow (320 for a full record). Each such record contains 40 card images in the format described above. Thus, it is necessary after reading a record from the tape to decode it according to the format I10, 40 (F10.3, E10.3, F5.3, F10.3, 5A6, A5, I3, I4, I3). In order to aid those using other than Control Data Corporation equipment, Table 6 is provided. The column headed "External BCD Code" indicates the character representation actually used on the tape. If a computer having a different character code is being used, a simple cross-referencing program must be constructed. End of file markers are placed on the tape at the following frequency points: $500,1000,2500,5000,10,000 \mathrm{~cm}^{-1}$ with a double end of file appearing at the end of the tape.

In Appendix A we have included a listing of a computer program for directly reading the tape on a CDC 6600 computer. (No card decks are available.) For other computer systems the used is left to his own devices. Appendix B provides a computer program and output for generating a synthetic spectrum for a constant pressure path.

Table 6. CDC 6000 Series Fortran Character Codes*

Source Language Character	Console Display Code	$\begin{gathered} \text { External } \\ \text { BCD } \\ \text { Code } \\ \hline \end{gathered}$	Punch Position in a Hollerith Card Column
A	01	61	12-1
B	02	62	12-2
C	03	63	12-3
D	04	64	12-4
E	05	65	12-5
F	06	66	12-6
G	07	67	12-7
H	10	70	12-8
I	11	71	12-9
J	12	41	11-1
K	13	42	11-2
L	14	43	11-3
M	15	44	11-4
N	16	45	11-5
O	17	46	11-6
P	20	47	11-7
Q	21	50	11-8
R	22	51	11-9
S	23	22	0-2
T	24	23	0-3
U	25	24	0-4
V	26	25	0-5
W	27	26	0-6
X	30	27	0-7
Y	31	30	0-8
Z	32	31	0-9
0	33	12	0
1	34	01	1
2	35	02	2
3	36	03	3
4	37	04	4
5	40	05	5
6	41	06	6
7	42	07	7
8	43	10	8
9	44	11	9
+	45	60	12
-	46	40	11
*	47	54	11-8-4
1	50	21	0-1
(51	34	0-8-4
)	52	74	12-8-4
\$	53	53	11-8-3
$=$	54	13	8-3
blank(space)	55	20	space
,	56	33	0-8-3
.	57	73	12-8-3

\#Taken from Control Data 6400/6500/6600 Fortran Reference Manual, Publication No. 60174900 Rev. C (1968) Control Data Corporation

Interested parties can obtain a copy of the data tape described here by mailing a new, 7 -track, 800 BPI certified, 2400 ft long by $1 / 2 \mathrm{in}$. wide, magnetic tape to R. A. McClatchey, AFCRL (OPI), L. G. Hanscom Field, Bedford, Ma. 01730.

Due to the large amount of material included on this tape and the likelihood of errors, it is clear that the ultimate test of the accuracy and completeness of the data will be its use by many people in the scientific community. Therefore, we ask the cooperation of all who use these data to keep us informed of any apparent errors or omissions. We would appreciate the receipt of new laboratory data or theoretical work related to improving the data. We will then update this tape as sufficient new or revised data become available.

3. GENERAL REMARKS ON TIHE DERIVATION OF PARAMETERS

The four tabulated parameters, $\nu_{o}, E^{\prime \prime}, S$, and α must of course be derived from experimental observations, subjected to data reduction in the framework of the general theories of molecular spectroscopy. For the basic theory we refer the reader to such textbooks as Herzberg (1950) and Goody (1964). The complexity needed to approach the problem depends both on the type of molecule and the accuracy of the observational data. We here outline the equations and methods used for the general types of molecules, linear triatomic (and diatomic) $\mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and (CO); nonlinear triatomic, $\mathrm{H}_{2} \mathrm{O}$ and O_{3}. Methane, CH_{4}, a spherical top, is a special case, as is the diatomic O_{2}, where unpaired electrons complicate the rotational structure of the ground and excited electronic states.

The energy states and the transition probabilities between energy states of the molecules are defined primarily by their numerical values as established by experiments and by the indices (quantum numbers) which identify them. In nearly all the cases of interest, mathematical relations of greater or lesser complexity relate the numerical properties to the quantum numbers. We here present the genel. 1 relations used to generate the tabulated data. The specific data and exceptional cases are discussed later for each molecule.

3.1 Energy Levels and Line Positions

3.1.1 LINEAR MOLECULES

For the triatomic linear molecules CO_{2} and $\mathrm{N}_{2} \mathrm{O}$, the vibrational states are characterized by three quantum numbers, which are zero or positive integers, of pure vibration, v_{1}, v_{2}, and v_{3} and a fourth number $\ell_{2}=v_{2}, v_{L}-2 \ldots$ which represents the contribution of the bending mode to the anguiar rotation. In order to calculate the purely vibrational part of the energy ('the band origins"), it is necessary first to compute an unperturbed energy,

$$
\begin{align*}
& G_{v}^{u n p}, \text { by: } G_{v}^{u n p}=\sum_{i} \omega_{i}^{v i}+\sum_{i j} X_{i j} v_{i} v_{j}+g_{22} \ell^{2}+\sum_{i j k} v_{i} v_{j} v_{k}+ \\
& \sum_{i j k} v_{i} \ell^{2}+\ldots \tag{4}
\end{align*}
$$

and then to incorporate the effects of resonance perturbation by combining all close-lying levels with common ℓ and common symmetry in matrices whose diagonal clements are $G_{v}^{u n p}$, whose off-diagonal elements are functions of additional molecuiar constants and the four quantum numbers, and whose eigenvalues are the vibrational energy G_{v}. For an excellent discussion and example, the reader is referred to the work on $\mathrm{N}_{2} \mathrm{O}$ by Pliva (1968).

This perturbation calculation results in the "mixing" of states whose G_{v} unp are particularly close, so that the final description of the level by the original four quantum numbers is a poor one. Accordingly, it is useful to aud a fifth index, the rank symbol r to label in order of decreasing energy all such mixed states. We have adopted this procedure for CO_{2}, where the mixed states are ($\mathrm{v}_{1} \mathrm{v}_{2} \ell_{2} \mathrm{v}_{3}$), $\left(v_{1}+1, v_{2}-2, \ell_{2}, v_{3}\right), \ldots$ etc. The highest value of v_{1} and the lowest value of v_{2} in each set are retained in the vibrational indentification for all levels of the set.

In the present compilation, the above method was used to generate those energy levels which have not been observed; for all observed states the experimental value (averaged from various sources) was used.

The rotational energy of each vibrational state is given by:

$$
\begin{equation*}
E_{v, j}=G_{v}+B_{v}\left[J(J+1)-\ell^{2}\right]-D_{v}\left[J(J+1)-\ell^{2}\right]^{2}+H_{v}\left[J(J+1)-\ell^{2}\right]^{3}+\ldots \tag{5}
\end{equation*}
$$

where the constants B_{v}, D_{v}, H_{v} for each vibrational state are either determined by observation or calculated from a smaller number of rotational molecular constants. Whenever accurate constants have been observed, these are used; calculated values are reserved for the less important states. The equations for calculations of B_{v} and D_{v} are similar to those for G_{v}, and likewise require modification through the resonance perturbation. Evaluation from data of the small H_{v} constants requires highly accurate measurements extending to high J, so that in most cases these are fixed at zero; the non-zero values arise from resonances.

It will be noted in Eq. (4) that the vibrational energy depends on ℓ^{2}. When $\ell \neq 0$ there are two levels for each $J \geq \ell$, and this degeneracy is removed by rotation. The splitting (" ℓ-type doubling") results in two sets of levels, designated \subseteq and \underline{d}, with different effective rotational constants. When $\ell=1$ the splitting is most important, and $B_{c} \neq B_{d}, D_{c} \neq D_{d}$, etc.; when $l=2, B_{c}=B_{d}$ but $D_{c} \neq D_{d}$, etc.; when $\ell=3$, the constants other than H are the same. Resonances occasionally cause larger deviations.

When the linear molecule has a center of symmetry, as in CO_{2} with ${ }^{16} \mathrm{O}$ at both ends (but not when one oxygen is isotopically different), the paired atoms with zero nuclear spin cause zero statistical weight for rotational levels of a given parity. Thus, only even-J levels exist for the ground vibrational level and for all other levels with $\ell=0$ and v_{3} even ($" \Sigma_{g}^{+}$symmetry'); for levels with. $\ell=0$ and v_{3} odd (Σ_{u}^{-}), only J odd exists; when $\ell>0$, the c - and d - sublevels have different symmetry, so that for $\ell=1\left(\pi_{g}\right)$ the $J=$ odd levels are c and the $J=$ even levels are d, etc. In the compilation symbols c or d are appended to the rotational quantum number of the lower state only when required, that is for $\ell \geq 1$ in the molecules without the center of symmetry. For example, R27C means 28c-27c; Q27C means 27d-27c.

The line frequencies are determined from the energy states by taking the differences corresponding to all allowed transitions. These depend on the familiar selection rules for the linear molecule:

$$
\begin{aligned}
\text { When } \Delta \ell & =0, \Delta \mathrm{~J}= \pm 1, \mathrm{c} \rightarrow \mathrm{c}, \mathrm{~d}-\mathrm{d} . \\
\text { When } \Delta l & =1, \Delta \mathrm{~J}=
\end{aligned} \quad \begin{aligned}
& \pm 1, \mathrm{c}-\mathrm{c}, \mathrm{~d} \rightarrow \mathrm{~d}, \\
& \text { and } \Delta \mathrm{J}=0 \mathrm{c} \rightarrow \mathrm{~d} .
\end{aligned}
$$

The line positions may thus be conveniently represented for computational purposes as given series in \underline{m}, where $m=J^{\prime \prime}+1$ for the R-branch ($J^{\prime \prime} \rightarrow J^{\prime \prime}+1$), $\mathrm{m}=-\mathrm{J}^{\prime \prime}$ for the P -branch ($\mathrm{J}^{\prime \prime}-\mathrm{J}^{\prime \prime}-1$), and $\mathrm{m}=\mathrm{J}^{\prime \prime}$ for the Q -branch ($\mathrm{J}^{\prime \prime}-\mathrm{J}^{\prime \prime}$), A different equation is needed for Q-branch of a given transition than for the P and R branches, because of the differences in the \underline{c} and \underline{d} constants. The general equation is

$$
\begin{align*}
& \nu(m)=G_{v}+a m+b m^{2}+c m^{3}+d m^{4}+e m^{5}+\mathrm{fm}^{6}, \text { with } a=\left(B_{v}^{\prime}+B_{v}^{\prime \prime}\right) ; \\
& b=\left(B_{v}^{\prime}-B_{v}^{\prime \prime}-D^{\prime}+D^{\prime \prime}\right) ; c=-2\left(D_{v}^{\prime}+D_{v}^{\prime \prime}\right) ; d=-\left(D_{v}^{\prime}-D_{v}^{\prime \prime}\right) ; \\
& e=3\left(H_{v}^{\prime}+H_{v}^{\prime \prime}\right) ; f=\left(H_{v}^{\prime}-H_{v}^{\prime \prime}\right) . \tag{6}
\end{align*}
$$

3.1.2 NONLINEAR MOLECULES

The nonlinear triatomic molecules $\mathrm{H}_{2} \mathrm{O}$ and O_{3} have similar basic structures. The formula for the vibrational energy is identical with Eq. (4), except that the quantum number ℓ and its associated constants do not exist. Vibrational resonances exist; in both $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{O}_{3}, \omega_{1} \sim \omega_{3}$, but these are of different symmetry, so that interaction between the band origins and identical rotational states occurs only in (200,002), etc. In addition for $\mathrm{H}_{2} \mathrm{O}$, and much more closely for the 162 isotope, $2 \omega_{2} \approx \omega_{1}$, so that the properties of the higher vibrational levels must be computed by taking their resonances into account.

The rotational levels of these three-dimensional rotators, with three different reciprocal moments of inertia $A_{v}>B_{v}>C_{v}$ are labelled by three quantum numbers, $\mathrm{J}, \mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{c}}$, with K_{a} and K_{c} assuming all values $0,1, \ldots \mathrm{~J}$, subject to $\mathrm{K}_{\mathrm{a}}+\mathrm{K}_{\mathrm{c}}=\mathrm{J}$ or $J+1$. There are thus $2 J+1$ levels of a given J (each again with a rotational statis tical weight of $2 \mathrm{~J}+1$; in addition there is a nuclear-spin statistical weight which gives alternate levels, depending on the odd or even parity of $J+K_{a}+K_{c}+v_{3}$, weights of 3 or 1 for $\mathrm{H}_{2} \mathrm{O}, 0$ or 1 for isotopically symmetrical O_{3}. The normal progressions of energy within each J is increasing with increasing $K_{a}-K_{c}$; occasionally inversions of a few paired levels may occur in excited vibrational states as a result of rotation-vibraticn interactions between close-lying states of like over-all symmetry in different vibrational levels. As J increases, there is a tendency for the odd and even levels with K_{a} or K_{c} close in value to J to approach very closely in energy, so that many apparently single lines are in reality degenerate pairs with unresolvable spacings. The range of K_{a}, K_{c} in which these pairings occur, and the general spacing of the rotational levels is governed by the asymmetry parameter, $\kappa=$ ($2 \mathrm{~B}-\mathrm{A}-\mathrm{C}$)/(A-C), which for the ground vibrational states of $\mathrm{H}_{2} \mathrm{O}, \mathrm{HDO}, \mathrm{O}_{3}$ is respectively $-0.437,-0.689$, and -0.984 . As the parameter approaches -1 , the energy level formula approaches that of the symmetric top with $A>B=C$ namely,

$$
\begin{equation*}
E_{r}=\frac{B+C}{2} J(J+1)+\left(A-\frac{B+C}{2}\right) K_{a}^{2}-D_{J} J^{2}(J+1)^{2}-D_{J K} J(J+1) K^{2}-D_{K} K^{4} \tag{7}
\end{equation*}
$$

where the D's are centrifugal stretching constants, and where additional terms of powers higher in $\mathrm{J}^{2}, \mathrm{~K}^{2}$ are often required. For the asymmetric top molecules with $K \neq-1$, the rotational energy cannot be given by a closed formula, but requires the construction and diagonalization of matrices whose diagonal elements are given by Eq. (7) whose off-diagonal elements involve B-C and two additional centrifugal stretching constants of power 4 , etc., and whose eigenvalues are the rotational energy. From the eigenvectors of the diagonalization, one obtains effective angular moments about each axis, $\left\langle P_{a}^{2}\right\rangle,\left\langle P_{b}^{2}\right\rangle,\left\langle P_{c}^{2}\right\rangle$, whose sum, $P^{2}=J(J+1)$ and one also obtains other coefficients necessary for the calculation of transition probabilities and other properties of each eigenstate.

The excited vibrational levels of water vapor may differ considerably from the ground state in their values of A, B, and C, and with a relatively high ratio of A / ω_{2} ($\simeq 0.018$, as contrasted to 0.00059 for B / ω_{2} in CO_{2}), extensive overlapping occurs between rotational levels in nearby vibrational states, making the computation of the higher levels highly uncertain much beyond the limits of observation. Accordingly, for all except the lowest energy levels of the ground state it is preferable to use experimental rather than calculated values when available.

3.2 Line Íntensities

The intensity of any line at frequency $\boldsymbol{\nu}$ may be expressed in a purely formal way as:

$$
\begin{equation*}
S_{\mathrm{m}}=\frac{\nu}{\nu_{\mathrm{o}}} \cdot \mathrm{~S}_{\mathrm{v}}^{\mathrm{o}} \cdot \mathrm{~S}_{\mathrm{Rot}} \cdot F \tag{8}
\end{equation*}
$$

where S_{v}° is the vibrational intensity of a nonrotating molecule at the vibrational origin, $\nu_{0} ; \mathrm{S}_{\text {Rot }}$ is the rotational intensity for a rigid nonvibrating molecule and F is a factor that takes into account the fact that both forms of motion are occurring simultaneously. In the rigid case, $F=1$, and if $S_{R o t}$ is normalized so that $\Sigma_{\text {Rot }} S_{\text {Rot }}=1$ and if the band extends over a limited frequency range so that $\nu / \nu_{0} \sim 1$, then S_{V}^{O} as defined by Eq. (8) is identical with the quantity usually denoted by S_{V}, the total band intensity, $\Sigma_{m} S_{m}$.
$S_{\text {Rot }}$ consists of a temperature-independent factor, the rotational line strength, L_{R}, common to all linear molecules, and a temperature-dependent Boltzmann factor [Eq. (13)]. If the sum of all transitions from $J^{\prime \prime}$ is normalized to the statistical weight $g=2 J^{\prime \prime}+1$, and if one recalls the definition of the rotational partition function $Q_{r}(T)=\Sigma g \exp \left(-1.439 E_{R} / T\right)$ (the summation is over all rotational levels of a given v), the normalization condition for all transitions ($\Sigma S_{R o t}=1$) is fulfilled. The equations for L_{R} are as follows:

$$
\begin{array}{rcl}
\Delta \ell & \Delta \mathrm{J} & \mathrm{~L}_{\mathrm{R}} \\
0 & 0 & \ell^{2}(2 \mathrm{~m}+1) / \mathrm{m}(\mathrm{~m}+1) \\
0 & \pm 1 & \left(|\mathrm{~m}|-\ell^{2}\right) /|\mathrm{m}| \\
\pm 1 & 0 & (|\mathrm{~m}|+1 \pm \ell)(\mathrm{m} \mp \ell)(2 \mathrm{~m}+1) / \mathrm{m}(\mathrm{~m}+1) \\
\pm 1 & \pm 1 & (|\mathrm{~m}| \pm 1 \pm \ell)(|\mathrm{m}| \pm \ell) /|\mathrm{m}| \tag{12}
\end{array}
$$

Equation (8) is exact with $F=1$ only for a rigid molecule. In the actual molecule, a number of factors may cause deviations, which however will vary regularly along the band. (A very few exceptional situations, "crossing perturbations", may also be recognized.) Depending on the precision of the measurentents, the nonrigidity corrections ("F-factors") for the linear molecule, may be expressed as regular functions of the running index, m, as indicated in Eq. (13).

$$
\begin{equation*}
\mathrm{F}=\mathrm{S}_{\text {nonrigid }} / \mathrm{S}_{\text {rigid }}=\left(1+\mathrm{am}+\mathrm{bm}^{2} \ldots\right) \tag{13}
\end{equation*}
$$

The first order theoretical correction is $F=(1+\zeta m)^{2}$ or $a=2 \zeta, b=\zeta$. For nearly all the intensities in the present compilation, a single ζ was used for each vibrational band; this is included in the tabulations of bard parameters. More
refined measurements and theoretical calculations should, in future revisions of this compilation, permit the use of additional terms in Eq. (13).

For asymmetric top molecules, many more transitions are possible from each rotational level $\mathrm{J}_{\mathrm{a}} \mathrm{K}_{\mathrm{c}}$, but the same general definitions hold. The values of $\mathrm{L}_{\text {Rot }}$ depend on the degree of asymmetry. Tabulations exist (Wacker, 1964) which are usefui for orientation purposes. In the present work we either derive L_{R} from the rotational constants, for pure-rotation bands and some fundamental bands, or make use of the tables.

The F -factor corrections to the intensities become of considerable significance for most of the vibration-rotation transitions in $\mathrm{H}_{2} \mathrm{O}$. Various methods are used, based in part on theoretical considerations described later on, and in part on an arbitrary empirical adjustment of calculated values to the best observations.

A few general remarks should be made regarding the temperature dependence of $S_{v}{ }^{\circ}, S_{v}{ }^{\circ}$ is proportional to the product of the relative population of the lower state, given by the vibrational Boltzmann terms $\exp \left(-1.430 G_{v}\right) / Q_{v^{\prime}}$ (with $Q_{v} \equiv$ ${\underset{\mathrm{v}}{ }}_{\Sigma} \mathrm{g}_{\mathrm{v}} \exp \left(-1.439 \mathrm{G}_{\mathrm{v}}\right)$ where g_{v} is the degeneracy of the level, 1 when $\boldsymbol{\ell}=0,2$ otherwise), and a temperature independent transition probability, $u_{v v}=\left|\int \widetilde{\psi}_{\mathrm{v}} \mathrm{u} \psi_{\mathrm{v}}{ }^{\prime} \mathrm{d} \tau\right|^{2}, \psi$ being the dipole moment function, usually expressed as a Taylor's series expansion in the dimensionless normal coordinates. We rely on measurement to give the total absorption strength in a given spectral region. When the spectral resolution is sufficiently high to distinguish lines of the strongest band in the region, usually the one with the lower level $v=0$, from lines of all of the weaker "hot" or isotopic bands which accompany it, no problems arise: The S_{V}° of each band, and accordingly the relative $\mu_{\mathrm{vv}^{\prime}}$ is empirically established (along with favorable cases a determination of coefficients of the F-factor, leading to Σ_{V} for the region). However, most of the studies of quantitative band intensities have been made under conditions where only the total intensity is observed and the strengths of the weaker lines, which contribute only a few percent of the total, estimated from theoretical relations.

When all the transitions in the region are of the same type (that is, have identical $\Delta \mathrm{v}_{1}, \Delta \mathrm{v}_{2}, \Delta \mathrm{v}_{3}, \Delta \ell$), a good approximation to the relative transition probability is to use harmonic oscillator wave functions and to assume that the leading term in the expansion of μ is formed by the $\Delta v ' s$: for example if $\Delta v_{1}=2, \Delta v_{3}=1$, we require that this term be $\mu_{113} q^{2} q_{1}$ with $\mu_{113}=\partial^{3} \mu / \partial q_{1}{ }^{2} \partial q_{3}$. Evaluation of the integral for arbitrary values of $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \rightarrow \mathrm{v}_{1}+2, \mathrm{v}_{2}, \mathrm{v}_{3}+1$ then gives the ratio $\mu_{\mathrm{vv}^{\prime}}^{2} / \mu_{\mathrm{o} 201}^{2}=\left(\mathrm{v}_{1}+2\right)!\left(\mathrm{v}_{3}+1\right)!/ \mathrm{v}_{1}!\mathrm{v}_{3}!$. The general formula (for $\left.\Delta \ell=0\right)$ is $\left(v_{1}+\Delta v\right)!\left(v_{2}+\Delta v\right)!\left(v_{3}+\Delta v\right)!/ v_{1}!v_{2}!v_{3}!$. When $\Delta l= \pm 1$ similar relations involving integers hold. Use of more realistic wave functions corrected for an
harmonicity with lower terms in the dipole expansion lead to very nearly the same ratios. Accordingly, for many transition regions this type of calculation is simple and acceptable.

When, however, as in the case of both CO_{2} and $\mathrm{N}_{2} \mathrm{O}$, the resonance perturbations mix the vibrational wavefunctions, a region includes several bands with different basic transitions. For example, the 1.6μ region of CO_{2} contains four strong $\Delta \boldsymbol{\ell}=0$ bands, composing the resonance quartet $3001 \mathrm{r}-0$, with $\mathrm{r}=1,2,3,4$. If we assume that only the $\Delta v_{1}=3, \Delta v_{3}=1$ transition is involved, the relative transition probability of the four transitions should be given by the squared eigenvectors of the $\{301,221,141,061\}$ matrix, and the relative transition probability of the four hot transitions from 010 would be the same value (since $\Delta v_{2}=0$) multiplied by the squared eigenvectors of the $\{311,231,151,071\}$ matrix. These are not identical with the other eigenvectors, and all four hot bands have different transition probabilities. Moreover, the observed ground-state intensities are not proportional to the first set of eigenvectors. Inclusion of a second basic transition integral for $\Delta v_{1}=2, \Delta v_{2}=2, \Delta v_{3}=1$, together with the appropriate eigenvectors can, however, bring the observations in accord with calculation, if the ratio μ_{221} / μ_{301} is of the order of 0.1 . The ratio $231-0 / 221-010$ is 3 , and accordingly its inclusion increases the over-all $-010 / 0$ strength ratio and further shifts the relative probabilities. As one extends the calculations to lower states involving resonating groups with $v_{2}=2,3$, and higher, required in the stronger bands of CO_{2} and $\mathrm{N}_{2} \mathrm{O}$, the situation cannot be predicted in advance. However, calculations similar to those sketched above have been performed; then reliability depends on the accuracy of the input constants, but it is believed that such a computation is useful.

One must also note that in the isotopically modified molecules, the eigenvectors of resonating groups vary widely. Thus, the simple assumption of a constant isotopic abundance ratio for the intensities is very far from correct. It should be adequate however to assume that the relative intensities of the underlying transitions (301-0 and 221-0, in the example cited above) remain isotopically invarient.

It should also be remarked that the eigenvectors are rotationally dependent; the result would be a contribution to the m^{2} term in Eq. (9).

4. MOLECULAR SPECIES

4.1 Water Vapor

4.1.1 LINE POSITIONS

The frequencies of the lines of the principal isotope (${ }^{1} \mathrm{H}^{16} \mathrm{O}^{1} \mathrm{H}=$ Code 261) are calculated from a set of energy levels. These were obtained from the best available
data in all spectral regions by a smoothing process which is partly theoretical, partly empirical. The principal sources of data are identified and summarized in Table 7. The energy levels of the ground state, $v_{1} v_{2} v_{3}=000$, are by far the most extensive and accurate. They are based on a relatively small number (15, at the present writing) of microwave lines whose frequencies are precise to $<0.00001 \mathrm{~cm}^{-1}$ $(0.3 \mathrm{MHz})$, and several much larger groups of pure rotational lines, whose frequency accuracy may range from 0.001 to $0.002 \mathrm{~cm}^{-1}$ for isolated lines measured with Michelson-type interferometers to 0.02 to $0.03 \mathrm{~cm}^{-1}$ for weaker or partially blended lines measured with conventional spectrometers. With the long absorption paths available through the atmosphere, the observed lines extend to quite high energy levels, and by somewhat less accurate measurements with flame sources, to still higher levels, so that pure rotation transitions connect all levels from 0 to more than $4000 \mathrm{~cm}^{-1}$. The 000 level is the lower state of the more than 50 vibration-rotation bands observed between 900 and $20,000 \mathrm{~cm}^{-1}$, so that these measurements provide combination differences (common upper level in two or more transitions) for the 000 state that confirm, and for some states greatly improve those of the pure-rotation lines. In particular, the recent laboratory measurements of the $1.9 \mu \mathrm{~m}$ region give low-J energy differences that are selfconsistent to better than $0.001 \mathrm{~cm}^{-1}$. A theoretical smoothing of the totality of the observed microwave, pure-rotation, and combination-difference data, by leastsquares fitting to a 29 -constant Hamiltonian of the type described for $\mathrm{D}_{2} \mathrm{O}$ (Benedict et al, 1970) then yields the ground state energy levels used in the compilation. Inasmuch as none of the theoretical calculations have been successful in reproducing all of the available data to their apparent accuracy, the levels adopted for the current compilation are a calculated set for $\mathrm{E}<2500 \mathrm{~cm}^{-1}$, and for higher energies are determined from observations. It is believed that the accuracy of lines involving these levels is $\pm 0.005 \mathrm{~cm}^{-1}$ for $\mathrm{E}^{\prime \prime}<1500 \mathrm{~cm}^{-1} ; \pm 0.02 \mathrm{~cm}^{-1}$ for $1500<\mathrm{E}^{\prime \prime}<3000 \mathrm{~cm}^{-1}$, and $\pm 0.05 \mathrm{~cm}^{-1}$ up to the tabulated limit. The levels of the other vibration-rotation states are then obtained by averaging the sums of the observed lines and the lower-state levels. When upper-state levels have not been observed, although transitions to them have expected intensities above the lower limit, estimated values are chosen, either by direct calculations using an appropriate approximate Hamiltonian, or by extrapolation of the observed series of upper-lower rotational energy differences.

For the isotopic forms 181 and 171, the ground-state energies were obtained in the same way, except with much less extensive data (respectively 12 and 9 microwave lines). The dependence on theoretical calculations for the smoothing is more extreme, and the data for levels higher than $1500 \mathrm{~cm}^{-1}$, the limit of observation, is quite uncertain. However, since the higher-order constants in the

Regioncm^{-1}	Type of Ncasurement	Range of Levels			$\begin{gathered} \text { Intensity } \\ \text { (imit } \\ (296 K) \end{gathered}$	```irecisior. of : cm```	Per.
		Vibrational	Rota z	$\begin{gathered} \text { ional } \\ K_{a} \\ \hline \end{gathered}$			
0-25	2,181.171	0.010	10	6	$<-.27$. 00001	a, b
0-25	L, $\overline{162}, \overline{182}$	0.010	13	7	<-27	. 00001	c,d
30-250	L	0	13	7	-23	. 005	c
250-550	L	10	15	11	-24	. 03	f
480-690	LH:	0	15	12	-25	. 02	$\underline{\square}$
$430-650$	F	0,010 ctc.	30	15	<-27	. 05	b
700-1100	Li:	0,010	19	12	-26	. 1	i
750-1400	A	10,010	18	12	-25	. 05	j
860-1100	A	10,010	18	12	-25	. 02	\%
1270-1450	Lit	010,020	16	9	-27	. 05	1
1200-1700	L, 162	010	14	7	-27	. 02	\%
1330-1970	L, 181,171	010	13	6	-26	. 01	n
1840-2500	L. 4	010,020,001+	18	10	-26	. 03	0,2
1925-2182	A, C	,010,020,001+	28	10	<-27	. 01	-
2390-2970	A, U	100,001, etc.	32	19	<-27	. 01	F
2480-3030	L. 162	100.020	13	10	<-27	. 005	c
2900-3500	A	:020,100,001	16	11	-26	. 02	r
2800-3500	F	1001,011, etc.	33	13	<-27	. 02	s
2900-4330	L, 162.	001,100, etc.	14	9	-25	. 005	t*
3340-4030	L, 181.171	001,100, etc.	13	7	-26	. 01	u
3940-4300	F	001,011, etc.	33	19	<-27	. 02	s
4032-5090	A, U	001,011,020 +	33	17	<-27	. 01	v
3950-5200	A	001,030,011,etc	18	13	-26	. 01	w
4500-5915	L, 162	011,030,110, etd	14	8	-25	. 005	t*
5090-5575	L	011,110	12	7	-24	. 005	x
5540-7000	A	011,021.120 +	16	9	-26	. 01	w
5550-6720	A, U	011,021,120 +	24	11	<-27	. 01	v
7000-7500	L	101,200	13	8	-24	. 05	y
7400-9000	A	101,002,111 +	16	9	-26	. 01	w
7390-8800	A, U	101,001,111 +	10	9	-25	. 01	v
8300-10000	A	111,012,041	16	8	-25	. 03	$=$
9150-9350	A	012,111	10	7	-27	. 005	aa

References:

a. Delucia et al, 1972
b. Steenbeckeliers et al, 1971
c. De Lucia et al, 197i
d. Benedict et al, 1973
e. Hall and Dowling, 1967
f. Rao et al, 1962
g. Izatt et al, 1969
h. Madden and Benedict, 1956
i. Burch and Gryvnak, 1971
j. Dionne, 1972
k. Migeotte et al, 1957

1. Ben-Aryeh, 1967
m. Williamson et al, 1969
n. Gailar and Dickey, 1960
o. Burch and Gryvnak, 1973
F. Hall, 1972
q. Benedict et al, 1973
r. Beer, 1970
s. Benedict and Sams, 1971;
t. Pugh, 1972
u: Fraley et al, 1969
Hall, 1970
k. Connes et al, 1969
x. Flaud et al, 1972
y. Nelson, 1951
2. Swensson et al, $19 ? 0$
aa. Breckenridge and Hall. 1973

Table 7. References for Water Vapor Energy Level Data (Contd)

The data sources are of five types. \underline{L}, laboratory absorption measurements on water vapor or moist air at room temperature; LH, similar measurements in cells heated to $75-540^{\circ} \mathrm{C}$: E , laboratory measurements of emission from oxy-hydrogen or oxy-acetylene flames, yielding $\sim 10^{19}$ molecules $/ \mathrm{cm}^{2} \mathrm{H}_{2} \mathrm{O}$ at $+2500-3500 \mathrm{~K}$: A, measurements of solar radiation through the atmosphere, containing $10^{22}-10^{25}$ molecules $/ \mathrm{cm}^{2}$; \underline{U}, observations of the ratioed spectrum of sunspot/photosphere, also containing about 10^{19} $\mathrm{mol} / \mathrm{cm}^{2}$ at $\sim 3600 \mathrm{~K}$. Isotopic symbols are appended when enriched samples were studied, underlined when a major component, dashed wher: moderately increased above natural abundance. The range of vibrational and rotational levels is a rough indication of the extent of levels observable down to the intensity limit of $\mathrm{S}^{\circ}\left(\mathrm{cm}^{-1} / \mathrm{mol} \mathrm{cm}{ }^{-2}\right)$, corrected to 296 K , with the resolving power used. The ground state, $(v=0)$ is implied in all regions.

* In reference t, the observed contamination of the sample by deuterium to give the HDO abundances varying from 10-200 times normal was not reported.
theoretical fit were constrained near their values in $\mathrm{H}_{2} \mathrm{O}-161$, the tabulated line positions for all pure-rotation lines should be accurate to $\pm 0.5 \mathrm{~cm}^{-1}$. Upperstate levels for these molecules are likewise available only for the strongest lines, so that the uncertaintics of weak lines here might approach $\pm 1 \mathrm{~cm}^{-1}$.

The asymmetrically substituted HOD (162) molecule has been studied, both in the microwave and infrared regions with thoroughness comparable to 161 , so that the frequency data, for the $000,010,100,020,110$, and 030 bands should be of the same accuracy as for 161 . The 001 and 011 levels may have errors larger by a factor of five.

Quite reliable data can be calculated for the pure-rotation spectra of isotopic forms 182, 172, and 282, which are only of very minimal importance in the atmosphere. Weak lines in vibration-rotation bands of 182 (as yet unobserved, except for a few lines in 100-000) also have been included by estimating constant vibrational shifts from 162.

4.1.2 LINE INTENSITIES

The intensities of pure rotation lines were calculated by a program in which the effects of vibration-rotation interaction on both the rotational eigenfunctions and on the dipole moment were included. The eigenfunctions were obtained from a Hamiltonian with 25 independent constants which gave an excellent fit to the energy levels, and the dipole moment was expressed as a linear expansion in the dimensionless normal coordinates:

$$
\begin{equation*}
\mu=\mu_{\mathrm{e}}+\left(\partial \mu / \partial \mathrm{q}_{1}\right) \mathrm{q}_{1}+\left(\partial u / \partial \mathrm{q}_{2}\right) \mathrm{q}_{2}+\left(\partial \mu / \partial \mathrm{q}_{3}\right) \mathrm{q}_{3}+\ldots \tag{14}
\end{equation*}
$$

The $\partial \mu / \partial \mathrm{q}_{\mathrm{i}}$ coefficients in this expression were obtained from the $\mathrm{S}_{\mathrm{v}}^{\circ}$ values of the three fundamental bands by the cquation $S_{V_{i}}^{O}=4.16 \times 10^{-19} \nu\left(\partial \mu / \partial \mathrm{q}_{\mathrm{i}}\right)^{2}$. The algebraic signs of $\partial \mu / \partial q_{i}$ were chosen so that the observed vibration-rotation effects on intensities were reproduced in the fundamental bands of $\mathrm{H}_{2} \mathrm{O}$ and verified by noting that these and only these choices also gave a reasonable fit to the band intensities and interaction effects in the isotopic molecules. The value of the permanent moment in the equilibrium configuration, $\mu_{e}=1.847 \mathrm{D}$ (Clough and Beers, 1973), was derived from Stark Effect measurements on 8 microwave lines in three isotopic water molecules (161, 162, 262), and is in excellent agreement with recent molecular-beam measurements (Dyke and Muenter, 1972). The uncertainty in the calculated intensities should result from inaccuracy of the $\partial \mu / \partial q_{i}$ coefficients and neglect of higher terms in the expansion; accordingly, it should be of minor importance for low J lines, and is estimated to be less than 1 percent for $E^{\prime \prime}<1000 \mathrm{~cm}^{-1}$ and less than 10 percent for all lines in the tabulation, with the possible exception of the very low probability lines in such branches as R_{53}, Q_{55}, etc. (Benedict, Classen and Shaw, 1952).

The intensities of vibration-rotation lines are more difficult to calculate, because they differ from those of the rigid asymmetric rotor by three interrelated effects: (1) the centrifugal effects, as used above for pure rotation; (2) the fact that the asymmetry, and hence the rotational eigenfunctions, are vibrationally dependent; and (3) the fact that for all vibrations above 010 , the rotational levels of like symmetry and equal J in different vibrational levels are at energies sufficiently close that the vibrational eigenfunctions are rotationally dependent, and in special cases "perturbations" lead to abnormal mixing and intensities. Only the first-named effect has been incorporated in the computations, through the method described by Benedict and Calfee (1967). Table 8 lists the constants used for each band. The footnotes to Table 8 list the sub-branches which are observed to disagree in a regular way from the results of the calculation, and which were adjusted accordingly. The lines that are exceptionally perturbed (effect 3) are identified by the symbol P following $\mathrm{K}^{\prime}{ }_{c}$; for these the total intensity of the two "interacting" lines was divided as required by the calculated vibrational mixing ratios or further adjusted to agree with measurements. No general statement can be made concerning the accuracy of the intensities of individual lines; for the low $-J$ lines of the strongest bands it should be within ± 10 percent, within a factor of two for other lines of sufficient intensity $\left(>10^{-25} \mathrm{~cm}^{-1} / \mathrm{mol}-\mathrm{cm}^{-2}\right)$ to appear in laboratory and/ or solar spectra, and within an order of magnitude for the weakest lines.

The intensities of the isotopic lines of species 181 and 171 were taken equal to those of 161 multiplied by the abundance factor (except for the cases of strong perturbation where the vibrational mixing ratios are different). The asymmetric isotopic species 162 is widely different, so that a completely independent calculation of its intensities, in both pure rotation and vibration-rotation has been made. The band parameters are included in Table 8.

4.1.3 LINE WIDTHS

Recent high-resolution spectra of air-broadened or N_{2}-broadened water vapor lines (Brault, 1972, private communication) have in general confirmed the calculations of Benedict and Kaplan (1959) to ± 10 percent. A striking discrepancy is, however, observed (Blum et al, 1972) for the lines of highest J which are much narrower than the lower limit of $0.032 \mathrm{~cm}^{-1} \mathrm{~atm}^{-1}$ which was imposed on the calculated value by choosing a minimum collision diameter equal to the kinetictheory diameter. If the Anderson Theory (Anderson, 1949) is modified by eliminating a distance of closest approach (that is, setting the kinetic theory collision diameter equal to zero) the calculated half-width at half-height of $16_{1,16}{ }^{-15} 0,15$ is lowered from 0.032 to $0.0098 \mathrm{~cm}^{-1}$, still slightly above the observed value (0.0086). The validity of the theory is thus in question for high $-J$ transitions but a revised

Table 8. Water Vapor Band Intensity Data and Interaction Coefficients

$\begin{gathered} v_{0} \\ \mathrm{~cm}^{-1} \end{gathered}$	iso	v* v"	$\begin{aligned} & \text { Rot } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \mathrm{s}_{\mathrm{v}}^{0}(296 \mathrm{~K}) \\ \mathrm{cm}^{-1} / \mathrm{mol} \mathrm{~cm}^{-2} \end{gathered}$	$\begin{gathered} \mathrm{R} \\ \text { Debyes } \end{gathered}$	Interaction Coefficients			
						α	B	γ	Notes
1403.489	162	010000	A	$8.0-022$. 066				
		010	B	1.92-021	. 105				
1556.895	161	020010	8	$8.61-021$. 171				(1)
1588.279	181	010000	8	2.12-020	. 121				(1)
1591.32	171	010000	B	$3.93-021$. 121				(1)
1594.736	161	010000	B	1.061-017	. 121	$\begin{aligned} & .025 \\ & .05 \end{aligned}$	$\begin{aligned} & .0065 \\ & .013 \end{aligned}$	$\begin{aligned} & -.004 \\ & -.005 \end{aligned}$	(2)
2062.318	161	100010	B	B.9-023	. 0167				
2161.188	161	001010	A	$4.9-022$. 0394		-. 0108	-. 015	
2709.35	182	100000	A	1.31-024	. 0437				
2723.687	162	100000	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	$\begin{array}{ll} 6.53 & -022 \\ 2.0 & -023 \end{array}$	$\begin{aligned} & .0437 \\ & .0076 \end{aligned}$	$l_{.0322}^{.1}$. 0130	. 077	
2782.014	162	020000	$\begin{aligned} & A \\ & B \end{aligned}$	$\begin{array}{ll} 8.1 & -023 \\ 9.0 & -024 \end{array}$	$\begin{aligned} & .0153 \\ & .0051 \end{aligned}$				
3072.058	161	030010	B	7.99-023	. 0121				(1)
3139.02	181	020000	8	$1.32-022$. 0070				(1)
3144.96	171	020000	B	4.92-023	. 0070				(1)
3151.631	161	020000	B	6.58-020	. 0070		. 005	. 003	(3)
3640.245	161	110010	B	$1.50-022$. 0149				(1)
3649.690	181	100000	B	7.24-022	. 0149				(1)
3653.14	171	100000	B	1.33-022	. 0149				(1)
3657.054	161	10000	B	3.62-019	. 0149	. 075	. 035	. 028	(3)
3707.459	162	001000	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{array}{ll} 1.2 & -021 \\ 3.0 & -022 \end{array}$	$\begin{aligned} & .0509 \\ & .0255 \end{aligned}$				
3736.509	161	011010	\wedge	3.30-021	. 0708				(1)
3741.571	181	001000	A	1.60-020	. 0708				(1)
3748.36	171	001000	A	2.96-021	. 0708				(1)
3755.924	161	001000	A	7.994-018	. 0708	$\begin{array}{r} .0695 \\ .0278 \end{array}$	$\begin{aligned} & .0310 \\ & .0124 \end{aligned}$	$\begin{aligned} & .0160 \\ & .0064 \end{aligned}$	(4)
4099.954	162	110000	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{array}{ll} 2.0 & -023 \\ 1.5 & -024 \end{array}$	$\begin{array}{r} .0088 \\ .0024 \end{array}$	($\mathrm{F}=$	1+0.15ka		(5)
4145.483	162	4.030 000	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{array}{ll} 2.0 & -023 \\ 1.5 & -024 \end{array}$	0	(F=1	1-0.15Ka	-.05m)	(5)
4666.720	161	030000	B	$\begin{array}{lll}2.0 & -022\end{array}$. 00032	. 01	. 10	. 12	
5089.539	162	011000	$\begin{aligned} & A \\ & B \end{aligned}$	$\begin{array}{ll} 3.0 & -023 \\ 6.0 & -024 \end{array}$	$\begin{aligned} & .0069 \\ & .0031 \end{aligned}$. 02			
5180.36	161	120010	B	1.47-023	. 0040				(1)
5221.28	181	110000	B	3.66-023	. 0028				(1)
5227.75	171	110000	B	6.77-024	. 0028				(1)
5234.981	161	110000	B	1.83-020	. 0028	. 05	-. 015	. 02	
5276.776	161	021010	A	7.45-022	. 0286				(1)
5310.43	181	011000	A	1.81-021	. 0203				(1)
5320.25	171	011000	A	3.36-022	. 0203				(1)
5331.245	161	011000	A	9.06-019	. 0203		. 0144	. 02	

Table 8. Water Vapor Band Intensity Data and Interaction Coefficients (Contd)

$\begin{gathered} v_{0} \\ \mathrm{~cm}^{-1} \end{gathered}$		iso	$v^{\prime} \mathbf{v o}^{\prime \prime}$	Rot Type	$\begin{gathered} \mathrm{s}_{\mathrm{v}}^{0}(296 \mathrm{~K}) \\ \mathrm{cm}^{-1} / \mathrm{mol} \mathrm{~cm} \end{gathered}$		R Ddyyes	Interaction Coefficients					
		-					9	γ	Notes				
	5372.114		162	200000	A	1.2		-023	. 0042				
	6679.21	161	130010	B	4.32	-024	. 00194						
	6755.40	181	120000	日	7.05	-024	. 00112						
	6775.10	161	120000	B	3.53	-021	. 00112						
	6779.08	161	031010	A	6.94	-023	. 0076						
	6844.59	181	021000	A	1.13	-022	. 0044						
	6857.32	171	021000	A	2.09	-023	. 0044						
	6871.512	161	021000	A	5.64	-020	. 0044						
	7186.68	181	200000	B	1.06	-022	. 0042						
	7201.48	161	200000	B	5.29	-020	. 0042						
	7213.26	161	111010	A	3.98	-022	. 0157						
	7222.68	181	101000	A	1.49	-021	. 0157						
	7235.57	171	101000	A	2.76	-022	. 0157						
	7249.93	161	101000	A	7.47	-019	. 0157						
	7371.79	161	012010	B	2.17	-024	.00131						
	7417.54	181	002000	B	1.06	-023	. 00131						
	7430.54	171	002000	B	1.96	-024	. 00131						
	7745.04	161	002000	B	5.29	-021	. 00131						
	8238.84	161	041010	A	5.88	-024	. 00204						
	8273.95	161	130000	R	2.4	-022	. 00027						
	8341.32	181	031000		7.2	-024	. 00102						
	8356.70	171	031000	A	$1.33-$	-024	. 00102						
	8373.82	161	031000	A	3.6	-021	. 00102						
	8734.97	161	121010	A	4.10	-023	. 0037						
	8761.57	161	210000	B	3.6	-022	. 00031						
	8779.75	181	111000	A	9.96 -	-023	. 0037						
	8792.63	171	111000	A	1.85	-023	. 0037						
	8807.00	161	111000	A	4.98 -	-020	. 0037						
*	8966.53	181	012000	B	2.4	-024	. 00057						
	9000.13	161	012000	B	1.2	-021	. 00057						
	9833.58	161	041000	A	4.8	-023	. 00011						

Notes to Table 8.
(1) Insufficient data to establish interaction coefficients; these are assumed identical with corresponding band of 161.
(2) Lower line for strong lines (L rigid>1): upper line for others.
(3) Many lines, especially those with entranced resonance with 001 , require special treatment.
(4) Lower ine for gtrong ilnes (L rigid>0.5): upper line for others.
(5) Very close resonance of these two atates at $K_{a} w$. all transition moment attributed to 110-0.
calculation with $b_{\min }=0$ does reproduce the empirical results better than the original calculation. Accordingly this has been incorporated in the current tabulation. As in previous computations, no vibrational dependence of the width has been included. The widths of the isotopic lines (181 and 171) have been set equal to those of 161 ; for 162 a new calculation, with $\mu_{e}=1.847, q_{a i r}=2.62 \times 10^{-26}$ esu and $b_{\min }=0$ has been made, where μ_{e} is the dipole moment of water, $\mathrm{q}_{\mathrm{air}}$ is the effective quadrupole moment of the colliding gas and $b_{\text {min }}$ is the collision diameter.

4.2 Carbon Dioxide

4.2.1 LINE POSITIONS

The line positions and lower-state energies of each of the significant isotopic 'modifications of CO_{2} were calculated for each band by a rotational formula for the linear molecule including terms up to $\mathrm{D}_{\mathrm{v}} \mathrm{J}^{2}(J+1)^{2}$. For some of the higher states involving Fermi resonances of high rank, an additional term $H_{v} J^{3}(J+1)^{3}$ was required. A very few of the vibrational levels are involved in a rotational perturbation, for which special calculations were needed as discussed below. The constants for each level are summarized in Table 9. For each isotopic species the band constants form a self-consistent set; that is, if a vibrational state appears more than once, as either initial or final state, its value of G_{v}, B_{v}, D_{v} (and occasionally H_{v}) is the same. This requirement results in some deviations of the smoothed final line positions from their best observed values, but in general the positions of observed lines, up to $J=40$, will be within $\pm 0.01 \mathrm{~cm}^{-1}$ of the tabulation.

The constants were calculated for each isotopic species separately, using a set of constants similar to those of Chedin and Cihla (1972), for 626, 636, and 628, but the isotopic sets were not consistently readjusted to fit a potential function. However, for isotopic forms for which the data are less extensive, approximate isotopic relations were used.

The data used for the band constants are taken from various sources. The highest precision data are those for the laser transitions 00011-10001 and 0001110002 in the 626 isotope. The measurements of Gordon and McCubbin (1965, 1966), Oberly et al, (1968), and Drayson (1967) provide the data for interrelations among the lowest states. The most extensive data for the higher states are those from the planet Venus, as observed and summarized by Connes et al, (1969).

The vibrational notation may not be familiar to all users, and accordingly will be explained at this point. Five digits are used for each state, in order, $v_{1} v_{2} \ell v_{3} r$. The fifth digit, r, takes the possible values $1,2, \ldots v_{1}+1$, and serves to locate the level in the Fermi resonating group of $v+1$ levels; $v_{1}, v_{2} \ell, v_{3} ; v_{1}-1\left(v_{2}+2\right)$, $v_{3} ; \ldots 0,\left(v_{2}+2 v_{1}\right)^{\ell}, v_{3}$. The value of r decreases with increasing energy. (In

Table 9. Vibrational Energy Levels and Molecular Constants for CO_{2}

Enerigy Level	G $\left(\mathrm{cm}^{-1}\right)$	B $\left(\mathrm{cm}^{-1}\right)$	$\begin{gathered} 0 \\ \text { Multipiy } \\ \text { by } 10^{-7} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	Energy Level	$\left(\mathrm{cm}^{-1}\right)$	$\left(\mathrm{cm}^{-1}\right)$	$\begin{gathered} D \\ \text { Multiply } \\ \text { by } 10^{-7} \\ \text { (em }^{-1} \text {) } \end{gathered}$	Energy Level	$\left(=m^{-1}\right)$	(${ }^{8} \mathrm{~cm}^{-1}$)	$\begin{gathered} \text { D } \\ \text { Multiply } \\ \text { by } 10^{-7} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$
00001	1sotope 626		1.331	40004	5197.249	0.390092	1.89	41114 c	1981.179	0.387643	2.56
	0.00	0.390218		32203 c	5245.469	. 391498	1.335	41114 d		. 389753	1.6,6
				32203 d			1.535	41113 c	8250.644	. 385233	J. 355
w1101 c	667.379	. 3900.43	1.355	21113 c	5475.071	. 388153	1.61*	4:113 d		. 387813	1.355
01101 d		. 391253	1.355	21113 d		. $3 \mathrm{P9} 123$	1.705	41112 c	8425.000	. 386817	0.935
				40002	5475.565	. 390093	0.895*	41112 d		. 388517	0.965
10002	1285.412	. 390481	1.503	13312 cc	5531.279	. 389732	1.52	11132 c	8303.265	. 381858	1.49
02301 c	1335.129	. 391682	1. 389	05511 cd	5627.254	. 390913	1.44	11:32 d		. 382744	1.56
02201 d			1.379	21112 c	5632.760	. 387018	1.265	03331 cd	8863.548	. 383420	1.40
10001	1384.187	. 390189	1.142	21112 d		. 388128	1.385	11131 c	8944.146	. 381264	1.22
				13311 cd	5730.618	. 389269	1.51	11131 d		. 381474	1.10
111020	1932.470	. 390736	1.441	21111 c	5790.579	. 387413	1.125				
11102 d		. 391680	1.501	21111 d		. 388613	1.025	20033	9388.990	. 38234	1.71
03301 cd	2003.238	. 392420	1.403	10022	5915.209	. 384528	1.57	12232 C	9419.189	. 38307	1.37
11101 c	2076.865	. 390416	1.281	02221 e	5958.539	, 385617	1.35	12232 d			1.25
11101 d		. 391344	1.195	02221 d			1.31	20032	9516.970	. 38048	1.39
. 00011	23.40 .146	. 387140	1.325	10021	6016.690	. 383917	1.17	12231 c	9589.929	. 38247	1.43
								$12231 \mathrm{~d}$			1.53
20003	2548.280	. 391183	1.76	30014	6075.983	. 386896	2.052	20031	9631.350	. 38125	2.04
12302 c	2585.006	. 391843	1.45	22213 c	6103.670	. 3899428	1.29				
12202 d			1.25	22213 d			1.67	21133 c	9987.48	. 3R251	1.55
20002	2671.113	. 3805556	1.331	14412 c	6176.623	. 390485	1.54	21133 d		. 38351	1.1,3
04.401 cd	2671.690	. $39 \$ 162$	1.42	41102 c	6179.010	. 389642	1.33	21132	10145.43	. 38096	2.25
12201 c	2760.735	. 391535	1.44	30013	6227.924	. 386697	1.643	21132 d		. 38258	1.35
12201 d			1.25	22212 c	6288.492	. 388472	1.38	21131 c	10297.05	. 38127	1.10
20001	2797.154	. 390563	0.995	22212 d			1.28	21131 d		. 38237	1.00
01111 c	3004.016	. 387593	1.349	30012	6347.854	. 386451	0.951		Isotope		
01111 d		. 388190	1. 349	$41101 \mathrm{c}$	6388.085	. 39029 C	0.93	00001	0.00	. 390235	1.330
				$14411 \mathrm{~cd}$	6398.047	. 390017	-. 37				
21103 c	3181.450	. 391028	1.63	$22211{ }^{\text {c }}$	6474.530	. 388662	1.53	01102 c	$\therefore 48.484$. 390598	1.330
21103 d		. 392316	1.75	22211 d			1.21	cil01 c		. 391236	1.330
13302 cd	3240.564	. 392696	1.51	30011	6503.081	. 387974	0.719				
21102 c	3339.340	. 390035	1.37	11122 c	6537.958	. 384804	1.475	10002	1265.820	. 390920	1.58
21102 d		. 391145	1.37	11122 d		. 385722	1.606	02202 c	1297. 269	. 391603	1.274
05501 cd	3340.475	. 393908	1.44	11121 c	6679.709	. 384310	1.216	02202 d			1.334
13101 cc	3442.256	. 392312	1.35	11121 d		. 385127	1.115	10001	1370.067	. 389707	2.160
21101 c	3500.590	. 390461	1.14	00031	6972.578	.380990	1.331				
21101 d		. 391700	1.01					01102 c	1896.49	. 391137	1.48
10012			1.57	31114 c	6688.274	. 388547	1.735	$01102 d$. 392096	1.13
02211 c	3659.277	. 388647	1.383	31114 d		. 390246	1.825	03301 cd	1946.343	. 392293	1.34
02211 d			1.373	31113 c	6863.553	. 386930	1.401	11101 c	2037.003	. 390015	1.18
10011	3714.781	. 387051	1.13	31113 d		. 388333	1.485	11101 d		. 390975	1.13
				31112 c	7023.672	. 386755	1.19	00011	2283.490	. 387300	1.325
30004	3792.702	. 391760	2.02	31112 d		. 388127	1.165				
22203 c	3821.984	. 392359	1.46	20023	7133.819	. 385288	2.75	20003	2507.50	. 391815	1.76
22203 d			1.68	12222 c	7166.049	. 386017	1.15	12202 c	2531.63	. 39220	1.22
14402 cd	3898.117	. 393434	1.54	12222 d			1.35	12202 d			1.40
30003	3942.492	. 389584	1.65	31111 c	7203.8.4	. 387607	1.05	04401 cd	2595.614	. 392987	1.34
22202 c	4007.850	. 391485	1.47	31111 d		. 389117	0.85	20002	2645.086	. 389826	1.46
22202 d			1.40	12221 c	7338.149	. 385487	1.33	12201 c	2700.25	. 39126	1.30
su002	4063.908	. 389606	0.935	12221 d			1.28	12201 d			1.34
14401	4122.347	. 393036	1.36	20021	7377.679	. 384403	1.45	20001	2750.48	. 389670	0.91
22201 c	4197.413	. 391719	1.63	01131 c	7602.529	. 381503	1.315	01111 c	2920.244	. 387654	1.325
22201 d			1.13	01131 d		. 382063	1.355	01111 d		. 389286	1.325
30001	4225,110	. 391090	0.521								
11112 c	4247.713	. 387773	1.49	40015	7283.981	. 389550	2.31	21103 c	3127.28	. 39155	1.70
11112 d	424.73	. 388690	1.56	32214 c	7307.651	. 389942	1.03	21103 d		. 39308	1.68
03311 cd	4314.913	. 389387	1.405	32214 d			1.64	13302 cd	3169.21	. 39272	1.45
11111 c	4390.628	. 387350	1.24	40014	7460.530	. 387322	1.93	21102 c	3289.71	. 39002	1.25
00021				32213 c	7505.219	. 388632	1.23	21.102 d		. 39120	1.25
	4673.327	.384063	1.319	32213 d			1.34	13301 cd	3361.57	. 39188	1.25
				40013	7593.690	. 385562	1.04	21101 c	2433.70	. 39292	1.04
31104 c	4416.150	. 391357	1.63	32212 c	7694,416	. 388252	1.18	21101 d			1.10
31104 d		. 393078	1.76	32212 a			1.14	10012	3527.740	. 388030	1.56
31103 c	4591.118	. 389925	1.53	4 CO 2	7734.452	. 386954	0.59	02211 c	3557.314	. 388866	1.28
31103 d		. 391348	1.48	21123 c	7743.700	. 385358	1.25	02211 d			1.33
33102 c	4753.450	. 389708	1.20	21123 d		. 386489	1.73	10011	3632.917	. 386726	1.21
$31102 d$. 391098	1.33	32211 c	7897.573	. 388965	1.33*				
20013	4853.620	. 388188	1.77	32211 d			0.939**	30001	4145.95	. 39010	1.22*
12212 c	4887.970	. 388958	1.33	21122 c	7901.479	. 384008	1.31*	11112 c	4147.234	. 38811	1.49*
12212 d			1.43	21122 d		. 385128	1.38**	11112 d		. 38915	1.59
31101 c	4938.410	. 389358	0.995	40011	7920.840	. 388558	0.60	03311 cd	4194.704	. 389348	1.33
31101 d		.391130	0.808	21121 c	B056.024	. 384408	1.11	11111 c	4287.695	. 387654	1.27
04411 cd	4970.909	. 390148	1.42	21121 d		. 385525	1.08	11111 d		. 387977	1.26
20012	4977.830	. 386529	1.35	10032	8192.556	. 381561	1.56	00021	4543.552	. 384360	1.33
12211 c	5061.776	. 388508	1.28	02231 c	8332.880	. 382600	1.30				
12211 d			1.12	02231 d			1.28	20013	4748.058	. 388845	1.815
20011	5099.660	. 387448	0.921	2003:	R293.957	. 380805	1.13	12212 c	4770.985	. 38925	1.25
01121 c	5315.730	. 384548	1.46					12212 d			1.27
01121 d		. 385 !48	1.46	*,* J-de	pendent in	cractions		04411 cd	4831.99	. 39003	1.34

Table 9. Vibrational Energy Levels and Molecular Constants for CO_{2} (Contd)

this scheme, v_{2} is always equal to ℓ.) The desirability of labelling the-states in Fermi resonance by the same symbols except for r is to emphasize the very important role played by the Fermi resonance, which is very nearly exact for most of the groups. It must also be emphasized very strongly that the long-established custom of calling the upper level of the $\left(10^{\circ} 0,02^{0} 0\right)$ resonance at $1388.18 \mathrm{~cm}^{-1}$, $\boldsymbol{\nu}_{1}$, and the lower level at $1285.41,2 \boldsymbol{\nu}_{2}$, is not only confusing the issue, but is wrong, since the now ten year old work of Amat and Pindert (1965) has shown that the unperturbed position of $2 \nu_{2}^{\circ}$ lies above that of ν_{1}^{o}, in the 626 isotope. This is also true in 627,628 , and 828 , but in $636,637,638$, it lies below. It seems vastly preferable always to label the upper level 10001 and the lower 10002 .

4.2.2 LINE INTENSITIES

The intensity data (summarized in Table 10) are based on quantitative studies of resolved lines where such exist; and where not, on total intensities in a given region. The relations between the strengths of the principal band in a region and its associated weaker "hot" and isotopic neighbors were based on computations relating the transition moments to the vibrational eigenfunctions, taking into account terms up to the quartic in the molecular constants, with particular attention to the degree of Fermi mixing in the states, and an approximate calculation of the "unperturbed" (before Fermi mixing) transition moments. This procedure appears to give fairly good agreement for the ground-state and "first-hot" transitions in such Fermi groups as 2001-0000 and 3001-0000, and seems adequate for estimating strengths of higher unobserved hot bands. However, when experimental data are available (Burch, 1970), as for the 12201-11102 band at $828.28 \mathrm{~cm}^{-1}$, these were used.

For the isotopic molecules, empirical data were again used where available, as for 628 bands which are forbidden in the symmetric molecules. When the isotopic bands overlap stronger bands of 626 , the abundance ratios were used to estimate the total strength of a group, but the particular Fermi parameters were used to divide the strengths.

The influences of vibration-rotation interactions on line intensities has been measured in some cases. As a generalization, it can be said that these are usually negligible for the parallel bands ($\ell^{\prime}-\ell^{\prime \prime}=0$) but become of considerable importance for all the perpendicular bands ($\ell^{\prime}-\ell^{\prime \prime}= \pm 1$) except those in the $15 \mu \mathrm{~m}$ region. For all the other bands, Coriolis-type resonances are responsible for inducing a large part of the transition moment in the R - and P-branches, thus "borrowing" intensity from the stronger parallel bands, while leaving the Q branches unchanged. Accordingly, the latter may remain very weak (or in some cases be unobservable - for example, the 410 group). We have used the approximate equation $S_{m}=S_{v}^{o}\left(1+m \zeta_{v}\right)^{2}$ to correct for this interaction, with the values

Table 10. Band Origins and Intensitie3 for CO_{2}

Band Center v_{0} $\left(\mathrm{cm}^{-1}\right)$	Upper Level	Lover hevel	180tope	55° at $296 k$ (multiply by $10^{-22} \mathrm{~mol}^{-1}$ $\mathrm{cm}^{2} \mathrm{~cm}^{-1}, \quad j$	Band Center v_{0} $\left(\mathrm{cm}^{-1}\right)$	Upper Level	Lower Level	$\begin{aligned} & \text { Iso- } \\ & \text { tope } \end{aligned}$	si at 296x (aniciply by $\begin{aligned} & 10^{-22} \mathrm{~mol}^{-1} \\ & \mathrm{~cm}^{2} \mathrm{~cm} \end{aligned}$	
471.415	20003	11101	626	0.0087	681.27	12201	11108	627	. 0082	2
479.829	13302	12201	626	. 0012	681.521	13301	12201	626	. 460	
494.537	12202	11102	636	. 00079 Q	683.501	11101	10001	628	. 77	
508.141	12202	11101	626	. 0516	683.870	12201	11101	626	9.05	
510.337	21103	20002	626	. 0040	686.13	11101	10001	627	0.13	
526.423	11102	10001	636	. 035	688.678	11101	10001	626	148.8	
535.903	11102	10001	628	. 00118	696.823	22201	21101	626	0.0195	
542.186	21102	20001	626	. 00711	699.14	10001	$0: 101$	638	. 058	
544.283	11102	10001	626	2.723	703.477	10001	01101	628	*. 20	
548.275	13302	04401	628	0.000269	703.436	21101	20001	626	0.246	
557.742	14402	05501	626	. 00253	707.883	20001	11101	628	. 024	
561.097	12202	03301	628	. 0058	709.80	10001	01101	637	. 0094	
564.889	20002	11101	628	. 0043	710.765	10011	01111	626	. 0202	
568.874	13302	04401	626	. 0716	711.455	10001	01101	627	1.26	
\$70.87	12202	03301	627	. 000929	71.2 .487	20002	11102	628	0.013	
573.536	13302	04401	636	. 00115	713.387	20001	11101	636	.047	
576.598	11102	02201	628	. 169	713.59	20001	11101	627	. 0038	
578.605	21102	12201	626	. 0376	720.289	20001	11101	626	4.784	
578.85	20002	12101	627	. 00072 Q	720.808	10001	01101	626	1853.	
580.424	22203	13302	626	. 0096	721.583	10001	01201	636	17.9	
581.768	12202	03301	626	1.934	724.196	11101	02201	628	0.315	
585.287	12202	03301	616	. 034	724.95	20002	11102	627	. 0024	Q
586.14	11102	02201	627	. 0439	732.54	11101	02201	527	. 0474	
589.46	21102	12201	636	. 00055 Q	733.45	21101	20001	636	. 0021	\bigcirc
594.248	20002	11102	626	. 908	738.643	20002	11102	626	3.02λ	
595.65	21103	12202	636	. 0038	739.824	11101	02201	636	0.70	
596.444	21103	12202	626	. 257	739.936	12201	03301	628	. 0157	
597.062	10002	01101	628	5.19	739.855	21101	12201	636	. 176	
597.341	11102	02201	626	52.08	741.736	11101	02201	626	79.01	
599.028	20003	11102	628	0.021	747.32	12201	03301	627	0.0025	Q
599.221	11102	02202	636	. 702	748.546	20002	11102	636	. 0378	
601.70	10002	01101	638	. 055	753.055	13301	04401	628	. 00058	0
607.14	10002	01101	627	1.17	754.334	21102	12202	626	. 1607	
607.27	20003	11102	628	0.021	757.497	12201	03301	626	3.288	
607.993	20002	11101	636	. 0112	765.896	13301	04401	636	0.00173	0
608.828	10012	01111	626	. 0175	770.355	13301	04401	626	. 1351	
609.11	10002	01111	637	. 0106	771.273	21101	10002	636	. 138	
611.01	20003	11102	636	. 102	781.872	14401	05501	626	. 0051	
515.810	20003	11102	626	6.89	789.916	11101	10002	628	. 0056	
617.336	10002	01101	636	20.5	790.536	11101	10002	627	. 0010	8
618.033	10002	01101	626	1426.	791.060	21102	20003	626	.0548	
619.78	21103	20003	636	0.0085	791.452	11101	10002	626	11.23	
633.170	21103	20003	626	. 649	803.76	12201	11102	636	0.0052	
636.754	01111	00011	636	. 0121	026.516	12201	12102	628	. 0009	Q
637.58	13302	12202	636	. 013	828.265	12201	11102	626	. 201	
640.670	11102	10002	636	2.60	829.467	21101	20003	626	. 0548	
642.318	11102	10002	628	0.78	857.250	13301	12202	626	. 0110	
643.23	01101	00001	638	3.57	864.684	20001	11102	626	. 0432	
644.435	11102	10002	627	0.15	883.251	01112	12101	636	. 00495	
645.72	02101	00001	637	. 642	998. 542	02211	12201	626	. 0132	
646.11	02201	01101	637	. 055	913.423	00011	10001	636	. 0614	
647.058	11102	10002	626	. 222	915.584	21101	12202	626	. 00195	
648.484	01101	00001	636	860.	917.627	10011	20001	626	. 00067	
648.785	02202	01101	636	73.4	927.151	01111	11101	626	. 3558	
649.074	03301	02201	636	4.69	932.760	01111	11101	628	. 00135	
649.331	04401	03301	636	0.266	941.731	10012	20002	626	. 01146	
649.580	05501	04401	636	. 0142	952.310	21101	20003	626	. 00064	0
650.02	12202	11102	627	. 0118	960.959	00011	10001	626	4.910	
652.536	12202	11102	626	16.52	963.73	00011	10001	627	. 0032	
654.870	01112	00011	626	0.885	966.267	00011	10001	628	. 0195	
655.558	13302	12202	526	0.990	1017.670	00011	10002	636	. 0726	
657.33	01101	00001	328	. 343	1023.744	01111	11102	636	. 00072	
657.69	02202	00111	828	. 0277	1063.734	00011	10002	626	6.324	
657.553	14402	13302	626	. 0442	1068.135	00011	10002	627	. 0047	
659.79	01101	00001	728	. 0635	1071.546	01111	21102 .	626	. 540	
661.32	13301	12201	636	. 0055	1072.682	00012	10002	628.	.0285	
662.368	01201	00001	628	330.	1074.271	02211	12202	626	. 0227	
662.762	02201	01101	628	26.2	1080.350	02111	11102	628	. 00243	
663.157	12201	11101	636	0.106						
663.178	03301	02201	628	2.50	1239.380	11102	01101	628	0.0351	
663.547	04401	03301	628	0.078	1244.93	10002	00001	638	.0038	
664.735	01101	00001	627	62.2	1259.430	10002	00001	628	. 382	
665.135	02201	01101	627	4.88	1271.875	10002	00001	627 639	. 0220	
665.49	03301	02201	627	0.285	1342.37	10001	00001	618 628	.0068	
667.026	1110:	10001	636	1.58	1365.845 1376.28	10001 10001	00001 00001	628	. 5631	
657.379	01101	00001	626 626	82580. 6488.	1376.28 1386.978	10001	00001	627 628	.0323	
667.750	02201	01101	626	6488.	1386.978	11101	01102	628	.0518	
668.109	03301	02201	526	382.4						
668.227	21102	20002	626	0.112	1896.321 1859.02	21101	02201	628	.000313	-.15
668.452	04401	03301	626	18.45	1859.02 1860.232	30003	01101 11102	636 686	.000004	-.15
668.785	05501	04401	626	0.976	1860.232 1865.67	30004	11102	688	. .000000	-.12
689.106	06601	05501	${ }_{526}$. 077	1865.607 1880.901	30003 20003	11101	626	.00007	-. $=.80$
678.918	12201	11101	628	. 060	1880.901	20003	01101	$6 \times$.01s*	-. $=0$

Table 10. Band Origins and Intensities :or CO_{2} (Contd)

Baty! center Vo $\left(\mathrm{cm}^{-1}\right)$	Hiver l.evel	tower l.evel	$\begin{aligned} & \text { Ino- } \\ & \text { Iople } \end{aligned}$	$\begin{aligned} & \text { so at } 200 k \\ & \text { imultiply by } \\ & 10^{-22} \mathrm{mal}^{-1} \\ & \mathrm{~cm}^{2} \mathrm{~cm}^{-1} \text {, } \end{aligned}$		Hatu4 center vo $\left(\mathrm{cm}^{-1}\right)$	$\begin{aligned} & U_{11}=F \\ & \text { Leved } \end{aligned}$	$\begin{aligned} & \text { laver } \\ & \text { : sevel } \end{aligned}$	$\begin{aligned} & 1=0 \cdot \\ & 20140 \end{aligned}$	sio at 2 wer (multabiy is $\begin{aligned} & 10^{-22} m 1^{-1} \\ & \mathrm{~F}^{2} \mathrm{c} \mathrm{~m}^{-1}, \end{aligned}$	
1983.146	12202	01101	636	0.00149	-. 06	2299.442	11112	11102	628	0.6846	
1484.314	22203	11102	626	. 00127	-. 08	2301.041	12211	12201	626	3.17	
1896.490	11102	0000:	636	. 0149	-. 06	2301.73	01111	01101	${ }^{628}$	0.31	
1496.038	21103	20002	626	.01101	-. 07	2301.909	10021	10011	626	0.0789	
1901.748	11102	00001	628	. 02976	-. 06	2302.365	10022	10012	626	0.0473	
1905.435	13302	02201	626	. 1786	-. 06	2305.340	20013	20003	626	4.352	
1917.627	12202	01101	626	. 4236	-. 055	2306.717	20012	20002	626	2.396	
1930.985	22202	11101	626	. 00082	-. 06	2307.02	11112	11102	627	0.116	
1932.470	11102	00001	626	4.092	-. 062	2307.37	02211	02201	628	10.5	
1951.153	21102	10001	626	. 00707	-. 06	2107.39	00021	00011	628	0.0791	
1997.602	20002	01101	636	. 0015	-. 04	2109.285	10011	10001	62 A	4.47	
2003.734	20002	01101	626	.00818	-. 03	2311.675	03311	03101	626	122.8	
2004.211	21102	02201	626	. 00118	-. 04	2311.713	10012	10002	628	7.29	
2010.022	30003	11102	626	. 00013	-. 05	2311.715	01121	01111	626	1.793	
2037.093	1110:	00001	636	. 186	-. 05	2313.764	11111	11101	626	8.56	
2049.346	11101	00001	628	. 0372	-. 03	2313.97	00011	00001	828	3.60	
2055.846	12201	01101	628	. 0052	-. 03	2315.15	02212	02202	627	1.91	
2062.41	11101	00001	627	. 0052	-. 035	2315.243	11112	11102	626	17.11	
2075.380	22202	11102	626	.0085	-. 04	2317.36	10011	10001	627	0.805	
2076.865	11101	d0001	625	22.12	-. 041	2118.985	10012	10002	627	1.29	
2093.356	12201	01101	626	3.958	-.038	2319.738	01111	01101	628	258.	
2094.861	20001	01101	628	0.0055	-. 04	2322.52	00011	00001	728	1.35	
2101.996	20001	01101	636	. 0149	-. 03	2324.148	0221:	02201	626	3080.	
2107.127	13301	02201	626	. 253	-. 035	2324.182	00021	00011	626	20.98	
2112.461	21101	10001	626	. 112	-. 08	2326.594	10011	10001	626	1283.	
2119.119	14401	03301	626	. 0156	-. 033	2327.432	10002	10002	626	193.	
2120.548	22201	11101	626	. 0119	-. 04	2327.575	01111	01101	627	49.7	
2127.235	12212	12201	626	. 00247		2332.112	00011	00001	628	3330.	
2129.775	20001	01101	S20	1.302	-. 2	2336.637	01111	01101	626	76600.	
2148.245	30001	11101	626	. 00595	-. 10	2340.01	00011	00001	627	637	
2157.673	10012	10001	636	. 0152		2349.146	00011	00001	626	959800.	
2165.461	21101	02201	526	. 0595	-. 05	2367.097	10011	10002	636	0.0131	
2170.848	11112	11101	626	. 0507		2415.700	10011	10002	628	. 0056	
2180.676	20012	20001	626	. 00092		2428.547	20011	20002	626	. 00146	
2182.507	20013	20602	626	. 00172		2429.369	10011	10002	626	1.059	
2205.298	10012	10001	628	. 00558		2429.550	20012	20003	626	0.00256	
2224.647	10012	10001	626	1.272		2458.158	11111	11102	626	. 0402	
2225.05	05511	05500	636	0.00261		2464.942	21103	01101	628	. 0058	
2227. $\mathrm{BB}^{\text {8 }}$	13312	13302	636	. 00401		2500.716	20003	00001	628	. 075	
2229.724	21113	21103	636	. 00488		2523.58	20003	00001	627	. 0060	
2230.234	21112	21102	636	. 00216		2588.43	20003	00001	638	. 0020	
2236.696	04411	04401	636	. 0632		2614.235	20002	00001	628	. 186	
2279.55	12211	12201	636	. 0384		2618.702	21102	01101	628	. 0148	
2279.355	12212	12202	6.36	. 129 ,		2641.26	20002	00001	627	. 018	
22:0.558	20013	20003	636	. 0724		2757.229	20001	00001	628	.022	
2240.87	20011	20001	636	. 0122		2776.00	20001	00001	627	. 0023	
2242.696	20012	20002	636	. 0258		2791.622	21101	01101	628	. 0015	
2242.776	00021	00011	638	. 00124							
2242.73	02211	02201	638	. 149		3125.323	30004	01101	626	. 00024	. 20
2245.17	10011	10001	638	. 0555		3154.605	22203	01101	626	. 00008	. 50
2245.46	10012	10002	638	. 0816		3181.45	21103	00001	626	. 0068 :	. 30
2248.156	01121	01111	636	. 0280		1275.113	30003	01101	626	. 0102	. 0
2248. 361	03311	03301	636	1.52		3281.07	21102	00001	628	. 00017	. 14
2250.60°	11111	11101	${ }_{\square} 36$	0.96		3289.71	21102	00001	636	. 00082	. 14
2250.74	11112	11102	636	1.91		3139.340	21102	00001	626	.0417	. 14
2251.01	02211	02201	637	0.0264		3340.471	22202	01102	626	. ans	. 14
2253.24	10012	10002	637	0.0146		3396.529	30002	01102	626	. 00185	. 30
2253.53	10011	10001	6.97	. 0098		3398.206	21111	11101	626	. 00413	
2254.15	01211	01101	638	3.48		3450.75	11311	03301	636	. 0274	
2260.045	02211	02201	636	34.6		3460.514	21113	11102	636	. 0409	
22F0.05, 2	00021	00011	6.36	0.306		3465.633	22013	10001	626	. 1780	
2261.920	10012	10002	636	20.3		3471.716	12212	02201	616	. 3422	
2262.66	01111	01101	677	0.628		3482.238	20013	10002	-636	. 450	
2262.850	10021	10001	616	12.3		3482.851	21112	11101	636	. 0134	
2265.973	anoll	00001	628	38.\%		3490.390	10012	coowl	638	- 263	
2271.763	01111	01101	616	818.		3497.454	10001	01101	616	.o pert	
2274.33	09011	00001	6.17	7.15		3498.750	11112	01101	636	7.314	
2274.367	06611	06601	626	0.0068		1500.590	21101	00001	626	. 1052	. 14
22R1.6RA	22213	22203	626	.0389		1504.320	21101	11102	628	. 0120	
2282.6.9	04411	04401	6.28	. 0157		3504.931	14412	04801	686	.0875	
2281.490	00011	00001	6.36	9602.		1508.07	10012	00001	637	. 0771	
2284.296	12211	12201	6.8	0.0115		3509.207	21102	11101	62 R	. 00462	
2285.779	05511	05501	625	.1942		1311.58	11112	01102	62.8	. 181	
2287.205	12212	12202	624	. 0262		3517.323	20012	10001	636	-177	
2284. 192	13311	13301	6,26	. 1183		3525,205	10012	00001	829	.0588	
2290.515	20012	20002	6.28	. 0107		1537.703	3014	20003	685	.2034	
2290.484	20011	20003	628	. 0180		3527.740	10012	0×001	636	94.2	
22\%, 715	13112	11302	629	. 3125		3527.757	22112	12201	6.26	.0374	
2293.420	21112	21102	6.26	. 1917		3531.83	2001.3	1006?	628	.182	
229, 621	21111	21101	fi26,	. 196.5		3531.442	11122	$01: 11$	626	. 0333	
2296.744	11111	11101	62a	. 123		3530.822	11112	01138	629	4.449	
220\%.022	03311	03301	6,29	. 1005		3319.005	200:2	10002	628	. 0762	
2299.21\%	04411	04401	6.25,	4.895		3542.601	21113	11102	E26	3.167	
2297. 26.2	02821	n221:	625	0.076		3543.095	40002	11102	685	. 0 P	rt

Table 10. Band Origins and Intensities for CO_{2} (Contd)

Hand center ${ }^{\prime} \circ$ $\left(\mathrm{cm}^{-1}\right)$	Upyer Leve!	Lower Leved	$\begin{aligned} & \text { y so- } \\ & \text { tope } \end{aligned}$	si at 296 k (multiply by $\begin{aligned} & 10^{-22} \mathrm{~mol}^{-1} \\ & \mathrm{~cm}^{2} \mathrm{~cm}^{-1}, \quad, \end{aligned}$	Band Center vo c^{-1}	Upper Leve 1	Lower Level	$\begin{aligned} & \text { Iso- } \\ & \text { tope } \end{aligned}$	sv at 296 k (multiply by $\left.\begin{array}{ll} 10^{-22} \mathrm{~mol}^{-1} \\ \mathrm{~cm}^{2} & \mathrm{~cm} \\ \\ -1 \end{array}\right\}$
3549.625	20013	10002	627	0.0224	4807.692	21113	01101	626	6.695
3550.700	30012	2000:	626	0.0195	4808.18日	40002	01101	626	o. pert
3552.841	12312	02201	626	31.25	4814.570	20012	00001	638	. 0134
3555.895	21112	11101	626	1.101	4821.500	20013	00001	627	. 0744
356.749	30013	20002	626	0.0629	4839.737	30013	20001	6.26	. 1376
3558.595	11112	01101	627	. 668	4853.620	20013	00001	626	80.7
3563.070	20012	10001	627	. 0135	4871.46	21112	01101	636	. 238
3566.063	10022	00011	626	. 208	4887.390	20012	00001	636	2.976
3568.208	20013	10002	626	33.78	4887.970	12212	00001	626	(8.1-08 4)
3571.143	10012	00001	628	52.2	4896.185	21112	0.101	628	. 0893
3578.670	22213	12202	626	0.138	4904.850	20012	00001	628	1.116
3580.334	11112	01101	626	803.5	4925.010	20011	00001	638	0.00446
3587.540	10011	00001	638	0.703	4928.910	21112	01101	627	. 00744
3590.86	10012	00001	627	8.41	4931.083	3113	11102	626	. 0967
3609.05	10011	00001	637	0.126	4939.350	20012	00001	627	. 2306
3612.944	10012	00001	626	10350.	4942.512	30013	10002	626	1.414
3621.283	20011	10001	636	0. 283	4946.807	11112	11101	626	0.0595
3621.570	20012	10002	636	0.435	4953.363	22212	02201	626	1.042
3623.454	21112	11102	636	. 0433	: 959.667	30012	10001	626	0.837
3625.176	21111	11101	636	. 0324	4965.381	21112	01101	626	26.56
3632.91;	10011	00001	636	160.	4972.830	20012	00001	626	349.7
3634.067	100:1	00001	828	0.0392	4991.35	20001	00001	636	2.12
3641.717	13311	03301	636	. 0240	5013.785	21101	01101	636	0.1711
3659.277	02211	00001	626	(1.7-06 A)	5028.78	22211	02201	636	. 00298
3655.42	20012	10002	628	. 187	5042.57	20011	00001	628	. 227
3656.805	21112	11102	628	. 0149	5061.776	12211	00001	626	(9.2-080)
3667.475	20012	10002	627	. 0333	5062.442	30012	10002	626	. 238
3667.544	10021	00011	626	. 383	5054.680	21111	01101	628	. 260
3675.130	10011	00001	628	47.8	5068.910	20011	00001	627	. 0632
3675.694	11121	01111	626	0.0331	5099.66	20011	00001	626	112.3
3676.725	20011	10001	628	. 164	5114.894	30011	10001	626	0.309
3676.74!	30012	20002	626	. 0915	5123.20	21111	01101	626	10.64
36.79.644	30013	20003	626	. 0986	5139.401	22211	02201	626	0.409
3683.762	11111	01101	628	3.884					
3687.702	21111	01111	628	0.0134	5160.60	01121	00001	636	. 00372
3687.40	12211	02201	628	. 143	5217.669	30001	10002	626	. 0234
3692.A1A	20012	10002	626	'2.4	5247.530	10027	21101	636	. 2 nl
3623.640	10011	00001	62%	10.2	5277.07	01121	00001	628	. 00149
3699.064	20011	10001	627	0.0279	5291.16	02221	01101	626	. 0275
3700.290	21112	11102	626	3.549	5315.73	01121	00001	626	. 398
3702.345	11111	01101	627	0.771	5349.36	10021	$0: 101$	626	. 00506
3703.486	22212	12202	626	. 1503					
3705.927	30011	20001	626	. 0551	5584.391	00031	10001	626	. 00707
3711.473	20011	10001	626	35.01	5687.166	00031	10002	626	. 00751
3713.714	21111	11101	626	2.816					
3713.795	22211	12201	626	$0.1094{ }^{\prime}$	5858.022	10022	00001	628	. 00372
3714.781	10011	00001	626	15000.	5951.600	30014	00001	636	. 00179
3723.249	11111	01101	626	:135.	5959.954	10021	00301	628	. 00335
3725.530	20011	10002	636	0.0078	5972.52	32214	02.01	626	. 00253
3726.351	14411	04401	626	. 0499	5993.581	30014	00001	628	. 00357
3726.647	12211	02201	626	48.5	6020.795	31114	01101	626	. 0465
3727.380	13311	03301	626	2.09	6072.343	40014	20001	626	. 00104
3783.14	20011	10002	628	0.0035	6075.983	30014	00001	626	. 454
3799.574	30012	20003	626	. 0028	6088.21	31113	01101	636	. 00238
3814.248	20011	10002	626	0.770	6100.30	31123	01101	628	. 00208
3831.968	30011	20002	620	. 00092	6119.618	30013	00001	636	. 02290
3858.109	21111	11102	626	. 0251	6127.782	30013	00001	628	. 0238
3856.657	30003	00001	628	. 016	6149.760	11114	11102	626	. 00179
3856.657	30003				6170.090	32213	02201	626	. 01265
3987.610	30002	00001	628	. 0149	6175.118	40014	10002	626	. 02269
4005.948	00021	01101	626	. 00818.14	6175.950	30013	00001	627	. 00320
4416.150	31104	00001	626	.00037 .15	6179.01	41102	00001	626	(1.5-06 71
4508.749	00021	00001	638	. 00186	6196.174	31113	01102	626	. 268
4529.870	40004	01101	626	.00023 . 12	6205.503	40013	'10001	626	. 0127
4578.090	32203	01101	626	. 00018.20	6227.924	30013	00001	626	4.27
4591.118	31103	00001	626	.00205 .18	6241.964	30012	00001	636	. 0461
4514.779	01121	01101	628	. 01042	6243.57	31112	01101	636	. 00409
4639.502	00021	00001	628	. 1302	6254.592	30012	00001	628	. 01414
4655.205	00021	00001	627	. 0127	6265.170	31112	01101	628	. 00119
4671.680	22213	02201	636	. 00149	6298.110	30012	00001	627	. 00275
4685.780	30014	10002	636	. 00186	6308.278	40013	10002	626	. 02455
4687. 796	30014	10001	626	. 00521	6318.17	41113	11102	626	. 00179
4692.180	20013	00001	638	. 00260	6346.265	40012	10001	$6 ? 6$ 626	. 0129
4708.52	21113	01101	636	. 0298	6347.854	36012	00001	626	4.27
4733.50	23313	03301	626	. 00670	6356.293	31112	01101	626	0.327
4743.70	21113	01101	628	. 0335	6359.287	32212	02201	626	. 0116
474n.058	20013	00001	636	. 214	6363.616	30011	00001	636	. 0127
4753.450	31102	00001	626	.00298 . 10	6388.015	41101	00001	626	(4, 0-06 7)
4755.705	31114	11102	626	. 0179	6397.545	31111	01101	636	. 00119
4768.541	22213	02201	626	. 2604	6429.172	30011	00001	628	. 00112
4784.6\% 5	20023	00011	626	. 00149	6466.440	20023	01101	626	. 00104
4786.688	31113	11101	626	. 0119	6498.67	12222	01101	626	. 00119
4790.571	30014	10002	626	. 1562	6503.081	30011	00001	526	- 498
4791.260	20013	00001	628	. 469	6532.653	40011	10001	626	. 00130

Table 10. Band Origins and Intensities for CO_{2} (Contd)

Band Center vo $\left(c m^{-1}\right)$	Upper. Level	Lover Level	$\begin{aligned} & \text { I wo- } \\ & \text { tope } \end{aligned}$	si at 296 X (muleiply by $\begin{aligned} & 20^{-22} \mathrm{~mol}^{-1} \\ & \mathrm{~cm}^{2} \mathrm{~cm} \end{aligned}$	
6536.445	31111	01101	626	. 0476	
6537.958	11122	00001	626	. 0223	
6562.444	32211	02201	626	.00223	
6679.709	11121	00001	626	.0283	
6745.115	01111	01101	636	. 01339	Notes to Table IV-2.2
6780.215	00031	00001	636	.1637	
6860.410	03331	03301	626	. 00201	Bands deriving all their intenility from J-dependent
6867.280	11131	11101	626	. 00112	perturbetion are denignated o pert, then one near
6870.796	11132	11102	626	. 00241	band provides the intensity, \bar{T}. When the listed
6885.150	01131	01101	628	. 00402	intensity is multiplied by m(e+11, and Δ, when the
6897.751	02231	02201	626	. 0424	listed interisity is multiplied by $\mathrm{m}^{\mathbf{2}}(\mathrm{m}+\mathrm{l})^{2}$.
6905.770	10031	20001	626	. 0171	
6907.144	10032	10002	626	. 0290	Q designates bands with intensity below the
6922.210	00031	00001	628	. 0521	eriterion limit, whose 2 - branches are
6935.150	01131	01101	626	1.131	Eignificant.
6945.610	00031	00001	627	0.0112	
6972.578	00031	00001	626	14.95	
7283.981	10015	00001	626	0.00186	-
7460.510	40014	00001	626	. 0428	
7481.51	40013	00001	636	. 00112	
7583.265	41113	01101	626	. 00833	
7593.690	40013	00001	626	. 1064	
7616.620	51102	00001	626	(1.12-06 7)	
7734.452	40012	00001	626	. 0279	
7757.621	41112	01101	626	. 00298	
7901.479	21122	00001	626	.00149 .018	
7920.840	40001	00001	626	. 00185	
7981.180	10012	00001	636	. 00232	
8084.060	12232	02201	626	. 00193	
8089.84	10031	00001	636	. 00707	
6103.578	20033	10002	626	. 00205	
8120.104	10032	00001	628	. 00201	
6128.783	20032	10001	626	.00071	
8135.886	11132	01102	626	. 0402	
6192.556	10032	00001	626	. 624	
8220.363	10032	00001	628	. 02201	
8243.163	20031	10001	626	. 00108	
e254.800	12231	02201	626	. 00164	
8276.767	11131	01101	626	. 0461	
8293.957	10031	00001	626	. 614	
9388.990	20033	00001	626	. 00415	
9478.051	21132	01101	626	. 00180	
9516.970	20032	00001	626	. 0233	
9611.350	20031	00008	626	. 0093	

of ζ^{V} included in Table 9. Note that when ζ_{v} is larger than 0.01 , the total band strength, if defined as the sum of the Q, R - and P-branch lines, ${\underset{m}{m}}^{S_{m}}$, may be much larger than S_{v}^{o}, its value when $\zeta_{v}=0$. The entry in Table 10 is $S_{v}{ }_{v}$, not ${ }_{\mathrm{m}}^{\mathrm{L}} \mathrm{S}_{\mathrm{m}}$.

As a higher-order effect of Coriolis interactions, transitions with $\ell^{\prime}-\ell^{\prime \prime}=$ ± 2 also become allowed, the effect increasing as m^{2}, so that a few such bands are intense enough to appear; here we list the value of $S^{o}{ }_{v}$ in the formula $S_{m}=S_{v}^{o}\left(|m|+m^{2}\right) \exp \left[\left(-1.439 E^{\prime \prime}\right) / T\right] / Q_{r}$.

There are also a few special cases of near-or crossing-perturbations, where a normally very weak band "borrows" intensity from a stronger neighbor. A notable example is represented by the bands at $4808.186 \mathrm{~cm}^{-1}$, where the $40002-01101$ band with zero intensity, resonates with the $21113-01101$ band at $4807.692 \mathrm{~cm}^{-1}$. The positions and intensities of the individual lines are here calculated using an appropriate Coriolis constant and dividing the strength of 21113-01101 according to the degree of perturbational mixing.

4.2.3 CO_{2} LINE HALF-WIDTHS

The half-widths for CO_{2} were assigned by a linear function of the rotational quantum number. The work of Yamamoto, Tanaka and Aoki (1969) gave methods of estimating half-widths for the $15 \mu \mathrm{~m}$ and $4.3 \mu \mathrm{~m}$ regions, but the differences between their limited comparisons of calculated values and laboratory measurements did not seem to warrant any more complicated procedure in arriving at a half-width dependence upon J for CO_{2}.

4.3 Ozone

The band centers and intensities of all bands included in the compilation are given in Table 11.

The pure rotational transitions of ozone have been calculated using the molecular constants of Lichtenstein, Gallagher, and Clough (1971) obtained from microwave measurements. Transitions with upper state J less than 61 and intensities greater than $3.5 \times 10^{-24} \mathrm{~cm}^{-1} / \mathrm{mol}-\mathrm{cm}^{2}$ have been tabulated using a value of $\mu=0.53 \mathrm{D}$ for the dipole moment. Lincs with K_{a} less than 10 should be accurate to $0.001 \mathrm{~cm}^{-1}$. Multiplets up to $K_{a}=12\left(\approx 100 \mathrm{~cm}^{-1}\right)$ have been observed and the calculated contours agree within the experimental accuracy (see Gebbie et al, 1966). At higher values of K_{a}, the calculations become increasingly less certain. However, even the highest value of K_{a} included in the listing (that is, $K_{a}=20$) is substantially less than the value of K for which the calculation is divergent. The mean line width has been determined to be 0.11 (Lichtenstein et al, 1971).

Table 11. Ozone Transitions Included in Data Compilation

Band Centercm^{-1}	$\begin{aligned} & \Sigma_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}} \\ & \frac{\mathrm{~cm}^{-1}}{\mathrm{~mol} / \mathrm{cm}^{2}} \end{aligned}$	Vibrational Transition		Isotope
		Upper State	Lower State	
0.	4.13×10^{-19}	000	000	666
700.930	6.70×10^{-19}	010	000	666
1007.693	9.49×10^{-21}	101	100	666
1007.996	2.49×10^{-20}	001	000	686
1021.096	4.23×10^{-19}	011	010	666
1027.096	1.62×10^{-19}	002	001	6 G 6
1028.096	5.16×10^{-20}	001	000	668
1042.096	1.29×10^{-17}	001	000	666
1103.157	3.47×10^{-19}	100	000	666
2110.790	1.33×10^{-18}	101	000	666
2785.241	2.32×10^{-20}	111	000	666
3041.200	1.10×10^{-19}	003	000	666

For the ν_{2} fundamental of ozone, upper-state molecular constants have been obtained from microwave data by Tanaka and Morino (1970a). For a discussion of the determination of the band center see Tanaka and Morino (1970b). Transitions up to $J=60$ with intensities greater than $3.5 \times 10^{-23} \mathrm{~cm}^{-1} / \mathrm{mol}-\mathrm{cm}^{2}$ have been tabulated. The dipole moment constant for the ν_{2} fundamental has been taken as $\left(\partial \mu / \partial \mathrm{q}_{2}\right) \mathrm{q}_{2}=0.048 \mathrm{D}$ giving a band intensity of $6.7610^{-19 \mathrm{~cm}^{-1} / \mathrm{mol}-\mathrm{cm}^{2} \text { based on }}$ the measurements of McCaa and Shaw (1968).

The ν_{3} and ν_{1} regions of the ozone spectrum have been studied by Clough and Kneizys (1965, 1966), and Tanaka and Morino (1968). The positions of the ν_{1} and ν_{3} transitions for the main isotope are expected to be accurate to $0.01 \mathrm{~cm}^{-1}$ for J less than 40 and K_{a} less than eight with a degradation of accuracy for higher values of the quantum numbers. In conformity with the results of McCa and Shaw (1968), the band intensity of ν_{3} has been taken as $130 \times 10^{-19} \mathrm{~cm}^{-1} / \mathrm{mol}-\mathrm{cm}^{2}$.

Also, more lines have been included than were given in the report of Clough and Kneizys (1965). Goldman, et al (1970) have found that the absorption by large ozone amounts could not be satisfactorily explained without introducing the hot bands and the isotopic bands. Since the energy levels are known for the 101 , the 100 and the 010 vibrational levels, transitions for the $101 \leftarrow 100$ and $101 \leftarrow 001$ bands may be calculated directly. The line positions for these bands with J less than 30 and K_{a} less than six are presumed accurate to $\pm 0.03 \mathrm{~cm}^{-1}$. The line positions for the $011 \leftarrow 010$ hot band have been obtained by applying a calculated shift of $-21.0 \mathrm{~cm}^{-1}$ to the ν_{3} transitions of the main isotope. For J less than 30 and K_{a} less than six an error of up to $1 \mathrm{~cm}^{-1}$ may be expected. For the $002 \leftarrow 001$
hot band, a calculated shift of $-15.0 \mathrm{~cm}^{-1}$ has been applied to the ν_{3} transitions of the main isotope. In this case, the rotational levels of the upper- and lowervibrational states are not accurately described, and these lines must be cunsidered to be useful only for their general contribution to the low-resolution absorption in the region. These shifts have been calculated using harmonic frequencies and anharmonic corrections determined from an analysis of the available vibrational data.

For the 668 and 686 isotopes, shifts of $-13.1 \mathrm{~cm}^{-1}$ and $-34.1 \mathrm{~cm}^{-1}$ respectively have been determined from force constant calculations using the structural constants given by Tanaka and Morino (1968). These shifts have similarly been applied to the original ν_{3} line calculations, neglecting the isotopic effect on the rotational constants. Consequently, only the general contribution to low-resolution spectra by these lines is valid. The intensities of the hot bands and the isotopic bands have been determined by applying the appropriate Boltzmann correction, isotopic abundance factor, dipole moment matrix element value, and degeneracy factor to the intensities of the ν_{3} fundamental.

Although the addition of the isotopic bands and the hot bands gives improved agreement between calculated absorption and the observed absorption for large ozone amounts, it appears that an intensity anomaly still exists. In the P branch region ($\sim 1000 \mathrm{~cm}^{-1}$) the calculated intensity is evidently too low, while in the R branch region the calculated intensity is too high. Until better intensity measurements are available, it will be difficult to obtain experimental F factors (see Section 3.2).

The $\left(\nu_{1}+\nu_{3}\right)$ combination band $(101-000)$ has been observed and analyzed using the rig:d rotor approximation by Trajmar and McCaa (1964). The value of the band center was found to be $2110.79 \mathrm{~cm}^{-1}$. The resolution and calibration accuracy of the observed spectra were not good, so that the line positions up to $J=20$ and $K_{a}=4$ are accurate to only $0.3 \mathrm{~cm}^{-1}$. The error in line position is expected to be significantly greater for higher quantum numbers. The band intensity for the tabulated lines is $1.19 \times 10^{-18} \frac{\mathrm{~cm}^{-1}}{\mathrm{~mol} / \mathrm{cm}^{2}}$.

The $\left(\nu_{1}+\nu_{2}+\nu_{3}\right)$ combination band $(111-000)$ at 2785.241 has been studied by Snider and Shaw (1971). The rigid rotor analysis used gives line positions for J less than 25 and K_{a} less than 6 accurate to $0.1 \mathrm{~cm}^{-1}$. The intensity for this band is $2.46 \times 10^{-20} \frac{\mathrm{~cm}^{-1}}{\mathrm{~mol} / \mathrm{cm}^{2}}$ and was also obtained from McCaa and Shaw (1968).

Constants for the $3 \nu_{3}$ band ($003-000$) have been obtained from a second order calculation using the results of Tanaka and Morino (1968). The band intensity has been taken as $1.12 \times 10^{-19} \mathrm{~cm}^{-1} / \mathrm{molecule}-\mathrm{cm}^{-2}$ from McCaa and Shaw (1968). The accuracy of the line positions should not be in error by more than $\pm 5 \mathrm{~cm}^{-1}$.

4.4 Nitrous Oxide

Nitrous oxide is an asymmetric linear molecule ($\mathrm{N}-\mathrm{N}-\mathrm{O}$) with three funda mental vibration-rotation bands, ν_{1}, ν_{2}, and ν_{3}, at 1284.907, 588.767, and 2223.756 cm^{-1}, respectively, for the main isotope. As for $\mathrm{CO}_{2}, \nu_{1} \cong 2 \nu_{2}$ so that Fermi resonance occurs between these two levels, causing shifts of the band centers from the positions otherwise expected. Five different isotopes provide significant absorption. When no reference to a particular isotope is made, the most abundant one, 446 , is implied. The abbreviated notations and natural abundances of each isotope used to calculate intensities of the isotopic bands are (446), 99.043 percent; (456), 0.358 percent; (546), 0.358 percent; (448), 0.199 percent; and (447), 0.040 percent. These values differ slightly from those given in Table 4, the difference arising from slight differences in the oxygen and nitrogen natural abundances taken from the 48 th edition and the 42 nd edition of the Handbook of Physics and Chemistry.* The 48 th edition values were used in the construction of Table 4. These abundance differences are very small, but can be accounted for by modifying the line interisities accordingly.

4.4.1 LINE POSITIONS

Table 12 lists the constants used to calculate the line positions. Values of the vibrational energy, G, are relative to the $00^{\circ} 0$ level for each isotope and are probably accurate to a few thousandths of $\mathrm{a} \mathrm{cm}^{-1}$ for the 446 isotope. The uncertainty is much greater for some of the levels of the rarer isotopes. The majority of the constants for the 446 isotope and a few for the other isotopes are from Pliva (1964, 1968a, 1968b). Most of the other values have been derived by Benedict (private communications) from a variety of data.

Line positions for the P - and R-branches can be calculated by inserting the constants from Table 12 into Eq. (6). The selection rules are: $\Delta \mathrm{J}=0, \pm 1 ; \Delta \boldsymbol{l}=0$, $\pm I$; and $J=0 \not H J=0$. The allowed values of J for a given vibrational level must be taken into account in order to determine missing lines. For example, in a $\phi \leftarrow \Delta$ band ($\ell^{\prime}=3-\ell^{\prime \prime}=2$) the following lines are missing because of rotational energy levels that are not allowed: P1, P2, P3, Q0, Q1, Q2, R0 and R1.

A few lines of the $10^{\circ} 1,06^{\circ} 0,06^{2} 0$, and $10^{\circ} 1-10^{\circ} 0$ bands are shifted from the positions based on the constants in Table 12 because of Fermi interactions. These are discussed in more detail below and summarized in Table 15.

[^0]Table 12. Vibrational Energy Levels and Molecular Constants for $\mathrm{N}_{2} \mathrm{O}$

Energy Level	$\left(\mathrm{cm}^{-1}\right)$	$\begin{gathered} \mathrm{B} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{aligned} & D \\ & \text { Multiply } \\ & \text { by } 10^{-7} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	H Multipiy ,by 10^{-12} $\left(\mathrm{cm}^{-1}\right)$
		Isotope 446		
$00^{\circ} 0$	0	0.4190113	1.795	1.17
$01{ }^{1}{ }_{0}$	588.767	0.4191777	1.785	1.17
$01^{1 d_{0}}$	588.767	0.4199695	1.785	1.17
$02^{\circ} 0$	1168.134	0.4199193	2.445	1.17
$02^{2 c_{0}}$	1177.750	0.4201253	1.165	1.17
$02^{2 d_{0}}$	1177.750	0.4201253	1.795	1.17
$10^{\circ} 0$	1284.907	0.4172563	1.775	1.17
$03^{1 c_{0}}$	1749.058	0.4196063	2.195	1.17
$03^{1 d_{0}}$	1749.058	0.4210883	2.195	1.17
$03^{3{ }^{\text {d }}} 0$	1766.958	0.420674	1.805	2.20
$03^{3 c_{0}}$	1766.958	0.420674	1.805	0.14
$11^{1 c_{0}}$	1880.268	0.4174673	1.765	1.17
$11^{1 d_{0}}$	1880.268	0.4183803	1.775	1.17
$04^{\circ} 0$	2322.570	0.4206113	4.095	16.17
$04^{2 C_{0}}$	(2331.15)	0.4210113	1.350	1.17
$04^{2}{ }_{0}$	(2331.15)	0.4210113	2.50	1.17
$12{ }^{\circ} 0$	2461.998	0.4181483	2.465	3.77
$12^{2 C_{0}}$	2474.785	0.4187143	1.210	1.17
$12^{2{ }^{\text {d }} 0}$	2474.785	0.4187143	1.700	1.17
$20^{\circ} 0$	2563.341	0.4224193	1.645	1.17
$00^{\circ} 1$	2223.756	0.4155613	1.795	1.17
$05^{1 C_{0}}$	2897.876		2.085	1.17
$05^{1 d_{0}}$	2897.876		2.355	1.17
$13^{1 c_{0}}$	3046.213	0.4177633	2.145	1.17
$13^{1{ }^{\text {d }} 0}$	3046.213	0.4193783	2.165	1.17
$13^{3{ }^{\text {c }} 0}$	3067.749	0.419109	1.805	0.47
$13^{3{ }^{\text {d }}} 0$	3067.749°	0.419109	1.805	1.87

Table 12. Vibrational Energy Levels and Molecular Constants for $\mathrm{N}_{2} \mathrm{O}$ (Contd)

Energy Level	$\left(\mathrm{cm}^{-1}\right)$	$\left(\mathrm{cm}^{-1}\right)$	$\begin{gathered} \mathrm{D} \\ \text { Multiply } \\ \text { by } 10^{-7} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \text { Multiply } \\ \text { by } 10^{-12} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$
		Isotope 446 (Contd)		
$21^{1 c_{0}}$	3165.857	0.4158333	1.595	1.17
$21{ }^{1 d_{0}}$	3165.857	0.4169163	1.595	1.17
$01^{1 c^{c}}$	2798.290	0.4157723	1.795	1.17
$01{ }^{1 d_{1}}$	2798.290	0.4165473	1.795	1.17
$14^{\circ} 0$	3620.941	0.4187873	3.885	14.17
$14^{2}{ }_{0}$	3631.601	0.4190143	0.375	1.17
$14^{2 d_{0}}$	3631.601	0.4190143	2.045	1.17
$22^{\circ} 0$	3748.252	0.4163273	2.395	2.77
$22^{2}{ }_{0}$	3766.060	0.4172013	1.200	1.17
$22^{2{ }^{\text {d }}} 0$	3766.060	0.4172013	1.560	1.17
$30^{\circ} 0$	3836.373	0.4141473	1.385	1.17
$02{ }^{\circ}$	3363.974	0.4165443	2.445	1.17
$02{ }^{\text {c }} 1$	3373.137	0.4167523	1.195	1.17
$02^{2{ }^{\text {d }}}$	3373.137	0.4167523	1.795	1.17
$10^{\circ}{ }_{1}$	3480.821	0.4137843	1.745	1.17
$23^{1 c^{c}} 0$	4335.798	0.4159193	2.045	1.17
$23{ }^{1 \mathrm{~d}_{0}}$	4335.798	0.4176813	2.115	1.17
$31^{1 c^{c}} 0$	4446.379	0.4143703	1.625	1.17
$31^{1{ }^{\text {d }}} 0$	4446.379	0.4156713	1.365	1.17
$03{ }^{1{ }^{\text {c }} 1}$	3931.258	0.4162253	1.915	1.17
$03^{1{ }^{\text {d }} 1}$	3931.258	0.4176843	1.925	1.17
$03^{3{ }^{\text {c }} 1}$	3948.344	0.417327	1.815	0.14
$03^{3{ }^{\text {d }} 1}$	3948.344	0.417327	1.815	2.20
$11^{1 c_{1}}$	4061.979	0.4140513	1.775	1.17
$11^{1{ }^{\text {d }}} 1$	4061.979	0.4149343	1.735	1.17
$40^{\circ} 0$	5105.65	0.4131913	1.795	1.17
$32^{\circ} 0$	5026.34	0.4143113	1.795	1.17
$20^{\circ} 1$	4730.828	0.4121163	1.625	1.17
$12^{\circ} 1$	4630.164	0.4147633	2.475	4.17
$12^{2 \mathrm{c}}{ }_{1}$	4642.463	0.4151583	1.315	1.17
$12^{2}{ }^{\text {d }}$	4642.463	0.4151583	1.315	1.17
002	4417.379	0.4120963	1.765	1.17

Table 12. Vibrational Encrgy Levels and Molecular Constants for $\mathrm{N}_{2} \mathrm{O}$ (Contd)

Energy Level	G $\left(\mathrm{cm}^{-1}\right)$	B $\left(\mathrm{cm}^{-1}\right)$	D Multiply by 10^{-7} $\left(\mathrm{cm}^{-1}\right)$	$\begin{aligned} & \text { II } \\ & \text { Mulifply } \\ & \text { by } 10^{-12} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$
Isotope 446 (Contd)				
$\begin{aligned} & 21^{1 C_{1}} \\ & 21^{d d_{1}} \\ & 01^{1 c_{2}} \\ & 01^{d_{2}} \end{aligned}$	$\begin{aligned} & 5319.175 \\ & 5319.175 \\ & 4977.695 \\ & 4977.695 \end{aligned}$	$\begin{aligned} & 0.4124313 \\ & 0.4134703 \\ & 0.4123583 \\ & 0.4131183 \end{aligned}$	$\begin{aligned} & 1.675 \\ & 1.555 \\ & 1.785 \\ & 1.785 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.17 \\ & 1.17 \\ & 1.17 \end{aligned}$
Isotope 456				
$\begin{aligned} & 00^{\circ} 0 \\ & 01^{1 C_{0}} \\ & 01^{d_{0}} \\ & 10^{\circ} 0 \\ & 11^{1 c_{0}} \\ & 11^{1 d_{0}} \\ & 20^{\circ} 0 \\ & 00^{\circ} 1 \\ & 01_{1} C_{1} \\ & 01^{1 d_{1}} \\ & 10^{\circ} 1 \end{aligned}$	0 575.5 575.5 1280.5 1861.9 $1861 .$. 2554.3 2177.659 2739.63 2739.63 3430.95	0.4189821 0.419095 0.419891 0.41719 0.41734 0.41820 0.41545 0.41568 0.415855 0.416605 0.41387	$\begin{aligned} & 1.75 \\ & 1.75 \\ & 1.75 \\ & 1.72 \\ & 1.71 \\ & 1.70 \\ & 1.67 \\ & 1.75 \\ & 1.75 \\ & 1.75 \\ & 1.72 \end{aligned}$	
Isotope 546				
	0 585.320 585.320 1269.894 1863.080 1863.080 2534.21 2201.604 2745.709 2745.709 3443.650	0.4048564 0.4050304 0.4057724 0.403269 0.4034614 0.4043814 0.401870 0.401495 0.4017054 0.4024104 0.399876	$\begin{aligned} & 1.64 \\ & 1.65 \\ & 1.65 \\ & 1.60 \\ & 1.59 \\ & 1.57 \\ & 1.45 \\ & 1.65 \\ & 1.65 \\ & 1.65 \\ & 1.60 \end{aligned}$	

Table 12. Vibrational Energy Levels and Molecular Constants for $\mathrm{N}_{2} \mathrm{O}$ (Contd)

E:crgy L.evel	$\left(\mathrm{cm}^{-1}\right)$	$\left(\mathrm{cm}^{-1}\right)$	D Multiply by 10^{-7} (cm ${ }^{-1}$)	H Multiply by 10^{-12} (cm^{-1})
Isotope 448				
$00^{\circ} 0$	0	0.395577	1.65	
$01{ }^{\text {c }} 0$	584.1	0.395749	1.65	
${ }_{01}{ }^{\text {d }}$	584.1	0.396461	1.65	
$10^{\circ} 0$	1247.9	0.394057	1.55	
$11^{10} 0$	1839.8	0.39430	1.56	
$11^{10} 0$	1839.8	0.39513	1.50	
$20^{\circ} 0$	2491.3	0.39279	1.31	
$00^{\circ} 1$	2218.97	0.392317	1.65	
$01^{1 c^{1}}$	2788.80	0.392549		
$01^{1{ }^{\text {d }}} 1$	2788.80	0.393209		
$10^{\circ} 1$	3439.1	0.39078	1.55	
Isotope 447				
$00^{\circ} 0$	0	0.406691	1.72	
$01{ }^{1 c_{0}}$	586.3	0.406860	1.72	
$01{ }^{1 / 0}$	586.3	0.407610	1.72	
$10^{\circ} 0$	1265.5	0.405961	1.67	
$00^{\circ}{ }_{1}$	2221.3	0.40334		
$01^{1 c_{1}}$	2793.55	0.40357		
$01^{1{ }^{\text {d }}} 1$	2793.55	0.40430		

4.4.2 LINE INTENSITIES

Each band system contains a main band and associated hot bands that arise from transitions from excited energy levels with the same changes $\Delta v_{1}, \Delta v_{2}$, and Δv_{3} in the vibrational quantum numbers as in the main band. The change $\Delta \hat{i}$ may be either 0 or ± 1 vithin the same band system. For example, the $0^{\circ} 01$ band is the main band in a system that also contains the hot bands $01^{1} 1-01^{1} 0,02^{\circ} 1-02^{\circ} 0$, $02^{2} 1-02^{2} 0,10^{\circ} 1-10^{\circ} 0$, and many others from higher excited energy levels. The relative intensities of the hot bands decrease with increasing value of the lower energy level because of the decrease in its population. Thus, only a few of the hot bands are usually significant. Corresponding bands of the rare isotopic molecules are also part of the system. The main band of the common isotope accounts for 78 percent to 89 percent of the entire system for $296^{\circ} \mathrm{K}$ samples, depending on the band system.

Table 13 summarizes the normal band systems containing lines with intensities greater than 4×10^{-23} molecules ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~cm}^{-1}$. Each band system is identified by the main band whose center position is given. The intensities are based on recent measurements of the quantity $\int(-1 / \mathrm{u}) / \mathrm{n} T \mathrm{~d} \nu$ by Burch et al, (1971a, 1971b, 1971c, 1972). The integration was performed over the entire band system, and u is the $\mathrm{N}_{2} \mathrm{O}$ thickness in molecules cm^{-2}. The intensity, S_{Q}, of only the Q -branch of the band at $1974.571 \mathrm{~cm}^{-1}$ is listed because the P and R branches contain no lines with intensities above the cut-off. The Q-branch may be significant alth jugh each of its lines is very weak because they occur very close together. Bands containing the $06^{\circ} 0$ and $06^{2} 0$ levels are not listed because the band systems are very weak. However, as a result of Fermi interaction between a few of the rotational levels, the intensities of the corresponding lines are anomalously high and their positions are shifted. These lines are discussed in more detail below.

Table 14 lists the intensities of each of the bands with lines above the cutoff intensity, nominally 4×10^{-23} molecules ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~cm}^{-1}$. Each line entry in the table corresponds to a given band, and blank lines occur before and after each band system. Note that 16 bands are listed for the $00^{\circ} 1$ band system, whereas only 1 or 2 bands are listed for some of the weaker systems.

Each rotational level within a vibrational level for which quantum number $\boldsymbol{\ell} \neq 0$ is split into two sublevels normally indicated by " c " and " d " (see section 3.1.1). A band involving two Δ levels, or two π levels, or one of each level consists of two sub-bands, one from the c portion of the lower level and one from the d portion. The $c-c$ portion of the first sub-band contains only P - and R-branches, whereas the d.- c portion contains the Q-branch. Similarly, the $d-d$ and the $c-d$ portions of the second sub-band contain the $P+R$ branches and the Q-branch, respectively. The intensities, S_{V}, given in Table 14 are the total for both sub-bands.

Table 13. Summary of $\mathrm{N}_{2} \mathrm{O}$ Band Systems

Center of Main Band (cm^{-1})	Upper Level	Lower Level	Intensity of System Multiply by 10^{-20} Molecules ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~cm}^{-1}$
588.767	$01^{1} 0$	$00^{\circ} 0$	118 ± 9
696.140	$10^{\circ} 0$	$01{ }^{1} 0$	$0.354+0.020$
938.849	$00^{\circ} 1$	$10^{\circ} 0$	0.254 ∓ 0.010
1168.134	$02{ }^{\circ} 0$	$00^{\circ} 0$	$38.5+1.5$
1284.907	$10^{\circ} 0$	$00^{\circ} 0$	996 ± 40
1634.989	$00^{\circ} 1$	$01^{1} 0$	$0.278+0.02$
1749.058	0310	$00^{\circ} 0$	0.241 ∓ 0.02
1880.268	$11^{1} 0$	$00^{\circ} 0$	1.66 ± 0.08
1974.571	$20^{\circ} 0$	$01^{1} 0$	$\mathrm{S}_{Q}=\overline{0} .024 \pm 0.002$
2223.756	$00^{\circ} 1$	$00^{\circ} 0$	$5710 \pm 250^{-}$
2322.624	$04^{\circ} 0$	$00^{\circ} 0$	$2.7+0.3$
2461.998	$12{ }^{\circ} 0$	$00^{\circ} 0$	$33.4+1.5$
2563.341	$20^{\circ} 0$	$00^{\circ} 0$	135 ± 7
2798.290	$01{ }_{1}^{1}$	$00^{\circ} 0$	9.62 ± 0.96
3363.974	$02{ }_{1}$	$00^{\circ} 0$	10.6 ± 0.5
3480.821	$10^{\circ} 1$	$00^{\circ} \mathrm{O}$	$197+10$
3620.941	$14^{\circ} 0$	$00^{\circ} \mathrm{O}$	$0.56+0.02,-0.05$
3748.252	$22^{\circ} 0$	00°	$4.12+0.2$
3836.373	$30^{\circ} 0$	$00^{\circ} \mathrm{O}$	8.15 ± 0.4
4061.979	11_{1}^{1}	$00^{\circ} 0$	$0.111^{ \pm}+0.006$
4335.798	230	$00^{\circ} 0$	$0.1+\overline{0.1,-0.07 ~}$
4417.379	$00^{\circ} 2$	$00^{\circ} 0$	6.9 ± 0.7
4630.164	$12^{\circ}{ }_{1}$	$00^{\circ} 0$	$0.68+0.07$
4730.828	$20^{\circ} 1$	$00^{\circ} 0$	$4.4+0.4$
4977.695	$01^{1} 2$	$00^{\circ} 0$	0.070 ± 0.008
5026.34	$32^{\circ} 0$	$00^{\circ} \mathrm{O}$	$0.29 \pm$-0.04
5105.65	$40^{\circ} 0$	$00^{\circ} 0$	0.29 ± 0.03

Table 14. $\mathrm{N}_{2} \mathrm{O}$ Band Intensities

Band Center $\begin{gathered} \nu_{\mathrm{C}} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	Upper Level	Lower Level	Isotope	$S_{v} \text { at } 290 K$ (Mulifiply by 10^{-20} Molecules ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~cm}^{-1}$)
588.767	$01{ }^{1} 0$	$00^{\circ} 0$	446	93.4
579.367	$02{ }^{\circ}$	0110	446	4.90
588.983	$02{ }^{2} 0$	$01^{1} 0$	446	11.26
580.924	0310	$02{ }^{\circ} \mathrm{O}$	446	0.599
571.308	$03{ }_{3} 0$	$02{ }^{2} 0$	446	0.256
589.208	$03{ }^{0}$	$02^{-} 0$	446	0.958
595.361	11.0	$10^{\circ} 0$	446	0.216
585.320	0110	$00^{\circ} 0$	546	0.356
575.5	0110	$00^{\circ} 0$	456	0.356
586.3	01.0	$00^{\circ} 0$	447	0.039
584.1	010	$00^{\circ} 0$	448	0.197
696.140	$10^{\circ} 0$	$01^{1} 0$	446	0.294
938.849	$00^{\circ}{ }_{1}$	$10^{\circ} 0$	446	0.223
1168.134	$02{ }^{\circ} 0$	00%	446	31.7
1160.291	03^{10}	01^{10}	446	5.72
1154.436	$04{ }^{\circ} 0$	$02{ }^{\circ} \mathrm{O}$	446	0.201
1153.40	$04^{2} 0$	$02^{2} 0$	446	0.228
1177.750	$02^{2} 0$	$00^{\circ} 0$	446	See Note A
1284.907	$10^{\circ} 0$	$00^{\circ} 0$	446	872.
1291.501	$11^{1} 0$	$01^{1} 0$	446	100.6
1293.864	$12^{\circ} 0$	$02^{\circ} 0$	446	3.16
1297.035	$12{ }^{2} 0$	$02{ }^{2} 0$	446	5.92
1278.434	$20^{\circ} 0$	$10^{\circ} 0$	446	3.73
1297.155	1310	0310	446	0.390
1300.791	$13{ }^{3} 0$	$03{ }^{3} 0$	446	0.364
1285.589	$21{ }^{1} 0$	110	446	0.412
1280.5	$10^{\circ} 0$	$00^{\circ} 0$	456	3.15
1286.4	11^{10}	$01^{\circ} 0$	456	0.354
1269.894	$10^{\circ} 0$	$00^{\circ} 0$	546	3.15
1277.760	$11^{1} 0$	$01^{\circ} 0$	546	0.362
1247.9	$10^{\circ} 0$	$00^{\circ} 0$	448	1.75
1255.7	$11^{1} 0$	$01^{1} 0$	448	0.200
1265.5	$10^{\circ} 0$	$00^{\circ} 0$	447	0.350
1634.989	$00^{\circ}{ }_{1}$	$01^{1} 0$	446	0.231
1740.058	$03^{1} 0$	$00^{\circ} 0$	446	0.200
1880.268	$11^{1} 0$	$00^{\circ} 0$	446	1.41
1886.018	$12^{2} 0$	011^{10}	446	0.156
1873.231	1201	01^{10}	446	0.053
1074.571	$20^{\circ} 0$	$01^{1} 0$	446	$S_{Q}=0.024$
2181.66	$06^{\circ} 0$	$10^{\circ} 0$	4.46	See Note B

Table 14. $\mathrm{N}_{2} \mathrm{O}$ Band Intensitles (Contd)

Band Center $\begin{gathered} \nu_{c} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	Upper Level	Lower Level	Isotope	$S_{v} \text { at } 296 K$ (Multiply by $10^{\mathbf{- 2 0}}$ Molecules ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~cm}^{-1}$)
2223.756	$\mathrm{CO}^{\circ}{ }_{1}$	$00^{\circ} 0$	446	5023.
2209.523	$01^{1} 1$	$01^{1} 0$	446	568.
2195.840	$02{ }^{\circ} 1$	02 O	446	16.8
2195.387	$02{ }^{1}$	$02^{2} 0$	446	31.8
2195.914	$10^{\circ} 1$	$10^{\circ} 0$	446	10.1
2182.200	$03{ }_{3}^{1}$	$03{ }_{3}^{10}$	446	1.958
2181.386	$03{ }_{1}{ }_{1}$	$03{ }^{3} 0$	446	1.88
2181.711	111	$11{ }^{1} 0$	446	1.10
2193.623	00_{0}°	$00^{\circ} 1$	446	0.201
2177.659	$00^{\circ} 1$	$00^{\circ} 0$	456	18.1
2164.13	01_{1}^{1}	$01^{1} 0$	456	2.04
2201.604	$00{ }^{\circ} 1$	$00^{\circ} 0$	546	18.1
2187.389	$01^{1} 1$	$01^{1} 0$	546	2.10
2218.97	$00{ }_{1}^{0} 1$	$00^{\circ} 0$	448	10.1
2204.70	011	$01^{1} 0$	448	1.15
2221.3	$00{ }_{1}$	$00_{1}^{\circ} 0$	447	2.01
2207.25	$01^{1} 1$	$01^{1} 0$	447	0.234
2322.624	$04{ }^{\circ} 0$	$00^{\circ} 0$	446	2.11
2309.109	$05^{1} 0$	$01^{1} 0$	446	0.54
2461.998	$12{ }^{\circ} 0$	$00^{\circ} 0$	446	27.6
2457.446	$13{ }^{\circ} 0$	$01^{1} 0$	445	4.68
2452.807	$14^{\circ} 0$	$02{ }^{\circ} \mathrm{O}$	446	0.239
2453.851	$14^{2} 0$	$02^{2} 0$	446	0.321
2463.345	$22^{\circ} 0$	$10^{\circ} 0$	446	0.192
2563.341	$20^{\circ} 0$	$00^{\circ} 0$	446	120.
2577.090	$21^{1} 0$	$01^{1} 0$	446	12.2
2580.118	22%	$02{ }_{2}^{\circ}$	446	0.348
2588.310	$22^{2} 0$	$02^{2} 0$	446	0.648
2551.466	$30^{\circ} 0$	$10^{\circ} 0$	446	0.696
2534.21	$20^{\circ} 0$	$00^{\circ} 0$	546	0.454
2554.3	$20^{\circ} 0$	$00^{\circ} 0$	456	0.384
2491.3	$20^{\circ} 0$	$00^{\circ} 0$	448	0.192
2474.785	$12^{2} 0$	$00^{\circ} 0$	446	See Note A
2798.290	$01^{1} 1$	$00^{\circ} 0$	446	8.06
2775.207	02 O	0110	446	0.401
2784.370	021	010	446	0.912
2763.124	0311	020	446	0.025
2753.508	0311	0220	446	0.020
2770.594	03^{31}	$02{ }^{2}$	446	0.078
3363.074	021_{1}	$00^{\circ} 0$	446	8.82
3342.401	031	$01^{1} 0$	446	1.57

Table 14. $\mathrm{N}_{2} \mathrm{O}$ Band Intensities (Contd)

Band Center $\begin{gathered} \nu_{\mathrm{c}} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	Upper Level	Lower Level	Isotope	$\begin{aligned} & \mathrm{S}_{\mathrm{v}} \text { at } 296 \mathrm{~K} \\ & \text { (Multiply by } 10^{-20} \\ & \text { Molecules }{ }^{-1} \mathrm{~cm}^{2} \mathrm{~cm}^{-1} \text {) } \end{aligned}$
3480.821	$10^{\circ} 1$	$00^{\circ}{ }_{0}$	446	173.
3473.212	11_{1}^{1}	$01^{1} 0$	446	19.24
3462.030	$12{ }^{\circ} 1$	$02{ }^{\circ} \mathrm{O}$	446	0.563
3464.713	$12^{2}{ }_{1}$	$02^{2} 0$	446	1.064
3445.921	$20^{\circ} 1$	$10^{\circ} 0$	446	0.652
3443.659	$10^{\circ} 1$	$00^{\circ} \mathrm{O}$	546	0.627
3430.95	$10^{\circ} 1$	$00^{\circ} \mathrm{O}$	456	0.627
3439.1	$10^{\circ} 1$	$00^{\circ} 0$	448	0.348
3466.54	$06{ }^{\circ}{ }_{0}$	$00^{\circ} 0$	446	See Note B
3474.65	$06^{2} 0$	$00^{\circ} 0$	446	See Note A and B
3748.252	.220 ${ }^{\circ}$	$00^{\circ}{ }_{0}$	446	3.52
3747.031	230	$01{ }^{1} 0$	446	0.512
3620.941	$14^{\circ} 0$	$00^{\circ} 0$	446	0.492
3836.373	$30^{\circ} 0$	$00^{\circ} 0$	446	7.28
3857.612	31^{10}	$01^{1} 0$	446	0.698
4061.979	$11^{1} 1$	$00^{\circ} 0$	446	0.092
4335.798	23^{10}	$00^{\circ} 0$	446	0.083
4417.379	$0_{0}{ }^{\circ}$	$00{ }^{\circ}{ }_{0}$	446	6.07
4388.928	01^{12}	$01^{1} 0$	446	0.686
4630.164	$12^{\circ} 1$	$00^{\circ} 0$	446	0.597
4730.828	$20^{\circ} 1$	$00^{\circ} 0$	446	3.90
4730.408	$21^{1} 1$	$01{ }^{10}$	446	0.410
4977.695	$01^{1} 2$	$00^{\circ} 0$	446	0.058
5026.34	320	$00{ }^{\circ} 0$	446	0.255
5105.65	$40^{\circ} 0$	$00^{\circ} 0$	446	0.255

The intensities of the majority of the bands have been calculated from the experimental values for the entire band systems listed in Table 13. Calculating the intensity of an individual band from that of the entire band system involves the population of each energy level, the degeneracy of each level, and the relative transition probabilities.

In some of the band systems, the experimental results indicate that the transition probabilities are the same for all bands within a given system. However, as in the $12^{\circ} 0$ band system, for example, the transition probabilities are greater for the $13^{1} 0-01^{1} 0$ and $14^{\circ} 0-02^{\circ} 0$ bands than for the $12^{\circ} 0$ band. These differences in transition probabilities were found experimentally by comparing the relative intensities of several isolated lines within the system.

Equations relating the intensities of individual lines to that of the entire band are given in Section 3. These are applicable to the $\mathrm{N}_{2} \mathrm{O}$ bands listed in Table 14 with the exception of two forbidden $\Delta \leftarrow \Sigma$ bands, $02^{2}{ }_{0}^{2}$ and $12^{2} 0$, and those listed in Table 15. The factor ζ (see Section 3 Eq . (13)) that accounts for the Coriolis vibration-rotation interaction can be assumed to be zero for all bands in Table 14, except for the $03^{1} 0$ and $11^{1} 0$ bands; ; equals approximately -0.01 and -0.007 , respectively, for these bands.

Young (1972) has tabulated the relative intensities of the lines within a given band for which the Coriolis interaction is negligible. A large fraction of the intensity of a band system is in the main band; therefore, uncertainties in the relative transition probabilities within a band system do not seriously increase the uncertainty of the main-band intensity calculated on the basis of that of the entire band system. Thus, the percent of uncertainty in the intensity of the main band is approximately the same as that for the entire band system, whereas the uncertainty for the hot bands may be greater.

4.4.3 FORBIDDEN BANDS AND PERTURBED LINES

As a result of Coriolis interactions, transitions with $\ell^{\prime}-\ell^{\prime \prime}= \pm 2$ become allowed. Two $\mathrm{N}_{2} \mathrm{O}$ bands of interest that arise from such "forbidden" transitions are the $02^{2} 0-00^{\circ} 0$ and $12^{2} 0-00^{\circ} 0$ bands centered at 1177.750 and $2474.785 \mathrm{~cm}^{-1}$, respectively. The relationship between the intensities of the individual lines within a band is different for these bands than for normal bands. As in the case of CO_{2}, the intensities are given by Eq. (15) where $S_{v}{ }^{0}=1.36 \times 10^{-5}$ molecules ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~cm}^{-1}$ for the $022^{2} \mathrm{C}_{0}$ band and $\mathrm{S}_{\mathrm{v}}{ }^{0}=9.5 \times 10^{-6}$ molecules ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~cm}^{-1}$ for the $12^{2 \mathrm{C}_{0}}$ band.

A few rotational levels of the $06^{\circ} 0$ vibrational state (centered at $\mathrm{J}=46$) and the $06{ }^{2} 0$ state (centered at $J=28$) are perturbed by the corresponding levels of the $10^{\circ} 1$ state to such an extent that the normally very weak lines "borrow" enough

Table 15. Parameters of Perturbed Lines of $\mathrm{N}_{2} \mathrm{O}$

Line	Band	$\begin{gathered} \nu_{\mathrm{o}} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{J}} \\ \times 10^{-20} \mathrm{molecules}^{-1} \\ \mathrm{~cm}^{2} \mathrm{~cm}^{-1} \end{gathered}$
R45	$10^{0} 1$	1) 3508.1 .30	0.207
R45	$06^{\circ} 0$	2) 3508.186	0.046
P47	$10^{0}{ }_{1}$	1) 3430.230	0.136
P47	060	2) 3430.400	0.031
R27	$10^{0} 1$	1) 3500.040	2.11
R27	$06^{2} 0$	2) 3499.970	0.0233
P29	$10^{0} 1$	1) 3452.330	1.71
P29	$06^{2} 0$	2) 3452.260	0.0188
R45	$10^{0} 1-10^{0} 0$	3)2226.713	0.0118
P47	$10^{0} 1-10^{0} 0$	3)2149.246	0.0042

1) The perturbed line positions of the $10^{\circ} 1$ band are from observed values by Tidwell et al, (1960).
2) The calculated positions of perturbed lines of the $06^{\circ} 0$ and $06^{2} 0$ bands were determined from known perturbed positions of the $10^{\circ} 1$ lines and Toth's (1971a) values of the line separations.
3) The calculated positions of the perturbed $10^{\circ} 1-10^{\circ} 0$ lines were determined from Toth's (:971a) results and the positions of the unperturbed lines calculated on the basis of the constants in Table 12.
4) The perturbed line intensities of the $06^{\circ} 0$ and $06^{2} 0$ bands are based on the intensities of the unperturbed lines of the $10^{\circ} 1$ band and Toth's (1971a) results. The unperturbed line intensities of the $10^{\circ} 1$ and $10^{\circ}{ }_{1} \leftarrow 10^{\circ} 0$ bands are based on the band intensities given in Table 13 and Young's (1972) relative line intensities.
intensity from the $10^{\circ}{ }_{1}$ lines to appear, at the same time shifting the positions of the lines related to these rotational levels (Toth, 1971a). The resulting positions and intensities of the affected lines have been calculated separately and are given in Table 15. The R27 and R29 lines of the $10^{\circ} 1-10^{\circ} 0$ band are not listed in the table because the changes in their intensities and positions are negligible.

4.4.4 LINE HALF-WIDTHS

Several workers have measured the half-widths of $\mathrm{N}_{2} \mathrm{O}$ lines broadened by N_{2}, which is a good approximation to broadening by air. Toth (1971b) has recently measured the widths of lines in the R branches of the $10^{\circ} 1$ and $02^{\circ}{ }_{1}$ bands directly from observed spectra with a small correction for the effect of the spectrometer slitwidth. Margolis (1972) has used the same method to measure the lines in both the P - and R -branches of the $00^{\circ} 2$ band. The results of these two workers are in
good agreement, indicating that there is little, if any, dependence on vibrational mode. Lowder's (1972) recent measurements on the $00^{\circ} 1$ band show approximately the same dependence on J as do the results of Toth and Margolis, although Lowder's values averaged approximately 10 percent less. Oppenheim and Goldman (1971) have measured half-widths indirectly by applying band models to low-resolution spectra of a wide variety of $\mathrm{N}_{2} \mathrm{O}$ samples. Their results are in fair agreement with those of Margolis and Toth. Fraley et al, (1962) reported an average value of $0.05 \mathrm{~cm}^{-1}$ atm^{-1} for lines in the $00^{\circ} 1$ band; this value is considerably lower than those reported by the workers mentioned above.

We have adopted half-widths of N_{2}-broadened lines reported by Toth (1971b) to be used for atmospheric $\mathrm{N}_{2} \mathrm{O}$ lines near $296^{\circ} \mathrm{K}$. A few values are listed in the tabulation below; values for other J's can be found by interpolation and for other temperatures by assuming the half-widths are inversely proportional to the square root of temperature.

J	o cm 1 $\mathrm{~atm}^{-1}$
4	0.0915
10	0.0948
20	0.0892
30	0.0812
40	0.0767
50	0.0748
60	0.0688

4.5 Carbon Monoxide

For the CO bands, we have depended heavily on the work of Young (1968). Table 16 provides the rotational constants which were used to compute the line positions of the main isotope. The positions of the less abundant isotopes were computed from the appropriate constants for the 26 isotope by applying the ratio of.reduced masses. The accuracy of the line positions in the main isotope is expected to be about $\pm 0.001 \mathrm{~cm}^{-1}$. The accuracy of the line positions of the other isotopes will be somewhat less, about $\pm 0.01 \mathrm{~cm}^{-1}$.

The intensities for the fundamental and first two overtone bands were taken from Young and are reproduced in Table 17. The intensities for the isotopic bands were taken to be the same as for the 26 isotope reduced by the relative abundances given in Table 4 and the square of the frequency. The intensity of the fundamental appears to be known very accurately, perhaps within ± 2 percent; the first overtone is less accurately known to ± 10 percent; and the second overtone is known to ± 4 percent (see Young and Eachus, 1966); Burch and Gryvnak (1967). Half-width values have been added to the compilation following the work of Hunt et al, (1968).

Table 16. Rotational Constants Used in the Calculation of CO Line Positions

Symbol	Value
ω_{e}	2169.836
ω_{e}	13.295
$\omega_{\mathrm{e}} \mathrm{Y}_{\mathrm{e}}$	0.0115
$\mathrm{~B}_{\mathrm{e}}$	1.931285
$\boldsymbol{\alpha}_{\mathrm{e}}$	0.017535
γ_{e}	1.01×10^{-5}
D_{c}	6.12×10^{-6}
$\boldsymbol{\beta}_{\mathrm{e}}$	1.0×10^{-9}

Table 17. Intensities of CO Bands

Intensity, $\mathrm{S}\left(\mathrm{cm}^{-1} /\right.$ molecule $\left.-\mathrm{cm}^{-2}\right)$	$1-0$	$2-0$	$3-0$

4.6 Methane

This molecule is a spherical top, in the rigid rotor approximation. It has tetrahedral (T_{d}) symmetry in the rest configuration of its nuclei. Rotationvibration interactions are complicated even for its simplest infrared-active bands. Starting from the molecular Hamiltonian and the electric dipole-moment operator, transition energies, selection rules, and intensities may be calculated. However, the techniques and the results are complex, and it is not convenient to summarize them here. Therefore, the user is referred to the original papers on this subject John (1968), Schaffer et al, (1939), Hecht (1960), Moret-Bailly (1961), Herranz (1961), Fox (1962), Dang-Nhu (1969), and Susskind (1972).

For the purpose of the present data compilation, we have established the following conventions in notation. The isotopic species ${ }^{12} \mathrm{CH}_{4},{ }^{13} \mathrm{CH}_{4}$, and ${ }^{12} \mathrm{CH}_{3} \mathrm{D}$ are denoted by the digits 211,311 , and 212 , respectively, in columns 75 through 77. The quantum numbers for the initial and final states of a transition are specified in columns 36 through 69 as follows:

except for type E symmetry which has for C the format 1 X 1A1 instead of 1 A 1111. The initial and final state vibrational and rotational quantum numbers have their usual meanings. 'To avoid ambiguity, we establish some further conventions for the present data compilation. The selection rule $C^{\prime}-C^{\prime \prime}$ on T_{d} symmetry is always taken to be $A_{1}-A_{2}, A_{2}-A_{1}, E-E, F_{1} \leftarrow F_{2}$, or $F_{2} \leftarrow F_{1}$. The numbering scheme for the $N^{\prime} s$
begins with 1, 2, 3... Whenever possible, N increases with increasing groundstate energy; the stronger lines correspond to the selection rule, $\mathrm{N}^{\prime}-\mathrm{N}^{\prime \prime}=0$.

This section describes methane spectral data in the 3 to $8.5 \mu \mathrm{~m}$ region. The following bands, as summarized in Table 18, have been included: $\nu_{2}, \nu_{3}, \nu_{4}, \nu_{2}+$ $\nu_{4}, 2 \nu_{4}$.

Table 18. Methane Bands Included in Data Compilation

Isotope	Band	Center $\left(\mathrm{cm}^{-1}\right)$	Upper State	Lower State	$\begin{gathered} \text { Intensity } \\ \left(\mathrm{cm}^{-1} / \text { mole }-\mathrm{cm}^{-2}\right) \end{gathered}$
311	ν_{4}	$1297.88{ }^{\text {a }}$	00000111	00000000	$6.59 \times 10^{-20 h}$
211	ν_{4}	$1305.9138^{\text {b }}$	00000111	00000000	$5.87 \times 10^{-18} 8^{\text {i }}$
211	ν_{2}	$1533.289^{\text {c }}$	01100001	00000000	8.91×10^{-20}
311	v_{3}	$3009.53{ }^{\text {d }}$	00011001	00000000	$1.36 \times 10^{-19} \mathrm{~h}$
211	ν_{3}	3018.9205 ${ }^{\text {e }}$	00011001	00000000	$1.21 \times 10^{-17 i}$
211	$2 \nu_{4}$	2600 ${ }^{\text {f }}$	00000222	00000000	1×10^{-19} j
211	$\nu_{2}+\nu_{4}$	2818, 2838 ${ }^{\text {g }}$	01100112	00000000	8×10^{-19}

a. Kyle et al, (1970)
b. Michelot and Fox (1973)
c. Dang-Nhu (1968)
d. McDowell (1966)
e. Bobin and Fox (1973)
f. Fox (1973)
g. Benedict (1973)
h. $1 / 89$ times value for corresponding band of 211 isotope
i. Armstrong and Walsh (1960)
j. $1 / 100$ times value for ν_{3} of 211 isotope
k. $1 / 15$ times value for v_{3} of 211 isotope

It is planned to add other weak but significant bands in this spectral region at a later time.

Many line positions, together with their absolute intensities and widths, have been included in the present data compilation, even though the corresponding quantum number assignments are uncertain or unknown at this time. It must be stressed that much of the needed theoretical and experimental research on spectra of methane is still incomplete. Consequently, a large portion of the data compilation should be considered tentative and subject to revision at a later time.

4.6.1 LINE POSITIONS

The band ν_{3} at $3.3 \mu \mathrm{~m}$ is the strongest infrared-active vibration-rotation fundamental of CH_{4}. High-resolution measurements of line positions for ${ }^{12} \mathrm{CH}_{4}$ in the range 2884 to $3141 \mathrm{~cm}^{-1}$ have been used. See Henry et al, (1970), and Barnes et al, (1972). Quantum number assignments for the allowed lines from 2840 to 3167 cm^{-1} were made by Bobin and Fox (1973) on the basis of fourth-order perturbation theory. Some forbidden lines were assigned by Barnes et al, (1972) using third order theory. Spectroscopic parameters determined for the ground-state and for $\boldsymbol{\nu}_{3}$ of CH_{4} are listed in Tables 19 and 20 , respectively. The corresponding band of the isotopic species ${ }^{13} \mathrm{CH}_{4}$ has been measured from 2873 to $3123 \mathrm{~cm}^{-1}$. The assignments of McDowell (1966) with some modifications were used. The corresponding spectroscopic parameters are listed in Table 23.

Table 19. Spectroscopic Parameters for Ground State of ${ }^{12} \mathrm{CH}_{4}$

Parameter	Valuè $\left(\mathrm{cm}^{-1}\right)$
B	$5.24059+0.00006^{\mathrm{a}}$
D_{s}	$(1.086 \pm 0.003) \times 10^{-4} \mathrm{a}$
D_{t}	$(4.403 \pm 0.099) \times 10^{-6 \mathrm{~b}}$

a. Barnes et al, (1972)
b. Ozier et al, (1970). The error bar is derived from the values given by Barnes et $\mathrm{al},(1972)$ and Husson and Dang Nhu (1971).

The band at $7.7 \mu \mathrm{~m}$ is the next strongest fundamental of ${ }^{12} \mathrm{CH}_{4}$. Highresolution measurements in the 1225 to $1393 \mathrm{~cm}^{-1}$ range made by Botineau (1972) were used to obtain spectral line positions. Quantum-number assignments for the allowed lines, to $J=12$ for the R and Q branches, and $J=13$ for the P branch, were made by Michelot and Fox, (1973) on the basis of a fourth order calculation. For $J=13$ to 15 in the Q branch only, and for some $J=13 \mathrm{R}$-branch lines, quantum number assignments were taken from the work of Husson and Poussigue (1971). No forbidden lines of this band have been included in the data compilation yet. The determined spectroscopic parameters are given in Table 21. For ν_{4} of ${ }^{13} \mathrm{CH}_{4}$, the measurements of Kyle et al, (1970), extend from 1226 to $1359 \mathrm{~cm}^{-1}$, and possibly further. The assignments of Kyle et al, (1970) with some modifications were used; spectroscopic parameters appear in Table 24.

Table 20. Spectroscopic Parameters* for ν_{3} of ${ }^{12} \mathrm{CH}_{4}$

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$	Parameter	Value $\left(\mathrm{cm}^{-1}\right)$
m	3018.9205	g	4.265×10^{-3}
n	9.87157	h	8.365×10^{-5}
p	-4.0622×10^{-2}	k	-1.925×10^{-5}
q	-2.959×10^{-4}	ℓ	2.509×10^{-7}
s	4.329×10^{-5}	j	5.84×10^{-8}
t	1.942×10^{-7}	u	2.605×10^{-5}
x	-9.11×10^{-8}	z	-5.39×10^{-8}
v	-4.7921×10^{-2}	z^{\prime}	1.49×10^{-6}
w	3.622×10^{-5}	$\mathrm{z}^{\prime \prime}$	7.08×10^{-8}

*Bobin and Fox (1973)

Table 21. Spectroscopic Parameters* for ν_{4} of ${ }^{12} \mathrm{CH}_{4}$

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$	Parameter	Value $\left(\mathrm{cm}^{-1}\right)$
m	1305.9138	g	1.8643×10^{-2}
n	5.5752	h	6.590×10^{-4}
p	-6.4192×10^{-2}	l	2.88×10^{-6}
q	1.91×10^{-3}	l	1.67×10^{-7}
s	1.479×10^{-6}	u	-3.78×10^{-9}
t	-1.11×10^{-6}	2.077×10^{-5}	
x	-1.79×10^{-8}	z	-1.18×10^{-8}
v	-5.2263×10^{-2}	z^{\prime}	-1.901×10^{-6}
w	2.319×10^{-5}	z^{11}	8.28×10^{-8}

*Michelot and Fox (1973)

The ν_{2} fundamental at $6.5 \mu \mathrm{~m}$ is relatively weakly infrared-active, by virtue its Coriolis interaction with ν_{4}. Quantum-number assignments are based on the results of Dang Nhu (1969) who developed a fourth-order theory and applied it to unpublished spectra of moderately high resolution. Spectroscopic parameters are listed in Table 22.

High-resolution spectra of $\nu_{2}+\nu_{4}$ and $2 \nu_{4}$ are available in the region of approximately 2450 to $3200 \mathrm{~cm}^{-1}$ (Plyler et al, 1960; and Hall, 1973). Quantumnumber assignments for $2 \nu_{4}$ have been made on the basis of a third-order theoretical analysis. A partial analysis of $\nu_{2}+\nu_{4}$ has been done in analogy with the quantumnumber assignments in the work of (Bregier, 1970; and Hilico, 1970), on $\nu_{2}+\nu_{3}$. Spectroscopic parameters for $\nu_{2}+\nu_{4}$ and $2 \nu_{4}$ are given in Tables 25 and 26 respectively.

Table 22. Spectroscopic Parameters* for ν_{2} of ${ }^{12} \mathrm{CH}_{4}$

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$
v_{2}	1533.289
$\mathrm{~B}_{2}$	5.319
$\mathrm{~B}_{\mathrm{o}}$	5.230
$\mathrm{~d}_{2}$	5.7×10^{-5}
$\mathrm{~d}_{\mathrm{o}}$	2.1×10^{-5}
z_{2}	2.9×10^{-2}
f_{2}	-5.2×10^{-3}
e_{2}	-2.8×10^{-5}
e_{o}	-5.0×10^{-6}

*Dang Nhu (1968)

Table 23. Spectroscopic Parameters* for ν_{3} of ${ }^{13} \mathrm{CH}_{4}$

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$
$\nu_{\mathrm{o}}-2\left(\mathrm{~B} \zeta_{3}\right)$ eff	3009.05 ± 0.03
$\mathrm{~B}_{\mathrm{o}}+\mathrm{B}_{\text {eff }}^{\mathrm{P}, \mathrm{Q}}-2\left(\mathrm{~B} \zeta_{3}\right)$ eff	9.963 ± 0.004
$\mathrm{~B}_{\mathrm{eff}}^{\mathrm{P}}-\mathrm{B}_{\mathrm{o}}$	-0.0386 ± 0.0008
$2\left(\mathrm{D}_{\mathrm{o}}+\mathrm{D}_{1}\right)$	$(4.2 \pm 0.4) \times 10^{-4}$
$\mathrm{D}_{\mathrm{o}} \mathrm{D}_{1}$	$(2.1 \pm 0.5) \times 10^{-5}$
δ_{3}	0.046 ± 0.005
D^{JT}	$(4.7 \pm 2.8) \times 10^{-5}$
$\mathrm{~d}^{\mathrm{J} T}$	$(5.4 \pm 1.7) \times 10^{-5}$

*McDowell (1966)

Table 24. Spectroscopic Parameters* for ν_{4} of ${ }^{13} \mathrm{CH}_{4}$

Parameter	Value $\left(\mathrm{cm}^{-1}\right)$
ν_{4}	$1297.88+0.02$
$\mathrm{~B}^{\prime}$	$5.17 \overline{9}+0.005$
$\mathrm{~B}^{\prime}$	$5.194 \overline{+0.005}$
D	$(1.16+\overline{0} .02) \times 10^{-4}$
$\boldsymbol{\xi}$	$0.47 \overline{7} \pm 0.005$
$\mathrm{~F}_{4 \mathrm{~s}}$	$(2.26+\overline{0} .02) \times 10^{-3}$
t_{044}	$\left.-4.5 \times \overline{1} 0^{-6}\right)$
t_{134}	$(4.84+0.02) \times 10^{-4}$
t_{224}	$(-1.46 \mp 0.01) \times 10^{-2}$

*Kyle et al, (1970)

Table 25. Spectroscopic Parameters* for $\nu_{2}+\nu_{4}$ of ${ }^{12} \mathrm{CH}_{4}$

Parameter	Value (cm ${ }^{-1}$)
$\nu_{0}(Q)$	2818,2838

*Hiliev (1970) - Further analysis, including that of the interaction between F_{1} and F_{2} substates, is necessary in order to obtain more complete values of spectroscopic parameters.

Table 26. Spectroscopic Parameters* for $2 \nu_{4}$ of ${ }^{12} \mathrm{CH}_{4}$

4.6.2 LINE INTENSITIES

Although it is recognized that it would be desirable to include in the data compilation all methane lines whose absolute intensity exceeds the, cutoff specified in Table 3, it has not been possible to achieve this goal because of present experimental and theoretical limitations.

Absolute intensities for the allowed lines in $\boldsymbol{\nu}_{3}$ of ${ }^{12} \mathrm{CH}_{4}$ were calculated, starting from the measured values for $R(0)$; $R(1)$, and $R(2)$. The relative intensities of forbidden lines (Barnes et al, 1972) were used for calculating their absolute intensities. The absolute line intensities for ν_{3} of ${ }^{13} \mathrm{CH}_{4}$ were calculated on the basis of those for ν_{3} of ${ }^{12} \mathrm{CH}_{4}$, together with the terrestrial ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ ratio (see Table 4). Calculated and/or measured absolute band intensities are listed in Table 18.

Absolute line intensities for ν_{4} have been calculated on the basis of the measured values for $R(0), R(1)$, and $R(2)$. For ${ }^{13} \mathrm{CH}_{4}$, absolute intensities were calcu- . lated as for ν_{3}. Absolute band intensities are given in Table 18.

Absolute line intensities for ν_{2}, have been calculated on the basis of theoretical relative-line intensities and the experimental absolute band intensity in Table 18.

Absolute-line intensities for $\nu_{2}+\nu_{4}$ were determined from the solar spectra of Hall (1972), with an assumed CH_{4} air mass of approximately 4×10^{19} molecules $/ \mathrm{cm}^{2}$ and an assumed temperature of $273^{\circ} \mathrm{K}$ and a pressure of 0.65 atm .

Absolute line intensities for $2 \nu_{4}$ were calculated from the relative intensity formula of Fox (1962) together with the absolute band intensity in Table 18. The latter intensity was taken to be approximately $1 / 100$ of that for ν_{3} of ${ }^{12} \mathrm{CH}_{4}$.

4.6.3 LINE WIDTHS

The J - and T-dependence of methane line widths is taken from the results of Varanasi et al, $(1971,1972)$ and Tejwani and Varanasi (1971). The only measured values of air-broadened CH_{4} half-widths are for multiples of ν_{3} and $2 \nu_{3}$ at $T=$ $295^{\circ} \mathrm{K}$. For $\mathrm{J} \approx 1$ to $5, \gamma^{\circ} \approx 0.061 \mathrm{~cm}^{-1} \mathrm{~atm}^{-1}$; for $\mathrm{J} \approx 15$ to $17, \gamma^{\circ} \approx 0.048 \mathrm{~cm}^{-1}$ atm ${ }^{-1}$. These results agree with values calculated from γ o for $\mathrm{CH}_{4}-\mathrm{O}_{2}$, assuming N_{2} and O_{2} with their partial pressures in air. Measurements and calculations of $\gamma \circ$ for $\mathrm{CH}_{4}-\mathrm{H}_{2}$ in ν_{4} suggest, but do not prove directly, that γ° may be independent of vibration-rotation band. For the purpose of the present data compilation, we adopt the value $\gamma{ }^{0}=0.055 \mathrm{~cm}^{-1} \mathrm{~atm}^{-1}$ for all CH_{4} lines. There are no results available for the T -dependence of γ^{O} for CH_{4}-air or even $\mathrm{CH}_{4}-\mathrm{N}_{2}$ or $\mathrm{CH}_{4}-\mathrm{O}_{2}$ broadening. From the calculations and measurements for $\mathrm{CH}_{4}-\mathrm{H}_{2}$ broadening with T , we assume the usual $T^{-1 / 2}$ dependence. In conclusion, for the present data compilation, we use

$$
\begin{equation*}
\gamma^{0}=0.055\left(\frac{296}{\mathrm{~T}}\right)^{1 / 2}\left(\frac{\mathrm{p}}{\mathrm{I}} \mathrm{~atm}\right) \tag{16}
\end{equation*}
$$

4.7 Oxygen

The infrared atmospheric bands of oxygen have been interpreted by Van Vleck as magnetic dipole transitions between intersystem electronic combinations, a singlet-triplet transition $a^{1} \Delta_{g}-X^{3} \Sigma_{g}^{-}$. The $\Delta v=0(0,0)$ band at $7882.39 \mathrm{~cm}^{-1}$ $(1.27 \mu \mathrm{~m})$ has an Einstein A coefficient of $1.9 \times 10^{-4} \mathrm{sec}^{-1}$ Jones and Harrison (1958) . The (0,0) band, and the weaker $(1,0)$ band at $9365.89 \mathrm{~cm}^{-1}$ have been observed in terrestial atmospheric absorption by Herzberg and Herzberg (1947). The $(0,1)$ band at $6325.99 \mathrm{~cm}^{-1}$ has been observed in the twilight airglow emission by Jones and Harrison (1958). In addition to these bands there is an electric quadrupole $\left(b^{1}{ }_{\Sigma}^{+} g^{-a}{ }^{1} \Delta_{g}\right)$ transition at $1.908 \mu \mathrm{~m}$ that has been detected in the emission spectrum of a discharge through 0_{2} and helium (Noxon, 1961). Finally, submillimeterwave rotational transitions (McKnight and Gordy, 1968) and spin reorientation spectra (Zimmerer and Mizushima, 1961) at 60 GHz have been observed in the ground electronic state. The ($a-X$) system and the microwave spectra are discussed below. The atmospheric " A " band at $7619 \AA$, representing the magnetic dipole transition $b^{1} \Sigma_{g}{ }^{+} \not \mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}$, is also included (Wark and Mercer, 1965; Burch and Gryunak, 1967).

With the molecular rotational momentum designated by \mathbb{K} and the electronic spin vector by $\underset{\sim}{S}$, the total angular momentum $\underset{\sim}{J}$ is given by

$\underset{\sim}{J}=\underset{\sim}{K}+\underset{\sim}{S}$.

Thus, for the singlet-delta state $\mathrm{J}=\mathrm{K}$, and the energy levels, apart from the vibration, are given by

$$
\begin{equation*}
F=B_{V} K(K+1)-D_{V} K^{2}(K+1)^{2} \tag{17}
\end{equation*}
$$

where B_{v} is the rotational constant and D_{v} is the first order centrifugal distortion constant for the particular vibrational state. The constants for this state, obtained from measurements of the infrared bands, are listed in Table 27.

The expressions for the rotational energies of the rho-type triplet are obtained from a solution of the Hamiltonian (West and Mizushima, 1966):

$$
\begin{equation*}
\mathrm{H}=\mathrm{B}{\underset{\sim}{\mathrm{~K}}}^{2}+\frac{2}{3} \lambda\left(3 \mathrm{~S}_{\mathrm{z}}^{2}-{\underset{\sim}{S}}^{2}\right)+\mu \underset{\sim}{\mathrm{K}} \cdot \underset{\sim}{\mathrm{~S}}, \tag{18}
\end{equation*}
$$

where λ is the spin-spin interaction coupling constant and μ is the spin-rotation interaction coupling constant.

Table 27. Constants of the ${ }^{1} \Delta_{g}$ State of 0_{2} (Herzberg and Herzberg, 1947)

Constant	Value (in cm^{-1})
B_{o}	1.41783
$\mathrm{~B}_{1}$	1.4007
D_{o}	4.86×10^{-6}
ω_{e}	1509.3
$\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}$	12.9
$\Delta \mathrm{G}_{1 / 2}$	1483.50
ν_{e}	7918.134

Centrifugal stretching effects are approximately corrected for by assuming a $K(K+1)$ dependence for B, λ and μ, namely:

$$
\begin{align*}
& B=B_{v}-D_{v} K(K+1)+H_{v} K^{2}(K+1)^{2}, \\
& \lambda=\lambda_{o}-\lambda_{1} K(K+1), \text { and } \\
& \mu=\mu_{o}-\mu_{1} K(K+1) . \tag{19}
\end{align*}
$$

For each value of the quantum number at end-over-end rotation, K, the triplet energies are given by $F_{1}(\mathrm{~K}), \mathrm{F}_{2}(\mathrm{~K})$, and $\mathrm{F}_{3}(\mathrm{~K})$ where $\mathrm{J}=\mathrm{K}+1, \mathrm{~J}=\mathrm{K}$ and $\mathrm{J}=\mathrm{K}-1$, respectively. Both $\mathrm{F}_{1}(\mathrm{~K})$ and $\mathrm{F}_{3}(\mathrm{~K})$ average about $2 \mathrm{~cm}^{-1}$ lower than the $\mathrm{F}_{2}(\mathrm{~K})$ component. Values for the constants of the triplet-sigma state, obtained from both infrared and microwave measurements, are given in Table 28.

The band centers are given by

$$
\begin{align*}
& G\left(v^{\prime}, v^{\prime \prime}\right)=\nu_{\mathrm{e}}+\omega_{\mathrm{e}^{\prime}\left(v^{\prime}+1 / 2\right)-\omega} \mathrm{e}^{\prime} \mathrm{x}^{\prime}\left(\mathrm{v}^{\prime}+1 / 2\right)^{2}+\ldots-\omega_{\mathrm{e}}^{\prime \prime}\left(\mathrm{v}^{\prime \prime}+1 / 2\right)+ \\
& \omega_{e}^{\prime \prime} x_{e}^{\prime \prime}\left(v^{\prime \prime}+1 / 2\right)^{2}-\omega_{e}^{\prime \prime} y_{e}^{\prime \prime}\left(v^{\prime \prime+1} 72\right)^{3}+\omega_{e}^{\prime \prime} z^{\prime \prime} e^{\left(v^{\prime \prime}+1 / 2\right)^{4}}+\ldots \tag{20}
\end{align*}
$$

where the prime and double primes refer to the singlet and triplet states respectively.

The selection rules for magnetic dipole radiation are

$$
\Delta \mathrm{J}=0, \pm 1
$$

and

$$
+\cdots+,-\cdots-, g \multimap g, u \multimap u
$$

Table 28. Constants for the ${ }^{3} \Sigma_{g}$ State of 0_{2}

Constant	Reference	Value $\left(\mathrm{cm}^{-1}\right)$
B_{o}	a	1.4376809
$\mathrm{~B}_{1}$	b	1.421979
D_{o}	b	4.913×10^{-6}
D_{1}	b	4.825×10^{-6}
H_{o}	b	3.0×10^{-10}
λ_{o}	c	1.9847530
λ_{1}	c	-1.950×10^{-6}
μ_{o}	c	-8.42930×10^{-3}
μ_{1}	b	8.01×10^{-9}
ω_{e}	b	1580.3613
$\omega_{\mathrm{e}_{\mathrm{e}}}$	b	12.0730
$\omega_{\mathrm{e}} \mathrm{y}$	b	5.46×10^{-2}
$\omega_{\mathrm{e}_{\mathrm{e}}}$	b	-1.43×10^{-3}
$\Delta \mathrm{G}_{1 / 2}$		1556.3856

a. McKnight and Gordy (1968)
b. Babcock and Herzberg (1948)
c. West and Mizushima (1966)

The possible branches and the nomenclature used here for the ${ }^{1} \Delta_{\mathrm{g}}-{ }^{3} \Sigma_{\mathrm{g}}{ }^{-}$transition are shown in Table 27. Since the oxygen-16 nuclei obey Bose-Einstein statistics, only the positive rotational levels occur. In the ground state this causes an alternation of lines such that only odd values of the rotational quantum number K are present. For the heteronuclear isotopes of oxygen, however, all rotational levels occur; the $0^{17} 0^{17}$ molecule has alternate rotational levels with nuclear statistical weights of 5 and 7 (Gordy et al, 1953). In $0^{16} 0^{16}$ (and $0^{18} 0^{18}$) there are four branches with $\Delta \mathrm{K}= \pm 1$, three with $\Delta \mathrm{K}=0$, and two with $\Delta \mathrm{K}= \pm 2$, the latter branches being designated by superscripts S and 0 . On the magnetic tape the six quantum numbers of the transition, $v^{\prime}, J^{\prime}, K^{\prime}, v^{\prime \prime}, J^{\prime \prime}, K^{\prime \prime}$, are given in the field of columns 38 through 62. In addition, the nine branches are listed in columns 64 and 65 with the superscript, representing the ΔK of the transition, preceding the ΔJ designation. A diagram indicating the transitions involved in the ${ }^{1} \Delta_{g} \leftarrow^{3} \Sigma_{g}^{-}$band is given in Figure 1.

The above description generally applies to the microwave transitions of pure rotation and transitions between levels of the triplet state. In the latter the labelling is given as $K+$ and $K-$, designating the transitions $F_{2}(K)-F_{1}(K)$ and $\mathrm{F}_{2}(\mathrm{~K})-\mathrm{F}_{3}(\mathrm{~K})$ respectively. Intensities have been calculated (see Townes and Schawlow. 1955). A good summary of the various bands of oxygen molecule can be found in the recent review article by Krupenie, 1972.

Figure 1. Transitions in the ${ }^{1} \Delta_{g} \leftarrow^{3} \Sigma_{g}^{-}$Band of Oxygen

5. CONTINUOUS ABSORPTION BY ATMOSPHERIC GASES

Although not part of the data tape of primary concern in this report, a few words should be said about the relatively continuous regions of absorption of par ticular interest in the atmospheric "windows" near $2500 \mathrm{~cm}^{-1}(4 \mu \mathrm{~m})$, from approximately $1250 \mathrm{~cm}^{-1}$ to $700 \mathrm{~cm}^{-1}(8 \mu \mathrm{~m}-14 \mu \mathrm{~m})$, and near $450 \mathrm{~cm}^{-1}(22 \mu \mathrm{~m})$. In other spectral regions the contribution by nearby absorption lines is much greater than that by the continuum absorption, so that for practical purposes the continuum effect can be neglected, although it may be greater than in the windows.

This continuous absorption is caused by one or more of the following three processes: (1) extreme wings of strong collision-broadened absorption lines centered more than $10-20 \mathrm{~cm}^{-1}$ away; (2) pressure induced absorption resulting from transitions that are forbidden for unperturbed molecules; and (3) the possible existence of the water dimer $\left(\mathrm{H}_{2} \mathrm{O}_{:} \mathrm{H}_{2} 0\right)$ in the case of the 8 to $14 \mu \mathrm{~m}$ region.

The absorption coefficient due to continuum absorption can be expressed as

$$
\begin{equation*}
k=C_{s} P+C_{b} P_{b} \tag{22}
\end{equation*}
$$

where C_{S} is the self-broadened coefficient and C_{b} is the foreign gas broadening coefficient, P is the total pressure and P_{b} is the foreign gas pressure.

Figure 2 gives the spectral dependence of C_{s} for water vapor absorption in the 8 to $14 \mu \mathrm{~m}$ region for three temperatures (Burch, 1970). The C_{b} value has been most reliably measured by McCoy et $a l, 1969$, and is found for nitrogen to be $C_{b}=$ $0.005 \mathrm{C}_{\mathrm{S}}$ at room temperature.

Figure 3 gives the spectral dependence of C_{s} for the water vapor absorption in the region near $4 \mu \mathrm{~m}$ ior four different temperatures (Burch et al, 1971a). Note that the $\mathrm{T}=296^{\circ} \mathrm{K}$ curve is an extrapolation based on the measurements at higher temperature. These same workers found the ratio C_{b} / C_{s} for nitorgen broadening to be 0.12 ± 0.03.

Figure 4 gives the spectral dependence of the absorption coefficient due to the pressure-induced nitrogen absorption centered near $2330 \mathrm{~cm}^{-1}$ (Burch et al, 1971a). Measurements have also been made by Shapiro and Gush, 1966, and Farmer and Houghton, 1966. Since the foreign gas broadening in this case results from a gas (oxygen) having a constant mixing ratio in the atmosphere, Eq. (22) reduces to

$$
\begin{equation*}
K=\text { Const. } x \mathrm{P} \tag{23}
\end{equation*}
$$

Since the nitrogen abundance in the atmosphere is also directly proportional to P, the absorption depends on P^{2} and Figure 4 has as ordinate the absorption coefficient cxpressed in the units atm ${ }^{-2} \mathrm{Km}^{-1}$.

Since line wings as given by the torentz shape, Eq. (1), have been found to be in error in the extreme wings, an appropriate rule to follow for the truncation of

Figure 2. Normalized Continuum Absorption Coefficient for $\mathrm{H}_{2} \mathrm{O}$ at Three Temperatures

Figure 3. Normalized Continuum Absorption Coefficient Between 2400 and $28<0 \mathrm{~cm}^{-1}$ for Pure $\mathrm{H}_{2} \mathrm{O}$ at Four Temperatures
line wings and the introduction of continuum absorption coefficients in accordance with Figures 2 through 4 is difficult to state. It is recommended that the user familiarize himself with this problem (see, for example, Burch et al, 1969) and in any case the use of the Lorentz shape beyond 20 or 30 wavenumbers of line centers is inappropriate (see also discussion on line shape on p. 3).

Figure 4. Spectral Plot of Absorption Coefficient for Atmospheric N_{2} at Four Temperatures

Acknowledgments

We wish to acknowledge the contributions made by the many individuals to this data compilation through discussions, comments, and, in some cases, the use of preliminary laboratory spectra. Acknowledgment is particularly due to S. R. Drayson of the University of Michigan; C. B. Farmer and R. A. Toth, both of the Jet Propulsion Laboratories; A. G. Maki and W. J. Lafferty of the National Bureau of Standards; and R. Hanel and V. Kunde of the Goddard Space Flight Center. We further wish to acknowledge the help of D. Gryvnak of Philco Ford, Corp.; D. Murcray and A. Goldman of the University of Denver; T. Kyle of the National Center for Atmospheric Research; and B. Fridovich of the National Oceanic and Atmospheric Administration.

Particular mention should be made of the contribution made to this report by having access to the unpublished high-resolution solar spectra of D. N. B. Hall and J. Brault of the Kitt Peak National Observatory.

The help of J. Chetwynd of AFCRL in running and debugging computer programs, and the help of J. E. A. Selby, also of AFCRL, in checking some of the results is also recognized.

BLANK PAGE

References

Amat, G., and Pinder, M. (1965) J. Mol. Spec. $16: 228$.
Anderson, P.W. (1949) Physical Review 76 5:647.
Armstrong, R. L., and Walsh, H. L., (1960), Spectrochim Acta 16:840.
Babcock, H.D., and Herzberg, L. (1948) Astrophys. J. 108:167.
Barnes, W. L., Suskind, J., Hunt, R.H., and Plyler, E. K. (1972) J. Chem. Phys. 56:5160.
Beer, R., (1970), private communication.
Ben-Aryeh, Y., (1970), J.Q.S.E.T., $7: 211$.
Benedict, W.S., Classen, H. H., and Shaw, J. H. (1952) J. Res. of NBS, 49, 2:2347.
Benedict, W.S. , and Kaplan, L.D. (1959) J. Chem. Phys. 30, $2: 388$.
Benedict, W.S., and Calfee, R.F. (1967) Line parameters for the 1.9 and 6.3 micron water vapor bands, ESSA Professional Paper 2 (June 1967) U. S. Government Printing Office.
Benedict, W. S., Clough, S. A. Frenkel, L., and Sullivan, T. E. (1970) J. Chem. Phys. 53:2565.
Benedict, W.S., (1973) (private communication).
Benedict, W.S., Clough, S.A., Lafferty, W.J., Frenkel, L., Sullivan, T.E., Bellet, J., and Steenbeckeliers, G., (1973), to be published.
Benedict, W.S., Chang, H., Clough, S. A., and Lafferty, W. J., (1973), to be published.
Benedict, W.S., and Sams, R., (1971), Twenty-Sixth Symposium on Molecular Spectroscopy, Ohio State University.
Birkland.J. W., and Shaw, J. H. (1959) J. Opt. Soc. Am. 49:637.
Blum, F.A., Nill, K. W., Kelley, P. L. . Calawa, A. P., and Harman, T. C. (1972) Science 177:694.
Bobin, B., and Fox, K. (1973) J. Chem. Phys. and J. Phys. (Paris).

Botineau, J., (1970) Rev. Phys. Appl. (Paris) 5:829 and; (1972) J. Mol. Spec. 41:186.
Bouanick, J., and Haeusler, C. (1972) J.Q.S.R.T. $12: 695$.
Bregier, R., (1970), J. Phys. (Paris) 31:301.
Brault, J. (1972) Kitt Peak National Observatory, private communication.
Breckenridge, J.R., and Hall, D. N. B., (1973) Solar Physics, to be published.
Burch, D.E., and Gryvnak, D., (1971), unpublished data.
Burch, D.E., and Gryvnak, D., (1973), unpublished data.
Burch, D. E., and Gryvnak, D. A. (1967) J. Chem. Phys. 47, 12:4930.
Burch, D.E., Gryvnak, D. A. Patty, R. R., and Bartky, C. (1968) The shapes of collision-broadened CO_{2} absorption lines. Aeronutonic Report U-3203 Contract No. r2 3560 (00) (31 Auguct 1968).
Burch, C. B., Gryvnak, D.A., Patty, R, R, and Bartky, C.F. (1969) J. Op. Soc. Am. 59, 3:267.
Ihurch, D.E., and Gryvnak, D. A., (1969), Appl. Opt. 8:1489.
Burch, D.E. (1970) Semi-Annual Technical Report: Investigation of the absorption of infrared radiation by atmospheric gases, Aeronutronic Report U-4784 (31 Jan. 1970).
Burch, D.E., Gryvnak, D.A., and Pembrook, J.D. (1971a) Philco-Ford Corporation, Aeronutronic Division, Contract No. F19628-69-C-0263, U-4897, ASTLA AD882876.
Burch, D.E., Gryvnak, D.A., and Pembrook, J.D. (197.1b) Philco-Ford Corporation, Aeronutronic Division, Contract No. F19628-69-C-0263, U-4897, ASTIA AD733839.

Burch, D.E., Gryvnak, D.A., and Pembrook, J.D. (1972) Philco-Ford Corporation, Aeronutronic Division, Contract No. F19628-69-C-0263, U-5037, (to be assigned).
Burch, D.E., Gryvnak, D.A. and Pembrook, J.D. (1971c) Philco-Ford Corporation, Aeronutronic Division, Contract No. F19628-69-C-0263, U-4995, ASTIA AD733839
Calfee, R.F., and Benedict, W.S. (1966) Carbon dioxide spectral line positions and intensities calculated for the 2.05 and 2.7 micron regions, NBS Technical Note 332 (15 March 1966) U.S. Government Printing Office.
Cihla, A., and Chedin, A. (1972) J. Mol Spec. 40, 337:1972.
Clough, S.A., and Kneizys, F.X. (1065) Ozone absorption in the 9.0 micron region, AFCRL-65-862.
Clough, S. A., and Keneizys, F.X., (1966), J. Chem. Phys. 44:1855.
Clough, S. A. (AFCRL) and Beers, Y. (NBS-Boulder) (1973), to be published.
Connes, J., Connes, P., and Maillard, J. P., (1969) Near Infrared Spectra of Venus, Mars, Jupiter, and Saturn, Centre National de la Recherche Scientifique, Paris.
Connes, J., Connes, P., and Maillard, J. P., (1969), Atlas of Near Infrared Spectra of Venus, Mars, Jupiter and Saturn, Paris, Editions du C.N.R.S.
Dang Nhu, M., (1968) Thesis, U. of Paris.
Dang Nhu, M., (1969), Ann. Phys. (Paris) 4:273.
DeLucia, F.C., Helminger, P., Cook, R.L., and Gordy, W., (1972), Phys. Rev. A 3, 5:487.
DeLucia, F.C., Helminger, P., Cook, R. L., and Gordy, W., (1971), J. Chem. Phys. . $55: 5334$.

Dionne, J., (1972) Atmospheric Spectra from 9.1 to 11.6μ, Thesis, Universite de Paris VI.
Drayson, S.R., and Young, C., (1967), The Frequencies and Intensitics of Carbon Dioxide Absorption Lines Between 12 and 18 Microns. Univ. of Michigan Technical Report 08183-1-T, Nov. 1967.

Dyke, T., and Muenter, J., (1972), Nolecular Beam Studies of Water, Symposium on Mol. Structure and Spectroscopy, Ohio State Univ., June 1972.

Ely, R., and McCubbin, T. K., (1970) Ap. Op. 9, 5 : 1230.
Farmer, C.B. and Houghton, J. T., (1966), Nature 209, 1341 and 5030.
Fink, U., Rank, D. II., and Wiggins, T.A., (1964) J. Opt. Soc. Am. 54:472.
Flaud, J-M., Camy-Peyret, C., and Valentin, A., (1972), J. Phys., 8-9:741.
Fox, K. . (1962), J. Mol. Spec. 9:381
Fox, K. , (1973), Bull. Am. Phys. Soc. 18:232.
Fraley, P. E., Rao, K. N., and Jones, L. H., (1969), J. Mol. Spect. 29:312, 348.
Fralcy, P.E., Brim, W.W. and Rao, K. N. (1962) J. Mol. Spectry 9:487 (1962).
Gailar, N. M. , and Dickey, F.P. (1960) J. Mol. Spect., 4.1.
Gates, D. M. Calfee, R.F., Hanson, D. W., and Benedict, W.W., (1964), Line Parameters and Computed Spectra for Water Vapor Bands at $2.7 \mu \mathrm{~m}$, NBS Monograph 71, Aug, 3, 1964, U.S. Government Printing Office.
Gebbie, H. A., Stone, N. W. B., Topping, G, Gora, E. K., Clough, S. A., and Kreizys, F.X., (1966), J. Mol. Spec. 19:7.
Goldman, A., Kyle, T.G., Murcray, D. G., Murcray, F. H., and Williams, W.J., (1970), Appl. Opt. 9:565.

Goody, R. M., Atmospheric Radiation I, Theoretical Basis, (1964), Clarendon Press.
Gordon, H. R., and Mc Cubbin, T. K., (1965), J. Mol. Spec. 18, 73:65.
Gordon, H. R., and Mc Cubbin, T. K., (1966), J. Mol. Spec. 19, 137:66.
Gordy, W., Smith, W. V., and Trambarulo, R.F., (1953), Microwave Spectroscopy, J. Wiley and Sons, New York, 1953, p. 207.

Hall, R.T., and Dowling, J. M., (1967), J. Chem. Phys, 47:2454.
Hall, D. N. B. , (1970), Observations of the Infrared Sunspot Spectrum Between 11340 A and 24778 A, Thesis, Harvard University.
Hall, D. N. B. , (1972), unpublished data.
Hall, D. N. B. (1973) (to be published).
Hecht, K. T., (1960), J. Mol. Spec. 5:355 and 390.
Henry, L., Husson, N., Andia, R., and Valentin, A., (1970) J. Mol. Spec. 36:511.
Herranz, J. (1961), J. Mol. Spec. 6:343.
Herzberg. G. (1945), Mclecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand Co., Inc., 1045.
Herzberg, L. and Herzberg, G., (1947), Astrophys, J. 105:353.
Herzberg, G., (1950a) Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules. D. Van Nostrand Co. . Inc., 1950.
Hilico, J. -C., (1970), J. Phys. (Paris) 31:289.
Itunt, R. H. Toth, R.A., and Plyler, E. K. (1968), J. Chem. Phys., $\ddagger 9: 9.1068$
Hussan, N., and Poussiqie, G. . (1971), J. Phys. Paris, 32:850.
llusson, H., and Dang Nhu, M., (1971) J. Phys. (Paris), 32:627.

Izatt, J. R., Sakai, H., and Benedict, W.S., (1969), J. Opt. Soc. Am. 59:19.
Jahn', II. A., (1938), Proc. Roy. Soc. (London) A168:469 and f95.
Jones, A. V. and Harrison, A.W. (1958), J. Atmos, and Terrest. Phys. 13:45.
Krupenie, P.H. . (1972) J. Phys. and Chem., 423.
Kunde, V. G., (1967) Tables of Theoretical Line Positions and Intensities for the $\Delta V=1, \Delta V=2$, and $\Delta V=3$ Vibration - Rotation Bands of $C^{12} 0^{16}$ and $C^{13} 0^{16}$, NASA TMIX -63183.

Kyle, T.G., (1963), Line Parameters of the Infrared Methane Bands, AFCRI-68-0521, Oct. 1968.

Kyle, T.G., Blatherwick, R.D., and Bonomo, F.S. (1970), J. Chem. Phys. 53:2800.
Lichtenstein, M.. Gallagher, J. J., and Clough, S. A., (1971), J. Mol. Spec. 40:10.
Lowder, J. E., (1972), JQSRT, 12:873.
Madden, R. P., and Benedict. W. S., (1956), J. Chem. Phys. 25:594, and unpublished data.
Margolis, J. S. (1972), T. Quant, Spectry Rad. Transfer 12:751.
McCan, D. J., and Shaw, J. II., (1968), J. Mol. Spec. ${ }^{2} \mathrm{j}: 374$.
McClatchey, R.A., Fenn, R.W., Selby, J.E.A., Volz, F. E., Garing, J. S., (1972) Optical Properties of the Atmosphere (Third Edition), AFCRL-72-0497, Aug. 1072.
McCoy, J. H., Rensch, D. B., and Long, R. K. , (1969) App. Opt. 8:1471.
McDowell, R.S., (1966), J. Mol. Spec. $21: 280$.
McKnight, J. S., and Gordy, W., (1968), Phys. Rev. I,ctt. 21:1787.
Michelot, F., and Fox, K. (1973), to be published.
Migeotte, M. . Neven, L., and Swensson, J. , (1957), The Solar Spectrum from 2.8 to 23.7 Microns, Measures and Identifications, Mem. Soc. Roy. Sci. Liege, Special Volume 2.
Moret-Bailly, J. (1961), Cah. Phys. 15:237.
Nelson, R.C., (1949), Atlas and Wavelength Tables, Summary Report IV, Northwestern University.
Noxon, T.F., (1961), Can. J. Phys. 39:1110.
Oberly, R., Rao, K. N., Hahn, Y. I. and McCubbin, T. K., (1962), J. Nol. Spec. 25:138.
Oppenheim, U.P. and Goldman, A., (1966), J. Opt. Soc. Am. 56:675.
Ozicr, I. Y Yi, P.N., Khosla, A., and Ramsey, N. F., (1970) Phws. Rer. Letters 24:642.
Pliva, J., (1964), J. Mol. Spectry, 12:360.
Pliva, J., (1968a), J. Mol. Spectry, 25:62.
Pliva, J., (1968b), T. Mol. Spectiy, 27:461.
Plyler. E. K. . Tidwell, E.D., and Blaine, L. R., (1960) J. Res. NBS 64A:201.
Pugh I.. A., (1972) A Detailed Study of the Near Infrared Spectrum of Water Vapor. Thesis, The Ohio State University.
Kao, K. N., Brim, W. W., Sinnett, J. L., and Wilson, R. Tl. , (1062), J. Opt. Soc. ^m. . 52: 862.
Shaw, J. H. (1968), Monthly Report on Infrared Temperature Sounding, The Ohio State University, R" Project 2489, Report No. 16, Oct. 1968.
Stecnbeckelicrs, G., and Bellet, J., (1971), Comptes Rendus Acad. Sci, (Paris). 13273:288.

Susskind, J., (1972), J. Chem. Phys. 56:5152,
Shapiro, M. M., and Gush, H. P., (1966), Canad, J. Phys. 44:049.
Snider, D. C., and Shaw, J.H. (1971), Twenty-Sixth Symposium on Molecular Structure and Spectroscopy, The Ohio State University, Columbus, Ohio, June 14-18, 1971.
Shaffer, W. H., Nielsen, H. H., and Thomas, L. H. (1939), Phys. Rev. 56:895.
Swensson, J., Benedict, W. S., Delbouille, L., and Roland, G. , (1970), The Solar Spectrum from $\lambda 7498$ to λ 12016. A Table of Measures and Identifications, Mem. Soc. Roy. Sci. Liege, Special Volume 5.
Tanaka, T., and Morino, Y. (1968), J. Chem. Phys. 49:2877.
Tanaka, T., and Morino, Y., (1970a) J. Mol. Spec. 33:538.
Tanaka, T., and Morino, Y., (1970b), J. Mol. Spec. 33:552.
Tejwani, G.O.T., and Varanasi, P. (1971), J. Chem. Phys. 55:1075.
Tidwell, E.D., Plyler, E.K., and Benedict, W.S., (1960) J. Opt. Soc. Am. 50:1243.
Toth, R.A., (1971a), J. Mol. Spectry 40;588.
Toth, R.A., (1971b), J. Mol. Spectry 40:605.
Townes, C.H., and Shawlow, A. L., Microwave Spectroscopy, McGraw Hill, New, York 1955.
Tsao, C. J., and Curnutte, B. (1954), Linewidths of Pressure Broadened Spectral Lines, Scientific Report 1A-8, Contract AF19(122)65. The Ohio State Universit $\because j$, June 1954.
Valley, S. L. , Ed., (1965), Handbook of Geophysics and Space Environments, AFCRL.
Van Vleck, J. H., (1934), Astrophys. J., 80:161.
Varanasi, P. (1971), J.Q.S.R.T. 11:1711.
Varanasi, P., Sarangi, S. K., and Tejwani, G.D.T., (1972a). J.Q.S.R.T., 12, 5:857.
Varansi, P., and Tejwani, G.D.T., (1972), J.Q.S.R.T., 12:849.
Wacker, D. F., and Pratto, M.R. (1964), Microwave Spectra Tables, Line Strengths of Asymmetric Rotors, NBS Monograph 70, Vol. II, Dec. 1964, U.S. Government Printing Office.

Wark, D.Q., and Mercer, D.M., (1965) Applied Optics 5, 7:839.
West, B. G., and Mizushima, M. (1966), Phys. Rev. 143:31.
Williamson, J. G., Rao,' K. N., and Jones, L. H. , (1971), J. Mol. Spect. 40:372.
Winters, B. H., Silverman, S., and Benedict, W.S., (1964), J.Q.S.R.T. 4.527.
Yamamoto, G., Tanaka, M., and Aoki, T., (1969), J. Q. R.S.T., $\mathrm{M}_{\mathrm{i}}^{\mathrm{i}} 371$.
Young, L.A., and Eachas, W.J., (1966), J. Chem. Phys. 44:11.
Young, L. A. . (1968), J.Q.S.R.T., 8.
Young, L.D.G. . (1972) J.Q.R.S.T., 12:3.
Zimmerer, R.W., and Mizushima, M. (1961), Phys. Rev. 121:152.

```
    projza:t ru lp( IVNUT, OJTPOIT, T4F三己)
    014EVSIJN 2(4vu),T\(10)
        A=v
    1こう\mp@code{F=u}
(4 त\JFF=2 1v(こ.U) (2(1).2(340))
    IF(UvIt(c)) 2.0.30,30
    s) PRIVT 30,TT(1)
36 FDRU4T:* PARITY ERRJ2 AFTRH**F12.3)
    GO 「J - +
    30 IEOF=1:JF+1
    PQIVT &1,IEUF
31 FORMAT(* rOH vow.lj)
        IF(IE?r.!(T.7) Э丁 TJ 1001
        G0 10 c4
    < DECOJE(1),.39.2(1))I2EO
```



```
    I=1
    39 FO2M4T(110)
    L=?
    00 40 <=1,IRE)
    DECOJE(50,+1,Q(1_))(IT(I),1=1,13)
    PRINT +1,(TT(I),I=1,1.3)
    L=L+J
        IF(TY(1).LT.A) دマINT 153.A.TT(1)
        A=TT(1)
Lう3 FORMAT(* OUT OF JROER *,LF1L.3)
    40 CONTIVIJ
        GO TO <4
1001 CALL EXIT
        STOP
        END
```


Preceding page blank

Appendix B

Computer Program for Homogeneous Path Transmittance Calculation

The computer program (Program LBL) provided in this Appendix is intended for use as a check to ensure that a user of the AFCRL Data Tape will be using the data correctly. The spectral region chosen for a sample spectrum (Figure 5) contains spectral lines from four different atmospheric gases. The program was constructed for use with constant pressure and temperature paths only, so the user will be left to his own devices for real atmospheric applications. After computing transmittance at closely spaced monochromatic frequencies, a convolution is performed over a triangular slit function whose half-width can be chosen. Comment cards have been used freely, so no further discussion of this program will be given here.

[^1]PROGRAM LEL（IVPJT．OJTPUT．TAPE2）
DIMEVSIOV W（7）， $2(325), G N U(3000), S(3000), ~ A _P H A(3000), ~ E O 2(3000)$
DIMEVSIOV MOL（3000），CAY1（7），OラD（3000），FNU（1000），TRAVS（1000） DIMENSIJN SUMI（7），CS2（7）

PROGマAM SY R．MCCLATCHEY．
NO PINCHED DECKS WILL BE UISTRI？UTED．
THIS DROGRAM GEVERATES A TRANSMITTAVCE SPECTRJM WITH JUTPUT RESJLITS
PRINTE．EVERY DELV NAVEVUMBERS dETWEEN THE INITIAL FREQUEVCY， VI，ANI THE FINAL FREQUEVCY，VZ．CALCULATIONS ARE DERFJRMED FOR A UNIFO々Y，CONSTANT PRESSURE．CJNSTANT TEMPERATURE DATH COVTAIVIVG AVY OR ALL OF THE MJLECJLAR SOECIES DESCRIBED IN THIS REPORT IN ARBITRARY AMOUNTS．YOLECULAR AJUVDAVCES YJST BE SPECIFIEכ IN THE UNITS（MJLECJLES／CMZ）．YOVJCHROMATIC こALCULATIONS ARE MADE AT FREQUENCY IVIERVALSIDV．AY）A TRIANGU＿AR SLIT FUNCTIJN OF HALF－WIDTH，A，IS CONVOLVED WITH THE YOVOCHZOMATIC RESULTS．

IEOF $=0$
DEDT $\mathrm{F}=0.001$
$P I=3.14154$
SUM $=0: 0$
I $V=1$
READ INPUT PARAMETERS（D＝PRESSURE）－（T＝TEMDERATURE），
$W(1)=420, W(2)=C 02, N(3)=03, W(4)=N 20, W(5)=C 0, W(6)=C H 4, W(7)=22$ ．
VI AVD VZ ARE FREQUEVCY LIMITS FOR WHICH OUTPJT RESJLTS ARE REQJIRED．
OV IS MONOCHROMATIC FREJUENCY IVCREYEVT．
BOUND IS THE FREJUEVCY＝ROM ANY LIVE CENTER BEYOND WHICH THE LIVE WILL BE VEGLECTEJ．
a IS THE HALF－WIJTH JF a TRIAVGJLAR SLIT＇FUNCTION．
delv is freguency ivcreyent of convolvej outo it travsuittavee
RESULTS．
READ 77，P，T
PRIVT 7 7 ，P，T
READ \＆1，（W（M），$Y=1,7)$
PRIVT B3
PRINT 81．（W（4），प＝1，7）
READ Bj，VI．V2，JV，BJUND，A，OELV
PRIVT HT，VI，V2，JV，3OUNJ，A，DELV
リU0
IF（A＊2／UV＋1．GT．3000）CALCULATIOV CAVVOT BE DOVE
IF THERE ARE YORE THAN 3000 LINES READ FROM TADE IV A FREJUEVCY RAVGE
OF $2(A+$ JOUND）CAL＿CU：ATIJN CANVOT $3 E$ JONE
VBOT＝VI－A－BOUVD
VTOP $=V ?+A+$ SOUNO
MFILE $=r_{1}$
IF（VOOT．GE．500．0）YFILE＝1
IF（VGOI．GE． 1000.0 ）YFIEE＝2
IF（VBOI．GE．2000．0）MFIIE＝ 3
If（VBOT．GE．5000．0）YFILE＝4

```
C MFILE JETERMIVES THE NUMBER OF ENJS OF FILEE TJ BE READ JVER
\(C\)
C MFILE JETERMIVES THE NUMBER OF ENTS OV THE TADE.
    WE ARE VOW READY TO REA) TAPE.
    \(I=1\)
    ILL=1
    BUFFER IV (2,0) (R(1),R(325))
    IF (UNTT(2)) 7,5.3
    PRIVT \(A \rightarrow\) GNU(I)
    GO TO 1
    \(I E O F=I=U F+1\)
    PRINT QI, IEOF
    IF (IEnf.GE.7) GJ TJ 75
    GO 101
7 IF (YFILE.GT.IEOF) 3O TJ 1
    DECODE (10,43,2(1))IREC
```



```
    DECOJE (10,y5.R(VT) )TMAX
    IF (TMAX.LT.VBOT) GJ TO I
    \(L=2\)
    DO \(\rightarrow k=1 \cdot\) IREC
    DECOUE ( 80,45 .R(L) ) GNU(I),S(I), ALPHA(I), EDO(I).IDAT,ISOT. YOLI(I)
    \(L=L+\Delta\)
    IF (GVU(I).LT.VヨつT) GO TO 9
    \(M=M O L(T)\)
    PATH=S(1)*W(M)/(21*0.06*2/1013.0)
    IF (DATM.LT.UEPT-1) 30 TS 9
    IF (GNU(I).GT.VTOP) GO TO 11
    \(I=I+1\)
\(\rightarrow\) CONTIVJE
    IF (I.GT.2960) Эつ TO 11
    GO TO 1
\(11 \quad \mathrm{I}=\mathrm{I}\)
    PRINT QT. VEOT, VTOP,GNU(II),II
    \(15=1\)
    \(V 2 P=G V I J(I 1)-B O U V)-A\)
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
\(c\)
    TAPE HAS BEEN READ FOR ALL NECESSAZY LIVES OR FOR THE YAXIMUM NJ.
    OF LINES POSSIBLE SJBJECT TO RECYELIVG.
    HALFWIDIHS WILE \(3 E\) SIJPPGIED GELJW WHEN THEY DO NOT ADPEAR
    OV TAPE.
    OO 1う I=ILL.II
    \(M=M O L\) (I)
    IF (Y.E..1) GO TJ 15
    IF (ALPMA(I).GT.0.0) GO TO 13
    IF (Y.E2.2) ALDHA(I) \(=0.07\)
    IF (Y.EN.3) ALPHA(I) \(=0.11\)
    IF \((\) Y.F.J.4) ALPHA(I) \(=0.08\)
    IF (Y.EO.5) ALPHA(I) \(=0.06\)
    IF (Y.E3.6) ALPHA(I) \(=0.055\)
    IF (M.E.3.7) \(A L P+A(I)=0.040\)
IF（M．E．3．7）ALPHA（I）\(=0.040\)
If（ALDHA（I）．LT．0．01．0Q．ALPHA（I）． 5 T．1．0）ALDHA（I）\(=0.06\)
```

15 CONTIVIE
IS=1
PO=1013.00
$T 0=296.00$
CSI $=($ TO-T) $/(T 0 * T * 0.5946)$
ROTATINHAL PARTITIOV FUVCTION IS JEFIVED BELDN
DO $21 \quad u=1.7$
If (M.FU.1) GO TO 17
[F (4.EJ. 2) GO TO 1,
IF (4. © 3.3) GO TJ 17
IF (4.E3.4) GO TO 17
IF (M.F3.5) GO TO 1.
IF (M.EJ.6) GO TO 17
IF (M.E2.7) GO TO 19
$17 \operatorname{CS2}(4)=((T 0 / T) *(.5)$
GO TO ? 1
$17 \quad \operatorname{Cs} 2(4)=50 / T$
21 COVTINJE
$C A=(T \cap / T) * * 0.5) *(P / 20)$
C
C
C TEMPERATJRE DEPEVDEVCE JF ALL LINE IVTEVSITIES COMPUTES HEマE。
DO 23 I=ILL, II
$M=M O L(I)$
$S(I)=S(1) * C S 2(M) * E X J(-E) P(I) * C S I)$
ALPHA(I) =ALPHA(I) \#CA
$V=V 1-A$
$25 \quad$ DO $27 \quad n=1,7$
CAYI (M) $=0.0$
27 SUMI $(M)=0.0$
c
c
c
c
DETERYIVE INDICES (I5 AVD I6) IVDICATIVG WHICH SPECTRAL LIVES
ARE TO JË USED IV THE CALCULATIJV AT FQEQUEVCY V.
DO 33 I=I5,11
IF (V-4UUND-GVU(I)) 29.29,33
$27 \quad 15=1$
GOTO 30
33 CONTINIJE
$15=11$
GO TO $4 *$

IF (V+2OUND-GVU(J)) 37.37.39
$37 \quad \mathrm{I} 5=\mathrm{J}-1$
GO TO 4 s
37 CONTINIE
$16=11$
C
c
c
4
$4300451=15,10$
M=MOL(I)

```
        Z=ABS(v-GNU(I))
        SUMI(M)=S(I)*ALO+A(I)/(Z**Z+ALPHA(I)**2)
        CAY1(Y)=CAY1(Y)+ SUM1(M)
*O CONTIVIS
        CAY=0.0
        DO 47 M=1.7
47 CAY=CAY*CAYI(Y)*W(M)
        OPO(IV)=CAY*0.3183
        GO TO ל1
        OPJ(IV)=0.0
        OPD(IV)=ExP(-JP)(IV))
        IF ((V+UV).GT.VZכ) 30 TJ S3
        IF (V.it.VZ+A) SO TO 53
        IF (IV.GE.3000) 30 10 53
        IV=IV+I
        V=v+JV
        GO TO >
C. AT THIS DOINT. CYCLE HAこK TO STATEMEVT 2J AND COMPUTE THE
C MONJCHRUMATIC YRANSMITTAVCE AT V OV,ETC.
IF STATEMEVT 53 IS REACHED ALL DJSSIBLE MONOこHROMATIC TRAVSUITTAVEE
        VALUES 忄AVE SEEV COYPUTED, AND THE SLIT FUNCTIOV COVVOLUTION WI:G
        NOW OE PERFGRMEJ IN LOOD 57
3
    FREO=V:
    ORIVT IUL. IV.V.VIP
    FINAL=VI+3000.*)V-A-DELV
    V=VI-A
    JFNU=1
    L=vELV/JV+0.01
    I }A=
jう SUM=0.0
    DO 51 I=IA,IV
    SU:A=SUM+(A-ABS(V-FRED))*OPD(I)
    v=v+OV
    IF (V-(F2EO+A)) 57.j%.57
57 CONTIVIE
j% [RANS(JFNU)=SUM*)V/(A*A)
    FNU(JFソJ)=FREQ
    IF (F2ミ2.GT.VZ)"30 T0 61
    IF (FRE.J.GT.VZP) GO TO S1
    IF (FPEJ.GE.FIVAL) SJ TJ OL
    FREQ=FO=2+DELV
    IF (JF\!U.GE.1000) GJ TO 61
    JFNU=JFVUN+1
    IA=IA+L
    V=FREO-A
    SUM=0.0
    GO TO 50
C
Si PRIVT 103, JFVU
    PRINT 104
```

 PRIVT \(1 \cup 5\), (FNU(J), TRANS(J) : J=1, JFNU)
 IF (FREJ.GE.VZ) 50 TO 75
 IF (FREG.GT.VZP) GO TO 67
 IF (JFNU.GE.1000) GJ TO 65
 IF (FREQ.GE.FINAL) 30 TJ 63
 GO TO 75
 VI \(=\) FINAL + DELV
 I \(5=1\)
 IV \(=1\)
 \(J F N U=1\)
 \(V=V 1-A\)
 GO TO כ
 \(I A=I A+L\)
 IF STATEMENT 65 IS PEACHEO, ADOITIOVAL YONOCHROMATIC CALCULATIONS
 ARE REOUIRED TO SATISFY THE TOTAL FREQUEVCY RAVGE OVER WHICH
 CONVOLVEU RESULTS ARE REQUIRED.
 \(J F N U=1\)
 \(V=F R E O-A\)
 GO 10 うつ
 IV=I
 IF STATEMENT 67 IS REACHED, THE DATA FROM THE DATA TADE WILLIBE
 REORGAVIZED AVD THE TAPE WILL BE PEAS AGAIN.
 JFNU=1
 VI=FREの
 VBOT \(=V_{1}-A-B O U \cdot V D\)
 DO \(\quad\) ty \(I \forall=1, I 1\)
 IF (GVU(IN).GT.VZOT) GO TO 71
 CONTIVIJE
 \(I N=I I\)
 \(I J=I V\)
 \(L=1\)
 \(0073 \quad 1=1 \mathrm{~J} \cdot 11\)
 GVU(L) ='ivu(I)
 \(S(L)=S(1)\)
 \(A L P H A(L)=A L P H A(I)\)
 EJP(L) =EJP (1)
 MOL \((L)=40 L(I)\)
 \(L=L+1\)
 \(\mathrm{I}=\mathrm{L}\)
 ILL=L
 GO 10 I
 CALL EXIT
 STOD
 FORHAT (E12.ラ.F7.2)

FOQMAT (7E10.3)

FJRMAT (OF10.3)

```
37 FORMAT (* VI =*,F10.3.#V2 =*.F10.3,*JV=*,F10.3.*BOUV) =*,F10.3.*A
        1=*,F10.3.*DELV =#.F10.3)
    FORMAT (* PARITY ERZOR ENCOUNTERE) AT*.F12.3)
    FORMAT (* END OF FILE EVCOUNTEREO#.Iう)
    FORMAT (I10)
    FORMAT (F10.3,E10.3.F5.3.F10.3.35x,I3.I4.I3)
    FORMAT (* VBOT =*.F12.3,* VTOT =*,F12.3.*GNU =*.F12.3.* Il *.IS)
    FORMAT (15.2F10.%)
    103 FORMAT (* JFNU =*,I5)
    104 FORMAT (51*FREZJENEY TRANS. *))
    105 FORMAT (5(F10.3.E12.5))
        END
```


[^0]: *Published by the Chemical Rubber Co., Cleveland, Ohio

[^1]: Figure Bl

