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In this paper, we propose an approach for affective characterization of movie scenes based
on the emotions that are actually felt by spectators. Such a representation can be used
to characterize the emotional content of video clips in application areas such as affective
video indexing and retrieval, and neuromarketing studies. A dataset of 64 different scenes
from eight movies was shown to eight participants. While watching these scenes, their
physiological responses were recorded. The participants were asked to self-assess their
felt emotional arousal and valence for each scene. In addition, content-based audio-
and video-based features were extracted from the movie scenes in order to characterize
each scene. Degrees of arousal and valence were estimated by a linear combination of
features from physiological signals, as well as by a linear combination of content-based
features. We showed that a significant correlation exists between valence-arousal provided
by the spectator’s self-assessments, and affective grades obtained automatically from
either physiological responses or from audio-video features. By means of an analysis of
variance (ANOVA), the variation of different participants’ self assessments and different
gender groups self assessments for both valence and arousal were shown to be significant
(p-values lower than 0.005). These affective characterization results demonstrate the
ability of using multimedia features and physiological responses to predict the expected
affect of the user in response to the emotional video content.

Keywords: Multimedia indexing and retrieval; affective personalization and character-
ization; emotion recognition and assessment; affective computing; physiological signals
analysis.

1. Introduction
1.1. Overview
The amount of available digital multimedia content has greatly increased during the

last decade. Powerful and novel multimedia indexing and retrieval methods have
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thus become essential to sift through such abundance. In this paper we propose to
use the emotion that is actually felt by a given spectator as an indexing feature, in
addition to more classical features like those based on video analysis of the media
content. In order to demonstrate that for movie scenes affect can be represented
by grades we compared self-assessment of the emotional content of scenes, with
affective grades automatically determined from physiological responses and mul-
timedia content analysis. The affect determination from multimedia content and
physiological responses uses computing methods to bring the human preferences
and intentions into a semantic multimedia management system.

The affective and emotional preferences of a user play an important role in
multimedia content selection. Imagine you feel bored and you are looking for an
entertaining movie. How can a system understand your affective preferences? What
are your real affective preferences? These questions are hard to answer, because user
emotional preferences depend on many aspects such as context, culture, sex, age, etc.
A “personal content delivery” [1] system which considers one’s emotional preferences
should answer these needs. This paper introduces an affective representation method
that can operate at the core of such a system.

To estimate affect, physiological responses are valued for not interrupting users
for self reporting phases. In addition, affective self-reports might be held in doubt
because the participant cannot remember all the different emotions he/she had
during the experiment, and/or might misrepresent his/her feelings due to self pre-
sentation (i.e. the participant wants to show he/she is courageous whereas in reality
he/she was scared) or for pleasing the experimenter [2]. Self-assessment is however
necessary as ground truth, to show that the physiological measurements are valid
and also to train the affect representation system. Finally, while self reports are
unable to represent dynamic changes, physiological measurements give the ability
of measuring the user responses dynamically [3].

Affect based video content characterization requires the understanding of the
intensity and type of affect which is expected to be evoked in the user (audience)
while watching a movie/video. Still rather few publications exist in the field of
affective representation/understanding of movies, and these mostly rely on self-
assessments or population averages to obtain the emotional content of a movie [1,4].

Wang and Cheong [4] used content audio and video features to classify basic
emotions elicited by movie scenes. In [4], audio was classified into music, speech and
environment signals and these were treated separately to shape an audio affective
feature vector. The audio affective vector of each scene was fused with video-based
features such as key lighting and visual excitement to form a scene feature vector.
Finally, using the scene feature vectors, movie scenes were classified and labeled
with emotions.

Hanjalic et al. [1] introduced “personalized content delivery” as a valuable tool
in affective indexing and retrieval systems. In order to represent affect in video,
they first selected video- and audio- content features based on their relation to the
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valence-arousal space (for the definition of valence-arousal space, see Sec. 1.2) [1].
Then, arising emotions were estimated in this space by combining these features.
While valence-arousal could be used separately for indexing, they combined these
values by following their temporal pattern in the valence-arousal space. This allowed
for determining an affect curve, shown to be useful for extracting video highlights in
a movie or sports video. Although the detected highlights were shown to be correct,
there was no ground truth for evaluating the system.

A hierarchical movie content analysis method based on arousal and valence
related features was presented by M. Xu et al. [5]. In this hierarchical content
analysis method the affect of each shot was first classified into the three arousal
categories of calm, average and exciting. Using the arousal correlated features and
fuzzy clustering, the audio short time energy and the first four MFCC - Mel fre-
quency cepstral coefficients (as a representation of energy features), shot length,
and the motion component of consecutive frames were used for arousal classifica-
tion. Next, color energy, lighting and brightness were used as valence related features
in a HMM-based valence classification of the shots which were previously classified
in one of the three arousal categories. A drawback of the proposed approach is that
a shot can however last less than few seconds; it is thus not realistic to form a
ground-truth with assigning an emotion label to each shot.

A regression based arousal and valence representation of MTV (Music-TV) clips
using content features was presented in [6]. The arousal and valence values were
separated into 8 clusters by an affinity propagation method. Two different feature
sets were used for arousal and valence determination which was evaluated using a
ground truth. The ground truth was based on the average assessments of 11 users.

T. Wu et al. [7] presented an interactive content representation based on
expressed emotion and physiological feedback. In this interactive content repre-
sentation, peripheral physiological signals were used to recognize the preference of
the user when the content (picture, text, and music video) were showed to the user.
This was one of the first papers to demonstrate physiological feedback in a real-time
interactive content representation system.

An affect representation suited to one particular person or a particular group of
users cannot be generalized to an entire population as has been presented in [4, 5].
The affective responses vary from person to person and from culture to culture.
Focusing on stimuli (video and audio content) and ignoring the participant’s pref-
erences and their variety does not lead to an efficient affect analysis. The personal-
ized affective characterization which is introduced in [1] is a possible answer to this
problem.

Affective systems require methods for automatically assessing user’s emotional
state. Computerized emotion assessment gained interest over the last years. Most
of current methods focus on facial expressions and speech analysis. However, these
methods cannot always be relied upon since users are not always speaking or turning
their head towards the camera lens. With the advancement of wearable systems for
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recording peripheral physiological signals, it is becoming more practically feasible
to employ these signals in an easy-to-use human computer interface [9,10]. We
therefore concentrated on the use of peripheral physiological signals for assessing
emotion, namely: galvanic skin resistance (GSR), blood pressure which provided
heart rate, respiration pattern, and skin temperature. In order to record facial mus-
cles activity we also used electromyograms (EMG) from the Zygomaticus major
and Frontalis muscles. At this stage of the study, we opted for not using electroen-
cephalograms (EEG) due to the cumbersomeness of the apparatus and acquisition
protocols, although EEG’s have been shown to be very useful for assessing emo-
tions [9,11-14].

This paper demonstrates a first step towards benefiting from actual physiologi-
cal responses for creating affect-based tools. Although emotions can induce similar
physiological responses amongst people (i.e. abrupt changes in the GSR in case of
surprise or fear), the shape and the magnitude of these responses vary from per-
son to person. This requires personalized emotional profiles to be determined, that
can subsequently be used for affect based video indexing. Peripheral physiologi-
cal signals were first recorded for monitoring the valence-arousal grades of partic-
ipants’ emotion while they were watching a movie scene. In order to understand
the user’s emotional behavior, sets of features extracted from the physiological sig-
nals were linearly combined to obtain an estimate for the valence-arousal grades.
These grades, assessed while watching movie scenes, can be used as a new dimen-
sion of information in a user’s personal affective profile. Multimedia content-based
features were also extracted from the scenes by audio and video processing. The
correlation between the self-assessed valence-arousal grades and those computed
from physiological features was determined, as well as the correlation between these
self-assessed valence-arousal grades and those obtained from multimedia features.
The correlation between the physiological signals and the multimedia features was
also investigated to determine which multimedia features give rise to which type of
emotion. All correlations are shown to be significant: physiological responses of par-
ticipants can characterize video scenes, and audio-visual features can fairly reliably
be used to predict the spectator’s felt emotion. The variation between participants
of those content-based features that were the most correlated with self-assessment
demonstrates the need for considering personal preferences in affective indexing of
multimedia contents. Finally it can be noted that we did not focus on temporal
changes in valence-arousal space, rather we investigated the average affect related
to each movie segments of interest (scenes).

The remainder of this paper is organized as follows. Section 1.2 presents some
background on representation of affect and on the valence-arousal model to rep-
resent emotions. Section 2 elaborates on data acquisition, feature extraction and
selection, and how features are combined for representation. The experimental
results are given in Sec. 3 and finally conclusions and perspectives are presented in
Sec. 4.
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1.2. Affect and affective representation

Although the most straightforward way to represent an emotion is to use discrete
labels such as fear, anxiety and joy, label-based representations suffer from several
disadvantages. The main disadvantage is that labels are not cross-cultural: they do
not have the same meaning in different cultures. The emotional labels can also be
misinterpreted in a single culture (for instance the difference between joy and hap-
piness is problematic). In addition, emotions are continuous phenomena rather than
discrete ones and labels are unable to define the strength of an emotion. Psychol-
ogists therefore represent emotions or feelings in an n-dimensional space (generally
2- or 3-dimensional). The most famous such space, which is used in the present study
and originates from cognitive theory, is the 2D valence-arousal space (see Fig. 1).
Valence represents the way one judges a situation, from unpleasant to pleasant;
arousal expresses the degree of felt excitement, from calm to exciting. Cowie used
the valence/activation space (similar to the valence-arousal space) to model and
assess emotions from speech [10,15,16]. Although such spaces do not provide any
verbal description, a point in such space can be mapped to a categorical feeling label.

In a dimensional approach for affect representation, the affect of video scene
can be represented by its coordinates in the valence-arousal space. Valence and
arousal can be determined by self reporting. In order to record their felt emotions,
participants were asked to grade each movie scene by valence-arousal grades using
self-assessment Manikins (SAM) [17]. The arousal grade represented the level of
arousal or excitement felt when watching the scene while the valence grade repre-
sents the felt pleasantness.

2. Material and Methods
2.1. Overview

A video dataset of 64 movie scenes was created (see Sec. 2.3) from which content-
based low-level features were extracted. Experiments were conducted during which

Excited
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Valence
Negative Positive
v
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Fig. 1. Valence-arousal 2 dimensional space. The horizontal axis represents valence or degree of
pleasantness and the vertical axis represents arousal or degree of excitement.
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physiological signals were recorded from spectators. After each scene, the spectator
self-assessed his/her valence-arousal levels. To reduce the mental load of the partici-
pants, the protocol divided the show into 2 sessions of 32 movie scenes each. Each of
these sessions lasted approximately two hours, including setup. Eight healthy par-
ticipants (three female and five male, from 22 to 40 years old) participated in the
experiment. Thus, after finishing the experiment three types of affective information
about each movie clip were available:

e multimedia content-based information extracted from audio and video signals;

e physiological responses from spectators’ bodily reactions (due to the autonomous
nervous system) and from facial expressions;

e self-assessed arousal and valence, used as ‘ground truth’ for the true feelings of
the spectator.

Since video scenes were showed in random order, the occurrence of high and low
valence-arousal values in the self-assessed vectors (64 elements each) does not
depend on the order in which scenes were presented.

Next, we aim at demonstrating how those true feelings about the movie scenes
can be obtained by using the information that is either extracted from audio and
video signals or contained within the recorded physiological signals. To this end, fea-
tures that are likely to be influenced by affect have been extracted from the audio
and video content as well as from the physiological signals. Thus a (single) fea-
ture vector composed of 64 elements highlights a single characteristic (for instance,
average sound energy) of the 64 movie scenes. In a similar way feature vectors
were extracted from the physiological signals. As one may expect, a single feature,
e.g. average sound energy, may not be equally relevant to the affective feelings of
different participants. In order to personalize the set of all extracted features, an
additional operation called relevant-feature selection has been implemented. During
the relevant-feature selection for arousal, the correlation between the single-feature
vectors and the self-assessed arousal vector is determined. Only the features with
high absolute correlation coefficient (|p| above 0.25 and p-value below 0.05) were
subsequently used for estimating arousal. A similar procedure was performed for
valence. It will be shown that accurate estimates of the self-assessed arousal and
valence can be obtained based on the relevant feature vectors for physiological sig-
nals as well as from the relevant feature vectors for audio and video information.

2.2. Feature extraction
2.2.1. Audio and video content-based features

Sound has an important impact on user’s affect. For example according to the find-
ings of Picard [18], loudness of speech (energy) is related to evoked arousal, while
rhythm and average pitch are related to valence. The audio channels of the movie
scenes were extracted and encoded into monophonic information (MPEG layer 3
format) at a sampling rate of 48 kHz, and their amplitude range was normalized in
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Table 1. Low-level features from audio signals.

Feature set Extracted features

MFCC MFCC coefficients, derivative and autocorrelation of MFCC,
each 13 features [19]

Energy Average energy of the audio signal [19]

Formants Formants up to 5500 Hz (female voice), 5 features

Time frequency Spectrum flux, spectral centroid, delta spectrum magnitude,
band energy ratio, dominant pitch frequency [19,20]

ZCR Average and standard deviation of zero crossing frequency
(ZCR) [19]

Silence ratio Proportion of silence in a time window [22]

[—1, 1]. All of the resulting audio signals were normalized to the same amplitude
range before further processing. A total of 53 low-level audio features were deter-
mined for each of the audio signals. These features, listed in Table 1, are commonly
used in audio and speech processing and audio classification [19,20].

Wang et al. [4] demonstrated the relationship between audio type’s proportions
and affect, where these proportions refer to the respective duration of music, speech,
environment, and silence in the audio signal of a video clip. To determine the three
important audio types (music, speech, and environment), silence was first identi-
fied by comparing the audio signal energy of each sound sample with a pre-defined
threshold empirically set at 5 x 10~7. After removing silence, the remaining audio
signals were classified by the three classes support vector machine (SVM). We imple-
mented a three class audio type classifier using support vector machines (SVM with
polynomial kernel) operating on audio low-level features in a time window of one
second. Despite some classes overlapping (e.g. presence of a musical background
during a dialogue), the classifier was usually able to recognize the dominant audio
type. The SVM was trained utilizing more than 3 hours of audio, extracted from
movies and labeled manually. The classification results were used to form 4 bins
(3 audio types and silence) normalized histogram; these histogram values were used
as affective features for the affective representation. MFCC (Mel frequency cep-
stral coefficients), Formants and the pitch of audio signals were extracted using the
PRAAT software package [21].

Movie scenes have been segmented at the shot level using the OMT shot seg-
mentation software [23]. Video clips were encoded into MPEG-1 format to extract
motion vectors and I frames for further feature extraction. We used the OVAL
library (Object-based Video Access Library) [24] to capture video frames and
extract motion vectors.

From a movie director’s point of view, lighting key [4,25] and color variance [25]
are important parameters to evoke emotions. We therefore extracted lighting key
from frames in the HSV space by multiplying the average value (V in HSV) by the
standard deviation of the values (V in HSV). Color variance was obtained in the
CIE LUV color space by computing the determinant of the covariance matrix of L,
U, and V.
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The average shot change rate, and shot length variance were extracted to char-
acterize video rhythm. Hanjalic et al. [1] showed the relationship between video
rhythm and affect. Fast object movements in successive frames are also an effec-
tive factor to evoke excitement. To measure this factor, the motion component was
defined as the amount of motion in consecutive frames computed by accumulating
magnitudes of motion vectors for all B and P frames.

Colors and their proportions have an effect to elicit emotions. In order to use
colors in the list of video features, a 20 bin color histogram of hue and lightness
values in the HSV space was computed for each I frame and subsequently averaged
over all frames. The resulting averages in the 20 bins were used as video content-
based features. The median of L. value in HSL space was computed to obtain the
median lightness of a frame. Shadow proportion or the proportion of dark area in
a video frame is another feature which relates to affect [4]. Shadow proportion is
determined by comparing the lightness values in HSL color space with an empirical
threshold. Pixels with lightness level below this threshold (0.18 [4]) are assumed to
be dark and in shadow in the frame.

Visual excitement is a measure of the average pixel’s color change between two
consecutive frames [4]. It is defined as the average change between the CIE Luv
histograms of the 20 x 20 blocks of two consecutive frames. In our case, this visual
excitement feature was implemented from the definition given in [4] for each key
frame. Two visual cues were also implemented to characterize these key frames.
The first one, called visual detail, is used as an indicator of the distance from the
camera to the scene and differentiates between close-ups and long-shots. The visual
detail was computed by the average gray level co-occurrence matrix (GLCM) [4].
The other visual cue is the grayness which was computed from the proportion of
the pixels with saturation below 20%, which is the threshold determined for colors
that are perceived as gray [4].

2.2.2. Physiological features

GSR provides a measure of the resistance of the skin by positioning two electrodes
on the tops of two fingers and passing a negligible current through the body. This
resistance decreases due to an increase of sudation, which usually occurs when one is
experimenting emotions such as stress or surprise. Moreover, Lang et al. discovered
that the mean value of the GSR is related to the level of arousal [26]. (See Table 2
which summarizes the list of features extracted from physiological signals.)

A plethysmograph measures blood pressure in the participant’s thumb. This
measurement can also be used to compute heart rate by identification of local max-
ima (i.e. heart beats) and inter-beat periods. Blood pressure and heart rate variabil-
ity correlate with emotions, since stress can increase blood pressure [10]. Pleasant-
ness of stimuli can increase peak heart rate response [26], and heart rate variability
decreases with fear, sadness, and happiness [27]. The placement of electrodes on
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Table 2. Features from peripheral signals.

Peripheral signal Extracted features

GSR Average skin resistance, average of derivative, mean of derivative for
negative values only(average decrease rate during decay time),
proportion of negative samples in the derivative vs. all samples,
Number of local minima in the GSR signal, average rising time of
the GSR signal, kurtosis, skewness, spectral power in the bands
([0-0.1] Hz, [0.1-0.2] Hz, [0.3-0.4] Hz)

Blood flow and ECG Average blood pressure, heat rate, heart rate derivative, heart rate

(Plethysmograph) variability, standard deviation of heart rate, ECG multiscale
entropy (4 levels), finger pulse transit time, kurtosis and skewness of
the heart rate, energy ratio between the frequency bands [0, 0.08] Hz
and [0.15, 5] Hz, spectral power in the bands ([0-0.1] Hz,

[0.1-0.2] Hz, [0.3-0.4] Hz)

Respiration Band energy ratio (energy ratio between the lower (0.05-0.25 Hz) and
the higher (0.25-5 Hz) bands), average respiration signal, mean of
derivative (variation of the respiration signal), standard deviation,
dynamic range or greatest breath, breathing rhythm (spectral
centroid), breathing rate, spectral power in the bands ([0-0.1] Hz,
[0.1-0.2] Hz, [0.3-0.4] Hz)

EMG Zygomaticus Energy, average, standard deviation of energy, variance

EMG Frontalis Energy, average, standard deviation of energy, variance

Eye blinking rate Rate of eye blinkings per second, extracted from the Frontalis EMG

Skin Temperature Range, average, minimum, maximum, standard deviation, kurtosis,
skewness, spectral power in the bands ([0-0.1] Hz, [0.1-0.2] Hz,
[0.3-0.4] Hz)

the face (for EMG) and ground electrodes on the left hand enabled us to record
an Electrocardiogram (ECG) signal. Using the electrocardiogram the pulse tran-
sit time was computed as a feature. In addition to the heart rate and heart rate
variability features, the multi-scale entropy (MSE) of the heart rate variability was
computed from ECG signals. The MSE of the heart rate was shown to be a useful
feature in emotion assessment [28].

Skin temperature was also recorded since it changes in different emotional
states [29]. The respiration pattern was measured by tying a respiration belt around
the chest of the participant. Slow respiration is linked to relaxation while irregular
rhythm, quick variations, and cessation of respiration correspond to more aroused
emotions like anger or fear [27, 28]. Regarding the EMG signals, the Frontalis mus-
cles activity is a sign of attention or stress in facial expressions. The activity of the
Zygomaticus major was also monitored, since this muscle is active when the user
is laughing or smiling [30]. Most of the power in the spectrum of an EMG during
muscle contraction is in the frequency range between 20 to 400 Hz. Thus, the muscle
activity features were obtained from the energy of EMG signals in this frequency
range for the different muscles.
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The rate of eye blinking is another feature, which is correlated with anxiety [31].
Eye-blinking affects the EMG signal that is recorded over the Frontalis muscle and
results in easily detectable peaks in that signal.

2.3. Feature selection and regression

The relevance of features for affect was determined using linear correlation between
each extracted feature and the users’ self-assessment, as motivated in Sec. 2.1 In
this study, a significant correlation between two vectors was supposed to exist when
the absolute correlation exceeded 0.25 (|p| > 0.25) with p-value below 0.05. The
p-value represents the probability that a randomly selected vector would lead to a
p value that is at least as large as the one observed.

We now demonstrate how user-felt arousal and valence can be estimated, based
on the physiological or content-based features which were found to have a signifi-
cant correlation with the self-assessed valence and arousal. For each participant, a
training set of 63 scenes was formed by selecting 63 of the 64 movie scenes and the
corresponding feature values. The remaining scene served as a test set.

In order to obtain an estimate, based on the significantly correlated features,
of the user’s valence and arousal, all significantly correlated features are weighted
and summed as indicated in Eq. (1), where g(j) is the estimate of valence-arousal
grade, j is the indexing number of a specific movie scene {1,2,...,64}, z;(j) is the
feature vector corresponding to the ith significantly correlated feature, Ns is the
total number of significant features for this participant, and w; is the weight that
corresponds to the ith feature.

N,
9() = > wizi(j) + wo. (1)
=1

In order to determine the optimum y, the weights in Eq. (1) were computed
by means of a linear relevance vector machine (RVM) from the Tipping RVM
toolbox [33].

This procedure is performed four times for optimizing the weights corres-
ponding to:

e physiological features when estimating valence,

e physiological features when estimating arousal,

e multimedia features when estimating valence,

e multimedia features when estimating arousal.

In a first step weights are computed from the training set. In the second step, the
obtained weights were applied to the test set, and the mean absolute error between
the resulting estimated valence-arousal grades and self assessed valence-arousal was
examined. These two steps were repeated 64 times. Each time the 63 movie scenes of
the training set were selected from the total of 64 scenes while the single remaining
scene served as the test set. The results from this cross-validation will be presented
in the next section.
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3. Experimental Results
3.1. Experimental protocol

The participants were first informed about the experiment, the meaning of arousal
and valance, the self-assessment procedure, and the video content. In emotional-
affective experiments the bias of the emotional state (participants’ mood) needs to
be removed. To allow leveling of feature values over time a baseline is recorded at
each trial start by showing one short 30s. neutral clip randomly selected from clips
provided by the Stanford psychophysiology laboratory [32].

Figure 2 presents the experimental protocol and its timing. Each trial started
with the user pressing the “I am ready” key which started the neutral clip playing.
After watching the neutral clip, one of the movie scenes was played. Movie scenes
were selected from the dataset in random order. After watching the movie scene,
the participant filled in the self-assessment form which popped up automatically. In
total, the time interval between the starts of consecutive trials was approximately
three to four minutes. This interval included playing the neutral clip, playing the
selected scene, performing the self-assessment, and the participant-controlled rest
time.

In the self-assessment step for evaluating arousal and valence, the SAM Manikin
pictures with a slider to facilitate self-assessment of valence and arousal were used
(see Fig. 3). The sliders correspond to a numerical range of [0, 1] while the numerical
scale was not shown to the participants.

3.2. Data
3.2.1. Mowvie scenes dataset

To create the video dataset, we extracted video scenes from eight movies
selected either according to similar studies (e.g. [1, 4, 32]), or from recent
famous movies. The movies included four major genres: drama, horror, action,
and comedy. Video clips used for this study are from the following: Saving
Private Ryan (action), Kill Bill, Vol. 1 (action), Hotel Rwanda (drama),

~2 hours
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Trial 1 Trial 10 [Rest [Trial 11 Trial 32

«
P T e time
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Neutral clip Movie scene Self assessment
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Fig. 2. Experimental protocol.
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The Pianist (drama), Mr. Bean’s Holiday (comedy), Love Actually (comedy),
The Ring, Japanese version (horror) and 28 Days Later (horror). The extracted
scenes, eight for each movie, had durations of approximately one to two min-
utes each and contained an emotional event (judged by the authors). The com-
plete list of the scenes with their timings and descriptions is available online
(http://cvml.unige.ch /doku.php/mmi/movieaffectivecharacterization).

3.2.2. Physiological signals

Peripheral signals and facial expression EMG signals were recorded for emotion
assessment. EMG signals from the right Zygomaticus major muscle (smile, laughter)
and right Frontalis muscle (attention, surprise) were used as indicators of facial
expressions. Galvanic skin resistance (GSR), skin temperature, breathing pattern
(using a respiration belt) and blood pressure (using a plethysmograph) were also
recorded. All physiological data was acquired via a Biosemi Active-two system with
active electrodes, from Biosemi Systems (http://www.biosemi.com). The data were
recorded with a sampling frequency of 1024 Hz in a sound-isolated Faraday cage.
Examples of recorded physiological signals in a surprising scene are given in Fig. 4.
The GSR and respiration signals were respectively smoothed by a 512 and a 256
points averaging filters to reduce the high frequency noise. EMG signals were filtered
by a Butterworth band pass filter with a lower cutoff frequency of 20 Hz and a higher
cutoff frequency of 400 Hz.

3.3. Results

The correlations between multimedia features, physiological features and self assess-
ments were determined. Table 3 shows, for each participant, the features which had
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Fig. 4. Physiological response (participant 2) to a surprising action scene. The following raw
physiological signals are shown: respiration pattern (a), GSR (b), blood pressure (c), and Frontalis
EMG (d). The surprise moment is indicated by an arrow.

the highest absolute correlations with that participant’s self-assessments of valence
and arousal. Table 3a shows results for physiological features whereas Table 3b
shows results for multimedia features.

For physiological signals, the variation of correlated features over different sub-
jects illustrates the difference between participants’ responses. While GSR features
are more informative regarding the arousal level of participants 1, 3, and 7, EMG
signals were more important to estimate arousal in participants 2, 4, and 5. The
large variation between participants regarding which multimedia features have the
highest absolute correlation value with their self assessment, indicates the vari-
ance in individual preferences to different audio or video features. For instance an
increase in motion component leads to higher arousal for participant 8. For the same
feature, increase in motion component resulted in lower valence for participant 5,
which means that the participant had a negative feeling for exciting scenes with
large amount of movement in objects or background.

Table 4 shows, for all participants, the correlation coefficients between four dif-
ferent pairs of physiological features and multimedia features. These eight features
have been chosen from the features which have significant correlation with self
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Table 3. Physiological and multimedia features with the highest absolute correlation with self
assessments for participants 1 to 8.

Participant Arousal p Valence P

(a) Physiological features

1 GSR Skewness 0.43 EMG Zygomaticus 0.74
(sum of absolute)

2 EMG Frontalis (sum of 0.66 EMG Frontalis —-0.73
absolute) (sum of absolute)

3 GSR power spectral density 0.48 EMG Zygomaticus 0.53
0.1-0.2 Hz band (sum of absolute)

4 EMG Zygomaticus average 0.32 EMG Zygomaticus 0.49
(sum of absolute)

5 EMG Frontalis (sum of 0.38 EMG Frontalis —0.49
absolute) (sum of absolute)

6 Plethysmograph multi-scale 0.42 EMG Zygomaticus 0.56
entropy (2nd) (sum of absolute)

7 GSR standard deviation 0.55 EMG Zygomaticus 0.71
(sum of absolute)

8 Blood pressure (volume) —0.33 EMG Zygomaticus 0.64

(sum of absolute)

(b) Multimedia Features

1 6th MFCC coefficient 0.44  15th bin of the Hue histogram  —0.47
(purplish)
2 19th bin of the Hue histogram —0.47 Shadow proportion standard —0.51
(purplish) deviation
3 8th MFCC coefficient 0.45 Last autocorrelation MFCC 0.53
coefficient (standard
deviation)
4 First autocorrelation MFCC 0.44  3rd autocorrelation MFCC 0.39
coefficient (standard coefficient (standard
deviation) deviation)
5 4th Derivative MFCC 0.35 Motion component —0.47
6 11th autocorrelation MFCC —0.37  5th bin of Luminance —0.39
coefficient histogram
7 12th MFCC coefficient 0.43  Color variance standard 0.48
deviation
8 Motion component 0.40  Visual cue, detail 0.52

assessments and thus are more importance for affect characterization. The corre-
lations show that the indicated physiological responses are significantly correlated
with changes in multimedia content. This is for instance the case with the positive
correlation between EMG Zygomaticus energy and key lighting of the video content:
lighter scenes have a direct positive effect on the Zygomaticus activity.

The difference between the self assessments of male and female participants
was investigated by means of a one way ANOVA test of variance applied on these
assessments. The difference between the two genders group self assessments was
found to be significant for gender groups’ valence (F = 50.6, p < 0.005) and arousal
(F = 11.9, p < 0.005), and for participants’ valence (F = 10.3, p < 0.005) and
arousal (F = 20.3, p < 0.005). The female participants reported lower valence and
higher arousal in average. Comparison with assessed valence showed that this gender
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Table 4. The linear correlation p values between multimedia features, and physiological
features which are significantly correlated with self assessments (participants 1 to 8).

GSR power spectral
density 0-0.1 Hz

band/standard Blood volume
EMG zygomaticus deviation of spectral density EMG zygomaticus
(sum of absolute the first 0.1-0.2Hz (sum of absolute
values) /key autocorrelation band/Shot length values) /visual
lighting of MFCC variation cue, details
1 0.73 0.54 —
2 0.71 0.72 0.84 0.53
3 0.35 0.71 0.89 0.33
4 0.51 0.50 0.78 0.43
5 0.39 0.63 0.88 0.36
6 0.41 0.63 0.91 0.30
7 0.46 0.76 0.86 0.40
8 0.64 0.55 0.82 0.56
Self assessments (valence) Self assessments (arousal)
8 f f . °r - 1
i | 8t | . 1
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Fig. 5. Results of the one way ANOVA test on the self assessments showing significant differ-
ences between the average assessments levels of the two gender groups; (a) valence, p = 3.8E-12,
F = 50.6; (b) arousal, p = 6E-4, F = 11.9.

difference comes from the fact that female participants had more intense unpleasant
feelings about unpleasant scenes and reported more excitement from the exciting
scenes. J. Rottenberg et al. [32] showed that female participants reported more
intense emotions in response to emotional movie scenes. The female participant’s
emotional responses in our study were also stronger compared with those from male
participants. Figure 5 shows the results of this one way ANOVA test on the two
gender groups’ valence self assessments.

The accuracy of the estimated valence and arousal is evaluated by computing
the mean absolute error between the estimates and the self assessments of either
valence or arousal (Table 5). The mean absolute error (Fjag) was calculated from
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Table 5. Mean absolute error (Eaag), and Euclidean distance (Egp) between estimated valence-
arousal grades and self assessments (participants 1 to 8).

Enar Epmap Epmap Enar
Arousal Arousal Valence Valence
estimated estimated estimated estimated
from from from from Egp Egrp
physiological multimedia physiological multimedia physiological multimedia

features features features features signals features
1 0.17 0.18 0.10 0.13 0.21 0.24
2 0.12 0.17 0.09 0.15 0.16 0.23
3 0.15 0.15 0.11 0.04 0.21 0.21
4 0.15 0.15 0.12 0.13 0.20 0.21
5 0.15 0.15 0.14 0.15 0.22 0.24
6 0.18 0.15 0.18 0.12 0.27 0.22
7 0.16 0.12 0.11 0.12 0.21 0.18
8 0.16 0.13 0.07 0.07 0.18 0.16
Average 0.15 0.15 0.11 0.11 0.21 0.21
Random level ~0.4 ~0.5

a leave-one-out cross validation on 64 video clips for each participant.

1 Ntest:64
E = J: — i 2
MAE Nyoor j; |?JJ yJ| (2)

Eprap was computed from Eq. (2) where Ny is the number of test samples (64)
and g;; is the estimated valence-arousal in ith iteration for jth sample in test set.
The computation used the obtained grades from both physiological features and
multimedia content features of each subject. Since it was easier to self assess valence
on the video dataset, better results have been obtained for valence determination.
Epag values are shown in Table 5; all Ey 4g values are considerably smaller than
a random level determination of Epar (which is around 0.4, and is estimated by
generating random measurements of valence and arousal).

While Ejyar separately considers valence and arousal determinations, a more
global performance measure can be defined. Considering valence and arousal as
coordinates in the 2-D valence-arousal space, the overall accuracy of the estimated,
joint valence-arousal grades was evaluated by computing the Euclidean distance
(Egp) between the estimated points and the self assessments (ground truth). This
Fuclidean distance is a useful indicator of the system’s performance for affect rep-
resentation and affects similarity measurement, when using valence and arousal as
indicators. With valence and arousal being expressed in normalized ranges [0-1],
Egp is computed as follows:

EED — \/(g]q’rousal _ yjq,rousal)2 + (yA}/alence _ y;)alence)2 (3)

Egp values are shown in Table 5. It can in particular be observed that the average
Euclidean distance results are all below random level (which is around 0.5).
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The Epap represents the distance of the determined emotion from the self
assessed emotion in the dimensions of arousal or valence. Ejag is thus useful to
compare each dimension’s results. The Ejap of arousal and valence shows that
valence determination was more precise than arousal determination. The supe-
rior valence results might have been caused by the easier valence assessment and
therefore a more precise self assessment on valence. The Euclidean distance, Fgp,
represents the error caused by arousal and valence errors. Egp between the esti-
mated points and the self assessments was almost the same when estimated from
either physiological signals or content analysis showing that none has any significant
advantage over the other.

4. Conclusions and Perspectives

In this paper, an affective characterization method for movie scenes is proposed
based on emotions that are felt by spectators. Physiological responses of participants
were recorded while watching movie scenes and key features were extracted from
these responses. By computing correlations between these key physiological features
and the users’ self-assessment of arousal and valence, it was identified which phys-
iological features are essential for accurate determination of valence-arousal. Such
accurate determinations provide us with a continuous assessment of affect which
can serve as a ground truth for affect determination. For example Zygomaticus
EMG signals which represent smile and laughter have high correlation with valence
(Table 3).

Furthermore, content based multimedia features were extracted from the movies
scenes. Their correlations with both physiological features and users’ self-assessment
of valence-arousal were shown to be significant. A procedure was proposed to actu-
ally estimate user’s affect in response to movie scenes based on selected multimedia
content features. Predicting user’s affect opens the door to many novel applications.
One is personalized content delivery systems with configurable emotional-based
preferences. Users will watch a training set of short movie clips; after configura-
tion, the system will be able to predict the users’ response to new movie scenes
either from physiological signals or multimedia content. A similar strategy is appli-
cable to neuromarketing where consumers’ reactions to marketing stimuli could be
predicted.

The movie scenes did not necessarily correspond to very strong emotions; some
of them contained just mild and tranquil scenes. These were intentionally selected
because the final application was not only to characterize affect, but also to show
the ability to estimate different amplitudes of emotions. The final application will
have to index all types of different movie scenes from highly intense ones to calm
and fairly neutral.

Felt emotions from the movie scenes where determined without any a priori
assumptions on valence-arousal values. It would however be possible to use the genre
of movies (e.g., drama, comedy, etc.) or the temporal sequences of the emotional
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events as prior knowledge for better affect determination. The temporal prior or the
probability of changing the felt emotions from one emotion to another is a constraint
that will be useful in emotion assessment. For example, the users’ felt happiness
cannot drastically changes to deep sadness or frustration.

Participants exhibit markedly different emotional reactions to movie scenes, as
it was shown specifically for male/female groups. The difference between the self
assessments of the participants and gender groups was verified by statistical tests.
The differences between emotional responses can be explained by different factors,
e.g., personalities, general mood during experiments, or varying personal standards
for self-assessment of true feelings. Therefore, the personal user-dependant or group-
wise affect profiles will help the emotion characterization methods. The groupwise
profiles are useful to estimate the affect of any user by investigating his/her social
background, gender, or age group without any other prior personal assessments.

The exact physiology behind emotional processes is still under debate. We do
not intend in this work to explain affective mechanisms in the brain, but rather
to employ the widely accepted measures of valence and arousal as features for
multimodal human-computer interaction and for affective video characterization. In
the future we aim at more precisely assessing which are the most important content-
based multimedia features able to elicit specific emotions. Studies involving more
participants are also needed to determine which emotional responses are individual
and which are common to all users.
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