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Affective computing in virtual 
reality: emotion recognition from 
brain and heartbeat dynamics using 
wearable sensors
Javier Marín-Morales1, Juan Luis Higuera-Trujillo1, Alberto Greco  2, Jaime Guixeres1, 
Carmen Llinares1, Enzo Pasquale Scilingo  2, Mariano Alcañiz  1 & Gaetano Valenza2

Affective Computing has emerged as an important field of study that aims to develop systems that 
can automatically recognize emotions. Up to the present, elicitation has been carried out with non-
immersive stimuli. This study, on the other hand, aims to develop an emotion recognition system for 
affective states evoked through Immersive Virtual Environments. Four alternative virtual rooms were 
designed to elicit four possible arousal-valence combinations, as described in each quadrant of the 
Circumplex Model of Affects. An experiment involving the recording of the electroencephalography 
(EEG) and electrocardiography (ECG) of sixty participants was carried out. A set of features 
was extracted from these signals using various state-of-the-art metrics that quantify brain and 
cardiovascular linear and nonlinear dynamics, which were input into a Support Vector Machine classifier 
to predict the subject’s arousal and valence perception. The model’s accuracy was 75.00% along the 
arousal dimension and 71.21% along the valence dimension. Our findings validate the use of Immersive 
Virtual Environments to elicit and automatically recognize different emotional states from neural and 
cardiac dynamics; this development could have novel applications in fields as diverse as Architecture, 
Health, Education and Videogames.

A�ective Computing (AfC) has emerged as an important �eld of study in the development of systems that can 
automatically recognize, model and express emotions. Proposed by Rosalind Picard in 1997, it is an interdiscipli-
nary �eld based on psychology, computer science and biomedical engineering1. Stimulated by the fact that emo-
tions are involved in many background processes2 (such as perception, decision-making, creativity, memory, and 
social interaction), several studies have focused on searching for a reliable methodology to identify the emotional 
state of a subject by using machine learning algorithms.

�us, AfC has emerged as an important research topic. It has been applied o�en in education, healthcare, 
marketing and entertainment3–6, but its potential is still under development. Architecture is a �eld where AfC 
has been infrequently applied, despite its obvious potential; the physical-environment has on a great impact, on 
a daily basis, on human emotional states in general7, and on well-being in particular8. AfC could contribute to 
improve building design to better satisfy human emotional demands9.

Irrespective of its application, A�ective Computing involves both emotional classi�cation and emotional elic-
itation. Regarding emotional classi�cation, two approaches have commonly been proposed: discrete and dimen-
sional models. On the one hand, the former posits the existence of a small set of basic emotions, on the basis that 
complex emotions result from a combination of these basic emotions. For example, Ekman proposed six basic 
emotions: anger, disgust, fear, joy, sadness and surprise10. Dimensional models, on the other hand, consider a 
multidimensional space where each dimension represents a fundamental property common to all emotions. For 
example, the “Circumplex Model of A�ects” (CMA)11 uses a Cartesian system of axes, with two dimensions, 
proposed by Russell and Mehrabian12: valence, i.e., the degree to which an emotion is perceived as positive or 
negative; and arousal, i.e., how strongly the emotion is felt.
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In order to classify emotions automatically, correlates from, e.g., voice, face, posture, text, neuroimaging, and 
physiological signals are widely used13. In particular, several computational methods are based on variables asso-
ciated with central nervous system (CNS) and autonomic nervous system (ANS) dynamics13. On the one hand, 
the use of CNS is justi�ed by the fact that human emotions originate in the cerebral cortex, involving several 
areas in their regulation and feeling. In this sense, the electroencephalogram (EEG) is one of the techniques 
most used to measure CNS responses14, also through the use of wearable devices. On the other hand, a wider 
class of a�ective computing studies consider ANS changes elicited by speci�c emotional states. In this sense, 
experimental results over the last three decades show that Heart Rate Variability (HRV) analyses can provide 
unique and non-invasive assessments of autonomic functions on cardiovascular dynamics15,16. To this extent, 
there has been a great increase over the last decade in research and commercial interest in wearable systems for 
physiological monitoring. �e key bene�ts of these systems are their small size, lightness, low-power consump-
tion and, of course, their wearability17. �e state of the art18–20 on wearable systems for physiological monitoring 
highlight that: i) surveys predict that the demand for wearable devices will increase in the near future; ii) there 
will be a need for more multimodal fusion of physiological signals in the near future; and iii) machine learning 
algorithms can be merged with traditional approaches. Moreover, recent studies present promising results on 
the development of emotion recognition systems through using wearable sensors instead of classic lab sensors, 
through HRV21 and EEG22.

Regarding emotional elicitation, the ability to reliably and ethically elicit a�ective states in the laboratory is 
a critical challenge in the process of the development of systems that can detect, interpret and adapt to human 
a�ect23. Many methods of eliciting emotions have been developed to evoke emotional responses. Based on the 
nature of the stimuli, two types of method are distinguished, the active and the passive. Active methods can 
involve behavioural manipulation24, social psychological methods with social interaction25 and dyadic interac-
tion26. On the other hand, passive methods usually present images, sounds or �lms. With respect to images, one 
of the most prominent databases is the International A�ective Picture System (IAPS), which includes over a thou-
sand depictions of people, objects and events, standardized on the basis of valence and arousal23. �e IAPS has 
been used in many studies as an elicitation tool in emotion recognition methodologies15. With respect to sound, 
the most used database is the International A�ective Digitalised Sound System (IADS)27. Some researchers also 
use music or narrative to elicit emotions28. Finally, audio-visual stimuli, such as �lms, are also used to induce 
di�erent levels of valence and arousal29.

Even when, as far we know, elicitation has been carried out with a non-immersive stimulus, it has been shown 
that these passive methods have signi�cant limitations due to the importance of immersion for eliciting emotions 
through the simulation of real experiences30. In the present, Virtual Reality (VR) represents a novel and power-
ful tool for behavioural research in psychological assessment. It provides simulated experiences that create the 
sensation of being in the real world31,32. �us, VR makes it possible to simulate and evaluate spatial environments 
under controlled laboratory conditions32,33, allowing the isolation and modi�cation of variables in a cost and 
time e�ective manner, something which is unfeasible in real space34. During the last two decades VR has usually 
been displayed using desktop PCs or semi-immersive systems such as CAVEs or Powerwalls35. Today, the use of 
head-mounted displays (HMD) is increasing: these provide fully-immersive systems that isolate the user from 
external world stimuli. �ese provide a high degree of immersion, evoking a greater sense of presence, under-
stood as the perceptual illusion of non-mediation and a sense of “being-there”36. Moreover, the ability of VR to 
induce emotions has been analysed in studies which demonstrate that virtual environments do evoke emotions in 
the user34. Other works con�rm that Immersive Virtual Environments (IVE) can be used as emotional induction 
tools to create states of relaxation or anxiety37, basic emotions38,39, and to study the in�uence of the users cultural 
and technological background on emotional responses in VR40. In addition, some works show that emotional 
content increases sense of presence in an IVE41 and that, faced with the same content, self-reported intensity of 
emotion is signi�cantly greater in immersive than in non-immersive environments42. �us, IVEs, showing 360° 
panoramas or 3D scenarios through a HMD43, are powerful tools for psychological research43,.

Taking advantage of the IVE’s potentialities, in recent years some studies have used IVE and physiological 
responses, such as EEG, HRV and EDA, in di�erent �elds. Phobias44–47, disorders48, driving and orientation49,50, 
videogames51, quality of experience52, presence53 and visualization technologies54, are some examples of these 
applications. Particularly in emotion research, arousal and relaxation have been analysed in outdoor55,56 and 
indoor57 IVEs using EDA. �erefore, the state of the art presents the following limitations: (1) few studies ana-
lyse physiological responses in IVEs and, in particular, using an a�ective approach; (2) there are few validated 
emotional IVE sets which include stimuli with di�erent levels of arousal and valence: and, (3) there is no a�ective 
computing research that tries to automatically recognize the user’s mood in an IVE through physiological signals 
and machine learning algorithms.

In this study, we propose a new AfC methodology capable of recognizing the emotional state of a subject in an 
IVE in terms of valence and arousal. Regarding stimuli, IVEs were designed to evoke di�erent emotional states 
from an architectural point of view, by changing physical features such as illumination, colour and geometry. �ey 
were presented through a portable HMD. Regarding emotion recognition, a binary classi�er will be presented, 
which uses e�ective features extracted from EEG and HRV data gathered from wearable sensors, and combined 
through nonlinear Support Vector Machine (SVM)15 algorithms.

Material and Methods
Experimental context. �is work is part of a larger research project that attempts to characterize the use of 
VR as an a�ective elicitation method and, consequently, develop emotion recognition systems that can be applied 
to 3D or real environments.

An experimental protocol was designed to acquire the physiological responses of subjects in 4 di�erent stimuli 
presentation cases: 2D desktop pictures, a 360° panorama IVE, a 3D scenario IVE and a physical environment. 
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�e experiment was conducted in two distinct phases that presented some di�erences. Both phases were divided 
into 3 stages; the results of the experiment are at Fig. 1. Between each stage, signal acquisition was temporarily 
halted and the subjects rested for 3 minutes on a chair. Stage 1 consisted of emotion elicitation through a desktop 
PC displaying 110 IAPS pictures, using a methodology detailed in previous research15. Stage 2 consisted of emo-
tion elicitation using an HMD based on a new IVE set with four 360° panoramas. Finally, stage 3 consisted of the 
free exploration of a museum exhibition.

In the present paper we focus on an analysis of stage 2. �e experimental protocol was approved by the ethics 
committee of the Polytechnic University of Valencia and informed consent was obtained from all participants. 
All methods and experimental protocols were performed in accordance with the guidelines and regulations of the 
local ethics committee of the Polytechnic University of Valencia.

Participants. A group of 60 healthy volunteers, su�ering neither from cardiovascular nor evident mental 
pathologies, was recruited to participate in the experiment. �ey were balanced in terms of age (28.9 ± 5.44) and 
gender (40% male, 60% female). Inclusion criteria were as follows: age between 20 and 40 years; Spanish national-
ity; having no formal education in art or �ne art; having no previous experience of virtual reality; and not having 
previously visited the particular art exhibition. �ey were divided into 30 subjects for the �rst phase and 30 for 
the second.

To ensure that the subjects constituted a homogeneous group, and that they were in a healthy mental state, 
they were screened by i) the Patient Health Questionnaire (PHQ-9)58 and ii) the Self-Assessment Manikin 
(SAM)59.

PHQ-9 is a standard psychometric test used to quantify levels of depression58. Signi�cant levels of depression 
would have a�ected the emotional responses. Only participants with a score lower than 5 were included in the 
study. �e test was presented in the Spanish language as the subjects were native Spanish speakers. SAM tests 
were used to detect if any subject had an emotional response that could be considered as an outlier, with respect 
to a standard elicitation, in terms of valence and arousal. A set of 8 IAPS pictures60 (see Table 1), representative 
of di�erent degrees of arousal and valence perception, was scored by each subject a�er stage 1 of the experiment. 
�e z-score of each subject’s arousal and valence score was calculated using the mean and deviation of the IAPS’s 
published scores60. Subjects that had one or more z-scores outside of the range −2.58 and 2.58 (α = 0.005) were 
excluded from further analyses. �erefore, we retained subjects whose emotional responses, caused by positive 
and negative pictures, in di�erent degrees of arousal, belonged to 99% of the IAPS population. In addition, we 
rejected subjects if their signals presented issues, e.g., disconnection of the sensors during the elicitation or if 
artefacts a�ected the signals. Taking these exclusions into account, the number of valid subjects was 38 (age: 
28.42 ± 4.99; gender: 39% male, 61% female).

Set of Physiological Signals and Instrumentation. �e physiological signals were acquired using the 
B-Alert x10 (Advanced Brain Monitoring, Inc., USA) (Fig. 2). It provides an integrated approach for wireless 
wearable acquisition and recording of electroencephalographic (EEG) and electrocardiographic (ECG) signals, 
sampled at 256 Hz. EEG sensors were located in the frontal (Fz, F3 and F4), central (Cz, C3 and C4) and parietal 
(POz, P3, and P4) regions with electrode placements on the subjects’ scalps based on the international 10–20 elec-
trode placement. A pair of electrodes placed below the mastoid was used as reference, and a test was performed to 

Figure 1. Experimental phases of the research.

IAPS picture Arousal Valence

7234 3.41 ± 2.29 4.01 ± 1.32

5201 3.20 ± 2.50 7.76 ± 1.44

9290 4.75 ± 2.20 2.71 ± 1.35

1463 4.61 ± 2.56 8.17 ± 1.48

9181 6.20 ± 2.23 1.84 ± 1.25

8380 5.84 ± 2.34 7.88 ± 1.37

3102 6.92 ± 2.50 1.29 ± 0.79

4652 7.24 ± 2.09 7.68 ± 1.64

Table 1. Arousal and valence score of selected IAPS pictures from56.
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check the conductivity of the electrodes, aiming to keep the electrode impedance below 20kΩ. �e le� ECG lead 
was located on the lowest rib and the right lead on the right collarbone.

Stimulus elicitation. We developed an a�ective elicitation system by using architectural environments dis-
played by 360° panoramas implemented in a portable HMD (Samsung Gear VR). �is combination of environ-
ments and display-format was selected due to its capacity for evoking a�ective states. �e bidirectional in�uence 
between the architectural environment and the user’s a�ective-behavioural response is widely accepted: even 
subtle variations in the space may generate di�erent neurophysiological responses61. Furthermore, the 360° 
panorama-format provided by HMD devices is a valid set-up to evoke psychological and physiological responses 
similar to those evoked by physical environments54. �us, following the combination of the arousal and valence 
dimensions, which gives the four possibilities described in the CMA62, four architectural environments were 
proposed as representative of four emotional states.

�e four architectural environments were designed based on Kazuyo Sejima’s “Villa in the forest” scenario63. 
�is architectural work was considered by the research team as an appropriate base from which to make the mod-
i�cations designed to generate the di�erent a�ective states.

�e four base-scenario con�gurations were based on di�erent modi�cations of the parameters of three design 
variables: illumination, colour, and geometry. Regarding illumination, the parameters “colour temperature”, 
“intensity”, and “position” were modi�ed. �e modi�cation of the “colour temperature” was based on the fact 
that higher temperature may increase arousal, being registrable at the neurophysiological level64,65. “Intensity” 
was also modi�ed in the same way to try to increase or reduce arousal. �e “position” of the light was direct, 
in order to try to increase arousal, and indirect to reduce it. �e modi�cations of these last two parameters 
were based on the design experience of the research team. Regarding colour, the parameters “tone”, “value”, and 
“saturation” were modi�ed. �e modi�cation of these parameters was performed jointly on the basis that warm 
colours increase arousal and cold ones reduce it, being registrable at the psychological66 and neurophysiological 
levels67–71. Regarding geometry, the parameters “curvature”, “complexity”, and “order” were modi�ed. “Curvature” 
was modi�ed on the basis that curved spaces generate a more positive valence than angular, being registrable at 
psychological and neurophysiological levels72. �e modi�cation of the parameters “complexity” and “order” was 
performed jointly. �is was based on three conditions registrable at the neurophysiological level: (1) high levels of 
geometric “complexity” may increase arousal and low levels may reduce arousal73; (2) high levels of “complexity” 
may generate a positive valence if they are submitted to “order”, and negative valence if presented disorderly74; and 
(3) content levels of arousal generated by geometry may generate a more positive valence75. �e four architectural 
environments were designed on this basis. Table 2 shows the con�guration guidelines chosen to elicit the four 
a�ective states.

In a technical sense, the four architectural environments were developed in similar ways. �e process con-
sisted of modelling and rendering. Modelling was performed by using Rhinoceros v5.0 (www.rhino3d.com). 

Figure 2. Exemplary experimental set-up.

High-Arousal & 
Negative-Valence
(Room 1)

High-Arousal & 
Positive-Valence
(Room 2)

Low-Arousal & 
Negative-Valence
(Room 3)

Low-Arousal & 
Positive-Valence
(Room 4)

Illumination

Colour temperature 7500 K 7500 K 3500 K 3500 K

Intensity High High Low Low

Position Mainly Direct Mainly Direct Mainly Indirect Mainly Indirect

Colour

Tone

Warm colours Warm colours Cold colours Cold coloursValue

Saturation

Geometry

Curvature Rectilinear Curved Rectilinear Curved

Complexity High Low-Medium Medium-High Low

Order Low High Low-Medium High

Table 2. Con�guration guidelines chosen in each architectural environment con�guration.

http://www.rhino3d.com
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�e 3D-models used for the four architectural environments were 3446946, 3490491, 3487660, and 3487687 
polygons. On completion of this process, they were exported in.dwg format for later rendering. �e rendering 
was performed using the VRay engine v3.00.08 (www.vray.com), operating with Autodesk 3ds Max v2015 (www.
autodesk.es). 15 textures were used for each of the four architectural environments. Con�gured as 360° pano-
ramas, renders were exported in.jpg format with resolutions of 6000 × 3000 pixels at 300 dots per inch. �ese 
were implemented in the Samsung Gear VR HMD device. �is device has a stereoscopic screen of 1280 × 1440 
pixels per eye and a 96° �eld of view, supported by a Samsung Note 4 mobile telephone with a 2.7 GHz quad-core 
processor and 3GB of RAM. �e reproduction of the architectural 360° panoramas was �uid and uninterrupted.

Prior to the execution of the experimental protocol, a pre-test was performed in order to ensure that the archi-
tectural 360° panoramas would elicit the a�ective states for which they had been designed. It was a three-phased 
test: individual questionnaires, a focus-group session conducted with some respondents to the questionnaire 
and individual validation-questionnaires. �e questionnaires asked the participants to evaluate the architectural 
360° panoramas. A SAM questionnaire, embedded in the 360° panorama, was used, with evaluations ranging 
from −4 (totally disagree) to 4 (totally agree) for all the emotion dimensions. 15 participants (8 men and 7 
women) completed the questionnaires. First, the participants freely viewed each architectural environment, then 
the SAM questionnaires were presented and the answers given orally. Figure 3 shows an example of one of these 
questionnaires. A�er the questionnaire sessions had been completed, a focus group session, which was a carefully 
managed group discussion, was conducted76. Five of the participants (3 men and 2 women) with the most unfa-
vourable evaluations in phase 1 were selected as participants and one of the members of the research team, with 
previous focus-group experience, moderated. �e majority of the changes were performed to Room 3, due to the 
discordances between the self-assessment and their theoretical quadrant. Once the changes were implemented, a 
similar evaluation to phase 1 was performed. Table 3 shows the arousal and valence ratings of the four architec-
tural 360° panoramas of this pre-test phase. A�er these phases, no new variations were considered necessary. �is 
procedure allowed us to assume some initial reliability in the design of the architectural environments. Figure 4 
shows these �nal con�gurations. High quality images of the stimuli are included in the supplementary material.

None of the pre-test participants was included in the main study. Regarding the experimental protocol, each 
room was presented for 1.5 minutes and the sequence of presentation was counter-balanced using the Latin 
Square method. A�er viewing the rooms, the users were asking to orally evaluate the emotional impact of each 
room using a SAM questionnaire embedded in the 360° photo.

Signal processing. Heart rate variability. �e ECG signals were processed to derive HRV series77. �e 
artefacts were cleaned by the threshold base artefacts correction algorithm included in the Kubios so�ware78. 
In order to extract the RR series, the well-known algorithm developed by Pan-Tompkins was used to detect the 
R-peaks79. �e individual trends components were removed using the smoothness prior detrending method80.

Figure 3. Example of SAM questionnaire embedded in the room 1. Simulation developed using Rhinoceros 
v5.0, VRay engine v3.00.08 and Autodesk 3ds Max v2015.

Arousal Valence

High-Arousal & Negative-Valence
(Room 1)

2.23 ± 1.59 −2.08 ± 1.71

High-Arousal & Positive-Valence
(Room 2)

1.25 ± 1.33 1.31 ± 1.38

Low-Arousal & Negative-Valence
(Room 3)

−0.69 ± 1.65 −1.46 ± 1.33

Low-Arousal & Positive-Valence
(Room 4)

−2.31 ± 1.30 1.92 ± 1.50

Table 3. Arousal and Valence resulted in the pre-test with 15 participants. �e scores are averaged using mean 
and standard deviation for a Likert scale between −4 to +4.

http://www.vray.com
http://www.autodesk.es
http://www.autodesk.es
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We carried out the analysis of the standard HRV parameters, which are de�ned in the time and frequency 
domains, as well as HRV measures quantifying heartbeat nonlinear and complex dynamics77. All features are 
listed in Table 4.

Time domain features include average (Mean RR) and standard deviation (Std RR) of the RR intervals, the 
root mean square of successive di�erences of intervals (RMSSD), and the ratio between the number of successive 
RR pairs having a di�erence of less than 50 ms and the total number of heartbeat analyses (pNN50). �e triangu-
lar index was calculated as a triangular interpolation of the HRV histogram. Finally, TINN is the baseline width 
of the RR histogram, evaluated through triangular interpolation.

In order to obtain the frequency domain features, a power spectrum density (PSD) estimate was calculated for 
the RR interval series by a Fast Fourier Transform based on Welch’s periodogram method. �e analysis was car-
ried out in three bands: very low frequency (VLF, <0.04 Hz), low frequency (LF, 0.04–0.15 Hz) and high frequency 
(HF, 0.12–0.4 Hz). For each frequency band, the peak value was calculated, corresponding to the frequency with 
the maximum magnitude. �e power of each frequency band was calculated in absolute and percentage terms. 
Moreover, for the LF and HF bands, the normalized power (n.u.) was calculated as the percentage of the signals 
subtracting the VLF to the total power. �e LF/HF ratio was calculated in order to quantify sympatho-vagal bal-
ance and to re�ect sympathetic modulations77. In addition, the total power was calculated.

Regarding the HRV nonlinear analysis, many measures were extracted, as they are important quanti�ers of 
cardiovascular control dynamics mediated by the ANS in a�ective computing15,16,77,81. Pointcaré plot analysis is a 
quantitative-visual technique, whereby the shape of a plot is categorized into functional classes. �e plot provides 
summary information as well as detailed beat-to-beat information on heart behaviour. SD1 is related to the fast 
beat-to-beat variability in the data, whereas SD2 describes the longer-term variability of R–R77. Approximate 
Entropy (ApEn) and Sample Entropy (SampEn) are two entropy measures of HRV. ApEn detects the changes 
in underlying episodic behaviour not re�ected in peak occurrences or amplitudes82, whereas SampEn statistics 
provide an improved evaluation of time-series regularity and provide a useful tool in studies of the dynamics of 
human cardiovascular physiology83. DFA correlations are divided into short-term and long-term �uctuations 
through the α1 and α2 features. Whereas α1 represents the �uctuation in the range of 4–16 samples, α2 refers to 
the range of 16–64 samples84. Finally, the correlation dimension is another method for measuring the complexity 

Figure 4. 360° panoramas of the four IVEs. Simulations developed using Rhinoceros v5.0, VRay engine 
v3.00.08 and Autodesk 3ds Max v2015.

Time domain Frequency domain Other

Mean RR VLF peak Pointcaré SD1

Std RR LF peak Pointcaré SD2

RMSSD HF peak Approximate Entropy (ApEn)

pNN50 VLF power Sample Entropy (SampEn)

RR triangular index VLF power % DFA α1

TINN LF power DFA α2

LF power % Correlation dimension (D2)

LF power n.u.

HF power

HF power %

HF power n.u.

LF/HF power

Total power

Table 4. List of used HRV features.
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or strangeness of the time series; it is explained by the D2 feature. It is expected to give information on the mini-
mum number of dynamic variables needed to model the underlying system85.

Electroencephalographic signals. In order to process the EEG signals, the open source toolbox EEGLAB86 was 
used. �e complete processing scheme is shown at Fig. 5.

Firstly, data from each electrode were analysed in order to identify corrupted channels. �ese were identi�ed by 
computing the fourth standardized moment (kurtosis) along the signal of each electrode87. In addition, if the signal 
was �atter than 10% of the total duration of the experiment, the channel was classi�ed as corrupted. If one of the 
nine channels was considered as corrupted, it could be interpolated from neighbouring electrodes. If more than one 
channel was corrupted, the subject would be rejected. Only one channel among all of the subjects was interpolated.

�e baseline of EEG traces was removed by mean subtraction and a band pass �lter between 0.5 and 40 Hz 
was applied. �e signal was divided into epochs of one second and the intra-channel kurtosis level of each epoch 
was computed in order to reject the epochs highly damaged by noise87. In addition, automatic artefact detection 
was applied, which rejects the epoch when more than 2 channels have samples exceeding an absolute threshold of 
>100.00 µV and a gradient of 70.00 µV between samples88.

�e Independent Component Analysis (ICA)89 was then carried out using infomax algorithm to detect and 
remove components due to eye movements, blinks and muscular artefacts. Nine source signals were obtained 
(one per electrode). A trained expert manually analysed all the components, rejecting those related to artefacts. 
�e subjects who had more than 33% of their signals a�ected by artefacts were rejected.

A�er the pre-processing, spectral and functional connectivity analyses were performed.
EEG spectral analysis, using Welch’s method90, was performed to estimate the power spectra in each epoch, 

with 50% overlapping, within the classical frequency bandwidth θ (4–8 Hz), α (8–12 Hz), β (13–25 Hz), γ (25–
40 Hz). Frequency band δ (less than 4 Hz) was not taken into account in this study because it relates to deeper 
stages of sleep. In total, 36 features were obtained from the nine channels and 4 bands.

A functional connectivity analysis was performed using Mean Phase Coherence91, for each pair of channels:

φ φ= ∆ + ∆R E E sin[ cos( )] [ ( )] (1)2 2 2

where R is the MPC, ∆φ represents the relative phase diference between two channels derived from the instanta-
neous di�erence of the analytics signals from the Hilbert transform, and E is the expectation operator. By de�ni-
tion, MPC values ranged between 0 and 1. In the case of strong phase synchronization between two channels, the 
MPC is close to 1. If the two channels are not synchronized, the MPC remains low. 36 features were derived from 
each possible combination of a pair of 9 channels in one speci�c band. In total, 144 features were created using the 
4 bands analysed.

Feature reduction and machine learning. Each room was presented for 1.5 minutes and was considered as 
an independent stimulus. In order to characterize each room, all HRV features were calculated using this time window. 
In the case of EEG, in both the frequency band power and mean phase connectivity analyses, we considered the mean 
of all the epochs of each stimulus as the representative value of the stimulus time window. Altogether, 209 features 
described each stimulus for each subject. Due to the high-dimensional feature space obtained, a feature reduction 
strategy was adopted for decreasing this dimension. We implemented the well-known Principal Component Analysis 
method (PCA)92. �is mathematical method is based on the linear transformation of the di�erent variables in the prin-
cipal components, which can be assembled in clusters. We select the features that explain 95% of the variability of the 
dataset. �e PCA was applied three times: (1) in the HRV set, reducing the features from 29 to 3; (2) in the frequency 
band power analysis of the EEG, reducing the features from 36 to 4; and (3) in the mean phase coherency analysis of the 
EEG, reducing the features from 144 to 12. Hence, the feature reduction strategy reduces our features to a total of 19.

�e machine learning strategy could be summarized as follows:

 (1) To divide the dataset into training and test sets.
 (2) �e development of the model (parameter tuning and feature selection) using cross-validation in the 

training set.
 (3) To validate the model using the test set.

Figure 5. Block scheme of the EEG signal processing steps.
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Firstly, the dataset was sliced randomly into 15% for the test set (5 subjects) and 85% for the training set (33 
subjects). In order to calibrate the model, the Leave-One-Subject-Out (LOSO) cross-validation procedure was 
applied to the training set using Support Vector Machine (SVM)-based pattern recognition93. Within the LOSO 
scheme, the training set was normalized by subtracting the median value and dividing this by the median absolute 
deviation over each dimension. In each of the 36 iterations, the validation set consisted of one speci�c subject and 
he/she was normalized using the median and deviation of the training set.

Regarding the algorithm, we used a C-SVM optimized using a sigmoid kernel function, changing the 
parameters of cost and gamma using a vector with 15 parameters logarithmically spaced between 0.1 and 1000. 
Additionally, in order to explore the relative importance of all the features in the classi�cation problem we used 
a support vector machine recursive feature elimination (SVM-RFE) procedure in a wrapper approach (RFE was 
performed on the training set of each fold and we computed the median rank for each feature over all folds). We 
speci�cally chose a recently developed, nonlinear SVM-RFE, which includes a correlation bias reduction strategy 
in the feature elimination procedure94. A�er the cross-validation, using the parameters and feature set obtained, 
the model was applied to the test set that had not previously been used. �e self-assessment of each subject was 
used as the output of the arousal and valence model. �e evaluation was bipolarized in positive/high (>0) and 
negative/low (<=0). All the algorithms were implemented by using Matlab© R2016a, endowed with an addi-
tional toolbox for pattern recognition, i.e., LIBSVM95. A general overview of the analysis is shown in Fig. 6.

Results
Subjects’ self-assessment. Figure 7 shows the self-assessment of the subjects for each IVE averaged using 
mean and standard deviation in terms of arousal (Room 1: 1.17 ± 1.81, Room 2: 2.10 ± 1.59, Room 3: 0.05 ± 2.01, 
Room 4: −0.60 ± 2.11) and valence (Room 1: −1.12 ± 1.95, Room 2: 1.45 ± 1.93, Room 3: −0.40 ± 2.14, Room 4: 
2.57 ± 1.42). �e representation follows the CMA space. All rooms are located in the theoretical emotion quad-
rant for which they were designed, except for Room 3 that evokes more arousal than hypothesized. Due to the 
non-Gaussianity of data (p < 0.05 from the Shapiro-Wilk test with null hypothesis of having a Gaussian sam-
ple), Wilcoxon signed-rank tests were applied. Table 5 presents the result of multiple comparisons using Tukey’s 
Honestly Signi�cant Di�erence Procedure. Signi�cant di�erences were found in the valence dimension between 
the negative-valence rooms (1 and 3) and the positive-valence rooms (2 and 4). Signi�cant di�erences were found 
in the arousal dimension between the high-arousal rooms (1 and 2) and the low-arousal rooms (3 and 4), but not 
for pairs 1 and 3. �erefore, the IVEs statistically achieve all the desired self-assessments except for arousal per-
ception in Room 3, which is higher than we hypothesized. A�er the bipolarization of scores (positive/high >0), 
they are balanced (61.36% high arousal and 56.06% positive valence).

Arousal classification. Table 6 shows the confusion matrix of cross validation and the total average accu-
racy (75.00%), distinguishing two levels of arousal using the �rst 15 features selected by the nonlinear SVM-RFE 
algorithm. �e F-Score of arousal classi�cation is 0.75. �e changes in accuracy depending on number of features 
are shown in Fig. 8, and Table 7 presents the list of features used. Table 8 shows the confusion matrix of the test set 
and the total average accuracy (70.00%) using the parameters and the feature set de�ned in the cross-validation 
phase. �e F-score of arousal classi�cation is 0.72 in the test set.

Valence classification. Table 9 shows the confusion matrix of the cross validation and total average accu-
racy (71.21%), distinguishing two levels of valence using the �rst 10 features selected by the nonlinear SVM-RFE 
algorithm. �e F-Score of the valence classi�cation is 0.71. �e changes in accuracy depending on the number 
of features are shown in Fig. 9, and Table 10 presents the list of features used. Table 11 shows the confusion 
matrix of the test set and total average accuracy (70.00%), using the parameters and the feature set de�ned in the 
cross-validation phase. �e F-score of the valence classi�cation was 0.70 in the test set.

Discussion
�e purpose of this study is to develop an emotion recognition system able to automatically discern a�ective 
states evoked through an IVE. �is is part of a larger research project that seeks to analyse the use of VR as an 
a�ective elicitation method, in order to develop emotion recognition systems that can be applied to 3D or real 
environments. �e results can be discussed on four levels: (1) the ability of IVEs to evoke emotions; (2) the ability 
of IVEs to evoke the same emotions as real environments; (3) the developed emotion recognition model; and (4), 
the �ndings and applications of the methodology.

Figure 6. Overview of the feature reduction and classi�cation chain.
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Regarding the ability of the IVEs to evoke emotions, four versions of the same basic room design were used to 
elicit the four main arousal-valence combinations related to the CMA. �is was achieved by changing di�erent 
architectural parameters, such as illumination, colour and geometry. As shown in Fig. 7 and Table 5, proper elic-
itation was achieved for Room 1 (high arousal and negative valence), Room 2 (high arousal and positive valence) 
and Room 4 (low arousal and positive valence), but it overlapped somewhat with the arousal-valence representa-
tion in Room 3: despite the satisfactory pre-test, in the event it evoked higher arousal and valence than expected. 
�is is due to the di�culties we experienced in designing a room to evoke negative emotion with low arousal. It 
should be noted that IAPS developers may also have experienced this problem because only 18.75% of the pics 
are situated in this quadrant60. Other works based on processing valence and arousal using words show that a 
U-model exists in which arousal increases in agreement with valence intensity regardless of whether it is posi-
tive or negative96. Hence, for future works, Room 3 will be redesigned to decrease its arousal and valence and a 
self-assessment with a larger sample will be performed, by questionnaire, to robustly assess the IVE. Nonetheless, 
a�er thresholding the individual self-assessment scores to discern 2 classes (high/low), the IVE set was balanced 
in arousal and valence. �erefore, we could conclude that the proposed room set can satisfactorily evoke the four 
emotions represented by each quadrant of the CMA.

To this extent, although previous studies have presented IVEs capable of evoking emotional states in a con-
trolled way97, to the best of our knowledge we have presented the �rst IVE suite capable of evoking a variety of 
levels of arousal and valence based on CMA. Moreover, the suite was tested through a low-cost portable HMD, 

Figure 7. Self-assessment score in the IVEs using SAM and a Likert scale between −4 and +4. Blue dots 
represent the mean whereas horizontal and vertical lines represent standard deviation.

IVE

p-value

Arousal Valence

1 2 0.052 10–6 (***)

1 3 0.195 0.152

1 4 0.007 (**) 10–9 (***)

2 3 10–5 (***) 0.015 (*)

2 4 10–8 (***) 0.068

3 4 0.606 10–7 (***)

Table 5. Signi�cation test of the self-assessment of the emotional rooms.

Arousal High Low

High 82.72 17.28

Low 37.25 62.75

Table 6. Confusion matrix of cross-validation using SVM classi�er for arousal level. Values are expressed as 
percentages. Total Accuracy: 75.00%.
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the Samsung Gear, therefore increasing the possible applications of the methodology. High quality images of the 
stimuli are included in the supplementary material. �is represents a new tool that can contribute in the �eld 
of psychology, in general, and in the a�ective computing �eld, in particular, fostering the development of novel 
immersive a�ective elicitation using IVEs.

Figure 8. Recognition accuracy of arousal in cross-validation as a function of the feature rank estimated 
through the SVM-RFE procedure.

Rank Feature

1 EEG MPC PCA 8

2 EEG MPC PCA 9

3 EEG MPC PCA 11

4 EEG MPC PCA 10

5 EEG MPC PCA 7

6 EEG MPC PCA 12

7 EEG Band Power PCA 3

8 EEG Band Power PCA 1

9 HRV PCA 1

10 EEG Band Power PCA 4

11 EEG Band Power PCA 2

12 HRV PCA 3

13 EEG MPC PCA 4

14 HRV PCA 2

15 EEG MPC PCA 5

Table 7. Selected features ordered by their median rank over every fold computed during the LOSO procedure 
for arousal classi�cation.

Arousal High Low

High 75.00 25.00

Low 33.33 66.67

Table 8. Confusion matrix of test set using SVM classi�er for arousal level. Values are expressed as percentages. 
Total Accuracy: 70.00%.

Valence Positive Negative

Positive 71.62 28.38

Negative 29.31 70.69

Table 9. Confusion matrix of cross-validation using SVM classi�er for valence level. Values are expressed as 
percentages. Total Accuracy: 71.21%.
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�ere are still some topics that need to be researched, relating to the capacity of the IVE display formats, to 
ensure that they evoke the same emotions as real environments. Studies comparing display formats show that the 
360° IVEs o�er results closer to reality, according to the participants’ psychological responses, and 3D IVEs do so 
according to their physiological responses54. Moreover, it is quite possible that IVEs will o�er the best solutions 
at both psychological and physiological levels as they become even more realistic, providing a real improvement 
not only at the visual and auditory levels but also at the haptic98. In addition, 3D IVEs allow users to navigate 
and interact with the environment. Hence, there are reasons to think that they could be powerful tools for devel-
oping applications for a�ective computing, but studies comparing human responses in real and simulated IVE 
are scarce99–101, especially regarding emotional responses; these studies are required. Moreover, every year the 
resolution of Head Mounted Displays is upgraded, which brings them closer to eye resolution. �us, it is possible 
that in some years the advances in Virtual Reality hardware will make the present methodology more powerful. 
In addition, works comparing VR devices with di�erent levels of immersion are needed in order to give research-
ers the best set-ups to achieve their aims. In future works, we need to consider all these topics to improve the 
methodology.

Regarding the emotion recognition system, we present the �rst study that develops an emotion recognition 
system using a set of IVEs as a stimulus elicitation and proper analyses of physiological dynamics. �e accuracy 
of the model was 75.00% along the arousal dimension and 71.21% along the valence dimension in the phase 
of cross-validation, with average of 70.00% along both dimensions in the test set. �ey all present a balanced 
confusion matrix. �e accuracies are considerably higher than the chance level, which is 58% in brain signal 

Figure 9. Recognition accuracy of valence in cross-validation as a function of the feature rank estimated 
through the SVM-RFE procedure.

Rank Feature

1 EEG MPC PCA 8

2 EEG MPC PCA 6

3 EEG MPC PCA 11

4 EEG MPC PCA 7

5 EEG MPC PCA 10

6 EEG MPC PCA 12

7 EEG MPC PCA 9

8 EEG Band Power PCA 3

9 EEG Band Power PCA 4

10 EEG MPC PCA 2

Table 10. Selected features ordered by their median rank over every fold computed during the LOSO procedure 
for valence classi�cation.

Valence Positive Negative

Positive 75.00 25.00

Negative 37.50 62.50

Table 11. Confusion matrix of test set using SVM classi�er for valence level. Values are expressed as 
percentages. Total Accuracy: 70.00%.
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classi�cation and statistical assessment (n = 152, 2-classes, p = 0.05)102. Although the accuracy is lower than other 
studies of emotion recognition in images15 and sounds27, our results present a �rst proof of concept that suggests 
that it is possible to recognize the emotion of a subject elicited through an IVE. �e research was developed with 
a sample of 60 subjects, who were carefully screened to demonstrate agreement with a “standard” population 
reported in the literature46. It should be noted that the possible over�tting of the model was controlled using: (1) 
a feature reduction strategy with a PCA; (2) a feature selection strategy using a SVM-RFE; (3) a �rst validation of 
the model using LOSO cross-validation; and (4) a test validation using 5 randomly chosen subjects (15%), who 
had not been used before to train or perform the cross-validation of the model. In the arousal model, features 
derived from three-signal analyses were selected: 3/3 of HRV, 4/4 of EEG BandPower and 8/12 of EEG MPC. 
However, in the valence model only the EEG analysis was used: 0/3 of HRV, 2/4 of EEG BandPower and 8/12 
EEG MPC. Moreover, in both models, the �rst six features selected by RFE-SVM were derived from an EEG MPC 
analysis. �is suggests that cortical functional connectivity provides e�ective correlates of emotions in an IVE. 
Furthermore, according to recent evidence22,103, the reliability of emotion recognition outside of the laboratory 
environment is improved by wearables. In future experiments, these results could be optimized using further, 
maybe multivariate signal analyses and alternative machine learning algorithms87. In addition, the design of new, 
controlled IVEs that can increase the number of stimuli per subject, using more combinations of architectural 
parameters (colour, illumination and geometry), should also improve the accuracy and robustness of the model. 
In future studies, we will improve the set of stimuli presented including new IVEs in order to develop a large set 
of validate IVE stimuli to be used in emotion research.

�e �ndings presented here mark a new step in the �eld of a�ective computing and its applications. Firstly, the 
methodology involved in itself a novel trial to overcome the limitations of passive methods of a�ective elicitation, 
in order to recreate more realistic stimuli using 360° IVEs. Nevertheless, the long-term objective is to develop a 
robust pre-calibrate model that could be applied in two ways: (1) in 3D environments that would allow the study 
of emotional responses to “real” situations in a laboratory environment through VR simulation using HMD 
devices and (2) in physical spaces. We hypothesize in both cases that the emotion recognition models developed 
through controlled 360° IVEs will work better than the models calibrated by non-immersive stimuli, such as 
IAPS. �is approach will be discussed in future studies using stage 3 of the experimental protocol.

Regarding the implications for architecture, the methodology could be applied in two main contexts, research 
and commercial. On the one hand, researchers could analyse and measure the impact of di�erent design param-
eters on the emotional responses of potential users. �is is especially important due to the impossibility of devel-
oping researches in real or laboratory environments (e.g. analysing arousal changes caused by the pavement 
width on a street). �e synergy of a�ective computing and virtual reality allows us to isolate a parameter design 
and measure the emotional changes provoked by making changes to it, while keeping the rest of the environment 
identical. �is could improve the knowledge of the emotional impact that might be made by di�erent design 
parameters and, consequently, facilitate the development of better practices and relevant regulations. On the other 
hand, this methodology could help architects and engineers in their decision-making processes for the design 
of built environments before construction, aiding their evaluations and the selection of the options that might 
maximize the mood that they want to evoke: for example, positive valence in a hotel room or a park, low arousal 
in a schoolroom or in a hospital waiting room and high arousal in a shop or shopping centre. Nevertheless, these 
�ndings could be applied to any other �eld that needs to quantify the emotional e�ects of spatial stimuli displayed 
by Immersive Virtual Environments. Health, psychology, driving, videogames and education might all bene�t 
from this methodology.

Data Availability
�e datasets generated during and/or analysed during the current study are available from the corresponding 
authors on reasonable request.
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