
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO 

 

Affective Game Design: 

Creating Better Game Experiences based 

on Players’ Affective Reaction Model 

Rúben Pinto Aguiar 

 

 

 

 

Mestrado Integrado em Engenharia Informática e Computação 

Supervisor: Prof. Rui Rodrigues (PhD) 

Co-Supervisor: Pedro Nogueira (MSc) 

Junho de 2014  



 

 

 

 

 

 

 

 

 

 

 

 



 

Affective Game Design: 
Creating Better Game Experiences based on Players’ 

Affective Reaction Model 

Rúben Pinto Aguiar 

Mestrado Integrado em Engenharia Informática e Computação 
 

Aprovado em provas públicas pelo Júri: 

Presidente: António Augusto de Sousa (Prof. Associado) 

Vogal Externo: Pedro Miguel do Vale Moreira (Prof. Adjunto) 

Orientador: Rui Pedro Amaral Rodrigues (Prof. Auxiliar Convidado) 

 

____________________________________________________ 

20 de Julho de 2014 





Abstract 

Current industry approaches to game design improvements rely on gameplay testing, an iterative 

process that follows a test, try and fix pattern. This process has its foundation on target audience 

feedback, obtained via standard questionnaires. Because of its nature, it is a highly subjective and 

time consuming stage. In this work, a generalizable approach for building predictive models of 

players’ affective reactions is presented, allowing a more precise tuning of game parameters in 

order to increase the players’ gaming experience. This method aims to be used across a wide 

range of games and genres. 

Two high-level distinct goals are targeted. First, to allow game developers the usage of these 

affective reaction models to more accurately and easily predict players’ emotional responses, 
aiming to augment players’ gaming experiences. Lastly, to provide the capability of using these 

models as a basis for adaptive and parameterisable affective gaming. 

The work presented describes a novel, physiological-based method for profiling players’ 
emotions. Three main phases exist: creation of more accurate affective reaction models based on 

non-diffuse metrics, exploration of the existent correlation between the biofeedback affective data 

and the subjective experience, and a mechanism for adapting level design parameters to a desired 

gaming experience. 

The usage of biofeedback to create players’ affective reaction models and their posterior use 
to adapt game design to the desired gaming experience are intended to be a proof of concept 

applicable in several other domains and problems.     

 

 





Resumo 

Atualmente, a abordagem industrial corrente para melhorar o design de jogo baseia-se em testes 

de jogabilidade, uma fase iterativa que segue o padrão de testar, experimentar e corrigir. Este 

processo baseia-se no retorno obtido da audiência alvo através de questionários standardes. Neste 

trabalho é apresentada uma generalista de construir modelos predictivos da resposta afectiva dos 

jogadores. Este método tem como objectivo ser usado numa vasta gama de jogos e géneros. 

É pretendido atingir dois grandes objectivos. Primeiro, dar aos desenvolvedores de jogos a 

possibilidade de usar estes modelos de reacção afectiva para mais eficientemente e facilmente 

prever as reacções emocionais dos jogadores, com o intuito de exponenciar a experiência de jogo 

do jogador. Por último, providenciar a capacidade de usar estes modelos como base para jogos 

afectivos adaptativos e parametrizáveis. 

O trabalho apresentado descreve um novo método, baseado em dados fisiológicos para fazer 

o profiling emocional dos jogadores. Este processo encontra-se dividido em diversas fases: a 

criação de modelos afectivos baseados em métricas não difusas mais fiáveis, exploração das 

relações existentes entre os dados afectivos provenientes de biofeedback e a experiência 

subjectiva, e um mecanismo para adaptar os parâmetros de design dos níveis para uma experiência 

emocional desejada. 

O uso de biofeedback para criação dos modelos de reacção afectiva e o seu posterior uso 

para adaptar o design do jogo para a experiência de jogo desejada têm como objectivo ser provas 

de conceito aplicáveis em vários outros domínios e problemas. 
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Chapter 1 

Introduction 

Over the years, videogames have propelled innumerous breakthroughs in various fields - 

computer graphics, artificial intelligence, interaction techniques, physics simulation to name a 

few. These advances arose from the need of a more realistic game experience, reflected itself on 

better scenarios, more believable artificial behavior, incredibly realistic audio-visual effects and 

several other factors that bring to the player an ever growing level of immersion. 

A wide range of emotions can arise from the act of playing a game. Players may become sad 

with a beloved character’s death, relieved with the ending of a confrontation, scared with the 

sound of a distant creature or even frustrated with repeated defeat. This subjective experience has 

its inception on the game designers that aim to convey to the player these desired emotions and 

experiences through the act of playing a game. 

1.1 Context 

Nowadays, gaming industry has been slowing shifting its focus from the technological 

department, and invested its resources on underexplored areas of gameplay experience. The 

search for the reasons that lead people to play (Ryan, Rigby, & Przybylski, 2006) and why it is a 

pleasurable experience (Ermi & Mäyrä, 2005) are subjects that have been vastly studied over the 

years. A converging thought has been presented many times: video games must provide an 

engrossing experience, taking the player from the real world and plunging him into the virtual 

world. Understanding and improving on this immersion is the key to produce better gaming 

experiences. 

Although a fuzzy subject, immersion has been vastly referred to as the degree of 

envelopment the user has established with the virtual world. How “detached” he has become from 
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the real world and believes he is in the virtual world (Jennett et al., 2008). How captivating a 

particular challenge is and how much emotion certain events arouse in the player. 

1.2 Motivation and Objectives 

The search for better levels of user experience (UX), lead to the potential use of Affective 

Computing and the detection of emotions on players. Ways to use these perceived emotions in-

game to make the best possible experience to the player is of utmost relevance. The prediction of 

players’ behavior and emotional reaction can give game developers the tools to create much more 

immersive and entertaining experiences. It provides a way of assessing if the user experience of 

the target audience is the one game designers intended when creating the game. Even adaptive 

games can be vastly improved if the content generated in real-time takes into account the current 

emotional state of the player. 

 The primary objectives of this work are: obtain a dataset for the extraction of emotional 

results, Creation of players’ affective reaction models to a pre-determined number of events and 

the creation of a medium/high level simulator where the previously created models are used to 

identify the ideal game parameters (possible incorporation of real-time mechanisms). 

1.3 Dissertation Structure 

Beyond this introduction, this dissertation contains 5 more chapters. In chapter 2, the state of the 

art is described and related works are presented. In chapter 3, the affective reaction models are 

constructed and validated. In chapter 4, a possible correlation between physiological/demographic 

data and reported game experience. Chapter 5 consists the global scope of the work is detailed 

and explained. The last chapter presents a global overview and some conclusions of the work 

done. 
  



 

Chapter 2 

State of the Art 

In this chapter, the state of the art is described and related works are presented in order to 

showcase what exists in the same domain and what are the problems faced. Section 2.1 will 

present current methods of emotional recognition through psychophysiological data. 

Subsequently, several works regarding the modelling of players’ experience are presented. 
Afterwards, the subject of affective gaming is discussed, in order to show how to augment players’ 
gaming experiences. We conclude the chapter with some final remarks. 

 

2.1 Psychophysiological Emotion Detection 

Recognizing human emotions through the study of physiological data is a subject that has been 

researched numerous times. The investigation of physiologically-controlled biofeedback 

techniques for gaming purposes dates back to late 1970s and early 1980s (Stern, R., Ray, W., & 

Quigley, 2000). In fact, physiological metrics seem to be the most popular choice, possibly due 

to their nature that allows the collection of continuous and unbiased data. One of the early works 

is “The Atari Mindlink”, an unreleased device that allowed to map traditional controllers using 

the users’ forehead muscles. The Japanese version of the title Tetris 64, released in 1998 for the 

Nintendo 64, included a biosensor that would change the game speed based on the user’s heart 
rate. Overall, these systems failed to achieve a better gaming experience and were seen as simple 

technological demonstrations. In the last decade however, the industry has shown a growing 

interest in the use of physiological signals to improve gamers’ immersion and experience (Kalyn, 

Mandryk, & Nacke, 2011). 

A vast number of successful attempts have been made in the field of emotion recognition 

using physiological metrics. For instance (Haag, Goronzy, Schaich, & Williams, 2004) have 
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proposed that emotional states represented in the circumplex model presented by (Posner, Russell, 

& Peterson, 2005) can be modelled through Electromyography (EMG), Skin Conductance (SC), 

skin temperature, blood volume pressure (BVP), electroencephalographic (ECG) and respiration 

(RSP) sensors, reporting an accuracy of about 63% for valence and 89% for arousal (with a 10% 

error margin). A Neural Network (NN) classifier was used to predict both classes. Applying a 

similar NN classifier, research by (Leon, Clarke, Callaghan, & Sepulveda, 2007) has discretized 

valence in three different levels obtaining a recognition level of 71.4%. It uses Heart Rate (HR), 

BVP, Skin Resistance (SR) and two additional estimated parameters, the time gradient of SR 

(GSR) and its’ derivative. (Drachen & Nacke, 2010) showed that features extracted from SC and 

HR measures are highly correlated with the reported affection ratings obtained through a seven 

dimension In-Game Experience Questionnaire (iGEQ). On a similar note, (G. Yannakakis & 

Hallam, 2008) presented proof of correlation between BVP, HR and SC measures and high-level 

concepts such as “fun” in a game environment. A later study by (Martínez, Garbarino, & 

Yannakakis, 2011) reported that with only measures of HR and SC, they were able to predict 

affective states across games of different genres and dissimilar game mechanics. 

Works on possible real-time recognition of emotion have also emerged (Mandryk & Atkins, 

2007; Nogueira, Rodrigues, Oliveira, & Nacke, 2013a, 2013b). These take into consideration the 

possibility of a real world scenario usage. In order to provide continuous classification of a 

persons’ emotional state, a low computational cost is necessary. Furthermore, the usage of a small 

number of sensors is desirable to assist in their insertion during real gameplay. 

2.2 Player Modelling 

Parallel to biofeedback related emotion detection techniques, some research points to other ways 

to model player experience (G. N. Yannakakis & Togelius, 2011). The most direct and simple 

way is to ask the subjects themselves and build a model based on this data. Although this process 

may create very accurate models (Georgios N. Yannakakis, 2009), the human factor can lead to 

some problems. The vast presence of experimental noise (derived from human error in self-

judgment, memory, etc.), the intrusiveness of the method among other factors can lead to some 

difficulty to analyze the data. Works such as (Tognetti, Garbarino, Bonarini, & Matteucci, 2010), 

have shown how self-reports can be successfully used to capture aspects of player experience. 

Other works on this area also model the users’ experience on an emotional basis (Shaker, 

Yannakakis, & Togelius, 2009). By observing crowd-sourced playing styles and features of level 

design, models were constructed that predicted player experience on different emotional 

dimensions: fun, challenge and frustration. Posterior work on the same data (Pedersen, 2010) 

added three more dimensions to the prediction. Although these models provide some insight to a 

players’ affective state, the low granularity of dimensions involved does not allow to capture all 
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the nuances of human emotions and affection. A less diffuse way to describe the emotional state 

of the player is desired. 

Another existent method, is the use of gameplay data to try and build these models. The 

main assumption is that player actions and real-time preferences are linked to player experience, 

making possible the inferring of the player’s emotional state by studying patterns of the 

interaction (Conati, 2002; Gratch & Marsella, 2005). This method is the least intrusive one, 

becoming a candid possibility to real world usage. However as (G. N. Yannakakis & Togelius, 

2011) state, the models are often based on several strong assumptions that relate player experience 

to gameplay actions and preferences, resulting in a low-resolution model of playing experience 

and its affective component. 

(Leite & Pereira, 2010) exhibited a social robot that could recognize the user’s affective state 
and display empathic behavior. The users’ affective state is inferred through the current state of 
the game and interpreted according to an empathic behavior model. Complex game aspects such 

as storyline have also been shown to be dynamically adaptable to individual players, in such a 

way that a pre-determined reaction is achieved. (Figueiredo & Paiva, 2010) described a small 

study where by using an expert source manipulation, were able to dynamically adapt the storyline 

to the player, making him follow a pre-determined path. (Bidarra, 2013) based on actions 

performed by the player, and created classes of players with different characteristics. 

Moreover, solutions that try to combine the previous forms are also frequent, resulting on a 

hybrid-approach. (Pedersen, 2010; Shaker et al., 2009) implemented gameplay and subjective 

player emotion models. 

The presented work also uses a hybrid approach, using both psychophysiological data and 

subjective player emotion models. With this method we believe a more effective solution for 

modelling player experience is created. 

2.3 Affective Gaming 

The previous topics discussed the works done to detect and predict the affective reaction 

experienced by the players when playing a game. However, to create more engaging and overall 

better gaming experiences, changes to the actual game must be made. Having as basis the players’ 
models discussed, it becomes possible to use a player’s current emotional state to manipulate 

gameplay, corresponding to a new form of gameplay, presented by (Gilleade, Dix, & Allanson, 

2005) as “Affective Gaming”. This process of improving game design is done by shifting the 

focus from static games with fixed contents to more dynamic systems. The presence of player 

models in game development allows the game developers to do just that, make informed decisions 

to elicit the desired emotions and affections on the player. The challenge resides in being able to 

model player behaviors and experiences and adapt the games’ content accordingly (Bidarra, 

2013). 
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One of the early demonstrations of game enhancement (Bersak, McDarby, & Augenblick, 

2001) presented a two-player competitive game where the speed of the avatar (dragon) is 

controlled by the users’ relaxation levels, measured through GSR. The more relaxed the user is, 

the faster the dragon becomes. This seems a common biofeedback game by mapping input 

controls to physiological data. However, the way the implementation was done counters this. By 

making the dragon speed increase when the player is relaxed and due to the competitive side of 

the game, players that became aroused started to lose, and because they were losing, they became 

even more aroused. By adapting itself to the players’ state, it falls on the “Affective Gaming” 
category. Yet, the moment the user becomes able to control their physiological data to influence 

the game outcome, the game transforms into a simple biofeedback game (Gilleade et al., 2005). 

A significant work on the matter of affective gaming was presented by (Dekker & Champion, 

2007). In it several subjects played a modified version of Half-Life 2 on a survival and horror 

based level. The difference to the original version was that, during gameplay, the game was 

dynamically modified by the player’s biometric information in an attempt to increase the “horror” 

experience. These changes reflected on audiovisual changes: dynamic changes in the game 

shaders, screen shake, dynamic changes in the background music, heartbeat sounds among others; 

and gameplay changes: new zombie spawning points, ‘bullet time’ effects, weapon damage, 

stealth mode etc. The results were encouraging, a vast majority of subjects liked the biometric-

driven events, and nearly all of them acknowledged their potential. 

More recent works have been done at Valve, (Ambinder, 2011) has presented several 

experiments using a players’ physiological data. One of them consisted of a mod to the popular 

title “Alien Swarm”, a top-down, team-based action shooter. The procedure was to index the 

players’ arousal, measured through SC levels, to the countdown timer. When high levels of 

arousal where detected, the timer speeds up. This created a more frenetic experience, raising even 

further the arousal levels, similar to (Bersak et al., 2001) experiment. Another experience tried to 

gain a rudimental understanding of the players’ affective reactions. By modifying the Left 4 Dead 

2 AI Director. The AI Director is responsible for creating dynamic and variable experience by 

modifying game events, enemy spawns, health and weapon placement, boss appearances, etc. By 

determining the in-game encounters based on estimated arousal levels instead of predicted ones, 

greater values of enjoyment were reported. This lead to some insight into events which elicit 

enjoyment. In this work, an intriguing question was posed, “Can we determine optimal arousal 
patterns? “, “do we know the best way to model the players’ affective states?” (Kalyn et al., 2011) 

presented a mixed-methods study to discover the best use for direct (user controllable) and 

indirect (hard to influence) physiological control in games. It had a basis on a side-scrolling 

platform shooter game that used a traditional game controller as primary input. Via physiological 

sensors, the traditional interaction was augmented. Participants played with three combinations 

of physiological and traditional input. As (Nijholt & Tan, 2007) showed, satisfaction was reported 

by players out of learning to control their biofeedback through indirect physiological control. 

Moreover, the physiological augmentation of the game controllers provided a more fun 
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experience. A clear distinction was made by direct and indirect signals, players’ reported that 
physiological controls worked most effectively and were most enjoyable when they were 

appropriately mapped to game mechanics. On the other hand, indirect control was perceived as 

best used as a dramatic device in games to influence features altering the game world. Similar 

methods to shape players’ affective experience are presented by (Nogueira, 2013). In it, the 

adaptive design has its basis on a set of target emotional states and the usage of their emotional 

reactions to game events. 

The design of affective games has also been a target of some approaches. (Gilleade et al., 

2005) presented an approach to game design based on high-level design heuristics: assist me, 

challenge me and emote me (ACE). These can be used to create several different gaming 

experiences. ‘Assist me’ proposed a solution to players’ frustration (arising from missing clues, 

inability to advance due to difficulty, etc.) by measuring it using physiology signals and, 

combined with knowledge of the game context, provide mechanisms to identify this situation and 

adjust the game itself accordingly. Results gathered from their own affective game showed that 

casual gamers were the most sensitive to these changes. ‘Challenge me’ had its inception due to 

the difficulty provided by commercial games. Usually only three or more levels (easy, medium, 

hard) are presented and it is the user himself that indicates their perceived expertise, hoping it 

matched the game designers intent. This leads to inefficient challenges presented and subsequent 

lack of engagement. The solution is to dynamically alter the challenge provided by the game 

based on the user’s arousal, thus creating a more personalized gameplay experience. ‘Emote me’ 
refers to the emotional experiences players’ are provided with and the best way to deliver them. 

By determining the current users’ emotional state, and the intended one by the game designers, 

the game must modify its content to provoke the desired emotions. 

Adding to the previous work, (Hudlicka, 2009) suggested a set of requirements for an 

affective game engine, with the purpose of allowing game developers the creation of better 

affective games. It presents a series of high-level requirements, not specifying their exact 

implementation. One of the central elements of this engine would be a knowledge-base that would 

contain information about emotions in general (their generation, influences, expression), and a 

depiction of the players’ and other non-playing-characters’ affective states. Four components with 

different functionalities would then be built that shared and changed this database: the recognition 

of the players’ emotion, the expression of emotions by both the player avatar and the game 

characters, the dynamic construction and maintenance of the players’ affective model (affective 

user models), and the modeling of emotion within the games’ characters (Hudlicka, 2008). 

Lastly, (Nogueira & Rodrigues, 2013) proposed an implementation of these high-level 

abstract requirements through a psychophysiological approach nicknamed Emotion Engine (𝐸2) 

biofeedback loop system. Figure 1 presents a high-level representation of this system architecture.  
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2.4 Summary 

Over the years, the usage of both direct and indirect biofeedback in games has gained 

increased attention of researchers. Real time psychophysiological data provides several 

possibilities for improving gaming experience, whether being new ways of input or enhancing 

immersion levels via affective gaming. Our goal is to extend current work on the field by 

presenting a way to create affective reaction models from this psychophysiological data and use 

them to enhance gaming experiences, through the use of adaptive and parameterisable affective 

gaming. In addition, previous publications made by the author to some renowned journals present 

some relevant information (Nogueira, Aguiar, Rodrigues, & Oliveira, 2014a, 2014b). 

Figure 1: The Emotion Engine (𝑬𝟐) architecture. 



 

Chapter 3 

Affective Reaction Models 

One of the main aims of this work is to create individual player models for the prediction of their 

respective emotional responses to a predetermined set of game events. This means that for each 

subject, given an initial emotional state and game event, their emotional reaction in both arousal 

and valence dimensions is predicted. As such, these models should obey Equation 1: 

 𝜙:⋀𝑋Ω →�⃗⃗�  
 

Where Λ is the set of possible emotional states and Ω the set of possible events. Thus, 

function Φ receives an emotional state λ, such that λ ∈ Λ and an event ϖ, such that ϖ ∈ Ω, and 

outputs a vector �⃗⃗�  that contains the emotional reaction. This vector can have several dimensions, 

being their total number defined by the space used to define an emotional state. This work uses 

the circumplex model of affect as presented by (Posner et al., 2005). This space has two 

dimensions, Arousal and Valence. Valence depicts the nature of an emotion, lower values mean 

sadder emotions, higher values happier emotions. Arousal measures the level of excitement, how 

stron is the emotion. As such, the above vectors present some constraints. 

 ∀ 𝑞 ∈ [1,2]: 𝑤𝑞⃗⃗⃗⃗  ⃗ ∈ [0, 10] 
3.1 Emotional Reactions Feature Extraction 

For the creation of these affective emotional reaction models, an extraction of real-world 

emotional reactions was performed. In this study, these were extracted from 72 gameplay sessions 

of an indie horror game denominated Vanish. A total of 24 participants were present throughout 

this experience. 
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Vanish is a survival horror videogame where the player must escape a series of tunnels. This 

network of maze-like tunnels is procedurally generated. In order to escape, a series of key items 

must first be found and picked up by the player, only then being allowed to escape. At gameplay-

time, a monstrous creature stalks and preys on the player, forcing him to avoid her at all costs. 

Several events happen in-game, both visual and audio, in an attempt to engage and involve the 

player in the game’s atmosphere. These events range from lights failing, pipes bursting or even 

the creature’s distant howl/cries. All these events, along with death, the locating of new items and 

creature encounters are tracked and constitute the whole set of considered game events. 

 

 

As previously mentioned, the collected dataset originated from 24 players over 72 gameplay 

sessions. Regarding the subjects, they were randomly selected from a pool of interested candidates 

(N=89) being that their ages varied between 19 and 28 years old (µ = 22.47, σ = 2.50). The 

physiological data was obtained via a range of sensors: Skin Conductance, Heart Rate and facial 

EMG. Although an hybrid approach of the work was used, a more in-depth analysis of the process 

of mapping physiological input to emotional states can be found in (Nogueira, Rodrigues, et al., 

2013a) combined with rules suggested by (Mandryk & Atkins, 2007). Regarding the special 

placement of these sensors, HR was derived from BVP, SC was measured at the players’ index 
and middle finger using two Ag/AgCL surface sensors snapped to two Velcro straps and facial 

EMG was measured at the zygomaticus major (cheek) and the corrugator supercilii (brow) 

muscles. 

This physiological data is then processed, producing a 1:1 both arousal and valence ratings, 

being afterwards segmented by study participant. The automatically generated timestamps were 

then synchronized to these AV ratings in order to extract an emotional response. Singular 

emotional reactions were then extracted by using a time window of 0.5 seconds prior and 5 

Figure 2: Screenshot of a creature encounter event on a Vanish gameplay session publicly 

available on Youtube 



Affective Reaction Models 

 

 11 

seconds after the correspondent timestamp. The contextualization of the players’ immediate 
emotional response prior to occurrence of the game event and the analysis of his emotional 

reaction is possible due to this time window. Note that these values were not random, they are 

based on the detected physiological data and player perception delays of game events (Nogueira, 

Torres, & Rodrigues, 2013). 

Additionally, a total of twelve features are extracted for each emotional reaction: six related 

to arousal and another six pertaining to valence levels. Both valence and arousal share the same 

feature extraction process. Onwards from the gameplay event timestamp, the following features 

are created: 

- 𝐸{𝑟}: Initial value, calculated as the average of the maximum and minimum values 

registered in the 0.5 seconds prior to the game event  𝑎𝑣𝑔(𝑚𝑎𝑥{𝑟},𝑚𝑖𝑛{𝑟}) 
- 𝜇{𝑟}: Mean of the signal 

- 𝜎{𝑟}: Standard Deviation of the signal 

- 𝑀{𝑟}: Maximum Value of the signal 

- 𝑚{𝑟}: Minimum Value of the signal 

- 𝐷ℎ: Absolute time period between minimum and maximum value  𝐷ℎ = | 𝑡𝑚𝑎𝑥ℎ {𝑟} − 𝑡𝑚𝑖𝑛ℎ {𝑟} | 
- ℎ𝑖𝑛{𝑟}, ℎ𝑜𝑢𝑡{𝑟} 𝑎𝑛𝑑 ℎ𝑒𝑣{𝑟}: Auxiliary features denoting the reactions beginning, 

ending and event timestamps. 

 

The delta value of the reactions (ΔA , ΔV) are calculated as the greatest difference registered 

between the maximum and minimum values of the initial time window frame (0.5 seconds prior 

to the game event), and the maximum and minimum values of the remaining event time window. 

Over 1400 (fourteen hundred) individual emotional reactions were recorded. However, a 

more in depth analysis to this data brought some questions to the surface. 

First of all, one particular subject presented a greatly reduced number of events and 

emotional reactions. Moreover, nearly all of his emotional reactions were concentrated on a pair 

of events, resulting in insufficient data when looking at the full spectrum. As such, this subject 

has been completely removed from subsequent phases. Additionally, two subjects didn’t have 
their emotional reactions recorded due to hardware failures making impossible their inclusion.  

Lastly, a total of three events were not present in more than half of the input data, and were, 

as such, entirely eliminated from the dataset. Their presence would wrongly inflate the classifiers’ 
performance. After all this filtering process, of both subjects and events, over 1160 emotional 

reactions are present in the full dataset. 

An additional manual examination was made to the data. For each pair of subject and event, 

their emotional reactions were drawn along the initial arousal and valence values. This allowed 

to perceive outliers, possibly originated from another event that occurred at the same time. Only 

values that were vastly irregular with the other data were adjusted. These adjustments still 

preserved some of this point disparity, however their value was changed to better represent the 
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overall players’ response. This was done to preserve the maximum amount of information and 

because the detection of real outliers is a complex and difficult decision. 

 

A general overview of the statistics of the final dataset is present in Table 1. To note that 𝐴𝑖 ≡ E{𝑟𝐴}, 𝑉𝑖 ≡ E{𝑟𝑉}, 𝑑𝐴 ≡ ∇𝐴, 𝑑𝑉 ≡ ∇𝑉 (see abbreviations) 

 

 Mean Median Standard Deviation 

Ai 6,4296 8,6054 0,6844 

Vi 4,3369 5,8750 0,5520 

dA 0,2388 0,2342 0,2168 

dV 0,3356 0,3142 0,3226 

Table 1: Global Dataset Statistics 

As is easily noted, the average initial arousal level is larger than the baseline value (5), while 

its valence counterpart shows a lower value. This is probably due to the games nature. Being a 

horror game, players remain in a constant state of alert. 

3.2 Machine Learning 

One of the most fundamental steps of this thesis is the creation of affective reaction models. 

The ability to predict the players’ emotional responses is of utmost importance and relevance. 

The first approach to the creation of these affective reaction models is the employment of 

machine learning. With this, a model is created that predicts the emotional response of a subject 

to a certain event along all emotional states spectrum. This whole process was segmented into 

several phases, namely: single classifiers, optimal feature selection algorithm and lastly the 

creation of these models. 

Figure 3: Representation of one of the plots used to readjust outliers 
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3.2.1 Single Classifiers 

To serve as a baseline and due to the exploratory nature of this work, the first models created 

used a single feature. This can lead to some conclusions and deductions that might prove valuable 

in later phases. Possible correlations between features and classes can also be discovered through 

this approach. 

 

  

 

 Mean Median Standard Deviation 

dA 0,2961 0,2687 0,2236 

dV 0,4193 0,3524 0,3528 

Table 2: Global RMSE Values 

 

 Mean Median Standard Deviation 

dA 0,5307 0,5444 0,4061 

dV 0,5453 0,5675 0,3967 

Table 3: Global Pearson Coefficient Values 

Root Mean Squared Error (RMSE) gives us a solid way to evaluate the dimensionality of 

the errors involved in the classification. Moreover, due to its nature it penalizes the existence of 

very strong outliers, which is something beneficial viewing that large errors in classification can 

lead to extremely bad results later on. As one can see in Table 2, the error values presented are 

very large taking into consideration the range of values in the classes involved. These error rates 

are significantly larger than the original Standard Deviation, leading to the belief that the 

classification has poor results. Also note the vastly superior error rates in the Valence dimension. 

Both an increase in Mean error and its Standard Deviation is noticeable. This probably originates 

from lower volatility in estimating arousal, opposed to valence, as shown in (Nogueira, 

Rodrigues, et al., 2013a). 

The same can be seen in the Pearson Correlation Coefficient presented in Table 3. This value, 

ranging from minus one to one, measures the linear correlation between variables, higher absolute 

values representing higher correlations. As one can see, the mean values presented are relatively 

small. Furthermore, the Standard Deviation is extremely large, indicating abnormal classifications 

throughout. 

A closer look to the detailed RMSE values showed that Arousal related features provided 

less error values. The same happened in the Valence dimension. However, this difference is very 

small, not providing sufficient insight. 
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3.2.2 Optimal Feature Selection Algorithm 

Because the classifying/regression approach is dependent on the features selected to create 

it, the selection of these features can vastly improve the viability of the models. As such, several 

feature search methods are tested to improve the overall results. Because of its proven reliability 

and results, the attribute evaluator used can be seen in (Hall, 1999). A total of four different search 

methods are employed, Best First (BF), Random Search (RS), Linear Forward Selection (LFS) 

and Genetic Search (GS). The RS method serves as baseline due to its random nature. The last 

ones are well accepted among the industry and have proven their values by having good results 

over a vast selection of fields and applications. Several other search methods were not used due 

to some constraints, some required an evaluator function that only deals with single features 

excluding subsets of features (similar to previous phase). Others, for example Exhaustive Search, 

required too much processing power, making them undesirable.  

Each of the search methods used is then combined with three different classifiers (the reason 

for the usage of these classifiers is presented later) and are evaluated. The results obtained are 

shown in Tables 4 through 7:  

 

 BestFirst LinearForwardSelection 

 Mean Median SD Mean Median SD 

dA 0,28436 0,26446 0,21052 0,28438 0,26452 0,21054 

dV 0,37308 0,30606 0,31844 0,37303 0,30555 0,31854 

       

 GeneticSearch RandomSearch 

 Mean Median SD Mean Median SD 

dA 0,28725 0,26209 0,21365 0,28848 0,26807 0,21246 

dV 0,37680 0,31286 0,32002 0,38425 0,30938 0,33041 

Table 4: RMSE Values 

 

 BestFirst GeneticSearch LinearForwardSelection RandomSearch 

dA 2,11934 3,09053 2,11934 4,02058 

dV 2,13580 3,06584 2,13580 4,11523 

Total 2,12757 3,07819 2,12757 4,06790 

Table 5: Average Number of Features 
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BF 
Ai_sd Ai Vi_sd Ai_Abs _t Vi_Abs _t Vi_max 

36,21% 30,86% 30,04% 22,22% 20,58% 14,40% 

GS 
Ai_sd Vi_sd Vi_Abs _t Ai_Abs _t Ai Ai_max 

37,45% 37,04% 32,10% 30,04% 29,22% 23,46% 

LFS 
Ai_sd Ai Vi_sd Ai_Abs _t Vi_Abs _t Vi_max 

36,21% 30,86% 30,04% 21,40% 20,99% 14,40% 

RS 
Ai_sd Vi_sd Ai_Abs _t Vi_Abs _t Ai_u Ai_max 

51,03% 45,27% 41,15% 40,74% 35,80% 30,45% 

 

       

BF 
Ai_max Vi Ai_u Ai_min Vi_u Vi_min 

11,93% 11,52% 9,05% 8,64% 8,23% 8,23% 

GS 
Vi_min Ai_u Ai_min Vi Vi_max Vi_u 

23,05% 22,63% 21,81% 19,75% 19,34% 13,17% 

LFS 
Ai_max Vi_min Ai_u Vi Ai_min Vi_u 

11,93% 11,52% 9,05% 9,05% 8,64% 7,82% 

RS 
Vi_min Ai_min Vi Ai Vi_max Vi_u 

30,04% 27,16% 26,75% 25,51% 25,10% 23,05% 

Table 6: Ordered Features Usage When Classifying dA 

 

BF 
Vi_sd Ai_sd Ai Vi Vi_Abs _t Ai_Abs _t 

32,92% 30,86% 27,98% 22,63% 21,40% 19,34% 

GS 
Vi_sd Ai_sd Vi_Abs _t Vi_min Ai_Abs _t Ai 

41,56% 33,33% 31,28% 28,81% 28,40% 25,93% 

LFS 
Vi_sd Ai_sd Ai Vi_Abs _t Vi Ai_Abs _t 

32,51% 30,86% 27,98% 21,81% 20,99% 19,34% 

RS 
Ai_sd Vi_sd Vi_Abs _t Ai_Abs _t Vi Vi_min 

56,38% 44,86% 43,62% 39,51% 37,45% 35,80% 

       

BF 
Vi_max Vi_min Ai_max Vi_u Ai_min Ai_u 

14,40% 11,93% 11,52% 11,11% 4,94% 4,53% 

GS 
Vi Ai_max Vi_max Vi_u Ai_min Ai_u 

24,69% 23,05% 20,16% 18,11% 17,28% 13,99% 

LFS 
Vi_max Vi_min Ai_max Vi_u Ai_min Ai_u 

14,40% 13,58% 11,52% 11,11% 4,94% 4,53% 

RS Ai_max Ai_u Vi_u Ai_min Vi_max Ai 
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29,63% 28,40% 27,16% 25,10% 23,05% 20,58% 

Table 7: Ordered Features Usage When Classifying dV 

 

Analysis of the Global RMSE values on this approach bring forth some conclusions (Table 

4). First, the use of FSA over Single Feature decreases the error value significantly. This means 

the usage of a subset of features over a single feature brings visible benefits. Second, Random 

Search has, as expected, the largest error. This is due to the random nature of the method. 

However, Genetic Search presents marginally better results. Best First and Linear Forward 

Selection have the lowest error values. They present similar and largely better results.  

Table 5 presents the average number of features used by each FSA when trying to classify 

each dimension. A similar pattern is seen. Random Search uses approximately four features 

model, while LFS and BF only half. Genetic Search sits on the middle of this table. Some ratings 

can already be made to these FSA. Random Search has the highest error value and uses the most 

features. Next comes Genetic Search with better results. BF and LFS present similar results and 

expressively better than their counterparts. Because of this BF is the FSA used in posterior phases. 

On Table 6 and Table 7 the usage of features per FSA is depicted. The presented ordered list 

allows for a quick inspection to the most used features to predict both dimensions. Similar to the 

single feature results, Arousal features tend to be chosen more often when classifying the 

emotional reaction in the Arousal dimension. The same phenomenon is manifested in the Valence 

dimension. 

3.2.3 Model Creation 

The final step is the creation of the models using the feature selection algorithm previously 

chosen. Viewing that this is a regression problem, several classifiers can be used to predict these 

emotional reactions. However due to some previous observations, only three classifiers were 

chosen. This relates to some of the patterns discovered in the previous phases, during the pre-

processing of the data. In general, two strong patterns emerged from the visualization of the data, 

a linear model and a more quadratic and complex type. For this reason, three different classifiers 

were used and their results compared in order to obtain the best prediction: Linear Regression 

(LR), M5 Model Trees and Rules (M5P) and Multilayer Perceptron (MLP). Both the M5P and 

the MLP classifiers can easily handle complex behaviours. However, the last one can more easily 

fall in the pit of over fitting. Nevertheless, both are tested to ensure the best possible result. For 

each one of these three classifiers, a total of three evaluation modes are presented. Presented in 

order of preference: 10-fold cross-validation, 3-fold cross validation and the use of the whole 

testing set for training. Some key results are shown in Tables 8, 9 and 10: 
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 Average SD 

LR 0,311353 0,075435 

M5P 0,29591 0,067145 

MLP 0,238855 0,093251 

Table 8: RMSE Global Value When Classifying dA 

 

 Average SD 

LR 0,400987 0,138804 

M5P 0,396201 0,127097 

MLP 0,323791 0,139332 

Table 9: RMSE Global Values When Classifying dV 

 

 Average SD 

dA 0,230942 0,080196 

dV 0,312054 0,123437 

Table 10: RMSE Global Values for Best Classifier 

 

As is seen in Table 8 and Table 9, a large difference exists in the error rates between 

classifiers. Linear Regression presents the worst results, with both high average and standard 

deviation error values. On the other hand, M5P shows better results. However, only a small 

decrease in error is seen. The decrease in the Standard Deviation of the errors’ values is an 
encouraging result. Even so, it is still not a satisfactory solution. Moreover, due to the MP5 ability 

to mimic the LR and create more complex “functions”, this increase in performance was expected. 
The Multilayer Perceptron classifier showcases largely better results. A vast difference in the 

average error is seen. However, the large increase in the Standard Deviation values brings 

suspicion to the validity of this solution. Overfitting may have occurred. 

As a final global overview, the RMSE values when the same and best classifier per event is 

used are shown in Table 10. This approach makes the posterior comparison between subjects 

possible by making each related model based on the same classifier. Nevertheless, although the 

results are slightly better than previous ones, when looking at the global scope they are not 

adequate enough. Error rates are in the same magnitude as the Standard Deviation for the class in 

question, making the results not very positive.  
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3.3 Clustering Approach 

The previous machine learning approach treated individuals as single entities, without any 

relation between them. A classifier predicted the players’ affective reaction to an event based on 
the optimal subset of features. This however might not produce the best results. Viewing that we 

are modelling human behaviour, some patterns and relationships between subjects can help 

strengthen these predictions. As such, and with the intent of approximating the human world, a 

second approach was attempted where groups of people that present similar emotional responses 

are treated as whole. This is done via hierarchical clustering. 

In order to make possible the comparison of models and their subsequent distances 

calculated, an initial stage of creating these models with the same domain is necessary. Only with 

these distances is the actual clustering possible. Due to some correlations presented between 

features and classes, the creation of these models was transformed into a three-dimensional space, 

with two of the axes representing the features used: initial arousal (Ai) and initial valence (Vi) 

and the third axis representing the expected emotional reaction in either arousal or valence levels 

(dA or dV) that the player experienced. The purpose is to find a relationship between the affective 

reaction (response variable) and the combination of the two features (predictors). 

As in the previous approach, taking into consideration the perceived distributions of the 

reactions, the relationships were built through linear and non-linear regression models. Viewing 

that using an automatic approach to discover the regression model that produces better results will 

most certainly lead to overfitting and high-degree polynomials, a supervised approach was 

followed. After a manual analysis of a large number of these models, some conclusions were 

inferred. First, the regression models should not exceed a third degree polynomial. A bigger 

degree represents a negligible increase in the fitness of the model while showing a large increase 

in symptoms of overfitting. Lastly, due to the nature of a second degree polynomial, being 

characterized for its parabolic shape, the models created with this degree will present an ever 

growing emotional reaction either in positive or negative values. This is incongruent with 

common sense, which led to the decision of not using these models. 

Ultimately, the regressions were produced using either linear or third degree regressions, 

depending on the number of points available for the model. Figure 4 illustrates a sample plot of a 

model. The upward axis represents the reaction. A Linear Regression is already present. Table 11 

presents a small error analysis.  
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 Average Standard Deviation 𝑹𝟐 Value 0,954267 0,208303 

Adjusted 𝑹𝟐 Value 0,704619 0,509913 

Table 11: Coefficients of Determination Values 

 

Present in Table 11 are the coefficients of determination for the created models. The R-

squared value ranges from zero to one, indicating how well data points fit a statistical model, in 

this case the regressions. A value of zero specifies that the model explains none of the variability 

of the response data around its mean. A value of one indicates all the variability is explained by 

the model. The adjusted R-squared is a modified version of R-squared that adjusts itself for the 

number of predictors in the model. The adjusted R-squared increases only if the new term 

improves the model more than would be expected by chance. 

As can be seen, the R-squared value shows a very high average value with relatively small 

standard deviation. On the other hand, the adjusted R-squared variable presents a moderately 

smaller mean, with higher standard deviation. This relates to the low number of points present in 

the models. Due to the difficulties of retrieving a high number of emotional reactions already 

discussed earlier, the number of emotional reactions per model is not very high. Because of that, 

some models created present some overfitting as can be seen by the high R-squared value. 

Furthermore, because the models are built upon a low number of points, the adjusted R-squared 

value penalizes heavily the usage of linear and even more the quadratic models. 

Each one of these models predicts the emotional response of one subject to a certain event 

over one dimension (either arousal or valence). As such, a total of 32 regression surfaces are 

created that describe an individual player’s emotional reactions over the AV emotional space. The 

Figure 4: Representation of one model in the 3D Space. 
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next step is to create a distance matrix that depicts the differences between emotional responses. 

For that to happen, these models need to be compared. This is done via the mapping of these 

models over all the AV space. The generation of a hyper-dimensional matrix that ranges from [0, 

10] for both feature response variables (initial arousal and valence) with a 0.1 increment. By 

standardizing these models representations, they can easily be compared and their differences 

evaluated. 

The next step is the creation of a distance matrix from which the hierarchical clustering is 

done. For that, a way to quantify the distance between the maps created is needed. The current 

implementation provides three different distance calculations and an extra post-processing stage 

that scaled these distances over several functions. Relatively to the distance calculations, the first 

one is a Euclidean distance. 

This a well known measure for distance that has proved its usefulness in various fields. All 

points of the models are compared and the average Euclidean distance between points is then used 

as the distance between models. This procedure of calculating the distance between all the 

models’ points and then averaging this sum is used for all distance calculations. 

The second calculation has its basis on an exponential distance function. This sanctions 

bigger distances even further, increasing their value. Additionally, similar models maintain a very 

low distance tightening their relationship. 

Finally, the third method simply uses the normal distance, with no alteration to its original 

value. 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √∑(𝑃[𝑘] − 𝑀[𝑘])2𝑛
𝑘=0  

 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ e𝑃[𝑘]−𝑀[𝑘]𝑛𝑘=0 𝑛  

 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ 𝑃[𝑘] − 𝑀[𝑘]𝑛𝑘=0 𝑛  

 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑃[𝑥] = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑃 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡 𝑥 

 

 

A post-processing stage was made. It was an experiment that tried to modify the whole range 

of distances calculated in order to see if it would yield better results. The general idea was to 

penalize certain ranges of distances, for example differences in the higher distance ranges are 

attenuated. Sigmoidal, logarithmical and the original linear functions were used. However, it was 
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later revealed that the original linear function produced better results, which led to no post-

processing changes made in the final data. 

At this stage, we have the tools to determine the distance between each pair of player/event 

regarding one emotional dimension. We need to correctly merge these values in order to create a 

distance between subjects. First, we create matrices holding the distances between subjects for a 

single game event over one emotional dimension. Since we have no evidence that any particular 

game event or emotional dimension has higher influence on the games’ affective experience, we 
can merge this “partial” distance matrices by averaging all their cells, assuming the correspondent 

cell orders are preserved. This brings forth a new global matrix holding the distances between 

subjects over all game events and emotional dimensions. With this new matrix, a hierarchical 

clustering algorithm can be applied to cluster players. 

The hierarchical clustering used employed the Ward’s method (Joe H . Ward, 1963) for the 

criterion of choosing which clusters to merge, meaning the objective function is the error of sum 

of squares. Furthermore, a multi-scale bootstrap resampling process is used, allowing the 

assessment of uncertainty in this clustering approach. More specifically, Approximately Unbiased 

(AU) and Bootstrap Probability (BP) p-values are computed. Note however that the AU p-values, 

computed via multiscale bootstrap resampling, provide a better approximation to unbiased p-

value than the BP value that is computed by normal bootstrap resampling. These values represent 

the confidence that a particular cluster is supported by the data, not simply caused by “sampling 
error” but may stably be observed if we increase the number of observations. As a more formal 

definition for these values, a cluster presenting an AU p-value of x has the null-hypothesis “the 
cluster does not exist” rejected with a significance level s = 100 – x. In sum, high AU p-values 

provide high confidence to the clusters found. With this in mind, all the results of the different 

distance matrices generated were manually analysed. The result was the selection of the 

exponential distance. The final result of this hierarchical clustering approach is presented in 

Figure 5. 

 



Affective Reaction Models 

 

 22 

 

 

As can be seen, the result presents high AU p-values throughout all the clusters found, 

leading us to the belief of a solid global solution. Moreover, the clusters seem well distributed, 

fact that can probably be attributed to the different demographics used in the extraction of the 

emotional responses. 

As previously mentioned, the whole idea of this approach was to make the construction of 

the affective reaction models more congruent with the relations seen in human behavior, where 

several kind of people react similarly amongst themselves. As such, the choice of clustering 

relates to this fact. However, the final models work with a fixed set of clusters, whether they came 

from hierarchical or non-hierarchical clustering is irrelevant. The choice of hierarchical clustering 

relates to another fact. Because we have demographic information about the specific subjects in 

question, some analysis can be done relating the clusters and this information. Because of the way 

hierarchical clustering works, this can be done over all number of clusters. A clustering approach 

like for example x-means (k-means with automatic cluster number identification) would not 

preserve the clusters through the increase in the cluster numbers, disabling the possibility of 

studying this relationship. A manual observation was made regarding this issue, resulting in some 

encouraging results. Various clusters showed similar demographic information such as gender, 

type of gamer and the predisposition to horror games. Others presented correspondence in a 

Figure 5: Final Clustering Result 
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combination of several features. Note however that, due to time issues, not all cluster numbers 

were properly analyzed.  

3.3.1 Clustering Validation 

 Although AU p-values computed via multiscale bootstrap resampling provide a good 

measure of the clusters strength, one more question remains. Viewing that a number of clusters 

needs to be determined in order to construct the models, a way to evaluate the “goodness” of the 
resulting clusters is needed to evaluate the several possible number of clusters. As such, two 

internal indexes are used to measure this: cluster cohesion and cluster separation. 

Cluster cohesion measures how closely related objects in the same cluster are. It is the sum 

of the weight of all links within a cluster, calculated via the within cluster sum of squares. An 

average of all the clusters values is used to present a global value of cohesion. 

Cluster dispersion quantifies the level of distinctiveness between clusters. It is the sum of 

the weight of all links within a cluster, measured by the between cluster sum of squares. The same 

procedure of averaging all the values from a particular cluster number is applied for the discovery 

of a global value. Note however that in the case of separation each cluster has associated N-1 

measures, being N the number of clusters. 

 𝐶𝑜ℎ𝑒𝑠𝑖𝑜𝑛 =  ∑∑(𝑥 −𝑚𝑖)2𝑥∈𝐶𝑖𝑖  

 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =  ∑|𝐶𝑖|(𝑚 −𝑚𝑖)2 

 𝐶𝑖 = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑖 |𝐶𝑖| = 𝑆𝑖𝑧𝑒 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑖 𝑚𝑖 = 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑖 
 

A representation of both these measures along the number of clusters can be seen in Table 

6.  
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As seen in Figure 6, one can say the best number of clusters happens when the cohesion has 

low values and the separation high ones. However, as can be seen, these optimal values only 

happen at extremely high number of clusters, defeating the purpose of the clustering approach. 

As such, the best approach is to use the number of clusters that represent the best “gain” in both 
these dimensions comparatively to the previous number. This means we need to discover the 

number of clusters where the “acceleration” of the cohesion decreases and the “acceleration” of 
the separation increases. A simple way to tackle this is to integrate these values twice and inspect 

the local maximum and minimums. We are trying to find a minimum in cohesion, and a maximum 

in dispersion, representing a loss of efficiency when increasing the number of clusters. In the case 

of our clustering, the result obtained was 6 (six) as the best number of clusters. 

After this number is calculated, the task of creating the various clusters’ affective reaction 

models is possible. With these models, the players’ individual ones can be easily represented as 
a composite of all the clusters models with different weights. These weights are related to the 

differences encountered between the original individual models and the clusters ones. The 

implementation finds the sum of all distances between one player and all the clusters and uses it 

to find all the weights. 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑖,𝑘  = ∑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑥𝑥𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑘  

 𝑊𝑒𝑖𝑔ℎ𝑡𝑖,𝑘 = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐾 𝑖𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖,𝑘 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐾 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S
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Figure 6: SSE and Dispersion over Number of Clusters 
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Chapter 4 

Demographic Study 

To evaluate the relative impact of different types of Indirect Biofeedback (IBF) adaptation 

mechanics, the original extraction of the emotional reactions made the participants play three 

different versions of the game: two augmented using the biofeedback mechanics and one control 

condition. Each game version presented the same gameplay elements and mechanics. Both the 

game design and biofeedback adaptations were developed during an extended alpha-testing 

period using an iterative prototype over 3 months, gathering feedback from over 20 individuals 

not included in this study. After a brief description of the experiment and providing informed 

consent, players completed a demographics questionnaire. Participants also completed a game 

experience questionnaire (GEQ) (IJsselsteijn, Poels, & De Kort, 2008). Additionally, they were 

also asked to report their Fun ratings in a 10-point Likert scale. The full extracted features follow: 

- Demographic Data 

o GType - Reported Gamer Type: “Hardcore” or “Softcore” 

o Likes - Predisposition towards Horror Games: “Yes” or “No” 

o Gender - “Male” or “Female” 

- Physiological Data 

o SeqDur - Game Session Duration (min) 

o {X} - Arousal or Valence dimension 

o {X}Mean - Mean of the signal 

o {X}SD – Standard Deviation of the signal 

o {X}P - Number of Absolute Peaks 

o {X}PMin - Number of Peaks Per Min 

o {X}PInt – Average Peak Intensity 

o {X}PMag - Average Peak Magnitude 

o {X}Max – Maximum signal value 

o {X}Min – Minimum signal value 

- User Experience 
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o Challenge (Chall) 

o Competence (Comp) 

o Flow (Flow) 

o Immersion (Imm) 

o Fun (Fun) 

o Tension (Ten) 

 

In this section we aim to create computational models of user experience through the usage 

of demographic and physiological features. An optimal feature subset selection procedure capable 

of capturing non-linear relationships is employed. Finally, we use the optimal feature subset for 

each user experience dimension identified by the best-performing feature selection algorithm 

(FSA) - measured in terms of its achieved root-mean square error (RMSE) - to create 

computational models of user experience. All features are explored in this phase (physiological 

and non-physiological). 

4.1 Single Model 

The first step for the analysis of this data, is the creation of a single predicting model. Because 

the features include physiological and non- physiological data, three different feature subsets are 

used in order to further compare these two sources of information. One subset only contains 

biofeedback features, another only demographic ones, and the last one can contains both. This 

allows us to differentiate between demographic and physiological data for the classification of 

user experience. Additionally, the usage of all features can be seen as a baseline. 

A global overview regarding the first phase where a single model was constructed follows: 

 

 Imm Ten Comp Chall Flow Fun Average 

All 1,682971 1,83367 2,54955 2,153161 2,025733 1,229042 1,912354 

Bio 1,491728 1,859111 2,148719 1,949156 2,17748 1,273107 1,81655 

Non-Bio 1,423103 1,52644 2,687004 1,905734 1,976445 0,989578 1,751384 

Average 1,532601 1,73974 2,461758 2,002684 2,059886 1,163909 1,826763 

Table 12: RMSE over Feature Segmentation 

 

 Likes SeqDur Sex Cond VPMin 

BestFirst 12 10 10 8 8 

GeneticSearch 12 10 10 8 8 

LinearForwardSelection 11 12 10 8 8 

Average Feature Usage 64,81% 59,26% 55,56% 44,44% 44,44% 
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Table 13: Features Usage over FSA 

 

As show in Tables 12 and 13, the construction of the single model stems some large errors 

in certain related user experiences. However, “Fun” and “Immersion” reported low error values. 

Another deduction that can be made relates to the features. Nearly all classes presented smaller 

errors when the features used where only Demographic ones. Additionally, the FSAs’ vastly 
recognized this type of features as very valuable. This is probably the same situation seen in the 

Machine Learning approach in the construction of the affective reaction models, human nature 

leads to the existence of similar experiences between some groups of people. To tackle this 

problem, viewing that demographic data is available and presents better results, the whole 

population was segmented via these features. This means that instead of one single model for the 

prediction of a class, several ones are created, each one containing a demographic segmentation 

of the population, for example male players. 

4.2 Feature Selection Algorithm 

Some data retrieved regarding the several Feature Selection Algorithms follows: 

 

 BestFirst GeneticSearch LinearForwardSelection 

All 1,772586 1,803699 1,772586 

Bio 1,762442 1,794179 1,762442 

Non-Bio 1,694701 1,691236 1,694701 

Table 14: RMSE over FSA and Feature Segmentation 

 

  BestFirst GeneticSearch LinearForwardSelection 

Cond 

NB 2,178031 2,22728 2,178031 

NV 1,723597 1,753616 1,723597 

V 1,855355 1,949551 1,855355 

GType 

Hard 1,451051 1,514739 1,451051 

NA 1,461829 1,442075 1,461829 

Soft 2,148233 2,079193 2,148233 

Likes 

N 1,981011 2,085534 1,981011 

Na 1,461829 1,442075 1,461829 

Y 2,051743 2,01593 2,051743 

Sex 
F 2,204128 2,299506 2,204128 

M 1,572497 1,632421 1,572497 

Table 15: FSA over Demographic Segmentation 
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Chall 
ASD VSD VPInt SeqDur Sex 

51,52% 42,42% 42,42% 36,36% 33,33% 

Comp 
ASD VMin Cond VPMin Likes 

54,55% 42,42% 36,36% 33,33% 30,30% 

Flow 
SeqDur VPMag Sex VPInt Likes 

57,58% 42,42% 36,36% 36,36% 33,33% 

Imm 
Cond VMax SeqDur Likes APMag 

42,42% 36,36% 33,33% 27,27% 27,27% 

Fun 
Cond VPMag Sex Likes ASD 

45,45% 45,45% 42,42% 39,39% 36,36% 

Ten 
Cond APMin SeqDur GType VMean 

42,42% 33,33% 33,33% 24,24% 24,24% 

Table 16: Top 5 Selected Features 

 

 SeqDur Cond Sex Likes ASD 

Best First 72 67 60 58 55 

Genetic Search 83 67 59 58 58 

Linear Forward Selection 72 67 60 58 55 

Average Feature Usage 38,22% 33,84% 30,13% 29,29% 28,28% 

Table 17: Top 5 Globally Selected Features 

 

Table 14 presents the global error rates for every FSA. Note the average smaller values 

presented in this approach comparatively to the single model one. Additionally, one can compare 

RMSE values between FSA. In this case, both BF and LFS present nearly identical and better 

results than GS. As such, BF was used in posterior phases. 

Regarding the demographic segmentation, some interesting results arose. Namelly, the large 

error values reported in the “softcore” type of players. The low error present on people where no 

“Likes” status was extracted is also observed. One of the most striking differences comes from 
sex information, male players reported vastly smaller errors comparatively to female gamers. 

Tables 16 and 17 present the selection of features by FSA, both through classes and FSA. 

The selection of mainly demographic results is still very noticeable. However, some features such 

as Arousal Standard Deviation and some Valence-related measures appear frequently. Only 

looking at biofeedback features, for each class predicted the most frequent feature can give some 
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insight into the relationship between physiological data and the reported user experience. These 

are: 
- Challenge: Arousal Standard Deviation 

- Competence: Arousal Standard Deviation 

- Flow: Average Valence Peak Magnitude 

- Immersion: Valence Max 

- Fun: Average Valence Peak Magnitude 

- Tension: Arousal Number Peaks Per Minute 

With everything mentioned in mind, the chosen FSA is the Best First. It presents both a low 

error rate and a low number of features selected. The subsequent construction of the models will 

focus on comparing different classifiers. 

4.3 Model Creation 

Some data portraying the error values of the several Classifiers used are presented in Tables 18 

and 19. 

 LinearRegression M5P MLP Average 

Imm 1,22896 1,19948 1,741577 1,390006 

Ten 1,376419 1,427436 2,177174 1,660343 

Comp 2,270985 2,186488 3,290406 2,582626 

Chall 1,732424 1,67693 2,300696 1,90335 

Flow 2,063282 1,914901 3,14331 2,373831 

Fun 0,889803 0,94905 1,304085 1,047646 

Average 1,593646 1,559048 2,326208 1,8263 

Table 18: RMSE over Classifiers 

 

  Imm Ten Comp Chall Flow Fun 

GType 

Hard 1,623915 0,917246 2,431235 0,925988 1,605507 1,202415 

NA 0,663444 2,277615 2,38055 0,85707 2,045486 0,546811 

Soft 1,584162 1,879106 2,820788 2,920685 2,594046 1,090611 

Likes 

N 1,708644 1,685748 2,575817 2,032455 2,4538 1,429605 

NA 0,663444 2,277615 2,38055 0,85707 2,045486 0,546811 

Y 1,76493 1,256505 3,233416 2,944377 2,083295 1,027937 

Sex 
F 1,84039 1,80568 2,825053 2,668803 2,728756 1,356089 

M 1,294685 1,610251 2,162014 1,650839 1,677035 1,040158 

Cond 

NB 1,774829 1,711753 3,059622 2,078954 2,839993 1,603033 

NV 1,314722 1,899903 2,325132 1,7849 2,231661 0,785262 

V 1,056901 0,942352 2,214715 2,21571 3,807077 0,895372 
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Table 19: Classes RMSE over Demographic Segmentations 

 

The most prominent conclusion can be made with the analysis of Table 18. Regarding the 

classifiers, MP presents a larger error rate in all classes. In general, M5P presents better results 

throughout except in the “Tension” and “Fun” classes. Concerning the overall classifiers results 
for the demographic segmentations, to note some results that can give some insight into this 

relationship: 
- Tension reports very small error rates for “Hardcore” Gamers and for the “Visible 

Biofeedback” game session. 
- Challenge varies vastly between Gamer Types, having “Hardcore” player better 

results. Additionally, the “Non-Visible Biofeedback” variation of the game 
presents smaller errors than their counterparts. 

- Flow presents two extreme error values. A minimum for “Hardcore” players and 
a maximum for the “Visible Biofeedback” game variation. 

- Fun shows great differences for the gameplay conditions. “Non-Biofeedback” 
presents the larger error value. 

These relationships between demographic/physiological data and reported user experience 

can potentially lead to a better understanding of how the emotional states of a player can affect 

its gaming experience. This insight can be used to better apply the players’ affective reaction 
models, in an attempt to provide a better user experience. However, these relationships were not 

very consistent with the addition of not being easily translated to better gaming experiences. As 

such, these models were not directly used in posterior phases.  



 

Chapter 5 

Simulator 

The construction of the previously discussed models serves as a means to an end. Our goal is to 

use these models to accurately describe players’ emotional responses to individual game events. 

Their posterior usage will be done by a new software tool, designed to allow game designers to 

construct target experiences and subsequently discover the optimal way in which to elicit them. 

Because this process is bound to happen during the game testing phase, it works as both a 

discovering and debugging emotional response tool. The tool created was nicknamed GODx 

(Game Optimal Design eXperience). It works in conjunction with a symbolical game simulator 

in order to find the best way to elicit the desired emotional states. 

5.1 GODx 

The main goal of this tool is to give game developers a simple yet powerful way to describe a 

players’ emotional state along time. This brings a change in the way the game is developed. The 
creation of these emotional states must be explicitly stated, and the posterior discovery of the 

necessary flow of events is calculated automatically. Gaming as a form of transmitting emotions 

shifted from intuition/experience that derived from the game developers, to a more precise way. 

The tool itself has been divided in three big modules: the emotional state representation, the 

debug/live module and the options area. Although GODx has been conceptualized as a general 

purpose tool, allowing it to be adapted to all games, due to time constraints, the developed GODx 

does not have all the functionalities implemented. A description of the three modules will follow, 

depicting both the guidelines and principles desired and the actual work made. 
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5.1.1 Emotional State Representation 

The Emotional State Representation model provides a way to accurately and easily represent 

and visualize any desired emotional states along time. Due to it being based on (Posner et al., 

2005) circumplex model of affect, that presents two dimensions, and the need to express this 

another dimension (time), the representation used is of a dual two-dimensional graphic (Figure 

7). Each graphic holds the information of one of the circumplex dimensions along time. Because 

the desired emotional state is commonly cyclic, a time is provided, representing the total time of 

the experience drawn. This means that the first and the last time periods must be automatically 

equivalent to allow a flow in emotion. Additionally, if the total time of the experience created is 

lower than the total simulation time, the simulator must take this into consideration and create a 

cyclical behavior. 

 The way devised to create this emotional state over time employs Quadratic Bezier curves. 

These curves have some necessary properties: they are injective (there is a unique emotional state 

for any time), they are continuous (emotional state changes pass through all intermediary states) 

and easy to understand and work. A way to easily add, remove and edit the first and last control 

points and to edit the intermediate control point is all that is necessary to provide a way to easily 

create the desired emotional states. Because of the way it was formulated, a desired emotional 

state can be straightforwardly added to a desired timestep. To complement on this idea, and 

viewing that the circumplex model of affect is not known by all game developers, information 

relating a series of emotional keywords were added, giving the possibility to add a desired 

emotional state at any desired time by simply choosing its emotional keyword. The emotional 

keywords and respective valence and arousal values were taken from (Hepach, Kliemann, 

Grüneisen, Heekeren, & Dziobek, 2011). This work, which gathered data from 100 participants, 

collected the reported arousal and valence values of 62 emotional keywords. By providing these 

emotional keywords to the game developers, a more precise and easy way to create the desired 

emotional states is possible.  
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As it is visible on Figure 7, complex emotional states over time can be easily represented 

and understood through this tool. Additionally, a range for all dimensions is provided (arousal, 

valence and time) and the possibility to include dashed lines to mark the minutes is present. This 

gives an overall better view of the global scope of the experience. 

5.1.2 Debug/Live Module 

The Debug/Live module acts as an interface between the simulations and the game developer. 

Due to the lack of human interaction and the nature of the data created in the simulation phase, a 

visual and easy way to understand these simulations was desirable. Moreover, in future 

applications this visualization can happen in real-time, making a game that adapts itself from 

direct psychophysiological input easier to understand. For this to be possible, and to be abstract 

enough to be present in multiple game genres, we concluded that a generic GUI should be present. 

As such, the formulated way was to design this interface via a XML file. Graphic primitives such 

as squares, circles and images and their respective positions are present, allowing a large amount 

of flexibility and power. For a real-time application, the game itself could be constantly updating 

this file. 

Figure 7: Sample of GODx emotional experience representation 
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Furthermore, a graphical representation of the circumplex model should be present, 

displaying both the current emotional state and the desired emotional state. Transitions that occur 

from each event are also highly advised to be represented. 

Due to time constraints, this module was not fully implemented. The generic XML approach 

is not present, being replaced by a simpler version that functions solely for our case study game 

(Vanish). Moreover it is not connected to the data generated by the simulator. 

5.1.3 Options area 

Arising from a need to present to the simulator various parameters, this module is a 

straightforward necessity. Although it does not require any graphical representation, this module 

must present some form of versatility. All the options available should be game specific, and be 

customizable. As such, a similar formula as the previous module should be considered, a XML 

file that describes all the necessary options to the game being worked on. Due to the investigative 

nature of this work, this module is only currently functional for Vanish. 

5.2 Simulator 

The simulator is the backbone of GODx. It takes the models produced in early phases and 

uses them to discover the best ways to elicit the desired emotional response. With this automatic 

game sessions can be produced, being the emotional responses obtained via the clustering 

methods discussed. This allows to create simulations of gameplay sessions for each subject, with 

the addition of containing the emotional state along the experience and the correspondent 

succession of events. The study of these simulations is of utmost importance in order to lead the 

subject to the desired experience. 

At its core, two distinct and different approaches are used, denominated Non Biofeedback 

(NBF) Experiment and Emotional Regulated Indirect Biofeedback (ER-IBF) Experiment. The 

first approach, views these simulations as a passive agent, external to the game engine and only 

visualizing the gameplay session. The simulations are exactly as the original game engine was 

designed, and the models are used to determine how the player would react to each game event. 

Thus, the predicted emotional state of the player is recorded. 

ER-IBF Experiment on the other hand works as an active agent. It dynamically changes the 

game flow to provide emotional experiences closer to the intended target. 

5.2.1 NBF Experiment 

This experiment can be thought of as a simulated gameplay session. Instead of emotional 

responses from real players, the models calculated previously are used to determine these 
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emotional responses. Since this phase's purpose is to determine the best arrangement of game 

parameters that lead to the desired experience, a large set of these combinations must be tested. 

In the case of our case study game, the parameters represent the probability of a certain event 

happening at each (discrete) point in time. The choice of the parameter values (PV’s) to perform 

simulations on is a tough task. However, viewing that the game previously used some classical 

studies on how to improve players’ experience and taking into consideration it is now in an alpha 

release, the original/vanilla PV can offer us both a robust baseline and a good starting point. The 

creation of new PV’s is therefore handled as small deviations over the vanilla one. An increment 
and an interval are chosen for each parameter, taking into consideration the vanilla PV, and all 

possible combinations are computed based on these values. With this solution, only relatively 

small changes on the game are done, therefore preserving its’ overall identity. Regarding the 

simulation of each PV, taking into consideration the games’ probabilistic nature of the procedural 
content generation, the same PV can generate different game experiences. To reduce the variance 

of the obtained result, each one is reutilized several times (N = 100) in independent simulations. 

The final results is the average of all these simulations. 

Because of the nature of the emotional response of a subject to external stimuli over time, a 

decay rate is necessary. This decay rate represents the speed at which a subject progresses to his 

baseline emotional state. However, due to the nature of the game, this baseline point is not 

necessarily a neutral one. This is due to the full ambience that the subject is exposed, at all times. 

Hence, this emotional state was determined by averaging all subjects’ emotional states along all 
the experiences. This allows us to determine a more realistic base emotional state. 

A full simulation of a single gameplay session consists of three steps: the decaying of the 

emotional state to the predetermined base one, the generation of Pseudo-Random Events (based 

on the PV) and the emotional reaction to these events. This steps are repeated for the whole 

experience duration. 

Considering everything mentioned before, the global simulator approach is as follow: all 

PV’s are generated and subsequently, for each one, several simulations are performed. Data 
relative to the type of events and all the emotional states of the subject is then recorded. However, 

further analysis must be done to this data in order to compare parameters values. Objective 

emotional states must be determined along with a way to rate an experience. 

First of all, the definition of objective emotional states arises from the need to grade a 

specific simulation. Viewing this as an exploratory work, the intent was to have a large variety of 

emotional states that contrasted each other, with a vast range among the circumplex spectrum. 

Besides this property, static and dynamic emotional states are present. This means that, for 

objective emotional states along time, some static keywords such as “Confident” or “Anxious” 
are present, establishing the same objective emotional state throughout the simulations. On the 

other hand, cyclical and changing emotional states were created. These dynamic emotional states 

vary only on its period of repetition while presenting a dynamic target. 
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The creation of these dynamics keywords and how these can be used to enhance users’ 
experience is a challenging task. These were created intuitively to try and mimic a good 

experience in a game of this genre. The formulated hypothesis was that cycles of arousal between 

the base emotional state and higher values along with cycles of valence between the base and 

lower values would create a pleasurable experience (Figure 7). 

Posterior to the election of the desired target emotional states, a way to determine each 

simulation's fitness is necessary. Due to the vast emotional range present in the designated 

emotional keywords, and the less fluctuating emotional states obtained through the simulations 

(seeing the nature of the game this is to be expected), a linear function was not probably the better 

solution. Moreover, the main purpose is to highly differentiate the good from the bad emotional 

experiences. As such, a sigmoid function is used to better tackle this problem. The formalization 

is as follows: 

Let 𝑝 be an emotional state in a two-dimensional Euclidean space (circumplex model), such 

that 𝑝 = (𝑎𝑟𝑜𝑢𝑠𝑎𝑙, 𝑣𝑎𝑙𝑒𝑛𝑐𝑒). Furthermore, let 𝑑 be the weighted Euclidean distance between 

two points 𝑝1 and 𝑝2, such that: 

 𝑑 = √𝛼(𝑝1𝑎𝑟𝑜𝑢𝑠𝑎𝑙 − 𝑝2𝑎𝑟𝑜𝑢𝑠𝑎𝑙)2 +  𝛽(𝑝1𝑣𝑎𝑙𝑒𝑛𝑐𝑒 − 𝑝2𝑣𝑎𝑙𝑒𝑛𝑐𝑒)2 

 

Where 𝛼 and 𝛽 are weighting parameters for each of the Euclidean dimensions, such that 𝛼, 𝛽 ∈  ℝ ⋀ 𝛼, 𝛽 ≥ 0 ⋀𝛼 +  𝛽 = 2. These weighting parameters are meant to favor or penalize 

each dimension, according to the perceived difficulty in adjusting it. For example, valence might 

have a lower weight since it is harder to elicit, or is not as relevant for the desired affective 

experience. Since in this study we want to perform an unbiased analysis, 𝛼 =  𝛽 = 1 

The fitness of a certain point 𝑝𝑐 to a target point 𝑝𝑡 is given by 𝑓 and is inversely correlated 

to its distance from 𝑝𝑡. Since we aimed at penalizing values further from 𝑝𝑡, it can be trivially 

concluded that a linear correlation function between distance and fitness would not be adequate. 

Thus, 𝑓is given by a sigmoid function of the form 

 𝑓𝑝𝑐,𝑝𝑡 = {  
  1, 𝜎 + 𝑑𝑝𝑐,𝑝𝑡  = 0𝜎 + 1 − 𝑑𝑝𝑐,𝑝𝑡√𝜑 + 𝑑𝑝𝑐,𝑝𝑡2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

With 𝜑 ∈ ℝ being its exponential tuning parameter and 𝜎 ∈ ℝ a threshold value. 

5.2.2 ER-IBF Experiment 

The previous experience could be described as purely observational. The simulations are 

performed with no changes to the original game engine, and the emotional states of the players 

are recorded and afterwards compared. This experience tries to work as an active agent, 

performing changes to the original engine in order to create an adaptive dynamic experience. 

Whereas earlier the events were randomly generated according to the parameters values currently 
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being calculated, here events are calculated by taking in consideration both these values and the 

fitness value. This means that a target emotional state is required to actually run this experience, 

viewing that the selection of events that unfold has its basis on the fitness value. Note however 

that this new way of generating events is not performed at all timesteps. To avoid over fitting and 

to maintain the character of the parameters values, dynamically generated events are only allowed 

at a fixed minimum number of timesteps - with this number being parameterisable. On the 

remaining timesteps where dynamic events are not allowed (non-dynamic timesteps), the 

simulator works identically as in NBF Experience. A high-level description of the process of 

determining the best course of events to happen is presented: 

 
1. All possible combination of events are generated, sorted in ascending order by number 

of events 

2. For each of these events combinations, a distance to the target emotional state is 

calculated 

a. If lower than the minimum distance, record this as the minimum distance 

b. If lower than a designated threshold save its reference 

3. For all combination of events that are within the threshold, maintaining the previous 

order 

a. Determine if it will be selected, being its probability based on the current PV. 

4. If no combination of events was nominated, return the combination of events that 

presented the minimum distance 

 

Because of the way the events are determined, a small number of events are favored and the 

possibility of them occurring is correlated to the current parameters values. This conserves part 

of the games’ original individuality, while still trying to provide better experiences. To note, 
however, that if no set of events meets this condition, the one that maximizes the fitness is used, 

disregarding the probability of it happening. 

Regarding the overall objective of the experiment, because its goal is to verify the validity 

of a dynamically generated game that tries to maximize the users’ experience, not all previous 
sets of game parameters are used. The used ones are obtained from the previous experiment, being 

a total of three: the vanilla PV, the globally best PV, and the individually best PV. The first one 

is constant, representing the original set of parameters values. The second one is constant for each 

emotional state desired, and represents the PV that had the best average fitness for all subjects. 

Lastly, the third one is the best PV for the subject being simulated regarding the desired target 

emotional state. 

5.2.3 Results 

As stated above, a large range of results were obtained from the simulations made. Fitness, 

Arousal and Valence levels over time were all recorded. This data can later be used to produce 
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summaries of these values throughout the whole experiences and PV’s whether for individual 

players, clusters or for the global population. Additionally, events triggered and respective 

emotional reactions are also recorded. 

To better understand these results, several plots and tables depicting the fitness, arousal, 

valence and other related values will be presented.  

To note that all plots that represent data of a particular set of parameters values over time, 

are the average of all the simulations made for that set. 

Regarding NBF Experiment, a study of its fitness along all the parameters values provides 

valuable information about the increase in effectiveness. 

 

 Anxious Bored Concerned Confident Confused Desperate Enthusiastic Frantic 

Best 0,6548 0,6004 0,9394 0,3019 0,8537 0,4739 0,4435 0,4045 

25% 0,6437 0,5932 0,9353 0,2976 0,8456 0,4656 0,4354 0,3955 

Half 0,6405 0,5888 0,9336 0,2960 0,8424 0,4631 0,4323 0,3918 

75% 0,6374 0,5815 0,9313 0,2934 0,8380 0,4606 0,4297 0,3894 

Worst 0,6270 0,5592 0,9261 0,2865 0,8269 0,4529 0,4220 0,3830 

Vanilla 0,6412 0,5899 0,9334 0,2950 0,8447 0,4640 0,4300 0,3929 

 

 Frustrated Jumpy Proud Shocked Surprised Triumphant 2min 3min 5min 

Best 0,5295 0,6562 0,3985 0,5455 0,7112 0,5730 0,6957 0,7063 0,6801 

25% 0,5224 0,6444 0,3910 0,5349 0,6955 0,5606 0,6899 0,7009 0,6725 

Half 0,5202 0,6404 0,3883 0,5311 0,6901 0,5562 0,6881 0,6991 0,6698 

75% 0,5172 0,6373 0,3849 0,5282 0,6842 0,5516 0,6860 0,6970 0,6675 

Worst 0,5086 0,6278 0,3744 0,5197 0,6666 0,5378 0,6791 0,6903 0,6600 

Vanilla 0,5215 0,6406 0,3866 0,5318 0,6857 0,5529 0,6881 0,6990 0,6700 

Table 20: NBF Experience Improvements along sorted PV's 

Due to the large number of set of parameters used in the simulations and since the goal is to 

perceive discernible differences in fitness values, only a few PV’s are shown. As such, all PV’s 
are ordered by their mean fitness value and presented here are the quintiles of this list. The vanilla 

parameters values are shown for comparison purpose. The emotional keywords “2min”, “3min” 
and “5min” are the dynamic keywords, being that the number represents the period of the cyclical 

behavior. 

As can be seen in Table 20, the vanilla parameter vector shows a similar performance to the 

median parameter set. This can be explained due to the fact that the set of all parameters values 

were generated as deviations from the vanilla PV. Moreover, the range of fitness values for each 

of these emotional keywords varies more largely when this fitness value is neither in the lower or 

upper ranges of the whole spectrum. Keywords such as “Enthusiastic” and “Shocked” reveal a 
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larger range of fitness than, for example “Concerned”. This is as a direct product of the fitness 
function being of the sigmoid type, expanding small deviations in the median ranges and 

compressing large deviations in both the lower and upper ranges. 

Regarding emotional keywords, some observations can be made. First, the low levels of 

fitness demonstrated by “Confident”, “Proud”, “Triumphant” and other keywords provide 
incentive results. These are emotional states not usually present in games of this genre, and their 

low fitness levels are both to be expected and a good indication. On the other hand, keywords 

such as “Concerned”, “Confused” and “Surprised” that are common in the atmosphere of horror 
games, showcase a high degree of fitness. 

A more in-depth analysis can relate the whole AV emotional space to the fitness levels. 

Emotional keywords present in the second quadrant (High Arousal and Low Valence) of the 

circumplex model, the quadrant where the base emotional state is contained, expose significantly 

higher fitness values. This relates to the nature of the game. Being a horror game, it is very hard 

to elicit on a player high levels of valence (“happy” feelings) and low levels of arousal 
(“tranquility” mood). Both the events triggered and the base emotional state lead the players to 

this area of the AV emotional space, consequently revealing higher fitness values. 

This means no PV can, over several simulations, display dynamic behavior. 

5.2.4 Experiences Comparison 

One simple way to compare the two experiments is to visualize the fitness of both throughout the 

game sessions’. Some samples follow: 

 

Figure 8: Fitness over time Comparison 
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The above plots show the average fitness values of all subjects for each desired emotional 

state. For the dynamic keywords, the name represents the period of the cyclical emotional states. 

Each plot portrays the vanilla and the individually best parameter vectors for each experiment. 

This allows us to compare the improvement of fitness of each experience over the vanilla PV. In 

addition, both experiences can be compared in fitness values. As can be seen, ER-IBF Experiment 

displays overall better results. This is to be expected viewing that it intermittently choses a better 

series of events. Similarly, the difference between the Vanilla and the individually best parameters 

values is evident on both experiments, a notorious increase in fitness is visible. 

With a closer look, some perceivable jaggy behavior can be seen on Experiment B. This is 

not an experimental error. This relates to the way these experiences work. As stated above, ER-

IBF Experiment works similarly to NBF Experiment, being the only difference the less random 

way of choosing events that occurs at certain timesteps. These timesteps, presented in the above 

plots, occur at a distance of three. This is linked to the period of the jaggy behavior in the plots 

above. When on these timesteps, fitness rises considerably due to a better choice of events. Any 

other time, the fitness decays to that of the shown in NBF Experiment. This result can be seen in 

both Arousal and Valence dimensions as well. A sample of Arousal values over time follows. 

 

Figure 9: Arousal over time Comparison 
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As can be seen, the same behavior occurs and is to be expected. It is intrinsic to the technique 

employed. It is because of this sharp increase in fitness that the experiment displays an overall 

better performance. 

Concerning experiments comparison, one of the best ways to analyze this duality is to link 

their mean fitness’s. 
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 Anxious Bored Concerned 

 ERIBF NBF ERIBF NBF ERIBF NBF 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Vanilla 0,7534 0,0829 0,6412 0,0473 0,6165 0,0336 0,5899 0,0318 0,9462 0,0409 0,9334 0,0418 

Best 0,7597 0,0762 0,6548 0,0551 0,6237 0,0282 0,6004 0,0265 0,9511 0,0367 0,9394 0,0375 

Best Ind 0,7558 0,0764 0,6639 0,0576 0,6235 0,0281 0,6031 0,0270 0,9412 0,0429 0,9536 0,0399 

             

 Confident Confused Desperate 

 ERIBF NBF ERIBF NBF ERIBF NBF 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Vanilla 0,3163 0,0234 0,2950 0,0141 0,8853 0,0770 0,8447 0,0574 0,5413 0,0579 0,4640 0,0311 

Best 0,3229 0,0229 0,3019 0,0148 0,8926 0,0739 0,8537 0,0573 0,5457 0,0520 0,4739 0,0358 

Best Ind 0,3227 0,0227 0,3023 0,0149 0,8847 0,0774 0,8667 0,0584 0,5441 0,0528 0,4774 0,0379 

             

 Enthusiastic Frantic Frustrated 

 ERIBF NBF ERIBF NBF ERIBF NBF 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Vanilla 0,4707 0,0467 0,4300 0,0239 0,5208 0,0647 0,3929 0,0262 0,5931 0,0715 0,5215 0,0357 

Best 0,4800 0,0444 0,4435 0,0277 0,5442 0,0702 0,4045 0,0323 0,5929 0,0658 0,5295 0,0398 

Best Ind 0,4797 0,0447 0,4447 0,0267 0,5441 0,0699 0,4072 0,0337 0,5884 0,0666 0,5349 0,0403 

             

 Jumpy Proud Shocked 

 ERIBF NBF ERIBF NBF ERIBF NBF 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Vanilla 0,7820 0,0755 0,6406 0,0468 0,4226 0,0407 0,3866 0,0231 0,6504 0,0668 0,5318 0,0380 

Best 0,7927 0,0707 0,6562 0,0563 0,4310 0,0383 0,3985 0,0241 0,6628 0,0622 0,5455 0,0452 

Best Ind 0,7900 0,0719 0,6663 0,0602 0,4315 0,0380 0,3994 0,0251 0,6642 0,0638 0,5513 0,0492 

             

 Surprised Triumphant     

 ERIBF NBF ERIBF NBF     

 Mean SD Mean SD Mean SD Mean SD     

Vanilla 0,7560 0,0816 0,6857 0,0459 0,6118 0,0677 0,5529 0,0365     

Best 0,7703 0,0723 0,7112 0,0455 0,6233 0,0610 0,5730 0,0370     

Best Ind 0,7699 0,0735 0,7132 0,0490 0,6234 0,0619 0,5746 0,0397     
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 2min 3min 5min 

 ERIBF NBF ERIBF NBF ERIBF NBF 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Vanilla 0,7524 0,1733 0,6881 0,2122 0,7724 0,1686 0,6990 0,2120 0,7797 0,1534 0,6700 0,2010 

Best 0,7580 0,1602 0,6957 0,2057 0,7798 0,1554 0,7063 0,2059 0,7958 0,1397 0,6801 0,1962 

Best Ind 0,7554 0,1550 0,7022 0,2029 0,7770 0,1503 0,7141 0,2037 0,7942 0,1357 0,6875 0,1937 

Table 21: Fitness Comparison 

 

Two important facts can be inferred from Table 21. First, ER-IBF Experiment shows 

significantly better fitness results across all emotional keywords. Second, the standard deviation 

presented is smaller on ER-IBF Experiment, further increasing the improvement shown in the 

fitness department. This means that the experience is closer to the intended one and is largely 

more stable. 

To note the behavior ER-IBF Experiment fitness values exhibit. Their range vary from 

keyword to keyword, similar to NBF Experiment. As previously stated, this is due to the sigmoid 

nature of the fitness function. 

To get a global comparison between experiences, a more general overview can be calculated 

by averaging the fitness values throughout the emotional keywords. However, due to the nature 

of the emotional keywords present, the distinction between dynamic and static keywords was 

maintained. As has been noted, static keywords refer to emotional states that remain constant 

throughout the whole simulations. Dynamic keywords present a varying and cyclical experience. 

 

 Static Keywords 

 ERIBF NBF 

 Mean SD Mean SD 

Vanilla 0,6333 0,0594 0,5650 0,0357 

Best 0,6423 0,0553 0,5776 0,0382 

Best Ind 0,6402 0,0565 0,5828 0,0400 

     

 Dynamic Keywords 

 ERIBF ERIBF 

 Mean SD Mean SD 

Vanilla 0,7682 0,1651 0,6857 0,2084 

Best 0,7779 0,1518 0,6940 0,2026 

Best Ind 0,7755 0,1470 0,7013 0,2001 

Table 22: Fitness Global Comparison 
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Table 22 allows us to draw several conclusions. First, the increase in fitness is larger for 

dynamic keywords. However this increase comes at a cost. Due to the fluctuating nature of these 

keywords, the standard deviation presented is vastly larger. The bigger increase in fitness values 

for dynamic keywords may happen due to the less ample emotional range needed. Some static 

keywords showed low levels of fitness because the desired emotional states were very hard to 

elicit for this specific game (which is understandable as we did not expect any combination of 

game events to elicit some emotional states). 

Besides this dynamic versus static emotional keyword comparison, it can be noted that ER-

IBF Experiment has overall higher fitness values, as well as a lower associated standard deviation, 

independently of the type of emotional experience desired. This means that, not only the 

Experiment presents better overall results, this increase in fitness comes from “tighter” results, 
less erratic over time. This decrease in standard deviation is even more important on the dynamic 

keywords, viewing that a decrease in this value indicates the emotional experience had the same 

dynamic behavior. 

Since fitness is an abstract concept that does not distinguish between the involved emotional 

dimensions, its analysis is not sufficient to understand the obtained results. As such, Figures 10 

and 11 represents the observed differences in arousal and valence to the target emotional states 

over time for each emotional keyword on both static and dynamic emotional regulation 

experiments.  

 

Figure 10: Arousal Difference 
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Figure 11: Valence Difference 

 

The bar charts in Figures 10 and 11 portray the difference between the simulated and the 

desired emotional state (i.e. lower values mean better results). With this in mind, it seems evident 

that ER-IBF Experiment produces affective experiences closer to the desired one. However, on 

closer inspection, more insightful conclusions can be drawn. Firstly, arousal presents larger 

variances between experiences. In fact, the valence dimension expresses almost identical results 

between experiences. This happens due to the difficulty in eliciting notorious valence responses, 

originated by the type of game and the players' lack of valence expression. On the other hand, 

arousal does not seem to suffer from this problem. An interesting observation was that arousal 

displays the behavior of presenting considerably similar values when the desired emotions have 

globally low levels. The most predominant cases are the “Proud”, “Bored” and “Confident” 
keywords. These keywords have low arousal values and as such, are hard to elicit, resulting in 

lower fitness values.  

In order to validate and more closely examine the aforementioned results, plots that show 

mean arousal/valence values and respective distances to the desired emotion throughout the 

simulations were created. These can provide a visual aid to the players' emotional reactions and 

thus constitute a valuable asset in both online and offline future applications of this technology. 

Some illustrative examples are presented in the following sub-section. 
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The above plot shows the mean arousal values for all dynamic keywords combined. One can 

easily notice the better results of the ER-IBF Experiment and perceive its adaptive behavior. This 

adaptive behavior is of extreme importance for dynamic experiences. 

 

The distance to the desired emotional state for all static emotional keywords is presented 

above in Figure 13. Besides the expected better performance for ER-IBF Experiment, note the 

Figure 12: Arousal Mean over time 

Figure 13: Arousal Mean Difference over time 
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progression of the time series. Because the desired emotion is a static value, in both experiments 

a state of equilibrium is reached after some time. An initial phase can be perceived that serves as 

a bridge to the point where this equilibrium is reached, meaning that the decay rate and the 

emotional responses balance themselves. 

Given the improvements observed in ER-IBF experiment, we also became interested in how 

much its intrusiveness value could influence the overall obtained fitness values. Recall that 

intrusiveness is the period at which events are dynamically generated through the player's 

emotional reaction model instead of through the game's parameter vector. 

 

As expected, the lower the intrusiveness the better are the results. This indicates that 

dynamically generating game events provides better results than random ones. A quick analysis 

of Figure 14 reveals an inverse exponential correlation function between overall fitness and 

intrusiveness. Despite this, it would be advisable to exercise caution in interpreting these results 

on a practical application, as maximal intrusiveness (adjusting the game every 10 seconds) can 

quickly make the gameplay too erratic or hectic, which would not be necessarily good. In our case 

study this could result in overfitting, thus biasing our results. As such, this was a major factor in 

choosing a lower intrusiveness value (30 seconds). In a real-world application we would advise a 

mix of intrusiveness levels 3 and 6 (3 for more phasic game events such as enemy and item spawns 

and 6 for more tonic level parameters such as level geometry and atmosphere). 
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Chapter 6 

Conclusions and Future Work 

The main goals of this work were two-fold: the creation of accurate affective reaction models 

that could satisfactorily predict players’ emotional responses to in-game events and the posterior 

use of these models for parameterisable and adaptive affective gaming. 

The models initially created via Machine Learning showed error rates higher than desired. 

The fact that gathering emotional reactions through psychophysiological data has some 

limitations and the singular way these models were created, probably lead to these not sought 

after results. By simulating the human world, where groups of people show similar emotional 

responses, some encouraging results were extracted via a clustering approach. 

The subsequent use of these models for both the discovery of the best set of parameter values 

and the creation of dynamic affective gaming experiences provided some good results. It was 

shown that small improvements can be done to the original game parameters for a few selected 

objective emotional states. These improvements are largely increased if a dynamic system is 

implemented, where the game itself progresses having into account both the current players 

emotional state and the desired one. The implementation shown provided a proof of concept that 

can be used in several other domains. As such, the main goals of the work were achieved. 

6.1 Future Work 

Being that this thesis presented a proof of concept and due to its exploratory nature, not 

many developments can be made over the developed work at the moment in order to make this 

process commercially viable. However, future research on this subject that implements a full 

automatic extraction of biofeedback data, allowing for the extraction of emotional data several 

magnitudes larger is of great value. Unfortunately, due to the nature of psychophysiological data, 

this is currently unfeasible. The analysis of a greater dataset could allow the reach of new 
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conclusions regarding the construction of the affective reaction models. The same conclusion can 

be made regarding the study of the relationship between related User experience and physiological 

and non-physiological features. 

Another improvement over this work would be to fully abstract all the implemented features, 

allowing for the use in a wider range of games and even in other domains.  
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