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Abstract. As is known for centuries, humans exhibit an electrical profile. This
profile is altered through various psychological and physiological proce-
sses, which can be measured through biosignals; e.g., electromyography (EMG)
and electrodermal activity (EDA). These biosignals can reveal our emotions and,
as such, can serve as an advanced man-machine interface (MMI) for empathic
consumer products. However, such a MMI requires the correct classification of
biosignals to emotion classes. This chapter starts with an introduction on biosig-
nals for emotion detection. Next, a state-of-the-art review is presented on au-
tomatic emotion classification. Moreover, guidelines are presented for affective
MMI. Subsequently, a research is presented that explores the use of EDA and
three facial EMG signals to determine neutral, positive, negative, and mixed emo-
tions, using recordings of 21 people. A range of techniques is tested, which re-
sulted in a generic framework for automated emotion classification with up to
61.31% correct classification of the four emotion classes, without the need of
personal profiles. Among various other directives for future research, the results
emphasize the need for parallel processing of multiple biosignals.

That men are machines (whatever else they may be) has long been suspected; but not till our gen-
eration have men fairly felt in concrete just what wonderful psycho-neuro-physical mechanisms
they are.

William James (1893; 1842 – 1910)

A. Fred, J. Filipe, and H. Gamboa (Eds.): BIOSTEC 2009, CCIS 52, pp. 21–47, 2010.
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1 Introduction

Despite the early work of William James and others before him, it took more than a cen-
tury before emotions became widely acknowledged and embraced by science and en-
gineering. However, currently it is generally accepted that emotions cannot be ignored;
they influence us, be it consciously or unconsciously, in a wide variety of ways [1]. Let
us briefly denote four issues on how emotions influence our lives:

– long term physical well-being; e.g., Repetitive Strain Injury (RSI) [2], cardiovas-
cular issues [3,4], and our immune system [5,6];

– physiological reactions / biosignals; e.g., crucial in communication [7,8,9,10];
– cognitive processes; e.g., perceiving, memory, reasoning [8,11]; and
– behavior; e.g., facial expressions [7,8,12].

As is illustrated by the three ways emotions influence us, we are (indeed) psycho-
neuro-physical mechanisms [13,14], who both send and perceive biosignals that can be
captured; e.g., electromyography (EMG), electrocardiography (ECG), and electroder-
mal activity (EDA). See Table 1 for an overview. These biosignals can reveal a plethora
of characteristics of people; e.g., workload, attention, and emotions.

In this chapter, we will focus on biosignals that have shown to indicate people’s emo-
tional state. Biosignals form a promising alternative for emotion recognition compared
to:

– facial expressions assessed through computer vision techniques [12,15,16]: record-
ing and processing is notoriously problematic [16],

– movement analysis [15,17]: often simply not feasible in practice, and
– speech processing [12,18,19]: speech is often either absent or suffering from severe

distortions in many real-world applications.

Moreover, biosignals have the advantage that they are free from social masking and
have the potential of being measured by non-invasive sensors, making them suited for
a wide range of applications [20,21]. Hence, such biosignals can act as a very useful
interface between man and machine; e.g., computers or consumer products such as
a mp3-player [22]. Such an advanced Man-Machine Interface (MMI) would provide
machines with empathic abilities, capable of coping with the denoted issues.

In comparison to other indicators, biosignals have a number of methodological ad-
vantages as well. First of all, traditional emotion research uses interviews, question-
naires, and expert opinions. These, however, can only reveal subjective feelings, are
very limited in explaining, and do not allow real time measurements: they can only
be used before or after emotions are experienced [7,8,10]. Second, the recent progress
in brain imaging techniques enables the inspection of brain activity while experiencing
emotions; e.g., EEG and fMRI [11,28]. Although EEG techniques are slowly brought to
practice; e.g., Brain Computer Interfacing (BCI) [29,30], these techniques are still very
obtrusive. Hence, they are not usable in real world situations; e.g., for the integration in
consumer products. As a way between these two research methods, psychophysiologi-
cal (or bio)signals can be used [7,8,10,14]. These are not, or at least less, obtrusive, can
be recorded and processed real time, are rich sources of information, and are relatively
cheap to apply.



Affective Man-Machine Interface: Unveiling Human Emotions through Biosignals 23

Ta
bl

e
1.

A
n

ov
er

vi
ew

of
co

m
m

on
bi

os
ig

na
ls

/p
hy

si
ol

og
ic

al
si

gn
al

s
an

d
th

ei
r

fe
at

ur
es

,a
s

us
ed

fo
r

em
ot

io
n

an
al

ys
is

an
d

cl
as

si
fi

ca
ti

on

ph
ys

io
lo

gy
fe

at
ur

es
un

it
re

m
ar

k

ca
rd

io
va

sc
ul

ar
ac

tiv
it

y
[2

3]
he

ar
tr

at
e

(H
R

)
be

at
s

/m
in

th
ro

ug
h

EC
G

or
BV

P
S

D
IB

Is
s

he
ar

tr
at

e
va

ri
ab

il
it

y
(H

R
V

)
in

de
x

R
M

S
S

D
IB

Is
s

he
ar

tr
at

e
va

ri
ab

il
it

y
(H

R
V

)
in

de
x

L
F

po
w

er
(0

.0
5H

z
-

0.
15

H
z)

m
s2

sy
m

pa
th

et
ic

ac
tiv

it
y

H
F

po
w

er
(0

.1
5H

z
-

0.
40

H
z)

m
s2

pa
ra

sy
m

pa
th

et
ic

ac
tiv

it
y

V
L

F
po

w
er

(
<

0.
05

H
z)

m
s2

L
F

/H
F

pu
ls

e
tr

an
si

tt
im

e
(P

T
T

)
m

s
el

ec
tr

od
er

m
al

ac
tiv

it
y

(E
D

A
)

[2
4]

m
ea

n,
S

D
S

C
L

μS
to

ni
c

sy
m

pa
th

et
ic

ac
tiv

it
y

nu
m

be
r

of
S

C
R

s
ra

te
ph

as
ic

ac
tiv

it
y

S
C

R
am

pl
it

ud
e

μS
ph

as
ic

ac
tiv

it
y

S
C

R
1/

2
re

co
ve

ry
ti

m
e

s
S

C
R

ri
se

ti
m

e
s

sk
in

te
m

pe
ra

tu
re

[2
5]

m
ea

n,
S

D
te

m
p

o
C

(F
)

re
sp

ir
at

io
n

[2
5]

re
sp

ir
at

io
n

ra
te

am
pl

it
ud

e
re

sp
ir

at
io

ns

re
sp

ir
at

or
y

si
nu

s
ar

ry
th

m
ia

m
us

cl
e

ac
tiv

it
y

m
ea

n,
S

D
co

rr
ug

at
or

su
pe

rc
il

ii
μV

fr
ow

ni
ng

th
ro

ug
h

EM
G

[2
6,

27
]

m
ea

n,
S

D
zy

go
m

at
ic

us
m

aj
or

μV
sm

il
in

g

m
ea

n,
S

D
up

pe
r

tr
ap

ez
iu

s
μV

m
ea

n,
S

D
in

te
r-

bl
in

k
in

te
rv

al
m

s

L
eg

en
d:

E
C

G
:

el
ec

tr
oc

ar
di

og
ra

m
;

B
V

P
:

bl
oo

d
vo

lu
m

e
pu

ls
e;

E
M

G
:

el
ec

tr
om

yo
gr

am
;

IB
I:

in
te

r-
be

at
in

te
rv

al
;

L
F

:l
ow

fr
eq

ue
nc

y;
H

F
:

hi
gh

fr
eq

ue
nc

y;
V

L
F

:
ve

ry
lo

w
fr

eq
ue

nc
y;

S
C

L
:

sk
in

co
nd

uc
ta

nc
e

le
ve

l;
S

C
R

:
sk

in
co

nd
uc

ta
nc

e
re

sp
on

se
;

S
D

:
st

an
da

rd
de

vi
at

io
n;

R
M

S
S

D
:

ro
ot

m
ea

n
su

m
of

sq
ua

re
di

ff
er

en
ce

s.
S

ee
al

so
F

ig
.3

fo
r

pl
ot

s
of

th
e

th
re

e
fa

ci
al

E
M

G
si

gn
al

s
an

d
th

e
E

D
A

si
gn

al
.



24 E.L. van den Broek et al.

A number of prerequisites should be taken into account when using either traditional
methods (e.g., questionnaires), brain imaging techniques, or biosignals to infer peo-
ple’s emotional state. In Van den Broek et al. (2009), these are denoted for affective
signal processing (ASP); however, most of them also hold for brain imaging, BCI, and
traditional methods. The prerequisites include:

1. the validity of the research employed,
2. triangulation; i.e., using multiple information sources (e.g., biosignals) and/or anal-

ysis techniques, and
3. inclusion and exploitation of signal processing knowledge ( e.g., determine the

Nyquist frequencies of biosignals for emotion classification).

For a discussion on these topics, we refer to Van den Broek et al. (2009). Let us
now assume that all prerequisites can be satisfied. Then, it is feasible to classify the
biosignals in terms of emotions. In bringing biosignals-based emotion recognition to
products, self-calibrating, and automatic classification is essential to make it useful for
Artificial Intelligence (AI) [1,31], Ambient Intelligence (AmI) [20,32], MMI [7,33],
and robotics [34,35].

In the pursuit toward empathic technology, we will describe our work on the auto-
matic classification of biosignals. In the next section, we provide an overview of previ-
ous work. Section 3 provides an introduction to the classification techniques employed.
Subsequently, in Sect. 4, we present the experiment in which we used four biosignals
signals: three facial EMGs and EDA. After that, in Sect. 5, we will briefly introduce the
preprocessing techniques employed. This is followed by Sect. 6 in which the classifi-
cation results are presented. In Sect. 7, we reflect on our work and critically review it.
Finally, in Sect. 8 we end with drawing the main conclusions.

2 Background

A broad range of biosignals are used in affective sciences; see Table 1. To enable pro-
cessing of the signals, in most cases comprehensive sets of features have to be identified
for each biosignal; see also Table 2. To extract these features, affective signals are pro-
cessed in the time (e.g., statistical moments), frequency (e.g., Fourier), time-frequency
(e.g., wavelets), or power domain (e.g., periodogram and autoregression) [36]. In Ta-
ble 1, we provide a brief overview of the biosignals most often applied, including their
best known features, with reference to their physiological source. In the next paragraph,
we describe the signals and their psychological counterparts.

First, electrocardiogram (ECG; measured with electrodes on the chest) and blood
volume pulse (BVP; measured with infra-red light around the finger or ear) can be used
to derive heart beats. The main feature extracted from these heart beats is heart rate
(HR; i.e., the number of beats per minute). HR is, however, not very useful in discrim-
inating emotions as it is innervated by many different processes. Instead, the heart rate
variability (HRV) provides better emotion information. HRV is more constant in sit-
uations where you are happy and relaxed, whereas it shows high variability in more
stressful situations [20,55,56]. Second, respiration is often measured with a gauge band
around the chest. Respiration rate and amplitude mediate the HRV and are, therefore,



Affective Man-Machine Interface: Unveiling Human Emotions through Biosignals 25

Ta
bl

e
2.

A
n

ov
er

vi
ew

of
20

st
ud

ie
s

on
au

to
m

at
ic

cl
as

si
fi

ca
ti

on
of

em
ot

io
ns

,u
si

ng
bi

os
ig

na
ls

/p
hy

si
ol

og
ic

al
si

gn
al

s
g

g
/

y
g

g

in
fo

rm
at

io
n

so
u
rc

e
ye

ar
si

gn
al

s
p
ar

ti
-

nu
m

b
er

of
se

le
ct

io
n

/
cl

as
si

fi
er

s
ta

rg
et

cl
as

si
fi
ca

ti
on

ci
p
an

ts
fe

at
u
re

s
re

d
u
ct

io
n

re
su

lt

[3
7]

S
in

h
a

&
P
ar

so
n
s

19
96

M
27

18
L
D

A
2

em
ot

io
n
s

86
%

[9
]
P

ic
ar

d
et

al
.

20
01

C,E
,R

,M
1

40
S
F
S
,
F
is

h
er

L
D

A
8

em
ot

io
n
s

81
%

[3
8]

S
ch

ei
re

r
et

al
.

20
02

C,E
24

5
V

it
er

b
i

H
M

M
2

fr
u
st

ra
ti

on
s

64
%

[3
9]

N
as

oz
et

al
.

20
03

C,E
,S

31
3

k-
N

N
,
L
D

A
6

em
ot

io
n
s

69
%

[4
0]

T
ak

ah
as

h
i

20
03

C,E
,B

12
18

S
V

M
6

em
ot

io
n
s

42
%

[4
1]

H
aa

g
et

al
.

20
04

C,E
,S

,M
,R

1
13

M
L
P

va
le

n
ce

/
ar

ou
sa

l
64

–
97

%
[4

2]
K

im
et

al
.

20
04

C,E
,S

17
5

10
S
V

M
3

em
ot

io
n
s

78
%

[4
3]

L
is

et
ti

&
N

as
oz

20
04

C,E
,S

29
12

k-
N

N
,
L
D

A
,
M

L
P

6
em

ot
io

n
s

84
%

[4
4]

W
ag

n
er

et
al

.
20

05
C,E

,R
,M

1
32

S
F
S
,
F
is

h
er

k-
N

N
,
L
D

A
,
M

L
P

4
em

ot
io

n
s

92
%

[4
5]

Y
oo

et
al

.
20

05
C,E

6
5

M
L
P

4
em

ot
io

n
s

80
%

[4
6]

C
h
oi

&
W

oo
20

05
E

1
3

P
C

A
M

L
P

4
em

ot
io

n
s

75
%

[4
7]

H
ea

le
y

&
P

ic
ar

d
20

05
C,E

,R
,M

9
22

F
is

h
er

L
D

A
3

st
re

ss
le

ve
ls

97
%

[3
4]

L
iu

et
al

.
20

06
C,E

,M
,S

14
35

R
T

3
an

xi
et

y
le

ve
ls

70
%

[4
8]

R
an

i
et

al
.

20
06

C,E
,S

,M
,P

15
46

k-
N

N
,
S
V

M
,
R
T

,
B

N
3

em
ot

io
n
s

86
%

[4
9]

Z
h
ai

&
B

ar
re

to
20

06
C,E

,S
,P

32
11

S
V

M
2

st
re

ss
le

ve
ls

90
%

[5
0]

Jo
n
es

&
T
ro

en
20

07
C,E

,R
13

11
A

N
N

5
ar

ou
sa

l
le

ve
ls

31
/

62
%

5
va

le
n
ce

le
ve

ls
26

/
57

%
[5

1]
L
eo

n
et

al
.

20
07

C,E
8

5
D

B
I

A
A

N
N

3
em

ot
io

n
s

71
%

[5
2]

L
iu

et
al

.
20

08
C,E

,S
,M

6
35

S
V

M
3

aff
ec

t
st

at
es

83
%

[5
3]

K
at

si
s

et
al

.
20

08
C,E

,M
,R

10
15

S
V

M
,
A

N
F
IS

4
aff

ec
t

st
at

es
79

%
[5

4]
Y

an
n
ak

ak
is

&
H

al
la

m
20

08
C,E

72
20

A
N

O
V
A

S
V

M
,
M

L
P

2
fu

n
le

ve
ls

70
%

[3
3]

K
im

&
A

n
d
ré
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often used in combination, which is called respiratory sinus arrhythmia (RSA) [25].
RSA is primarily responsive to relaxation and emotion regulation [57]. Third, electro-
dermal activity (EDA) measures the skin conductance of the hands or foots. This is
primarily a response to increases in arousal. Beside the general skin conductance level
(SCL), typical peaks in the signal, called skin conductance responses (SCRs), can be
extracted. These responses are more event related and are valuable when looking at
short timescales. Fourth, skin temperature, measured at the finger, is also responsive to
increases in arousal, but does not have the typical response peaks as EDA has. Finally,
electromyogram (EMG) measures muscle tension. In relation to emotions, this is most
often applied in the face, where it can measure smiling and frowning [58,59].

When processing such biosignals some general issues have to be taken in considera-
tion:

1. Biosignals are typically derived through non-invasive methods to determine
changes in physiology [21] and, as such, are indirect measures. Hence, a delay
between the actual physiological change and the recorded change in the biosignal
has to be taken into account.

2. Physiological sensors are unreliable; e.g., they are sensitive to movement artifacts
and to differences in bodily position.

3. Some sensors are obtrusive, preventing their integration in real world applica-
tions [20,22].

4. Biosignals are influenced by (the interaction among) a variety of factors [36,60].
Some of these sources are located internally (e.g., a thought) and some are among
the broad range of possible external factors (e.g., a signal outside). This makes af-
fective signals inherently noisy, which is most prominent in real world applications.

5. Physiological changes can evolve in a matter of milliseconds, seconds, minutes or
even longer. Some changes hold for only a brief moment, while others can even be
permanent. Although seldom reported, the expected time windows of change are
of interest [20,22]. In particular since changes can add to each other, even when
having a different origin.

6. Biosignals have large individual differences. On the one hand, this calls for methods
and models tailored to the individual. It has been shown that personal approaches
increase the performance of ASP [20,33,50]. On the other hand, generic features
are of the utmost importance. Not in all situations, a system or product can be
calibrated. Moreover, directing the quest too fast towards people’s personal profiles
could diminish the interest in generic features and, consequently, limit the progress
in research towards them.

The features obtained from the biosignals (see Table 1) can be fed to pattern recog-
nition methods (see Table 2); cf. [29]. These can be classified as: template matching,
syntactic or structural matching, and statistical classification; e.g., artificial neural net-
works (ANN). The former two are not or seldom used in ASP, most ASP schemes use
the latter.

Statistical pattern recognition distinguishes supervised and unsupervised (e.g., clus-
tering) pattern recognition; i.e., respectively, with or without a set of (labeled) train-
ing data [61,62,63]. With unsupervised pattern recognition, the distance / similarity
measure used and the algorithm applied to generate the clusters are key elements.
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Supervised pattern recognition relies on learning from a set of examples (i.e., the train-
ing set). Statistical pattern recognition uses input features, a discriminant function (or
network function for ANN) to recognize the features, and an error criterion in its clas-
sification process.

In the field of ASP, several studies have been conducted, using a broad range of
signals, features, and classifiers; see Table 2 for an overview. Nonetheless, both the
recognition performance and the number of emotions that the classifiers were able to
discriminate are disappointing. Moreover, comparing the different studies is problem-
atic because of:

1. The different settings the studies were applied in, ranging from controlled lab stud-
ies to real world testing;

2. The type of emotion triggers used;
3. The number of target states to be discriminated; and
4. The signals and features employed.

To conclude, there is a lack of general standards, low prediction accuracy, and in-
consistent results. However, for affective MMI to come to fruition, it is eminent to deal
with these issues. This illustrates the need for a well documented general framework.
In this chapter, we set out to initiate its development, explore various possibilities, and
apply it on a data set that will be introduced in the next section.

3 Techniques for Classification

In this section, we briefly introduce the techniques used in the research conducted, for
those readers who are not familiar with them. Figure 1 presents the complete processing
scheme of this research. The core of processing scheme consists of three phases, in
which various techniques were applied.

First, analysis of variance (ANOVA) and principal component analysis (PCA) are
introduced that enabled the selection of a subset of features for the classification of
the emotions. Second, the classification was done using k-nearest neighbors (k-NN),
support vector machines (SVM), and artificial neural networks (ANN), which will be
briefly introduced later in this section. Third and last, the classifiers were evaluated
using leave-one-out cross validation (LOOCV), which will be introduced at the end of
this section.

3.1 Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) is a statistical test to determine whether or not there is
a significant difference between the means of several data sets. ANOVA examines the
variance of data set means compared to within class variance of the data sets themselves.
As such, ANOVA can be considered as an extension of the t-test, which can only be
applied on one or two data sets. We will sketch the main idea here. For a more detailed
explanation, we refer to Chapter 6 of [64].

ANOVA assumes that the data sets are independent and randomly chosen from a
normal distribution. Moreover, it assumes that all data sets are equally distributed. These



28 E.L. van den Broek et al.

extraction
time domain

features

facial EMG

frontalis

corrugator
supercilii

norm
alizationzygomaticus

major

EDA

mean

abs. deviation

std. deviation

variance

skewness

kurtosis

classification
techniques

k-nearest
neighbors

support vector
machine

artificial
neural

network

feature
selection &
extraction

ANOVA

principal
component

analysis

Training on the 4 emotions

positive negative mixedneutral

Validation/testing on the 4 emotions, using LOOCV

positive negative mixedneutral

baseline matrix
(Picard et al. 2001)

Legend: EMG: electromyography EDA: electrodermal activity; ANOVA of variance; LOOCV:
leave-one-out cross validation.

Fig. 1. The complete processing scheme, as applied in the current research

assumptions usually hold with empirical data. Moreover, the test is fairly robust against
limited violations.

Assume we have D data sets. For each data set d, the sum td and mean s̄d of all
samples are defined as:

td =
S−1∑
i=0

xid and s̄d =
td
sd

where xid denotes one data sample and sd denotes the number of samples of data set d.
Subsequently, the grand sum T and the total number of data samples S can be defined
as:

T =
D−1∑
d=0

td and S =
D−1∑
d=0

sd.

The total sum of squares SS (i.e., the quadratic deviation from the mean) can be
written as the sum of two independent components:

SSH =
D−1∑
d=0

t2d
s2

d

− T 2

S
and SSE =

D−1∑
d=0

S−1∑
i=0

x2
id −

D−1∑
d=0

t2d
s2

d

,
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where indices H and E denote hypothesis and error, as is tradition in social sciences.
Together with S and D, these components define the ANOVA statistic:

F (D − 1, S − D) =
S − D

D − 1
· SSH

SSE
,

where D − 1 and S − D can be considered as the degrees of freedom.
The hypothesis that all data sets were drawn from the same distribution is violated if

Fα(D − 1, S − D) < F (D − 1, S − D),

where Fα denotes the ANOVA statistic that accompanies chance level α, considered to
be acceptable. Often α is chosen as either 0.05, 0.01, or 0.001. If α < 0.05 the data sets
are assumed to be different.

3.2 Principal Component Analysis (PCA)

Through principal component analysis (PCA), the dimensionality of a data set of in-
terrelated variables can be reduced, preserving its variation as much as possible. The
variables are transformed to a new set of uncorrelated but ordered variables: the prin-
cipal components. The first principal component represents, as much as possible, the
variance of the original variables. Each succeeding component represents the remain-
ing variance, as much as possible. For a brief introduction on PCA, we refer to Chapter
12 of [64].

Suppose we have a set of data, each represented as a vector x, which consists of n
variables. Then, the principal components are defined as a linear combination α · x of
the variables of x that preserves the maximum of the (remaining) variance, denoted as:

α · x =
n−1∑
i=0

αixi,

where α = (α0, α1, . . . , αn−1)T . The variance covered by each principal component
α · x is defined as:

var(α · x) = α · Cα,

where C is the covariance matrix of x.
To find all principal components, we need to find the maximized var(α ·x) for them.

Hereby, the constraint α ·α = 1 has to be taken into account. The standard approach to
do so is the technique of Lagrange multipliers. We maximize

α · Cα − λ

(
n−1∑
i=0

α2
i − 1

)
= α · Cα − λ(α · α − 1),

where λ is a Lagrange multiplier. Subsequently, we can derive that λ is an eigenvalue
of C and α is its corresponding eigenvector.

Once obtained the vectors α, a transformation can be made that maps all data x to
its principal components:

x → (α0 · x, α1 · x, . . . , αn−1 · x)
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Fig. 2. Visualization of the first three principal components of all six possible combinations of two
emotion classes. The emotion classes are plotted per two to facilitate the visual inspection.The
plots illustrate how difficult it is to separate even two emotion classes, where separating four
emotion classes is the aim. However, note that the emotion category neutral can be best separated
from the other three categories: mixed, negative, and positive emotions, as is illustrated in b), c),
and d).

Note that the principal components are sensitive to scaling. In order to tackle this
problem, the components can be derived from the correlation matrix instead of the
covariance matrix. This is equivalent to extracting the principal components in the de-
scribed way after normalization of the original data set to unit variance.

PCA is also often applied for data inspection through visualization, where the prin-
cipal components are chosen along the figure’s axes. Figure 2 presents such a visual-
ization: for each set of two emotion classes, of the total of four, a plot denoting the first
three principal components is presented.

3.3 k-Nearest Neighbors (k-NN)

k-nearest neighbors (k-NN) is a very intuitive, simple, and often applied machine learn-
ing algorithm. It requires only a set of labeled examples (i.e., data vectors), which form
the training set.
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Now, let us assume that we have a training set xl and a set of class labels C. Then,
each new vector xi from the data set is classified as follows:

1. Identify k vectors from xl that are closest to vector xi, according to a metric of
choice; e.g., city block, Euclidean, or Mahalanobis distance.

2. Class ci that should be assigned to vector xi is determined by:

ci = argmax
c∈C

k−1∑
i=0

wiγ(c, cl
i),

where γ(.) denotes a boolean function that returns 1 when c = cl
i and 0 otherwise

and

wi =

{
1 if δ(xi, x

l
i) = 0;

1
d(xi,xl

i)
2 if δ(xi, x

l
i) �= 0,

where δ(.) denotes the distance between vectors xi and xl
i. Note that, if preferred,

the factor weight can be simply eliminated by putting wi = 1.
3. If there is a tie of two or more classes c ∈ C, vector xi is randomly assigned to one

of these classes.

The algorithm presented applies to k-NN for weighted, discrete classifications, as will
be applied in the current research. However, a simple adaptation can be made to the
algorithm, which enables continuous classifications. For more information on these and
other issues, we refer to the various freely available tutorials and introductions that have
been written on k-NN.

3.4 Support Vector Machine (SVM)

Using a suitable kernel function, a support vector machine (SVM) ensures the division
of a set of data into two classes, with respect to the shape of the classifier and misclas-
sification of the training samples. The main idea of SVM can be best explained with the
example of a binary linear classifier.

Let us define our data set as:

D =
{
(xi, ci)|xi ∈ R

d, ci ∈ {−1, 1}} for i = 0, 1, . . . , N − 1,

where xi is a vector with dimensionality d from the data set, which has size N . ci is the
class to which xi belongs. To separate two classes, we need to formulate a separating
hyperplane w · x = b, where w is a normal vector of length 1, x is a feature vector, and
b is a constant.

In practice, it is often not possible to find such a linear classifier. In this case, the
problem can be generalized. Then, we need to find w and b so that we can optimize

ci(w · xi + b) ≤ ξi,

where ξi represents the deviation (or error) from the linearly separable case.
To determine an optimal plane, the sum of ξi must be minimized. The minimization

of this parameter can be solved by Lagrange multipliers αi. From the derivation of this
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method, it is possible to see that often most of the αis are equal to 0. The remaining
relevant subset of the training data x is denoted as the support vectors. Subsequently,
the classification is performed as:

f(x) = sgn

(
S−1∑
i=0

ciαix · xi + b

)
,

where S denotes the number of support vectors.
For a non-linear classification problem, we can replace the dot product by a non-

linear kernel function. This enables the interpretation of algorithms geometrically in
feature spaces non-linearly related to the input space and combine statistics and ge-
ometry. A kernel can be viewed as a (non-linear) similarity measure and induce repre-
sentations of the data in a linear space. Moreover, the kernel implicitly determines the
function class, which is used for learning [63].

The SVM introduced here classified samples in two classes. In the case of multiple
classes, two approaches are common: 1) for each class, a classifier can be build that
separates that class from the other data and 2) for each pair of classes, classifiers can
be build. With both cases, voting paradigms are used to assign the data samples xi to
classes ci. For more information on SVM, [62,63] can be consulted.

3.5 Artificial Neural Networks (ANN)

Artificial neural networks (ANN) are inspired by their biological counterparts. Often,
ANN are claimed to have a similar behavior as biological neural networks. Although
ANN share several features with biological neural networks (e.g., noise tolerance), this
claim is hardly justified; e.g., a human brain consists of roughly 1011 brain cells, where
an ANN consists of only a few dozens of units.

Nevertheless, ANN have proved their use for a range of pattern recognition and ma-
chine learning applications.

Moreover, ANN have a solid theoretical basis [61,62].
ANN consist of a layer of input units, one or more layers of hidden units, and a

layer of output units. These units are connected with a weight wij , which determines
the transfer of unit ui to unit uj . The activation level of a unit uj is defined as:

aj(t + 1) = f(aj(t), ij(t)),

where t denotes time, f(.) is the activation function that determines the new activation
based on the current state a(t) and its effective input, defined as:

ij(t) =
Uj−1∑
i=0

ai(t)wij(t) + τj(t),

where τj(t) is a certain bias or offset and Uj denotes the number of units from which a
unit uj can receive input. Note that at the input layer of a ANN, the input comes from
the environment; then, i is the environment instead of another unit.
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On its own, each neuron of an ANN can only perform a simple task. In contrast, a
network of units can approximate any function. Moreover, ANN cannot only process
input, they can also learn from their input, either supervised or unsupervised. Although
various learning rules have been introduced for ANN, most can be considered as being
derived from Hebb’s classic learning rule:

Δwij = ηaiaj,

which defines the modification of the weight of connection (ui, uj). η is a positive
constant. Its rationale is that wij should be increased with the simultaneous activation
of both units and the other way around.

Various ANN topologies have been introduced. The most important ones are recur-
rent and feed-forward networks, whose units respectively do and do not form a directed
cycle through feedback connections. In the current research, a feed-forward network
is applied: the classic multilayer perceptron (MLP), as is more often used for emo-
tion recognition purposes; see also Table 2. It incorporated the often adopted sigmoid-
shaped function applied to f(.):

1
1 + e−aj

Throughout the 60 years of their existence, a broad plethora of ANN have been
presented, varying on a range of aspects; e.g., their topology, learning rules, and the
choice of either synchronous or asynchronously updating of its units. More information
on ANN can be found in various introductions on ANN.

3.6 Leave-One-Out Cross Validation (LOOCV)

Assume we have a classifier that is trained, using a part of the available data set: the
training data. The training process optimizes the parameters of a classifier to make it fit
the training data. To validate the classifier’s performance, an independent sample of the
same data set has to be used [61,62].

Cross validation deviates from the general validation scheme since it enables the val-
idation of a classifier without the need of an explicit validation set. As such, it optimizes
the size of the data set that can be used as training data.

Various methods of cross validation have been introduced. In this section, we will
introduce leave-one-out cross validation (LOOCV), a frequently used method to de-
termine the performance of classifiers. LOOCV is typically useful and, consequently,
used in the analysis of (very) small data sets. It has been shown that LOOCV provides
an almost unbiased estimate of the true generalization ability of a classifier. As such, it
provides a good model selection criterion.

Assume we have a classifier (e.g., k-NN, a SVM, or an ANN) of which we want
to verify its performance on a particular data set. This data set contains (partly) data
samples xi with known correct classifications cl

i. Then, classifier’s performance can be
determined through LOOCV, as follows:

1. ∀i train a classifier Ci with the complete data set x, except xi.
2. ∀i classify data sample xi to a class ci, using classifier Ci.
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3. Compute the average error of the classifier through

E =
1
D

argmax
c∈C

D−1∑
i=0

γ(ci, c
l
i),

where D denotes the number of data samples and γ(.) denotes a boolean function,
which returns 1 if ci = cl

i and 0 otherwise. Note that 1
D can be omitted from the

formula if no comparisons are made between data sets (with different sizes).

Instead of one data sample xi, this validation scheme also allows a subset of the data to
be put aside. Such a subset can, for example, consist of all data gathered of one person.
This enables an accurate estimation of the classification error E on this unknown person.

The processing scheme as presented here can be adapted in various ways. For ex-
ample, in addition to the boolean function γ(.), a weight function could be used that
expresses the resemblance between classes. Hence, not all misclassifications would be
judged similarly.

All results reported in this chapter are determined through LOOCV, if not specified
in another way. For more information on cross validation, LOOCV in particular, we
refer to [62].

4 Recording Emotions

We conducted an experiment in which the subjects’ emotions were elicited, using film
fragments that are known to be powerful in eliciting emotions in laboratory settings; see
also [58,59,65]. As biosignals, facial EMG and EDA were recorded. These are known
to reflect emotions [66]; see also both Table 1 and Table 2. The research in which the
data was gathered is already thoroughly documented in both [58] and [59]. Therefore,
we will only provide a brief summary of it.

4.1 Participants

In the experiment, 24 subjects (20 females) participated (average age 43 years). Mainly
females were solicited to participate since we expected a more and stronger facial emo-
tion expression of females [67]. Consequently, a relative small number of males partici-
pated. The biosignal recordings of three subjects either failed or were distorted. Hence,
the signals of 21 subjects remained for classification purposes.

4.2 Equipment and Materials

We selected 8 film fragments (120 sec. each) for their emotional content. For specifi-
cations of these film fragments, see [58,59]. The 8 film fragments were categorized as
being neutral or triggering positive, negative, or mixed (i.e., simultaneous negative and
positive; [68]) emotions; hence, 2 film fragments per emotion category. This catego-
rization was founded on Russell’s valence-arousal model, introduced in [69]. Note that
the existence of mixed emotions, the way to determine them, and the method to analyze
ratings of the possible mixed emotions is still a topic of debate; e.g., [20,22,68].
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Fig. 3. Samples of the electromyography (EMG) in µV of the frontalis, the corrugator supercilii,
and the zygomaticus major as well as of the electrodermal activity (EDA) in µV , denoted by the
skin conductance level (SCL). All these signals were recorded in parallel, with the same person.

A TMS International Porti5-16/ASD system was used for the biosignal record-
ings, which was connected to a PC with TMS Portilab software1. Three facial EMGs
were recorded: the right corrugator supercilii, the left zygomaticus major, and the left
frontalis muscle. The EMG signals were high-pass filtered at 20 Hz, rectified by taking
the absolute difference of the two electrodes, and average filtered with a time constant
of 0.2 sec. The EDA was recorded using two active skin conductivity electrodes and
average filtering with a time constant of about 2 sec. See Fig. 3 for samples of the three
EMG signals and the EDA signal.

4.3 Procedure

After the participant was seated, the electrodes were attached and the recording equip-
ment was checked. The 8 film fragments were presented to the participant in pseudo-
random order. A plain blue screen was shown between the fragments for 120 seconds.
This assured that the biosignals returned to their baseline level, before the next film
fragment was presented.

After the viewing session, the electrodes were removed. Next, the participants an-
swered a few questions regarding the film fragments viewed. To jog their memory,
representative print-outs of each fragment were provided.

1 URL of TMS Portilab software: http://www.tmsi.com/
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5 Preprocessing

The quest towards self-calibrating algorithms for consumer products and for AmI and
AI purposes gave some constraints to processing the signals. For example, no advanced
filters should be needed, the algorithms should be noise-resistant, and should (prefer-
ably) also be able to handle corrupt data. Therefore, we chose to refrain from advanced
preprocessing schemes and applied basic preprocessing. Figure 1 presents the complete
processing scheme as applied in the current research.

5.1 Normalization

Humans are known for their rich variety in all aspects, this is no different for their
biosignals. In developing generic classifiers, this required the normalization of the sig-
nals. This was expected to boost its performance significantly [48].

For each person, for all his signals, and for all their features separately, the following
normalization was applied:

xn =
xi − x̄

σ
,

where xn is the normalized value, xi the recorded value, x̄ the global mean, and σ the
standard deviation.

Normalization of data (e.g., signals) has been broadly discussed. This has resulted in
a variety of normalization functions; e.g., see [24,61,62].

5.2 Baseline Matrix

In their seminal article, Picard, Vyzas, and Healey (2001) introduced a baseline ma-
trix for processing biosignals for emotion recognition. They suggested that this could
tackle problems due to variation both within (e.g., inter day differences) and between
participants. Regrettably, Picard et al. (2001) did not provide evidence for its working.

The baseline matrix requires biosignals recordings while people are in a neutral state.
Regrettably, such recordings were not available. Alternatively, one of both available
neutral film fragments was chosen [58,59].

In line with Picard et al. (2001), the input data was augmented with the baseline val-
ues of the same data set. A maximum performance improvement of 1.5% was achieved,
using a k-NN classifier. Therefore, the baseline matrix was excluded in the final pro-
cessing pipeline.

5.3 Feature Selection

To achieve good classification results with pattern recognition and machine learning, the
set of input features is crucial. This is no different with classifying emotions [7,8,10].
As was denoted in Sect. 2, biosignals can be processed in the time, frequency, time-
frequency, and power domain.

For EMG and EDA signals, the time domain is most often employed for feature
extraction; see also Table 1. Consequently, we have chosen to explore a range of features
from the time domain: mean, absolute deviation, standard deviation (SD), variance,
skewness, and kurtosis. Among these are frequently used features (i.e., mean and SD)
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Table 3. The best feature subsets from the time domain, for k-nearest neighbor (k-NN) classifier
with Euclidean metric. They were determined by analysis of variance (ANOVA), using normal-
ization per signal per participant. EDA denotes the electrodermal activity or skin conductance
level.

feature EDA facial electromyography (EMG)
frontalis corrugator supercilii zygomaticus

mean o
absolute deviation o
standard deviation (SD) o o
variance o o
skewness o o o
kurtosis o

Table 4. The recognition precision of the k-nearest neighbors (k-NN) classifier, with k = 8 and
the Euclidean metric. The influence of three factors is shown: 1) normalization, 2) analysis of
variance (ANOVA) feature selection (FS), and 3) Principal Component Analysis (PCA) trans-
form.

normalization no fs ANOVA fs ANOVA fs & PCA
(10 features) (5 components)

no 45.54%
yes 54.07% 60.71% 60.80%

and rarely used, but promising, features (i.e., skewness and kurtosis) [58,59]; see also
Table 3.

To define an optimal set of features, a criterion function should be defined. How-
ever, no such criterion function was available in our case. Thus, an exhaustive search
in all possible subsets of input features (i.e., 224) was required to guarantee an optimal
set [70]. To limit this enormous search space, an ANOVA-based heuristic search was
applied.

For both the normalizations, we performed feature selection based on ANOVAs. We
selected the features with ANOVA α ≤ 0.001 (see also Sect. 3), as this led to the best
precision. The features selected for each of the biosignals are presented in Table 3.

The last step of preprocessing was PCA; see also Sect. 3. The improvement of the
PCA was small compared to feature selection solely. However, it was positive for nor-
malization; see also Table 4. Figure 2 presents for each set of two emotion classes, of
the total of four, a plot denoting the first three principal components. As such, the six
resulting plots illustrate the complexity of separating the emotion classes.

6 Classification Results

This section reports the results of the three classification techniques applied: k-nearest
neighbors (k-NN), support vector machines (SVM), and artificial neural networks
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Table 5. Confusion matrix of the k-NN classifier of EDA and EMG signals for the best reported
input preprocessing, with a cityblock metric and k = 8

real
neutral positive mixed negative

classified

neutral 71.43% 19.05% 9.52% 14.29%
positive 9.52% 57.14% 9.52% 21.43%
mixed 4.76% 4.76% 64.29% 11.90%
negative 14.29% 19.05% 16.67% 52.38%

(ANN); see also Sect. 3. In all cases, the features extracted from the biosignals were
used to classify participants’ neutral, positive, negative, or mixed state of emotion; see
also Fig. 2. For the complete processing scheme, we refer to Fig. 1.

6.1 k-Nearest Neighbors (k-NN)

For our experiments, we have used MATLAB2 and a k-NN implementation, based on
SOM Toolbox 2.03. Besides the classification algorithm described in Sect. 3.3, we have
used a modified version, more suitable for calculating the recognition rates. Its output
was not the resulting class, but a probability of classification to each of the classes.
This means that if there is a single winning class, the output is 100% for the winning
class and 0% for all the other classes. If there is a tie of multiple classes, the output
is divided among them and 0% is provided to the rest. All the recognition rates of
the k-NN classifier reported in the current study were obtained by using this modified
algorithm.

A correct metric is a crucial part of a k-NN classifier. A variety of metrics provided
by the pdist function in MATLAB2 was applied. Different feature subsets appeared
to be optimal for different classes. Rani et al. (2006) denoted the same issue in their
empirical review; cf. Table 3. The results of the best preprocessed input with respect to
the four emotion classes (i.e., neutral, positive, negative, and mixed) is 61.31%, with a
cityblock metric and k = 8; cf. Table 4.

Probability tables for the different classifications given a known emotion category
are quite easy to obtain. They can be derived from confusion matrices of the classifiers
by transforming the frequencies to probabilities. Table 5 presents the confusion matrix
of the k-NN classifier used in this research, with a cityblock metric and k = 8.

6.2 Support Vector Machines (SVM)

We have used MATLAB2 environment and a SVM and kernel methods toolbox4, for
experimenting with SVMs. We used input enhanced with the best preprocessing, de-
scribed in the previous section. It was optimized for the k-NN classifier; however, we

2 MATLAB online: http://www.mathworks.com/products/matlab/
3 The MATLAB SOM Toolbox 2.0 is available through:

http://www.cis.hut.fi/projects/somtoolbox
4 The SVM and kernel methods toolbox is available through:

http://asi.insa-rouen.fr/enseignants/ arakotom/toolbox/
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expected it to be a good input also for more complex classifiers, including SVM. This
assumption was supported by several tests with various normalizations. Hence, the sig-
nals were normalized per person, see also Sect. 5. After feature selection, the first 5
principal components from the PCA transformation were selected, see also Sect. 3.

The kernel function of SVM characterizes the shapes of possible subsets of inputs
classified into one category [63]. Being SVM’s similarity measure, the kernel function
is the most important part of an SVM; see also Sect. 3. We applied both a polynomial
kernel, with dimensionality d, defined as:

kP (xi, x
l) =

(
xi · xl

)d
and a Gaussian (or radial basis function) kernel, defined as:

kG(xi, x
l) = exp

(
−|xi − xl|2

2σ2

)
,

where xi is a feature vector that has to classified and xl is a feature vector assigned to a
class (i.e., the training sample) [63].

A Gaussian kernel (σ = 0.7) performed best with 60.71% correct classification.
However, a polynomial kernel with d = 1 had a similar classification performance
(58.93%). All the results were slightly worse than with the k-NN classifier.

6.3 Artificial Neural Networks (ANN)

We have used a multi-layer perceptron (MLP) trained by a back-propagation algorithm
that was implemented in the neural network toolbox of MATLAB2; see also Sect. 3. It
used gradient descent with moment and adaptive training parameter. We have tried to
recognize only the inputs that performed best with the k-NN classifier.

In order to assess what topology of ANN was most suitable for the task, we con-
ducted small experiments with both 1 and 2 hidden layers. In both cases, we did try 5 to
16 neurons within each hidden layer. All of the possible 12 + 12 × 12 topologies were
trained, each with 150 cycles and tested using LOOCV.

The experiments using various network topologies supported the claim from [71]
that bigger ANN do not always tend to over fit the data. The extra neurons were simply
not used in the training process. Consequently, the bigger networks showed good gen-
eralization capabilities but did not outperform the smaller ones. A MLP with 1 hidden
layer of 12 neurons showed to be the optimal topology.

An alternative method for stopping the adaptation of the ANN is using validation
data. For this reason, the data set was split into 3 parts: 1 subject for testing, 3 subjects
for validation, and 17 subjects for training. The testing subject was completely removed
from the training process at the beginning. The network was trained using 17 randomly
chosen training subjects. At the end of each training iteration, the network was tested
on the 3 validation subjects.

This procedure led to a 56.19% correct classification of the four emotion classes.
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6.4 Reflection on the Results

Throughout the last decade, various studies have been presented with similar aims.
Some of these studies reported good results on the automatic classification of biosignals
that should unveil people’s emotions; see Table 2. For example, Picard et al. (2001)
reports 81% correct classification on the emotions of one subject [9]. Haag et al. (2004)
reports 64%–97% correct classification, using a band function with bandwidth 10% and
20%. This study was conducted on one subject. This study reports promising results but
also lacks the necessary details needed for its replication [41]. More recently, Kim and
André (2008) reported a recognition accuracy of 95% and 70% for subject-dependent
and subject-independent classification. Their study included three subjects [33].

In comparison with [9,41,33], this research incorporated data of a large number
of people (i.e., 21), with the aim to develop a generic processing framework. At first
glance, with average recognition rates of 60.71% for SVM and 61.31% for k-NN and
only 56.19% for ANN, its success is questionable. However, the classification rates
differ among the four emotion categories, as is shown in Table 5, which presents the
confusion matrix of the results of the k-NN classifier. Neutral emotional states are rec-
ognized best, with a classification rate of 71.43%. Negative emotional states are the
most complex to distinguish from the other three emotion categories, as is marked by
its 52.38% correct classification rate. The complexity of separating the four emotion
classes from each other is illustrated in Fig. 2.

Taking in consideration the generic processing pipeline (see also Fig. 1) and the lim-
itations of other comparable research (cf. Table 2), the results reported in this chapter
should be judged as (at least) reasonably good. Moreover, a broad range of improve-
ments are possible. One of them would be to question the need of identifying specific
emotions, using biosignals for MMI. Hence, the use of alternative, rather rough catego-
rizations, as used in the current research, should be further explored.

With pattern recognition and machine learning, preprocessing of the data is crucial.
This phase could also be improved for the biosignals used in the current study. First of
all, we think that the feature selection based on an ANOVA was not sufficient for more
complex classifiers such as neural networks. The ANOVA tests gathered the centers
of random distributions that would generate the data of different categories; hereby
assuming that their variances were the same. However, a negative result of this test is
not enough to decide that a feature did not contain any information. As an alternative for
feature selection, the k-NN classifier could be extended by a metric that would weigh
the features, instead of omitting the confusing or less informative features.

Taken it all together, the quest towards affective MMI continues. Although the results
presented are good compared to related work, it is hard to estimate whether or not the
classification performance is sufficient for embedding of affective MMI in real world
applications. However, the future is promising with the rapidly increasing amount of
resources allocated for affective MMI and the range of improvements that are possi-
ble. This assures that the performance on classification of emotions will achieve the
necessary further improvements.
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7 Discussion

This chapter has positioned men as machines in the sense that they are psycho-neuro-
physical mechanisms [13]. It has to be said that this is a far from new position; it is
already known for centuries, although it was rarely exploited in application oriented
research. However, in the last decade interest has increased and subareas evolved that
utilized this knowledge. This chapter concerns one of them: affective MMI; or as Picard
(1997) coined it: affective computing.

A literature overview is provided of the work done so far, see also Table 1 and Ta-
ble 2. In addition, some guidelines on affective MMI are provided; see Sects. 1 and 2.
To enable the recognition of these emotions, they had to be classified. Therefore, a brief
description was provided of the classification techniques used (Sect. 3). Next, a study
is introduced in which three EMG signals and people’s EDA were measured (see also
Fig. 3), while being exposed to emotion inducing film fragments; see Sect. 4. See Fig. 1
for an overview of the processing scheme applied in the current research. Subsequently,
preprocessing and the automatic classification of biosignals, using the four emotion
categories, were presented in Sect. 5 and Sect. 6.

Also in this research, the differences among participants became apparent. They can
be denoted on four levels; see also Sect. 1. People have different physiological reactions
on the same emotions and that people experience different emotions with the same
stimuli (e.g., music or films). Moreover, these four levels interact [7,8,14]. Although
our aim was to develop a generic model, one could question whether or not this can be
realized. Various attempts have been made to determine people’s personal biosignals-
profile; e.g., [9,14,33,48]. However, no generally accepted standard has been developed
so far.

In pursuit to generic affective MMI processing schemes, the notion of time should be
taken into consideration, as was already denoted in Sect. 2. This can help to distinguish
between emotions, moods, and personality [20,72,73]:

1. Emotion: A short reaction (i.e., a matter of seconds) to the perception of a specific
(external or internal) event, accompanied by mental, behavioral, and physiological
changes [7,10].

2. Moods: A long lasting state, gradually changing, in terms of minutes, hours, or even
longer. They are experienced without concurrent awareness of their origin and are
not object related. Moods do not directly affect actions; however, they do influence
our behavior indirectly [7,10,74].

3. Personality: People’s distinctive traits and behavioral and emotional characteris-
tics. For example, introvert and extrovert persons express their emotions in distinct
ways. Additionally, also self-reports and physiological indicators / biosignals will
be influenced by people’s personality trait [19,75].

With respect to processing the biosignals, the current research could be extended
by a more detailed exploration of the time windows; e.g., with a span of 10 sec-
onds [7,8,10,22]. Then, data from different time frames can be combined and different,
better suitable normalizations could be applied to create new features. For example,
information concerning the behavior of the physiological signals could be more infor-
mative than only the integral features from a large time window. Studying short time
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frames could also provide a better understanding on the relation between emotions and
their physiological correlates / biosignals, see also Table 1.

Other more practical considerations should also be noted. The advances made in
wearable computing and sensors facilitates (affective) MMI; e.g., [21]. Last years, var-
ious prototypes have been developed, which enable the recording of physiological sig-
nals; e.g., [76]. This enables the recordings of various biosignals in parallel. In this way,
an even higher probability of correct interpretation can be achieved [7,8,20].

Affective MMI can extent consumer products [22]. For example, a mp3-player could
sense its listener’s emotions and either provide suggestions for other music or automati-
cally adapt its playing list to these emotions. In addition, various other applications have
been proposed, mockups have been presented, and implementations have been made.
Three examples of these are clothes with wearable computing, games that tweak its
behavior and presentation depending on your emotions, and lighting that reacts on or
adapts to your mood.

Affective signal processing (ASP) could possibly bring salvation to AI [1,20]. With
understanding and sensing emotions, true AI is possibly (and finally) within reach. Cur-
rent progress in biomedical and electrical engineering provide the means to conduct
affective MMI in an unobtrusive manner and, consequently, gain knowledge about our
natural behavior, a prerequisite for modeling it. As AI’s natural successor, for AmI [20],
even more than for AI, emotions play a crucial role in making it a success. Since AmI
was coined by Emile Aarts [32], this has been widely acknowledged and repeatedly
stressed; e.g., [20,32].

An extension of MMI is human-robot interaction. With robotics, embodiment is
a key factor. Potentially, robots are able to enrich their communication substantially
through showing some empathy from time to time. As with AI and AmI, this requires
sensing and classification of emotions, as can be conveniently done through biosig-
nals [34,35].

Of interest for affective MMI are also the developments in brain-computer interfac-
ing (BCI) [29,30]. In time, affective BCI will possibly become within science’s reach.
Affective BCI, but also BCI in general, could advance AI, AmI, and human-robot inter-
action. Slowly this becomes acknowledged, as is illustrated by a workshop on affective
BCI, as was held at the IEEE 2009 International Conference on Affective Computing
and Intelligent Interaction5. With affective BCI, again both its scientific foundation and
its applications will be of interest.

Without any doubt affective MMI has a broad range of applications and can help in
making various areas more successful. Taking it all together, the results gathered in this
research are promising. However, the correct classification rate is below that what is
needed for reliable affective MMI in practice. Providing the range of factors that can
be improved, one should expect that the performance can be boosted substantially. That
this is not already achieved is not a good sign; perhaps, still some essential mistakes are
made. One of the mistakes could be the computationally driven approach. A processing
scheme that is founded on or at least inspired by knowledge from both biology, in
particular physiology, and psychology could possibly be more fruitful . . .

5 The IEEE 2009 International Conference on Affective Computing and Intelligent Interaction:
http://www.acii2009.nl/
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8 Conclusions

Affective MMI through biosignals is perhaps the ultimate blend of biomedical engi-
neering, psychophysiology, and AI. However, in its pursuit, various other disciplines
(e.g., electrical engineering and psychology) should not be disregarded. In parallel, af-
fective MMI promotes the quest towards its scientific foundation and screams for its
application [7,8,10]. As such, it is next generation science and engineering, which truly
bridges the gap between man and machine.

As can be derived from this chapter, still various hurdles have to be taken in the de-
velopment of a generic, self-calibrating, biosignal-driven classification framework for
affective MMI. The research and the directives denoted here could help in taking some
of these hurdles. When the remaining ones will also be taken; then, in time, the common
denominators of people’s biosignals can be determined and their relation with experi-
enced emotions can be further specified. This would mark a new, biosignal-driven, era
of advanced, affective MMI.
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