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ABSTRACT 
In this paper, we propose an approach for affective ranking of 
movie scenes based on the emotions that are actually felt by 
spectators. Such a ranking can be used for characterizing the 
affective, or emotional, content of video clips. The ranking can for 
instance help determine which video clip from a database elicits, 
for a given user, the most joy. This in turn will permit video 
indexing and retrieval based on affective criteria corresponding to 
a personalized user affective profile. 
A dataset of 64 different scenes from 8 movies was shown to eight 
participants. While watching, their physiological responses were 
recorded; namely, five peripheral physiological signals (GSR - 
galvanic skin resistance, EMG - electromyograms, blood pressure, 
respiration pattern, skin temperature) were acquired. After 
watching each scene, the participants were asked to self-assess 
their felt arousal and valence for that scene. In addition, movie 
scenes were analyzed in order to characterize each with various 
audio- and video-based features capturing the key elements of the 
events occurring within that scene.  
Arousal and valence levels were estimated by a linear combination 
of features from physiological signals, as well as by a linear 
combination of content-based audio and video features. We show 
that a correlation exists between arousal- and valence-based 
rankings provided by the spectator's self-assessments, and rankings 
obtained automatically from either physiological signals or audio-
video features. This demonstrates the ability of using physiological 
responses of participants to characterize video scenes and to rank 
them according to their emotional content. This further shows that 
audio-visual features, either individually or combined, can fairly 
reliably be used to predict the spectator's felt emotion for a given 
scene. The results also confirm that participants exhibit different 
affective responses to movie scenes, which emphasizes the need for 
the emotional profiles to be user-dependant. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information 
filtering, Selection process 

General Terms 
Algorithms, Measurement, Experimentation, Human Factors. 

Keywords 
Multimedia indexing and retrieval, affective personalization and 
ranking, emotion recognition and assessment, affective 
computing, physiological signals.  

1. INTRODUCTION 
Due to the ever increasing amount of digital multimedia content 
and searching relevant content within the existing content is 
becoming more and more difficult. Interactive and novel 
multimedia indexing and retrieval solutions become more 
essential to manage multimedia databases. In this paper we 
propose to use the emotion that is actually felt by a given 
spectator as an indexing feature, in addition to more classical 
features like those based on video analysis of the media content. 
In order to demonstrate that affect can be used for ranking movie 
scenes, we compared self-assessment of the emotional content of 
scenes with emotion that is estimated from physiological 
responses and with emotion that is estimated from multimedia 
content analysis. 
The affective and emotional preferences of a user play an 
important role in multimedia content selection. Imagine that you 
missed a part of your favorite TV show and you want to take a 
brief look at what happened in the missed episode, or you feel 
bored and you are looking for an entertaining movie. How can a 
system understand your affective preferences? What are your real 
affective preferences? These questions are hard to answer, 
because user emotional preferences depend on many aspects such 
as context, culture, sex, age, etc. A “personal content delivery” 
[14] system which considers one's emotional preferences should 
answer these needs. This paper introduces an affective ranking 
method that can operate at the core of such a system.  
Measurement and comparison between affective states based on 
numerical values is impracticable, because no precise quantitative 
scale allowing to measure affect exists. Meanwhile, it is possible 
to qualitatively compare affect by expressing the fact that one 
emotional state was more exciting or more pleasant than another. 
Affective ranking is thus proposed as a criterion to be used for 
similarity measurements and for affective indexing. 
To assess emotion, physiological responses are valued for not 
interrupting users for self reporting phases. In addition, affective 
self-reports might be held in doubt because the participant 
cannot remember all the different emotions he/she had during 
the experiment, and/or might misrepresent his/her feelings due 
to self presentation (i.e. the participant wants to show he/she is 
courageous whereas in reality he/she was scared) or for pleasing 
the experimenter [26]. Finally, while self reports are unable to 
represent dynamic changes, physiological measurements give 
the ability of measuring the user responses dynamically [3].Self-
assessment is however necessary as ground truth, to show that 
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the physiological measurements are valid and also to train the 
affect representation system.  
Affect based video content characterization requires the 
understanding of the intensity and type of affect which is expected 
to be evoked in the user (audience) while watching a movie/video. 
There are only a limited number of studies on content-based 
affective representation/understanding of movies, and these 
mostly rely on self-assessments or population averages to obtain 
the emotional content of a movie [6][14][33]. Wang and Cheong 
[33] used content-based audio and video features to classify basic 
emotions elicited by movie scenes. They classified audio, into 
music, speech and environment signals and treated them 
separately to shape an affective vector. They used the audio 
affective vector with video-based features such as key lighting, 
visual excitement to generate a scene affective vector. The scene 
affect vector was classified and labeled with emotions.  
Hanjalic et al [14] introduced “personalized content delivery” as a 
valuable tool in affective indexing and retrieval systems. They 
first selected video- and audio- content based features based on 
their relation to the arousal and valence space that was defined as 
an affect model [30]; see also Section 2 of this paper). Combining 
these features, they then estimated arising emotions in this space. 
While the arousal and valence grades could be used separately for 
indexing, they combined those grades by following their temporal 
pattern in this arousal/valence space. This allowed determining an 
affect curve, which is useful for extracting video highlights in a 
movie or sport video. 
Affective systems require methods for automatically assessing 
user's emotional state. Computerized emotion assessment gained 
interest over the last years. Most of current methods focus on 
facial expressions and speech analysis. However, these methods 
cannot always be depended upon since users are not always 
speaking or turning their head towards the front of a camera. With 
the advancement of wearable systems for recording peripheral 
physiological signals, it has become practically feasible to employ 
these signals in an easy-to-use human computer interface [2][15]. 
We therefore concentrated on the use of peripheral physiological 
signals for assessing emotion. We used galvanic skin resistance 
(GSR), blood pressure which provided heart rate, respiration 
pattern, and skin temperature. In order to record facial expressions 
we also used electromyograms (EMG) from the Zygomaticus 
major and Frontalis muscles1. At this stage of the study, we opted 
for not using EEG - electroencephalograms due to the 
cumbersomeness of the apparatus and acquisition protocols, 
although EEG's have been shown to be very useful for assessing 
emotions [1][7][8][19][31] .  
This paper demonstrates a first step towards benefiting from 
physiological responses to determine personalized emotional 
profiles and subsequently to permit affect based video indexing. 
Peripheral physiological signals were recorded for monitoring the 
arousal/valence level of participants’ emotion while they were 
watching a movie scene. In order to understand the user’s 
emotional behavior, sets of features extracted from the 
physiological signals were linearly combined to obtain an estimate 
for the arousal and valence levels. These grades assessed while 
watching movie scenes can be used as a new dimension of 
information in the user’s personal affective profile. Multimedia 

                                                                 
1 The Zygomaticus major muscles extend from each zygomatic 

arch (cheekbones) to the corners of the mouth, while the 
Frontalis muscles are located above the eyebrows on the 
forehead. 

content-based features were also extracted from the scenes by 
audio and video processing.  
The correlation between the self-assessed arousal/valence values 
and those computed from physiological features was determined, 
as well as the correlation between these self-assessed 
arousal/valence values and those obtained from multimedia 
features. The correlation between the physiological signals and 
the multimedia features was also investigated to determine which 
multimedia features give rise to which type of emotion. Many of 
the correlations are shown to be significant: physiological 
responses of participants can characterize video scenes, and 
audio-visual features can fairly reliably be used to predict the 
spectator's felt emotion. The variation between participants of 
those content-based features that had the highest correlation with 
self-assessment demonstrates the need for considering personal 
preferences in affective indexing of multimedia contents. Finally 
it can be noted that we did not focus on temporal changes in 
arousal and valence space. Rather, we investigated the average 
affect related to each movie segments of interest (scenes). 
The rest of this paper is organized as follows. Section 2 presents 
some background on representation of affect and on the 
arousal/valence model to represent emotions. Section 3 elaborates 
on data acquisition, feature extraction, and how features are 
combined for ranking. The experimental results are given in 
Section 4 and finally conclusions are presented in Section 5. 

2. AFFECTIVE REPRESENTATION AND 

EMOTION MODELS 
In order to better analyze emotions, one should know the 
processes that lead to emotional activation, how to model 
emotions and what are the different expressions of emotions. 
Three of the emotions viewpoints that Cornelius [10] cites are the 
Darwinian, cognitive and Jamesian ones. The Darwinian theory 
suggests that emotions are selected by nature in term of their 
survival value, e.g. fear exists because it helps avoid danger. The 
cognitive theory states that the brain is the centre of emotions. It 
particularly focuses on the “direct and non reflective” process, 
called appraisal [5], by which the brain judges a situation or an 
event as good or bad. Finally the Jamesian theory stipulates that 
emotions are only the perception of bodily changes such as heart 
rate or dermal responses (“I am afraid because I shiver”). 
Although controversial, this later approach emphasizes the 
important role of physiological responses in the study of 
emotions. 
These different theories lead to different models. Inspired by the 
Darwinian theory, Ekman demonstrates the universality of six 
facial expressions [13]: happiness, surprise, anger, disgust, 
sadness and fear. Emotions however are not discrete phenomena 
but rather continuous ones. Psychologists therefore represent 
emotions or feelings in an n-dimensional space (generally 2- or 3-
dimensional). The most famous such space, originating from 
cognitive theory, is the 2D valence/arousal space. Valence 
represents the way one judges a situation, from unpleasant to 
pleasant; arousal expresses the degree of excitement felt by 
people, from calm to exciting (Figure 1).  
Cowie used the valence/activation space to model and assess 
emotions from speech, which is similar to the valence/arousal 
space, [6][15][30]. Although both spaces do not provide any 
verbal description, it is possible to map a point in this space to a 
categorical feeling label. In the present study it was chosen to 
model emotions in the valence/arousal space, because this 
representation seems closer to real feelings, and gives the 



possibility to extract emotion labels from a continuous 
representation. 

  
Figure 1 The arousal and valence two dimensional space.  

 

In order to rank expected affects from movie scenes, participants 
were asked to to grade each movie scene by arousal and valence 
grades using self-assessment Manikins (SAM)[24]. These grades 
were used for ranking video scenes from the most exciting to the 
calmest, in correspondence to the arousal dimension. In a similar 
way, they were asked to rank the scenes from the happiest (the 
most pleasant) to the saddest (the most unpleasant), corresponding 
to the valence dimension. These rankings based on user self-
assessed emotional content will then be compared to similar 
affective rankings obtained automatically from either 
physiological signals or multimedia content. The scales of arousal 
and valence values are not linear, i.e. the fact that the arousal 
value increases by a factor of two does not mean the actual 
arousal increases by the same factor. For this reason, we ranked 
the movie scenes instead of using a continuous value for valence 
and arousal.  It should be noted that the two dimensions of the 
arousal-valence space are not independent, e.g., high valence is 
generally associated with high arousal. However, we treated 
arousal and valence independently. 

3. MATERIAL AND METHODS 

3.1 Overview 
A video dataset of 64 movie scenes was created (see Section 3.3) 
from which content-based low-level features were extracted. 
Experiments were conducted during which physiological signals 
were recorded from spectators. After each scene, the spectator 
self-assessed his/her arousal and valence levels. To reduce the 
mental load of the participants, the protocol divided the show into 
2 sessions of 32 movie scenes each. Each of these sessions lasted 
approximately two hours, including setup. Eight healthy 
participants (three female and five male, from 22 to 40 years old) 
participated in the experiment.  Thus, after finishing the 
experiment three types of affective information about each movie 
clip were available:  
• multimedia content-based information extracted from audio 
and video signals; 
• physiological responses from spectators’ bodily reactions 
(due to the autonomous nervous system) and from facial 
expressions; 
• self-assessed arousal and valence, used as ‘ground truth’ for 
the true feelings of the spectator. 
Since video scenes were showed in random order, the occurrence 
of high and low arousal and valence values in the self-assessed 
vectors (64 elements each) does not depend on the order in which 
scenes were presented. Next, we aim at demonstrating how a 
similar ranking of the movie scenes can be obtained by using the 
information that is either extracted from audio and video signals 
or contained within the recorded physiological signals. To this 
end, features that are likely to be influenced by affect have been 

extracted from the audio and video content as well as from the 
physiological signals. Thus a (single) feature vector composed of 
64 elements highlights a single characteristic (for instance, 
average sound energy) of the 64 movie scenes. In a similar way 
feature vectors were extracted from the physiological signals. As 
one may expect, a single extracted feature, e.g. average sound 
energy, may not be equally relevant to the affective feelings of 
different participants. In order to personalize the set of all 
extracted features, an extra operation called relevant-feature 
selection has been implemented. During the relevant-feature 
selection for arousal, the Spearman correlation between the 
single-feature vectors and the self-assessed arousal vector is 
determined. Only the features with a correlation absolute ρ value 
above 0.25, and p-value below 0.05 were subsequently used for 
estimating arousal. A similar procedure was performed for 
valence. It will be shown that accurate estimates of the self-
assessed arousal and valence can be obtained based on the 
relevant feature vectors for physiological signals as well as from 
the relevant feature vectors for audio and video information. 

3.2 Experiments  
The participants were first informed about the video contents in 
the experiment. They then had a brief training about the self-
assessment procedure and concerning the meaning of arousal and 
valence. In emotional-affective experiments the bias of the 
emotional state or mood of participants creates problems for 
researchers. To avoid this problem and record a baseline at the 
start of each trial we showed one short (approximately 30s) 
neutral clip randomly selected from clips provided by the Stanford 
psychophysiology laboratory [29] (available online at http://www-
psych.stanford.edu/~psyphy/resources.htm,). 
Figure 2 presents the experimental protocol and its timing. Each 
trial started with the user pressing the “I am ready” key which 
started the neutral clip playing. After watching the neutral clip, 
one of the movie scenes was played. Movie scenes were selected 
from the dataset in random order. After watching the movie scene, 
the participant filled in the self-assessment form which popped up 
automatically. In total, the time interval between the starts of 
consecutive trials was approximately three to four minutes. This 
interval included playing the neutral clip, playing the selected 
scene, performing the self-assessment, and the participant-
controlled rest time.  

 
Figure 2. Experimental protocol. 

3.3 Data 

3.3.1 Movie scenes dataset 
To create a video dataset for our research, we extracted video 
scenes from eight movies (mostly Hollywood movies). The 
majority of movies were selected either according to similar 
studies (e.g. [2][14][29][33]), or from recent famous movies. The 
movies included four major genres: drama, horror, action, and 

Rest 

Neutral clip Movie scene 

1~2 minutes ~30 seconds

time

time

Trial 1 Trial 10 Trial 32 Trial 11 

Self assessment 

~2 hours 

Arousal 

Calm 

Positive Negative 

Valence 

Excited 



comedy. Video clips used for this study are from the following: 
Saving Private Ryan (action), Kill Bill, Vol. 1 (action), Hotel 
Rwanda (drama), The Pianist (drama), Mr. Bean’s Holiday 
(comedy), Love Actually (comedy), The Ring, Japanese version 
(horror) and 28 Days Later (horror). The extracted scenes, eight 
for each movie, had durations of approximately one to two 
minutes each and contained an emotional event (judged by the 
authors). 
 

 
Figure 3. Arousal and valence self-assessment: SAM 

manikins and sliders. 

3.3.2 Physiological signals 
Peripheral signals and facial expression EMG signals were 
recorded for emotion assessment. EMG signals from the right 
Zygomaticus major muscle (smile, laughter) and right Frontalis 
muscle (attention, surprise) were used as indicators of facial 
expressions. Galvanic skin resistance (GSR), skin temperature, 
breathing pattern (using a respiration belt) and blood pressure 
(using a plethysmograph) were also recorded. All physiological 
data was acquired via a Biosemi Active-two system with active 
electrodes, from Biosemi Systems (http://www.biosemi.com). The 
data was recorded with a sampling frequency of 1024 Hz in a 
sound-isolated Faraday cage. Examples of recorded physiological 
signals in a surprising scene are given in Figure 4. The GSR and 
respiration signals were respectively smoothed by a 512 and a 256 
points averaging filters to reduce the high frequency noise. EMG 
signals were filtered by a Butterworth band pass filter with a 
lower cutoff frequency of 4 Hz and a higher cutoff frequency of 
40 Hz. 

3.4 Feature Extraction 

3.4.1 Audio and video content-based features 

3.4.1.1 Audio-based features 
Sound has an important impact on user’s affect. For example 
according to the findings of Picard [25], loudness of speech 
(energy) is related to evoked arousal, while rhythm and average 
pitch in speech signals are related to valence. The audio channels 
of the movie scenes were extracted and encoded into monophonic 
information (MPEG layer 3 format) at a sampling rate of 48 kHz. 
All of the resulting audio signals were normalized to the same 
amplitude range before further processing. A total of 79 low-level 
audio features were determined for each of the audio signals. 
These features, listed in Table 1, are commonly used in audio and 
speech processing and audio classification [21][22]. 
Wang et al [33] demonstrated the relationship between audio 
type’s proportions and affect, where these proportions refer to the 
respective duration of music, speech, environment, and silence in 
the audio signal of a video clip. To determine the three important 
audio types (music, speech, environment), we implemented a 
three class audio type classifier using support vector machines 
(SVM) operating on audio low-level features in a time window of 
one second. Despite the fact that in various cases the classes were 

overlapping (e.g. presence of a musical background during a 
dialogue), the classifier was usually able to recognize the 
dominant audio type. Before classification, silence could be 
identified by comparing the audio signal energy of each sound 
sample (using the averaged square magnitude in a time window) 

with a pre-defined threshold empirically set at 5·10-7
, while the 

audio signals amplitude range was normalized in the range [-1, 1] 
at the sampling rate of 48 KHz. After removing silence, the 
remaining audio signals were classified by the three classes SVM 
with a polynomial kernel, using the multiclass support vector 
machine from the OSU SVM toolbox. (http://sourceforge.net 
/projects/svm/). The SVM was trained utilizing more than 3 hours 
of audio, extracted from movies and labeled manually. The 
classification results were used to form a 4 bin (3 audio types and 
silence) normalized histogram; these histogram values were used 
as affective features for the affective ranking. MFCC (Mel 
frequency cepstral coefficients), LPCC (Linear prediction cepstral 
coefficients) and the pitch of audio signals were extracted using 
the PRAAT software package [4]. 
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Figure 4. Physiological response (participant 2) to a 

surprising action scene. The following raw physiological 

signals are shown: respiration pattern (top-left), GSR (top-

right), blood pressure (bottom left), and Frontalis EMG 

(bottom-right). The surprise moment is indicated by an 

arrow. 

3.4.1.2 Video-based features 
Movie scenes have been segmented at the shot level using the 
OMT shot segmentation software [16]. Video clips were encoded 
into MPEG-1 format to extract motion vectors and I frames for 
further feature extraction. We used the OVAL library (Object-
based Video Access Library) [23] to capture video frames and 
extract motion vectors.  
From a movie director's point of view, lighting key [25][30] and 
color variance [28] are important parameters to evoke emotions. 
We therefore extracted lighting key from frames in the HSV space 
by multiplying the average value (V in HSV) by the standard 
deviation of the values (V in HSV).  Color variance was obtained 
in the CIE LUV color space by computing the determinant of the 
covariance matrix of L, U, and V.  
Hanjalic et al. [14] showed the relationship between video rhythm 
and affect. The average shot change rate, and shot length variance 
were extracted to characterize video rhythm. Fast movement of 
scene or objects in consecutive frames is also an effective factor 
for evoking excitement. To measure this factor, the motion 
component was defined as the amount of motion in consecutive 
frames. This parameter was computed by accumulating 
magnitudes of motion vectors for all B and P frames. 
 



 

 Table 1. Low-level features extracted from audio signals. 

Feature category Extracted features Comments 

MFCC coefficients (13 features) 

Derivative of MFCC (13 features) 

MFCC - Mel 
frequency cepstral 
coefficients 

Autocorrelation of MFCC [21] (13 features) 

Energy Average energy of audio 
signal  

[21] 

LPCC [21] (16 features) LPCC - Linear 
prediction cepstral 
coefficients Derivative of LPCC [21] (16 features) 

Time frequency Spectrum flux [21] 
 Spectral centroid [21] 
 Delta spectrum magnitude [21] 
 Band energy ratio [22] 
Pitch First pitch frequency [21]  
Zero crossing rate  [21]  

Silence ratio Proportion of silence in a 
time window [9] 

Colors and their proportions have an effect to elicit emotions. In 
order to use colors in the list of video features, a 20 bin color 
histogram of hue and lightness values in the HSV space was 
computed for each I frame and subsequently averaged over all 
frames The resulting averages for the 20 bins were used for the 
video content-based features. The median of L value in HSL 
space was computed to obtain the median lightness of a frame.  
Shadow proportion or the proportion of dark area in a video frame 
is another feature which relates to affect [33]. Shadow proportion 
is determined by comparing the lightness values in HSL color 
space with an empirical threshold. Pixels with lightness level 
below this threshold (0.18 [33]) are assumed to be dark and in 
shadow in the frame. 

3.4.2 Physiological features 
GSR provides a measure of the resistance of the skin by 
positioning two electrodes on the tops of two fingers and passing 
a very small current through the hand. This resistance decreases 
due to an increase of sudation, which usually occurs when one is 
experiencing emotions such as stress or surprise. Moreover, Lang 
et al. discovered that the mean value of the GSR is related to the 
level of arousal [20]. (See Table 2 which summarizes the list of 
features extracted from physiological signals.) 
A plethysmograph measures blood pressure in the participant’s 
thumb. This measurement can also be used to compute heart rate 
by identification of local maxima (i.e. heart beats) and inter-beat 
periods. Blood pressure and heart rate variability are variables that 
correlate with emotions, since stress can increase blood pressure 
[15]. Pleasantness of stimuli can increase peak heart rate response 
[20], and heart rate variability decreases with fear, sadness, and 
happiness [27]. Several of the features in Table 2 are therefore 
derived from the plethysmograph’s recording. 
Skin temperature changes in different emotional states [20]. The 
following features were therefore extracted from the skin 
temperature signal: minimum, maximum, average, and standard 
deviation of the temperature. 
The respiration pattern is measured by tying a respiration belt 
around the chest of the participant. Slow respiration is linked to 
relaxation while irregular rhythm, quick variations, and cessation 
of respiration correspond to more aroused emotions like anger or 
fear[17][27]. Laughing is known to affect the respiration pattern 
by introducing high-frequency fluctuations to the recorded signal. 
Features from both the frequency and time domain are therefore 

used. The energy ratio, between energies in a lower band (0.05 to 
0.25 Hz) and a higher band (0.25 to 5Hz) was extracted from the 
respiration patterns. The spectral centroid was computed to 
represent the dominant rhythm of breathing.  

Table 2. Features extracted from peripheral signals. 

Peripheral signal Extracted features 

GSR 

Average skin resistance, average of derivative, 
mean of derivative for negative values 

only(average decrease rate during decay time), 
proportion of negative samples in the derivative 

vs. all samples 

Blood flow 
(Plethysmograph) 

Average blood pressure, heat rate, heart rate 
derivative, heart rate variability, standard 

deviation of heart rate 

Respiration 

Band energy ratio (energy ratio between the 
lower (0.05-0.25Hz) and the higher (0.25-5Hz) 

bands), average respiration signal, mean of 
derivative (variation of the respiration signal), 
standard deviation, dynamic range or greatest 
breath, breathing rhythm (spectral centroid) 

EMG 
Zygomaticus 

Energy 

EMG Frontalis Energy 

Eye blinking rate Rate of eye blinking per second, extracted from 
the Frontalis EMG 

Skin Temperature Range, average, minimum, maximum, standard 
deviation 

 

Regarding the EMG signals, the Frontalis muscles activity is a 
sign of attention or stress in facial expressions. The activity of the 
Zygomaticus major was also extracted, since this muscle is active 
when the user is laughing or smiling [12]. Most of the power in 
the spectrum of an EMG during muscle contraction is in the 
frequency range between 4 to 40 Hz. Thus, the muscle activity 
feature was obtained from the energy of EMG signals in this 
frequency range.  
The rate of eye blinking is another feature, which is correlated 
with anxiety. Eye-blinking affects the EMG signal that is recorded 
over the Frontalis muscle and results in easily detectable peaks in 
that signal. By counting these peaks in the Frontalis EMG, the eye 
blinking rate of a participant can also be determined.  

3.5 Relevant features selection 
The relevance of features was determined using Spearman ranking 
correlation between each extracted feature and the users’ self-
assessment, as motivated in Section 3.1. The ranking correlation 
coefficient, ρ, can be determined for any two ranked vectors of 
equal length n, by: 
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where di indicates the absolute difference in position of the ith 
largest value between the two vectors. For instance for i = 1, 
assuming the highest ranked element in the first vector is the third 
entry and the highest ranked element in the second vector is the 
twelfth entry, then d1 is nine, the absolute value of (3-12). The 
maximum value of ρ, ρ =1, occurs only when rankings of both 
vectors are identical. When ρ =0 the two ranked vectors are not 
correlated, and when ρ = -1 the rankings are completely reversed 
in the two vectors.  
In this study, a significant correlation between two vectors was 
supposed to exist when the absolute correlation exceeded 0.25 
(|ρ|>0.25) with p-value below 0.05. The p-value represents the 



probability that randomly selected rankings would lead a ρ value 
that is at least as large as the one observed.. Each multimedia 
content- or physiological feature vector contains 64 values 
corresponding to the 64 movie scenes. Each feature’s correlations 
with self assessed arousal/valence were computed and the features 
which were significantly correlated to arousal/valence self 
assessments were selected. 

3.6 Regression and combination 
It will now be presented how actual user-felt arousal and valence 
can be estimated, based on the physiological or content-based 
features which were found to have a significant correlation with 
the self-assessed valence and arousal. For each participant, a 
training set of 42 scenes was formed by randomly selecting 42 of 
the 64 movie scenes and the corresponding feature values. The 
remaining 22 scenes served as a test set.  
In order to obtain an estimate, based on the significantly 
correlated features, for the user’s arousal and valence, all 
significantly correlated features are weighted and summed’ as is 
indicated in equation (2), where ŷ(j) is the estimate of 
arousal/valence level, j is the indexing number of a specific movie 
scene {1,2,..,64}, xi(j) is the feature vector corresponding to the   
i-th significantly correlated feature, N is the total number of 
significant features for this participant, and wi is the weight that 
corresponds to the i-th feature. 
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In order not to have more features than movie scenes during the 
estimation of the weights, only the 41 highest correlated features 
were retained whenever the number of selected features exceeded 
41. 
In order to determine the optimum ŷ, the weights in equation (2) 
were computed by means of a linear relevance vector machine 
(RVM) from the Tipping RVM toolbox [32]. This procedure was 
applied on the user self assessed arousal/valence, y(j), and the 
feature-estimated arousal/valence, ŷ(j), over all 42 movie scenes 
in the test set as can be seen in (2).  
This procedure is performed for optimizing the weights 
corresponding to: 

• physiological features when estimating valence, 
• physiological features when estimating arousal, 
• multimedia features when estimating valence, 
• multimedia features when estimating arousal. 

After computation of weights by the train set in the first step, in 
the second step, the obtained weights were applied to the test set, 
and the Spearman correlation between the resulting estimated 
arousal/valence levels and self assessed arousal/valence was 
examined. These two steps were repeated 1000 times. Each time 
the 42 movie scenes of the training set were randomly selected 
from the total of 64 scenes while the 22 remaining scenes served 
as the test set. The results from this cross-validation will be 
presented in next Section. 

4. EXPERIMENTAL RESULTS 
Audio and video signals from the movie scenes contain valuable 
information about the emotion that we expect to see in the 
spectator. Content-based features were thus extracted from the 
audio and video signals of our dataset and those features that were 
significantly correlated with the self-assessment were retained in a 
first set. In a similar way a second set of significantly correlated 
features obtained from physiological responses was formed. As 

explained above, self-assessed arousal and valence levels were 
also recorded. To illustrate the fact that almost all different levels 
in the 2D valence/arousal space are reported. 

Table 3. Physiological features with the highest absolute 

correlation with self assessments for participants 1 to 8. 

Participant Arousal ρ Valence ρ 

1 EMG Frontalis 0.39 EMG 
Zygomaticus  

0.66 

2 EMG Frontalis  0.57 EMG Frontalis  -0.63 

3 Respiration band 
energy ratio  

0.42 EMG 
Zygomaticus 

0.58 

4 Blood pressure  -0.29 EMG 
Zygomaticus.  

0.43 

5 EMG 
Zygomaticus  

0.46 EMG Frontalis  -0.47 

6 Eye blinking rate -0.32 Average of GSR 
derivative.  

-0.45 

7 GSR standard 
deviation  

0.55 EMG 
Zygomaticus  

0.69 

8 Blood pressure  -0.33 EMG 
Zygomaticus  

0.56 

 

Significantly correlated features (ρ> 0.25, p<0.05) have been 
selected from physiological responses and multimedia features for 
each participant. For each of the eight participants, Table 3 and 
Table 4 show the physiological and multimedia feature that had 
the highest correlation with that participant’s self-assessments of 
perceived arousal and valence.  
The large variations between participants regarding which 
multimedia features correlate most with their self assessments, 
indicate the variance in individual preferences to different audio 
or video features. For physiological signals, the variation of 
correlated features over different subjects illustrates the difference 
between participants’ responses. While Average derivative of 
GSR signal was more informative regarding the valence of 
participant 6, EMG signals and thus facial expressions are more 
important to measure arousal in other of participants. 
 

Table 4. Multimedia features with the highest absolute 

correlation with self assessments for participants 1 to 8. 

Participant Arousal ρ Valence ρ 

1 13th LPC 
coefficient  

-0.35 Last MFCC coeff. 0.50 

2 Last MFCC 
coefficient 

-0.54 14th bin of hue 
histogram (bluish) 

0.43 

3 Audio signal 
energy 

-0.4 Last MFCC 
coefficient 

0.5 

4 
First 

autocorrelation 
MFCC coefficient  

0.40 3rd autocorrelation 
MFCC 

Coefficient  

0.35 

5 Motion 
component 

0.32 Motion 
component 

-0.47 

6 
11th 

autocorrelation 
MFCC coefficient  

-0.43 5th bin of lightness 
histogram 

-0.39 

7 
12th 

autocorrelation 
MFCC coefficient  

0.45 
Key lighting 

0.41 

8 Motion 
component 

0.38 15th bin of hue 
histogram 
(purplish) 

-0.48 

 
Table 5 shows, for all participants, the correlation coefficients 
between four different pairs of physiological features and 
multimedia features. These eight features have been chosen from 



the features which have significant correlation with self 
assessments and thus more importance for affect characterization. 
The correlations show that physiological responses are 
significantly correlated to changes in multimedia content. As an 
example, the negative correlation between EMG Zygomaticus 
energy and the 15th bin of the hue histogram (corresponding to 
purple) shows that increasing this color in the video content 
results in less Zygomaticus activity, thus less pleasantness or 
valence. 
 

Table 5. The linear correlation ρ values between multimedia 

features, and physiological features which are significantly 

correlated with self assessments (participants 1 to 8). 

 

EMG 
Zygomatic. 
energy/Key 

lighting 

Skin temp. 
standard deviation 

/5th MFCC 
autocorrelation  

coefficient  

Skin temp. 
range/ Shot 

length 
variation 

EMG 
Zygomatic. 
energy/ hue 
histogram’s 

15th bin  
1 0.24 - - -0.41 

2 0.62 0.44 0.42 -0.41 
3 0.46 0.40 0.56 -0.34 
4 0.40 0.32 0.43 -0.30 
5 0.36 0.39 0.58 - 
6 0.44 0.31 0.51 -0.32 
7 0.47 0.34 0.27 -0.43 
8 0.54 0.34 0.42 -0.45 

 
The Spearman correlation between the self-assessed 
valence/arousal and the estimated valence/arousal, discussed in 
Section 3.6, is determined in each of the 1000 iterations over the 
test-set. The proportion of significantly correlated rankings 
(ρ>0.25, p<0.05) out of all 1000 iterations provides information 
on how consistent the effect of the correlated features on the 
arousal/valence is. This proportion is shown in Figure 5. It should 
be noted that a 100% result in this Figure does not imply that the 
rankings from features and self assessments were identical; it 
implies significant correlation between the two in all 1000 
iterations. For example, in figure 6.a, participant 3 multimedia 
content features’ estimated arousal levels ranking are correlated 
with self-assessed arousal ranking in 60.4 percent of the iterations 
(880 times over 1000 iterations). Results obtained for arousal 
rankings were inferior to those for valence ranking. This might be 
due to inaccurate self-assessment of arousal. Also, the multimedia 
content which is used as well as the experimental paradigm makes 
the evaluation and comparison harder for arousal grades. Results 
show more consistency between grades obtained from multimedia 
and physiological signals, and valence grades. 

 
Figure 5.a. Probability of having significant Spearman 

correlation between estimated- and self assessed arousal. 

Figure 5.b. Probability of having significant Spearman 

correlation between estimated- and self assessed valence. 
 

5. CONCLUSIONS 
In this paper, an affective ranking method for movie scenes is 
proposed based on the emotions that are actually felt by 
spectators. Content based multimedia features were extracted 
from a movie scene dataset and their correlation with users’ self-
assessment of arousal and valence was shown to be significant. 
Furthermore, physiological responses of participants were 
recorded and key features were extracted from these responses. 
The correlation between these key physiological features and the 
users’ self-assessment of arousal and valence was also verified. 
By computing correlations between these key physiological 
features and the user’s self-assessment of arousal and valence, it 
was identified which physiological features are essential for 
affective ranking. 
Promising results were thus obtained for affective ranking using 
both multimedia and physiological features. This ranking can 
facilitate video indexing and retrieval based on truly personal 
preferences; it can also contribute to understand emotional 
preferences of spectators. In addition, physiological responses can 
be used to predict what would be the self-assessment of valence 
and arousal levels. Currently we used the self assessments to serve 
as the ground truth but it is expected that in future physiological 
signals can be used for this with equal or superior reliability. 
Finally, the effects that specific multimedia features have on 
arousal and valence can also be predicted, and saved in a personal 
profile for personal affect profiling. 
Participants exhibit markedly different emotional reactions to 
movie scenes. These differences can be explained by different 
factors, e.g., personalities, emotional bias or mood during 
experiments, or varying personal standards for reporting self-
assessed true feelings. This shows the need for affect profiling to 
be, at least in part, user-dependant.  
The exact nature of emotional processes is still under debate. We 
do not pretend in this work to explain affective mechanisms, but 
rather to employ the widely accepted valence and arousal 
measures as an additional feature for multimodal human-computer 
interaction in general, and for affective video indexing and 
retrieval as a case study. In the future we plan first to refine affect 
labeling of movie scenes by the means of classification 
algorithms. We aim at more precisely assessing which are the 
most important content-based characteristics able to elicit given 
emotions. Another important aspect to be investigated, through 
studies involving more users, concerns the determination of which 
emotional responses are common to all users and which are really 
user-dependent. The ranking correlation threshold of 0.25 for 
detecting relevant rankings was selected based on empirical 
results. Instead, in future studies the  users’ satisfaction feedbacks 
can be employed to optimize this threshold. 
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