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Abstract

Local feature detectors that make use of derivative based
saliency functions to locate points of interest typically re-
quire adaptation processes after initial detection in order
to achieve scale and affine covariance. Affine adaptation
methods have previously been proposed that make use of
the second moment matrix to iteratively estimate the affine
shape of local image regions. This paper shows that it is
possible to use the Hessian matrix to estimate local affine
shape in a similar fashion to the second moment matrix.
The Hessian matrix requires significantly less computation
effort to compute than the second moment matrix, allow-
ing more efficient affine adaptation. It may also be more
convenient to use the Hessian matrix, for example, when
the Determinant of Hessian detector is used. Experimental
evaluation shows that the Hessian matrix is very effective in
increasing the efficiency of blob detectors such as the Deter-
minant of Hessian detector, but less effective in combination
with the Harris corner detector.

1. Introduction

Local image features are patterns in an image that are
distinguishable from the surrounding image in some way.
Invariant local feature detectors attempt to consistently find
features in an image and localize them accurately, despite
significant changes in viewing conditions. These features
are then matched across multiple views and the matches
used for tasks such as computing scene geometry, object
recognition and many others. A comprehensive review of
local image feature detectors was recently published in [1].

This paper is concerned with a class of feature detec-
tor that computes a saliency map of the image and locates
the extrema of the saliency map. The saliency map shows
the regions of the image that have high information content
or high curvature and is a function of image partial deriva-
tives. Examples include detectors based on the Harris de-

tector [2], Determinant of Hessian detector [3], Laplacian
of Gaussian and Difference of Gaussians detector [4]. The
saliency map based feature detectors are inherently sensitive
to changes in scale and projective deformations and do not
produce features that are covariant under these changes di-
rectly. Additional steps are required to adapt the features so
that they are covariant under various transformations. Eval-
uations of a number of feature detectors presented in [5, 6]
showed that the most successful method for adapting Har-
ris and Determinant of Hessian features is to use the affine
adaptation algorithm given in [7] in combination with the
scale selection algorithm given in [8].

Although other detectors are available that require signif-
icantly less time to process each image, Harris and Hessian
based affine detectors are still a superior choice for difficult
wide base-line scenarios such as those found in automatic
calibration of surveillance cameras, for example. Fast de-
tectors such as SURF [9] and FAST [10] do not generate
affine covariant features and the popular MSER [11] detec-
tor may not produce sufficient numbers of correspondences
if the scene does not contain many planar features [5, 6].
Improving the speed of Harris and Hessian based detectors
would therefore be a useful improvement.

To date, the second moment matrix has been the dom-
inant method for estimating the affine shape of local im-
age regions detected using the saliency map approach. The
purpose of this paper is to show that the Hessian matrix
may also be used for estimating local affine shape in cer-
tain circumstances and to compare the performance of the
Hessian matrix with the commonly used second moment
matrix. The Hessian matrix is simpler to compute than the
second moment matrix and may enable a reduction in com-
putation time. The Hessian matrix may also be more conve-
nient to compute, for example, when using the determinant
of Hessian detector. It is shown through experimentation
that using the Hessian matrix allows for substantial gains in
computational efficiency over the second moment matrix.
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2. Previous Work

Saliency map based feature detectors are sensitive to
changes in scale and viewing angle. This problem has been
addressed by applying scale and affine adaptation to the fea-
tures. An affine transform consists of rotation, translation,
scaling and sheering. Discussion in this paper will focus
on adapting the sheering component of the affine transform,
while ignoring scale, rotation and translation, as these are
handled separately in most practical algorithms (see [7, 5]
for examples).

Existing affine adaptation methods are based around us-
ing the second moment matrix to iteratively estimate local
affine shape. The scale normalized second moment matrix
µ (x, σD, σI) is defined as,

µ (x, σD, σI) = σ2
Dg (x, σI) ∗D, (1)

g (x, σ) =
1

σ22π
exp

(
−x>x
2σ2

)
, (2)

D =
[

L2
x (x, σD) LxLy (x, σD)

LxLy (x, σD) L2
y (x, σD)

]
, (3)

L (x, σ) = g (x, σ) ∗ I (x) , (4)

where g (x, σ) is the Gaussian scale-space operator (see
[12] for background on scale-space), Li (x, σ) is the first
partial derivative along dimension i of an image I (x) at
scale σ, σD is referred to as the derivative scale and σI is
referred to as the integration scale. The convolution with
the Gaussian function g (x, σI) is equivalent to windowed
integration of the derivative images. The second moment
matrix is a positive definite symmetric matrix and can be
seen as a (local) estimate of the covariance matrix of a two
dimensional variable.

The second moment matrix was first used for affine adap-
tation in [13]. The scale-space concept was extended to
affine scale space, so that the Gaussian operator is of the
form,

g (x,Σ) =
1

2πdet(Σ)
e
−x>Σ−1x

2 . (5)

Here Σ is a positive definite symmetric matrix known as
the covariance matrix and det(Σ) is the determinant of Σ.
The affine second moment matrix computed in affine scale-
space is then defined as,

µ (x,ΣD,ΣI) = det (ΣD) g (x,ΣI) ∗DA, (6)

DA =
[

L2
x (x,ΣD) LxLy (x,ΣD)

LxLy (x,ΣD) L2
y (x,ΣD)

]
, (7)

with ΣD and ΣI differing only in scale. It was shown that
if the second moment matrix is iteratively computed as,

Mi = µ (x, kDMi−1, kIMi−1), (8)

where i is the iteration number and M0 = I, then M con-
verges such that for sufficiently large n,

µ (x, kDMn, kIMn) ≈ Mn. (9)

It was shown that the resulting matrix M is covariant under
affine transformations of the image.

Instead of adapting the parameters of affine scale space,
the method presented in [7] applies a normalizing affine
transform to a local image region. Integration scale and dif-
ferentiation scale are set proportional to the scale at which
the feature is detected. At each iteration the second moment
matrix is computed from the normalized image region us-
ing radially symmetric Gaussian kernels and is normalized
to have a determinant of 1. A local image region around the
selected feature is then transformed using the inverse square
root of the normalized second moment matrix. This contin-
ues until the measured normalized second moment matrix is
sufficiently close to the identity matrix. The method of [7]
is also applied to both Harris and Determinant of Hessian
features in [5].

A more complete algorithm is presented in [8] that up-
dates the integration scale, differentiation scale and feature
location at each iteration, before computing the second mo-
ment matrix. A measure of local shape isotropy is defined
based on the eigenvalues λmin, λmax of the second moment
matrix as,

Q =
λmin (µ)
λmax (µ)

. (10)

Adaptation concludes when Q is sufficiently close to 1.

3. Hessian Matrix based Affine Adaptation
The second moment matrix has to date been the domi-

nant affine shape estimator used in affine adaptation. This
section explores the novel approach of using the Hessian
matrix as an affine shape measure for affine adaptation.
The main motivation for using the Hessian matrix is that
it is simpler to compute (see Section 4) and only requires
one scale parameter. Furthermore, the Hessian matrix is
closely related to the determinant of Hessian function and
the Laplacian function, which are both commonly used for
feature extraction and scale selection. On the other hand,
the Hessian matrix is predicted to be less stable than the sec-
ond moment matrix due to the use of second order deriva-
tives instead of first order derivatives and due to the absence
of an averaging window applied after differentiation.

3.1. Estimation of the Parameters of a 2D Affine
Gaussian Function

In this section it is demonstrated how the Hessian matrix
can be used to find a linear transformation that transforms a
2D affine Gaussian function to an isotropic Gaussian.



The 2D affine Gaussian function centered on the coordi-
nate origin is defined in equation (5). The matrix Σ may be
decomposed as,

Σ = σαΣ
′
= σα

[
σxx σxy

σxy σyy

]
, (11)

so that det(Σ) = σ2
α, det(Σ

′
) = 1, σxx > 0 and σyy > 0.

Rewriting g with arbitrary gain k in terms of Σ
′

and σα

yields,

kg (x,Σ) = ke
−x>Σ

′−1x

2σ2
α . (12)

In the following discussion the second order partial deriva-
tives of g will be indicated as,

gxx (x,Σ) = ∂2g
∂x2 ,

gyy (x,Σ) = ∂2g
∂y2 ,

gxy (x,Σ) = ∂2g
∂x∂y = ∂2g

∂y∂x .

(13)

Substituting x = 0 into each second partial derivative of
equation 12 gives,

kgxx (0,Σ) = k
−σyy

σ2
α

= −k
′
σyy ,

kgyy (0,Σ) = k−σxx

σ2
α

= −k
′
σxx,

kgxy (0,Σ) = k
σxy

σ2
α

= k
′
σxy.

(14)

This set of equations can be arranged in the form of the
covariance matrix in (11),

Σ
′
= k

′−1

[
−gyy (0,Σ) gxy (0,Σ)
gxy (0,Σ) −gxx (0,Σ)

]
. (15)

The matrix on the right is the negative inverse Hessian
matrix evaluated at the center of the Gaussian function(
−H−1 (g) (0,Σ)

)
. The Hessian matrix of a function is

defined as the matrix of second order partial derivatives of
the function,

H(f)(x, y) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
. (16)

Hence Σ
′

can be recovered by evaluating the inverse Hes-
sian matrix at the center of the Gaussian function. Since
det (Σ′) = 1, the scale of H may be discarded by normaliz-
ing its determinant to 1. The affine parameters of a Gaussian
blob in an image can therefore be recovered if the center of
the blob is known.

To normalize the anisotropic blob to an isotropic blob,
simply transform the image by the square root of Σ′,

kg
(
Σ
′ 1
2 x,Σ

)
= ke

−x>Σ
′ 1
2>Σ

′−1Σ
′ 1
2 x

2σ2
α

= ke
−x>Ix

2σ2
α .

(17)

If the sign of the Gaussian is negated, then the Hessian ma-
trix will also be negated. If the sign of the Gaussian is not
known, the Hessian should be negated whenever it is not
positive definite.

3.2. Application to Affine Shape Measurement of
Image Regions

The above proof shows how to directly measure the
affine shape of a Gaussian function of which the center
point is known. This method may be applied to local im-
age features. Image structures are in general not proper
affine Gaussian functions, however the characteristic scale
representations of blob-like structures are sufficiently close
to affine Gaussian blobs for the Hessian matrix to be of use.
A characteristic scale blob detector, such as the Laplacian
or determinant of Hessian detector, can be used to find the
blob scale and center point. Unfortunately, neither scale
selection, nor blob center location is highly accurate unless
the shape of the detected blob is already isotropic. The Hes-
sian matrix can therefore be used for affine normalization in
conjunction with a characteristic scale blob detector, how-
ever this system does not provide a direct solution and must
be applied in an iterative fashion, similar to how the second
moment matrix is used.

The Hessian matrix is predicted to be less stable than
the second moment matrix due to the use of second order
derivatives instead of first order derivatives, and due to the
absence of an averaging window applied after differentia-
tion. For this reason it is recommended that a small aver-
aging filter is applied to improve stability. Implementations
presented in this paper make use of a Gaussian filter with
scale parameter σ = 1 and truncated to a 3 × 3 pixel win-
dow to average the Hessian matrix over a small area.

4. Comparison of the Complexity of the Hes-
sian and Second Moment Operators

Both the Hessian matrix and the Second Moment ma-
trix can be computed from an image by applying a series of
filters to the image. The scale operator and windowed in-
tegration operation can be implemented as Gaussian filters,
which are most efficiently realized as IIR filters [14, 15].
The differentiation operations can be implemented as 3× 3
kernel filters. The complexity of all these filters is linear
in the number of image pixels processed. The only differ-
ence between computing the Hessian matrix and the Second
Moment matrix is the arrangement of the above filters.

To compute these operators at a single point in an image
(as is done repeatedly during affine adaptation), the filters
need only be applied to the image region around the point
that has significant influence on the filter output. Once one
filter has been applied, its support region can be discarded,
leaving a smaller area to process for subsequent filters. The



Filter Label Op’s per pixel
∂I/∂x cx 6
∂I/∂y cy 6

∂2I/∂x2 cxx 9
∂2I/∂y2 cyy 9

∂2I/∂x∂y cxy 4
g (x, σ) cgσ kg

g (x, 1) truncated to 3× 3 cg1 9
Table 1. Number of operations per pixel for derivative kernels.

derivative kernels require support area of width 3 pixels. IIR
Gaussian filters technically require infinite support, though
the region within a radius of 3σ accounts for 98% of the
filter response. The total support width for a Gaussian filter
is therefore specified as 6σ.

The number of operations per pixel required by each fil-
ter is listed in Table 1. Each derivative kernel requires a dif-
ferent number of operations per pixel, due to the presence
of zero elements in the kernels. The constant kg depends on
the specific Gaussian filter implementation.

The Hessian operator consists of filtering to the feature
scale σ with a Gaussian filter, followed by computing sec-
ond order partial derivatives and finally a 3 × 3 averaging
filter to each of the three derivative images. The number of
operations required to compute the Hessian matrix at one
pixel is,

cH = cgσ (6σ + 6) + 3 (cxx + cyy + cxy) + 3cg1

= kg (6σ + 6) + 93.
(18)

The Second Moment operator consists of filtering to
the differentiation scale σD, computing first order partial
derivative images Lx and Ly , multiplying the derivatives to
produce images L2

x, L2
y and LxLy and finally filtering each

derivative product image with a Gaussian with scale σI to
compute windowed integration. The number of operations
required to compute the Second Moment matrix at one pixel
is,

cS = cgσ (6σI + 6σD + 3) + 6σI (cx + cy)
+ 3 · 6 · σI + 3cgσ6σI

= kg (24σI + 6σD + 3) + 90σI

(19)

Given that for the same feature both σI in the Second
Moment operator and and σ in the Hessian operator are set
to the characteristic scale of the feature, it is clear that the
Hessian matrix requires significantly less computational ef-
fort than the Second Moment matrix.

5. Experimental Evaluation
5.1. Evaluation Method

To compare the performance of the Hessian matrix and
the second moment matrix when used in the task of affine

adaptation, the following four detectors were implemented:

1. Determinant of Hessian detector using the Hessian ma-
trix for affine adaptation (Heh).

2. Determinant of Hessian detector using the second mo-
ment matrix for affine adaptation (Hes).

3. Harris detector using the Hessian matrix for affine
adaptation (Hah).

4. Harris detector using the second moment matrix for
affine adaptation (Has).

The scale and affine adaptation algorithm is based on
the adaptation algorithm applied in the Harris Affine and
Hessian Affine detectors defined in [5] and incorporates the
scale selection method from [16]. The algorithm is summa-
rized as follows:

1. Detect multi-scale features in isotropic scale-space.

2. Use the feature locus clustering based scale selection
method in [16] to quickly select characteristic scale
features (using the Laplacian).

3. Apply iterative affine adaptation while keeping the
scale and position of features fixed as in [7].

All four detectors used the above adaptation framework
with only the saliency function and affine shape estimation
matrix implemented differently for each detector.

The repeatability test described in [5] was used to deter-
mine the repeatability of detectors and the number of cor-
respondences produced when applied to sequences of test
images. Additionally, the processing time of the feature ex-
traction process was recorded and analyzed to assess detec-
tor efficiency.

The repeatability test functions by projecting features de-
tected in a test image to a base image using a ground truth
homography. Correspondence counts are determined ac-
cording to the overlap between the projected and base im-
age features. For a detailed description of the test, refer to
[5]. The test software and sequences were sourced from
http://www.robots.ox.ac.uk/∼vgg/data/data-aff.html.

In order to measure the relative efficiency of the detec-
tors, the rate at which corresponding features were pro-
duced, r, in number of correspondences per second, was
computed as,

r =
ci

ti + t0
, (20)

where ci is the number of correspondences between image
0 and i, and ti and t0 are the time taken to extract features
from image i and 0, respectively. The test sequences used
were graffiti (varying viewing angle), wall (varying view-
ing angle), bark (varying scale and rotation), boat (vary-
ing scale and rotation), leuven (varying lighting) and trees
(varying image blur).
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Figure 1. Results for the graffiti sequence. From left to right: repeatability, correspondence count, correspondences produced per second.
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Figure 2. Results for the boat sequence. From left to right: repeatability, correspondence count, correspondences produced per second.

5.2. Results

Selected test results are presented in Figures 1–4 (not
all results are presented in figures due to space constraints).
Each figure presents the results of testing the four detectors
on one of the test sequences. The figures show repeatabil-
ity, correspondence counts and the correspondence rate (r).
The horizontal axis indicates the test image number. Test
images are arranged in order of increasing severity of the
transformation or distortion tested in the image sequence.

5.3. Discussion

For the Determinant of Hessian detectors the repeatabil-
ity results are similar for both the Hessian and second mo-
ment matrices. The Hes detector performed marginally bet-
ter than Heh in graffiti, bark and boat, and Heh performed
significantly better in leuven and trees and marginally better
in wall. The number of correspondences followed the same
trend, but the differences were less pronounced. Correspon-
dence rate results showed that the Hessian matrix was more
efficient across all tests by as much as 400% and 336% on
average. The Hessian matrix is also less affected by image
blur or lighting conditions.

For the Harris detectors the repeatability and correspon-
dence results show that the Hessian matrix performed sig-
nificantly worse than the second moment matrix. Despite
this, the Hessian matrix still performed significantly better
than the second moment matrix in terms of efficiency. On
average, a 144% improvement in efficiency was measured.

This difference in behavior of the Hessian matrix be-
tween the Harris and Hessian detectors may be attributed to
the fact that the Harris detector selects corner features more

than blob features, whereas the Hessian detector extracts
blobs with a high degree of reliability. The Hessian matrix
should be computed at the center of a blob, as outlined in
Section 3.1, and may be unstable or inaccurate otherwise.
The results indicate that the Hessian matrix is very effective
and efficient in affine adaptation of blob-like features, but is
much less effective for corner features.

6. Conclusion

The Hessian matrix may be used for estimating local
affine deformation in an affine adaptation process, similar
to how the second moment matrix is commonly used. When
combined with a characteristic scale blob detector the Hes-
sian matrix provided a considerable reduction in computa-
tion time compared to the second moment matrix at no cost
to the repeatability of the detector or the number of corre-
spondences produced. Efficiency gains of up to 400% and
336% on average were observed. This reduction in compu-
tation time is primarily attributed to the fact that the Hessian
matrix is simpler to compute than the second moment ma-
trix. The detector using the Hessian matrix is also more
robust in terms of changing lighting conditions and varying
focus or blur.

When combined with a corner detector the Hessian
matrix produced significantly fewer correspondences and
lower repeatability. This is due to the fact that the Hessian
matrix is less stable and accurate when not computed at the
center of a blob-like image region. Despite the reduction
in correspondence counts, a 144% efficiency improvement
was measured.
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Figure 3. Results for the leuven sequence. From left to right: repeatability, correspondence count, correspondences produced per second.
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Figure 4. Results for the trees sequence. From left to right: repeatability, correspondence count, correspondences produced per second.
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