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Abstract We extend the Billera—Ehrenborg—Readdy map between the intersection
lattice and face lattice of a central hyperplane arrangement to affine and toric hyper-
plane arrangements. For arrangements on the torus, we also generalize Zaslavsky’s
fundamental results on the number of regions.
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1 Introduction

Traditionally combinatorialists study topological objects that are spherical, such as
polytopes, or which are homeomorphic to a wedge of spheres, such as those obtained
from shellable complexes. In this paper we break from this practice and study hyper-
plane arrangements on the n-dimensional torus.

It is classical that the convex hull of a finite collection of points in Euclidean space
is a polytope and its boundary is a sphere. The key ingredient in this construction is
convexity. At the moment there is no natural analogue of this process to obtain a
complex whose geometric realization is a torus.

In this paper we are taking a zonotopal approach to working with arrangements
on the torus. Recall that a zonotope can be defined without the notion of convexity,
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that is, it is a Minkowski sum of line segments. Dually, a central hyperplane arrange-
ment gives rise to a spherical cell complex. By considering an arrangement on the
torus, we are able to obtain a subdivision whose geometric realization is indeed the
torus. We will see later in Sect. 3 that this amounts to restricting ourselves to arrange-
ments whose subspaces in the Euclidean space R” have coefficient matrices with
rational entries. Under the quotient map R” — R"/Z" = T", these subspaces are
sent to subtori of the n-dimensional torus 7.

Zaslavsky initiated the modern study of hyperplane arrangements in his fundamen-
tal treatise [47]. For early work in the field, see the references given in Griinbaum’s
text [28, Chap. 18]. Zaslavsky showed that evaluating the characteristic polynomial
of a central hyperplane arrangement at —1 gives the number of regions in the com-
plement of the arrangement. For central hyperplane arrangements, Bayer and Sturm-
fels [6] proved that the flag f-vector of the arrangement can be determined from
the intersection lattice; see Theorem 2.3. However, their result is stated as a sum of
chains in the intersection lattice, and hence it is hard to apply. Billera, Ehrenborg, and
Readdy improved the Bayer—Sturmfels result by showing that it is enough to know
the flag f-vector of the intersection lattice to compute the flag f-vector of a central
arrangement. Recall that the cd-index of a regular cell complex is an efficient tool
to encode its flag f-vector without linear redundancies [5]. The Billera—Ehrenborg—
Readdy theorem gives an explicit way to compute the cd-index of the arrangement,
and hence its flag f-vector [8].

We generalize Zaslavsky’s theorem on the number of regions of a hyperplane
arrangement to the toric case. Although there is no intersection lattice per se, one
works with the intersection poset. From the Zaslavsky result we obtain a toric ver-
sion of the Bayer—Sturmfels result for hyperplane arrangements, that is, there is a
natural poset map from the face poset to the intersection poset, and furthermore, the
cardinality of the inverse image of a chain under this map is described.

As in the case of a central hyperplane arrangement, our toric version of the Bayer—
Sturmfels result determines the flag f-vector of the face poset of a toric arrangement
in terms of its intersection poset. However, this is far from being explicit. Using
the coalgebraic techniques from [19], we are able to determine the flag f-vector
explicitly in terms of the flag f-vector of the intersection poset. Moreover, the answer
is given by a cd type of polynomial. The flag f-vector of a regular spherical complex
is encoded by the cd-index, a noncommutative polynomial in the variables ¢ and d,
whereas the n-dimensional toric analogue is a ed-polynomial plus the ab-polynomial
(a— b)n+1 .

Zaslavsky also showed that evaluating the characteristic polynomial of an affine
arrangement at 1 gives the number of bounded regions in the complement of the
arrangement. Thus we return to affine arrangements in Euclidean space with the twist
that we study the unbounded regions. The unbounded regions form a spherical com-
plex. In the case of central arrangements, this complex is exactly what was studied
previously by Billera, Ehrenborg, and Readdy [8]. For noncentral arrangements, we
determine the e¢d-index of this complex in terms of the lattice of unbounded intersec-
tions of the arrangement.

Interestingly, the techniques for studying toric arrangements and the unbounded
complex of noncentral arrangements are similar. Hence, we present these results
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in the same paper. For example, the toric and noncentral analogues of the Bayer—
Sturmfels theorem only differ by which Zaslavsky invariant is used. The coalgebraic
translations of the two analogues involve exactly the same argument, and the result-
ing underlying maps ¢; (in the toric case) and ¢, (in the noncentral case) differ only
slightly in their definitions.

We end with many open questions about subdivisions of manifolds.

2 Preliminaries

All the posets we will work with are graded, that is, have a unique minimal element
0, a unique maximal element 1, and rank function p. For two elements x and z in
a graded poset P such that x < z, let [x, z] denote the interval {y € P :x <y <z}.
Observe that the interval [x, z] is itself a graded poset. Given a graded poset P of
rankn+1and S C {1,...,n}, the S-rank-selected poset P (S) is the poset consisting
of the elements P(S)={x e P:p(x) e S}U {0, i}. The partial order of [x, y] and
P(S) are each inherited from that of P. For a graded poset P, let P* denote the
dual poset, that is, the poset having the same underlying set as P but with the order
relation reversed: x <p=+ y if and only if y <p x. For standard poset terminology, we
refer the reader to Stanley’s work [41].

The Mobius function @ (x, y) on a poset P is defined recursively by u(x, x) =1
and for elements x, y € P withx <y by u(x,y) =— szzq u(x, z); see Sect. 3.7

in [41]. For a graded poset P with minimal element 0 and maximal element i, we
write u(P) = Mp((), i).

We now review important results about hyperplane arrangements, the cd-index,
and coalgebraic techniques. All are essential for proving the main results of this paper.

2.1 Hyperplane Arrangements

Let H={H;,..., Hy} be a hyperplane arrangement in R", that is, a finite collection
of affine hyperplanes in n-dimensional Euclidean space R”. For brevity, throughout
this paper we will often refer to a hyperplane arrangement as an arrangement. We
call an arrangement essential if the normal vectors to the hyperplanes in H span R”.
An arrangement that is not essential can be made essential by quotienting out by the
subspace V- where V is the subspace orthogonal to all of the hyperplanes in 7. In
this paper we are only interested in essential arrangements.

Observe that the intersection ()/L, H; of all of the hyperplanes in an essential
arrangement is either the empty set ¢ or a singleton point. We call an arrangement
central if the intersection of all the hyperplanes is one point. We may assume that this
point is the origin 0 and hence all of the hyperplanes are codimension 1 subspaces. If
the intersection is the empty set, we call the arrangement noncentral.

The intersection lattice L is the lattice formed by ordering all the intersections of
hyperplanes in H by reverse inclusion. If the intersection of all the hyperplanes in a
given arrangement is empty, then we include the empty set ¥ as the maximal element
in the intersection lattice. If the arrangement is central, the maximal element is {0}.
In all cases, the minimal element of £ will be all of R”.
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For a hyperplane arrangement H with intersection lattice £, the characteristic
polynomial is defined by

X(H; ) =" (0, x) - 15,
xel
xX#P
where p denotes the Mdbius function. The characteristic polynomial is a combina-
torial invariant of the arrangement. The fundamental result of Zaslavsky [47] is that
this invariant determines the number and type of regions.

Theorem 2.1 (Zaslavsky) For a hyperplane arrangement H in R", the number of re-
gions is given by (—1)" - x (H; t = —1). Furthermore, the number of bounded regions
is givenby (—1)" - x(H;t=1).

For a graded poset P, define the two Zaslavsky invariants Z and Z; by

Z(Py= Yy (=P u®,x),

f)fxfi
Zp(P) = (= )PPV u(P).

In order to work with Zaslavsky’s result, we need the following reformulation of
Theorem 2.1.

Theorem 2.2

(i) For a central hyperplane arrangement, the number of regions is given by Z(L),
where L is the intersection lattice of the arrangement.

(i1) For a noncentral hyperplane arrangement, the number of regions is given by
Z(L) — Zp(L), where L is the intersection lattice of the arrangement. The num-
ber of bounded regions is given by Zy(L).

Given a central hyperplane arrangement 7, there are two associated lattices,
namely, the intersection lattice £ and the lattice T of faces of the arrangement. The
minimal element of T is the empty set J, and the maximal element is the whole
space R”. The lattice of faces can be seen as the face poset of the cell complex ob-
tained by intersecting the arrangement H with a sphere of radius R centered at the
origin. Each hyperplane corresponds to a great circle on the sphere. An alternative
way to view the lattice of faces T is that the dual lattice 7* is the face lattice of the
zonotope corresponding to H.

Let LU {6} denote the intersection lattice with a new minimal element 0 adjoined.
Define an order- and rank-preserving map z from the dual lattice 7* to the augmented
lattice LU {f)} by sending a face of the arrangement, that is, a cone in R", to its affine
hull. Note that under the map z the minimal element of 7* is mapped to the minimal
element of £ U {0}. Observe that z maps chains to chains. Hence we view z as a map
from the set of chains of T* to the set of chains of £ U {6}. Bayer and Sturmfels [6]
proved the following result about the inverse image of a chain under the map z.
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Theorem 2.3 (Bayer-Sturmfels) Let H be a central hyperplane arrangement with
intersection lattice L. Let ¢ = {0 =xX0<X] < - <Xg= l} be a chain in LU {O}
Then the cardinality of the inverse image of the chain ¢ under the map z : T* —
LU{0} is given by the product

k
=7 )| =] 2(xi-1, ).

i=2
2.2 The cd-index

Let P be a graded poset of rank n + 1 with rank function p. For § = {s; <--- < sg—1}
a subset of {1, ..., n}, define fs to be the number of chainsc={0=xp<x; <--- <
x; = 1} that have elements with ranks in the set S, that is,

fs=|{e:pxD =51, p00-1) = si-1}].

Observe that fg is the number of maximal chains in the rank-selected poset P(S).
The flag h-vector is obtained by the relation (here we also present its inverse)

hs=Y (=D T1 frand  fs=) hr.

TCS TCS

Recall that by Philip Hall’s theorem the M6bius function of the S-rank-selected poset
P(S) is given by u(P(S)) = (—=1)!SI=1 . hg.

Let a and b be two noncommutative variables each having degree 1. For S a subset
of {1,...,n}, let ug be the monomial us = uy---u,, whereu; =bifi € Sandu; =a
if i ¢ S. Then the ab-index is the noncommutative polynomial defined by

W(P)=) hs-us,
N

where the sum is over all subsets S C {1, ..., n}. Observe that the ab-index of a poset
P of rank n + 1 is a homogeneous polynomial of degree n.

A poset P is Eulerian if every interval [x, y], where x < y, satisfies the Euler—
Poincaré relation, that is, there are the same number of elements of odd as even rank.
Equivalently, the Mdbius function of P is given by u(x, y) = (—1)°P*Y )forallx <y
in P. The quintessential result is that the ab-index of Eulerian posets has the follow-
ing form.

Theorem 2.4 The ab-index of an Eulerian poset P can be expressed in terms of the
noncommutative variables ¢ = a + b and d = ab + ba.

This theorem was originally proved for face lattices of convex polytopes by Bayer
and Klapper [5]. Stanley provided a proof for all Eulerian posets [43]. There are
proofs which have both used and revealed the underlying algebraic structure. See
for instance [15, 22]. When the ab-index W (P) is written in terms of ¢ and d, the
resulting polynomial is called the cd-index. There are linear relations holding among
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the entries of the flag f-vector of an Eulerian poset, known as the generalized Dehn—
Sommerville relations; see [3]. The importance of the ed-index is that it removes all
of these linear redundancies among the flag f-vector entries.

Observe that the variables ¢ and d have degrees 1 and 2, respectively. Thus the cd-
index of a poset of rank n + 1 is a homogeneous polynomial of degree # in the non-
commutative variables ¢ and d. Define the reverse of an ab-monomial u = ujuy - --u,
to be u* = u, ---upu; and extend by linearity to an involution on Z(a, b). Since
¢* = c and d* = d, this involution applied to a ed-monomial simply reverses the
cd-monomial. Finally, for a graded poset P, we have W(P)* = W (P*).

A direct approach to describe the ab-index of a poset P is to give each chain a
weight and then sum over all chains. For a chain ¢ = {6 =X)<X] << Xp= i} in
the poset P, define its weight to be

wi(c) = (a — b)p(xOsxl)*l ‘b-(a— b)ﬂ(xlvxz)*l ‘b---b-(a— b)P(kalsxk)*17 2.1

where p(x, y) denotes the rank difference p(y) — p(x). The ab-index of P is given
by
W(P)=) wi(c),
c
where the sum is over all chains ¢ in the poset P.

Finally, a third description of the ab-index is Stanley’s recursion for the ab-index
of a graded poset [43, Eq. (7)]. It is:

U(P)=@-bP"+ 3" @-b)*O b w([x,1]). 2.2)
6<.X<i
The initial condition for this recursion is the unique poset of rank 1, By, where
V(By) =1.
2.3 Coalgebraic Techniques

A coproduct A on a free Z-module C is a linear map A : C — C ® C. In order to be
explicit, we use the Sweedler notation [46] for writing the coproduct. To explain this
notation, notice that A(w) is an element of C ® C and thus has the form

k
A(w) = Z w’i ® wé,
i=1

where k is the number of terms, and w’i and wé belong to C. Since all the maps that
are applied to A(w) treat each term the same, the Sweedler notation drops the index i,
and one writes

A(w) = Z W) @ we).
w

Informally, this sum should be thought of as all the ways of breaking the element
w in two pieces, where the first piece is denoted by w(j) and the second by w().
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The Sweedler notation for the expression (A ® id) o A, where id denotes the identity
map, is the following:

(A®id)o A)(w) = ZZW(I,I) Q@ w(1,2) @ W().

w w(r)

The right-hand side should be thought of as first breaking w into the two pieces w1
and w() and then breaking w(y) into the two pieces w(i,1y and w(j,2). See Joni and
Rota for a more detailed explanation [30].

The coproduct A is coassociative if (A ® id) o A = (id ® A) o A. The Sweedler
notation expresses coassociativity as

Z Z w1 @ w(,2) @ we) = Z Z W @we,1) O we,)-

Informally coassociativity states that all the possible ways to break w into two pieces
and then breaking the first piece into two pieces is equivalent to all the ways to break
w into two pieces and then break the second piece into two pieces. Compare coas-
sociativity with associativity of a multiplication map m : A ® A — A on an alge-
bra A.

Assuming coassociativity, Sweedler notation simplifies to

APw) =) way @ we) ® we),
w

where A2 is defined as (A ® id) o A = (id ® A) o A, and the three pieces have been
renamed as w(1), w2), and w). Coassociativity allows one to define the k-ary co-
product A¥=1: C — C®* by the recursion A® =id and A¥ = (A*~! @ id) o A. The
Sweedler notation for the k-ary coproduct is

A w) = Z WH QW) ® @ Wy).
w

Let Z{a, b) denote the polynomial ring in the noncommutative variables a and b.
We define a coproduct A on the algebra Z(a, b) by letting A satisfy the following
identities: A(1) =0, A(a) = A(b) =1 ® 1, and the Newtonian condition

A(u~v)=2u(1)®u(2) ~U+ZM'U(1)®U(2). 2.3)
u v

For an ab-monomial u = uus - - - u,, we have that

n

A(u) = Zul co Ui @ Uiyl Up.
i=1

The fundamental result for this coproduct is that the ab-index is a coalgebra homo-
morphism [19]. We express this result as the following identity.
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Theorem 2.5 (Ehrenborg—Readdy) For a graded poset P with ab-index w = W (P)
and for any k-multilinear map M on Z.(a, b), the following coproduct identity holds:

ZM (Lxo, x11), W(Lx1, x21), o W (Dxkr, i) = Y M(way, wey, - W),

w

where the first sum is over all chains ¢ = {6 =X0<X] < <Xp= i} of length k,
and the second sum is the Sweedler notation of the k-ary coproduct of w, that
is, Ak=L

2.4 The cd-index of the Face Poset of a Central Arrangement
We recall the definition of the omega map [§].

Definition 2.6 The linear map w from Z(a, b) to Z(c, d) is formed by first replac-
ing every occurrence of ab in a given ab-monomial by 2d and then replacing the
remaining letters by c.

For a central hyperplane arrangement H, the cd-index of the face poset is com-
puted as follows [8].

Theorem 2.7 (Billera—Ehrenborg—Readdy) Let H be a central hyperplane arrange-
ment with intersection lattice L and face lattice T. Then the cd-index of the face
lattice T is given by

Y(T)=w(a ¥(L)".
We review the basic ideas behind the proof of this theorem. We will refer back
to them when we prove similar results for toric and affine arrangements in Sects. 3

and 4.
Define three linear operators «, 8, and 1 on Z(a, b) by

(a—b)" if v=2a" for some m >0,
k(v) = )
0 otherwise,

(a—b)" if v=>b" for some m >0,
Bw) = .
0 otherwise,

and

(v) = 2. (a b)"*+*  if v = b™a* for some m, k > 0,
M= otherwise.

Observe that « and g are both algebra maps. The following relations hold for a poset
P (see [8, Sect. 5]):

K(V¥(P)) = (a—byr®-1 (2.4)
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B(¥(P)) = Z,(P) - (a—b)r )1, 2.5)
n(W(P)) = Z(P)- (a—b)*"~1, (2.6)

For k > 1, the operator ¢y is defined by the coalgebra expression

er(v) =Y k() -b-n(@) -b--b-n(a),

where the coproduct splits v into k parts. Finally, ¢ is defined as the sum

p) =) @i (v).

k>1

Note that in this expression only a finite number of terms are nonzero. The connection
with hyperplane arrangements is given by the following proposition.

Proposition 2.8 The ab-index of the lattice of faces of a central hyperplane arrange-
ment is given by

W(T) =(W(CU{0})"

The function ¢ satisfies the functional equation

) =k )+ Y_ o) b ).

From this relation it follows that the function ¢ satisfies the initial conditions
¢(1) =1 and ¢(b) =2 - b and the recursions

p(-a) =) ¢, 2.7
o -bb) =¢(-b)-c, (2.8)
¢(v-ab) = ¢(v) - 2d, (2.9)

for an ab-monomial v; see [8, Sect. 5]. These recursions culminate in the following
result.

Proposition 2.9 For an ab-monomial w that begins with a, the two maps ¢ and
coincide, that is, (W) = w(w).

_ Finally, Theorem 2.7 follows by Proposition 2.9 and from the fact that V(£ U
{0) =a- - V().

2.5 Regular Subdivisions of Manifolds
The face poset P(£2) of a cell complex €2 is the set of all cells in 2 together with

a minimal element 0 and a maximal element 1. One partially orders two cells
and o by requiring that t < ¢ if the cell 7 is contained in &, the closure of o. In
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order to define a regular cell complex, consider the cell complex 2 embedded in
Euclidean space R". This condition is compatible with toric cell complexes since
the n-dimensional torus can be embedded in 2n-dimensional Euclidean space. Let
B" denote the ball {x € R" : )cl2 + o4 x,% < 1}, and let §"=1 denote the sphere
{x eR":x} + - +x2 =1}. A cell complex Q is regular if (i) Q consists of a finite
number of cells, (ii) for every cell o of €2, the pair (¢, ¢ — o) is homeomorphic to a
pair (B*, $¥=1) for some integer k, and (iii) the boundary & — o is the disjoint union
of smaller cells in 2. See Sect. 3.8 in [41] for more details. For a discussion of regular
cell complexes not embedded in R”, see [10].

The face poset of a regular subdivision of the sphere is an Eulerian face poset and
hence has a cd-index. For regular subdivisions of compact manifolds, a similar result
holds. This was independently observed by Ed Swartz [45].

Theorem 2.10 Let Q be a regular cell complex whose geometric realization is a
compact n-dimensional manifold M . Let x (M) denote the Euler characteristic of M.
Then the ab-index of the face poset P of Q2 has the following form.

(i) Ifn is odd, then P is an Eulerian poset and hence V (P) can be written in terms
of cand d.
(1) If n is even, then V(P) has the form

W(P) = (1 - —X(éw))-(a—b)"+1 +_X(é”) e o,

where ® is a homogeneous cd-polynomial of degree n+ 1 and ® does not contain
the term ¢+,

Proof Observe that the poset P has rank n + 2. By [41, Theorem 3.8.9] we know that
every interval [x, y] strictly contained in P is Eulerian. When the rank of P is odd,
this implies that P is also Eulerian; see [41, Exercise 69c]. Hence in this case the ab-
index of P can be expressed as a ed-index. When n is even, we use [15, Theorem 4.2]
to conclude that the ab-index of P belongs to R{c,d, (a — b)"*!). Since W(P) has
degree n + 1, the ab-index W (P) can be written in the form

WU(P)=ci-(a—b)" +¢ - "4+ @,

where @ is a homogeneous cd-polynomial of degree n + 1 that does not contain any
¢"*1 terms. By looking at the coefficients of a”*! and b"*!, we have ¢; +¢> = 1 and
cy —c1 = u(P) = x(M) — 1, where the last identity is again [41, Theorem 3.8.9].
Solving for ¢; and ¢, proves the result. d

Corollary 2.11 Let P be the face poset of a regular cell complex whose geometric
realization is a compact n-dimensional manifold M. If n is odd, then the flag h-vector
of P is symmetric, that is, hs = hs. If n is even, the flag h-vector of P satisfies

hs —hg= (=S (2= x(M)).

For the n-dimensional torus, Theorem 2.10 can be expressed as follows.
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Corollary 2.12 Let Q2 be a regular cell complex whose geometric realization is the
n-dimensional torus T". Then the ab-index of the face poset P of Q2 has the following
form:

W(P)=(a—b)"" + o,

where @ is a homogeneous cd-polynomial of degree n + 1 and ® does not contain
the term ¢ 1.

Proof When n is even, this is Theorem 2.10. When #n is odd, this is Theorem 2.10
together with the two facts that x (T") =0 and (a — b)"t! = (¢ —2d)"*D/2. O

3 Toric Arrangements
3.1 Toric Subspaces and Arrangements

The n-dimensional torus 7" is defined as the quotient R” /Z". Recall that the torus
T" is an Abelian group. When identifying the torus 7" with the set [0, 1)", the group
structure is componentwise addition modulo 1.

Lemma 3.1 Let V be a k-dimensional affine subspace in R" with rational coeffi-
cients. That is, V has the form

-

V={0eR": AU=b},

where the matrix A has rational entries, and the vector b has real entries. Then the
image of V under the quotient map R" — R" /Z", denoted by V , is a k-dimensional
torus.

Proof By translating V, we may assume that the vector b is the zero vector, and
therefore V is a subspace. In this case, the intersection of V with the integer lattice
7" is a subgroup of the free Abelian group Z". Since the matrix A has all rational
entries, the rank of this subgroup is k, that is, the subgroup is isomorphic to Z*. Hence
the image V is the quotient V /(V N Z"), which is isomorphic to the quotient R¥ /Z¥,
that is, a k-dimensional torus. O

We call the image V a toric subspace of the torus T" because it is homeomorphic
to some k-dimensional torus. When we remove the condition that the matrix A is
rational, the image is not necessarily homeomorphic to a torus.

The intersection of two toric subspaces is in general not a toric subspace but in-
stead is the disjoint union of a finite number of toric subspaces. For two affine sub-
spaces V and W with rational coefficients, we have that VN W C VNW.In general,
this containment is strict.

Define the translate of a toric subspace U by a point x on the torus to be the toric
subspace U + x = {u + x : u € U}. Alternatively, one may lift the toric subspace to
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an affine subspace in Euclidean space, translate it, and then map back to the torus.
Then for two toric subspaces V and W, their intersection has the form

,
vaw=JWU +x,),

p=1
where U is a toric subspace, r is a nonnegative integer, and xi, ..., X, are points on
the torus 7.
A toric hyperplane arrangement H = {H1, ..., Hy} is a finite collection of toric

hyperplanes. Define the intersection poset ‘P of a toric arrangement to be the set of
all connected components arising from all possible intersections of the toric hyper-
planes, that is, all connected components of ﬂi <s Hi where § C {1, ..., m}, together
with the empty set. Order the elements of the intersection poset P by reverse inclu-
sion, that is, the torus 7" is the minimal element of P corresponding to the empty
intersection, and the empty set is the maximal element. A toric subspace V is con-
tained in the intersection poset P if there are toric hyperplanes H;,, ..., H; in the
arrangement such that V C H; N ---N H;,_ and there is no toric subspace W satisfy-
ingVC W C H;, N---N H;,. In other words, V has to be a maximal toric subspace
in some intersection of toric hyperplanes from the arrangement.

The notion of using the intersection poset can be found in work of Zaslavsky,
where he considers topological dissections [48]. In this setting there is not an inter-
section lattice, but rather an intersection poset.

To every toric hyperplane arrangement H = {Hj, ..., Hy}, there is an associated
periodic hyperplane arrangement H in the Euclidean space R”. Namely, the inverse
image of the toric hyperplane H; under the quotient map R" — R /Z" is the union
of parallel integer translates of a real hyperplane. Let H be the collection of all these
integer translates. Observe that every face of the toric arrangement 7 can be lifted to
a parallel class of faces in the periodic real arrangement H.

For a toric hyperplane arrangement H, define the toric characteristic polynomial
to be

x(H; 1) = Z u(f), x)- pdim@)
xeP
x£H
Also for a toric hyperplane arrangement H, define 7; to be the face poset of the
induced subd1v1510n of the torus 7". Note that 7; is a graded poset of rank n + 2: the
minimal element 0 is the empty face, the maximal element 1 is the torus, and the rank
of the face x is given by dim(x) + 1.

Example 3.2 Consider the line arrangement consisting of the two lines y =2 - x
and x =2 -y in the plane R?. In R? they intersect in one point, namely the origin,
whereas on the torus 72 they intersect in three points, namely (0, 0), (2/3,1/3),
and (1/3,2/3). The characteristic polynomial is given by x (H; ) =t> —2 -t + 3.
However, this arrangement is not regular, since the induced subdivision of 72 is not
regular. The boundary of each region is a wedge of two circles. See Fig. 1.
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Fig. 1 A toric line arrangement
which subdivides the torus 72
into a nonregular cell complex 3
and its intersection poset 2

Fig. 2 A toric line arrangement and its intersection poset

Example 3.3 Consider the line arrangement consisting of the three lines y =3 - x,
x=2-y,and y = 1/5. It subdivides the torus into a regular cell complex. The sub-
division and the associated intersection poset are shown in Fig. 2. The characteristic
polynomial is given by x (H; 1) = t> — 3 -t + 8. Furthermore, the ab-index of the sub-
division of the torus is given by ¥ (7;) = (a — b)3 +7-dc + 8- cd, as the calculation
in Table 1 shows.

Recall that dc = aba + abb 4+ baa 4 bab and cd = aab + aba 4 bab + bba.
Here in the last three columns we indicate the contribution of a given term to each
ab-monomial. Observe that the sum of the last three columns gives the flag h-vector
entries.

We now give a natural interpretation of the toric characteristic polynomial. Re-
call that the intersection of toric subspaces is the disjoint union of toric subspaces
that are translates of each other. Let G be the collection of finite intersections of
toric subspaces of the n-dimensional torus 7", that is, G consists of sets of the
form V. =W n---NW,, where Wy, ..., W, are toric subspaces. Such a set V
can be written as a union, more precisely, V = U;;:1 (U + xp), where U is a toric
subspace, r a nonnegative integer, and xp, ..., X, are points on the torus. Observe
that the empty set @ and the torus T" belong to G. Furthermore, G is closed un-
der finite intersections. Let L be the distributive lattice consisting of all subsets of
the torus 7" that are obtained from the collection G by finite intersections, finite
unions, and complements. The set G is the generating set for the lattice L. A val-
uation v is a function on the lattice L to an Abelian group satisfying v(J) = 0 and
v(A) +v(B)=v(ANB)+v(AUB) forall sets A, Be L.
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Table 1 Calculation of W (7;)

for the line arrangement in Fig. 2 fs hg us @-b)? 7-de 8-cd
0 1 1 aaa 1 0 0
{1} 7 6 baa -1 7 0
{2} 15 14 aba —1 7 8
{3} 8 7  aab -1 0 8
{1,2} 30 9 bba 1 0 8
{1,3} 30 16 bab 1 7 8
{2,3} 30 8 abb 1 7 0
{1,2,3} 60 —1 bbb —1 0 0

The next theorem is analogous to Theorem 2.1 in [20]. The proof here is more
involved due to the fact that the collection of toric subspaces is not closed under
intersections.

Theorem 3.4 There is a valuation v on the distributive lattice L to Z[t] such that for
a k-dimensional toric subspace V , its valuation is v(V) = k.

Proof Define the function v on the generating set G by

v(U(U—i—xp)) =r-tk,

p=1

where we assume that U is a k-dimensional toric subspace, and the r translates U +
X1,..., U + x, are pairwise disjoint. Observe that the function v is additive with
respect to disjoint unions, that is, for elements Vi, ..., V,, in G which are pairwise
disjoint and Vi U--- UV, € G. In this case, each V; is a disjoint union of translates
of the same affine subspace U, and both sides of the identity v(V7) + --- + v(Vy,) =
v(V1U---UV,,) count the number of translates of U times r3im@).

Groemer’s integral theorem [27] (see also [35, Theorem 2.2.1]) states that a func-
tion v defined on a generating set G extends to a valuation on the distributive lattice
generated by G if for all Vi, ..., V, in G such that Vi U---UV,, € G, the inclusion—
exclusion formula holds:

v(vlu-.-uvm)zzv(w)—zu(wmv,-)+~--. (3.1)
i i<j

To verify this for our generating set G, first consider the case where the union V; U

--- UV, is a toric subspace. This case implies that V; U --- U V,, = V; for some

index i. It then follows that the inclusion—exclusion formula (3.1) holds trivially.
Before considering the general case, we introduce some notation. For S a non-

empty subset of the index set {1, ..., m}, let Vs =(); s Vi Equation (3.1) can then

be written as

v(ViU---U V) =) (=D u(v),
N
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where the sum ranges over nonempty subsets S of {I,...,m}. Now assume that
ViU---UV,, is the disjoint union (U +x1)U---U (U +x,). Let Vg, ,, denote the inter-
section Vg N (U +xp). Observe that U +x), = UL, Viiy, p» and since U + x, is itself
a toric subspace, we have already proved that the inclusion—exclusion formula (3.1)
holds for this union. Hence we have

r

V(iU U V) =) o(U +x)

p=1
,
= 3 =D (Vs )
p=1 S
,
=Y (=D (v )
S p=1
=Y (=D y(vy),
S
where S ranges over all nonempty subsets of {1, ..., m}. The last step follows since
the union Vg = U;=1 Vs, p is pairwise disjoint. 0

By Mobius inversion we directly have the following theorem. The proof is stan-
dard. See the references [1, 11, 20, 31].

Theorem 3.5 The characteristic polynomial of a toric arrangement is given by

X(H):v(T"—UHi).

i=1

When each region is an open ball, we can now determine the number of regions in
a toric arrangement. The proof is analogous to the proofs in [20, 21].

Theorem 3.6 Let H be a toric hyperplane arrangement on the n-dimensional torus
T" that subdivides the torus into regions that are open n-dimensional balls. Then
the number of regions in the complement of the arrangement is given by (—1)" -

x(H;t=0).

Proof Observe that the Euler valuation ¢ of a k-dimensional torus is given by
the Kronecker delta 8§ ¢. Hence the Euler valuation of a toric subspace V of the
n-dimensional torus 7" is given by setting + = 0 in the valuation v(V), that is,
e(V) =v(V)|;=0. Since the two valuations ¢ and v|;—¢ are additive with respect to
disjoint unions, they agree for any member of the generating set G. Hence they also
agree for any member in the distributive lattice L. In particular, we have that

8<Tn _UH) =U<Tn _UH)

(3.2)

t=0
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Since the Euler valuation of an open n-ball is (—1)" and T" — | J!", H; is a disjoint
union of open balls, the left-hand side of (3.2) is (—1)" times the number of regions.
The right-hand side is x (H; ¢t = 0) by Theorem 3.5. g

Continuation of Example 3.2 Setting t = 0 in the characteristic polynomial in Exam-
ple 3.2, we obtain 3, which is indeed the number of regions of this arrangement.

We call a toric hyperplane arrangement H = {Hj, ..., Hy,} rational if each hy-
perplane H; is of the form a; - X = b; where the vector g; has integer entries, and
b; is an integer for 1 < i < m. This is equivalent to assuming that every constant b;
is rational since every vector a; was already assumed to be rational. In what follows
it will be convenient to assume that every coefficient is integral in a given rational
arrangement.

Define lem(H) to be the least common multiple of all the n x n minors of the
n x m matrix (dy, ..., dn). We can now give a different interpretation of the toric
characteristic polynomial by counting lattice points.

Theorem 3.7 For a rational hyperplane arrangement H, there exists a constant k
such that for every q > k where q is a multiple of lcm(H), the toric characteristic
polynomial evaluated at q is given by the number of lattice points in (éZ)" /7" that
do not lie on any of the toric hyperplanes H;, that is,

LN
X(H;t=q)=‘(gZ) /z U

The condition that g is a multiple of lem(#) implies that every subspace x in the
intersection poset P intersects the toric lattice (%IZ)”/ Z" in exactly ¢4™®) points.

Theorem 3.7 now follows by Mdbius inversion. This theorem is the toric analogue of
Athanasiadis’ finite field method. See especially [2, Theorem 2.1].

In the case where lem(H) = 1, the toric arrangement H is called unimodular.
Novik, Postnikov, and Sturmfels [39] state Theorem 3.6 in the special case of uni-
modular arrangements. Their first proof is based upon Zaslavsky’s result on the num-
ber of bounded regions in an affine arrangement. The second proof, due to Vic Reiner,
is equivalent to our proof for arbitrary toric arrangements. See also the paper [48] by
Zaslavsky, where more general arrangements are considered.

3.2 Graphical Arrangements

We digress in this subsection to discuss an application to graphical arrangements. For
a graph G on the vertex set {1, ..., n}, define the graphical arrangement Hg to be the
collection of hyperplanes of the form x; = x; for each edge ij in the graph G.

Corollary 3.8 For a connected graph G on n vertices, the regions in the complement
of the graphical arrangement Hg on the torus T" are each homotopy equivalent
to the one-dimensional torus T"'. Furthermore, the number of regions is given by
(=1 times the linear coefficient of the chromatic polynomial of G.
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Proof Recall that the chromatic polynomial of the graph G is equal to the character-
istic polynomial of the graphical arrangement H . The intersection lattice of the real
arrangement H is the same as the intersection poset of the toric arrangement Hg.
Translating the graphical arrangement in the direction (1, ..., 1) leaves the arrange-
ment on the torus invariant. Since G is connected, this is the only direction that
leaves the arrangement invariant. Hence each region is homotopy equivalent to T'!.
By adding the hyperplane x; = 0 to the arrangement we obtain a new arrangement
‘H’ with the same number of regions, but with each region homeomorphic to a ball.
Since the intersection lattice of H’ is just the Cartesian product of the two-element
poset with the intersection lattice of H g, we have

xH,)=@—-1)- x(Hg,1)/t.

The number of regions is obtained by setting # = 0 in this equality. g

A similar statement holds for graphs that are disconnected. The result follows
from the fact that the complement of the graphical arrangement is the product of the
complements of each connected component.

Corollary 3.9 For a graph G on n vertices consisting of k components, the regions in
the complement of the graphical arrangement Hg on the torus T™ are each homotopy
equivalent to the k-dimensional torus T*. The number of regions is given by (—1)" %
times the coefficient of t* in the chromatic polynomial of G.

Stanley [40] proved the celebrated result that the chromatic polynomial of a graph
evaluated at t = —1 is (—1)" times the number of acyclic orientations of the graph.
A similar interpretation for the linear coefficient of the chromatic polynomial is due
to Greene and Zaslavsky [26]:

Theorem 3.10 (Greene—Zaslavsky) Let G be a connected graph and v a given vertex
of the graph. The linear coefficient of the chromatic polynomial is (—1)"~! times the
number of acyclic orientations of the graph such that the only sink is the vertex v.

Proof Tt is enough to give a bijection between regions in the complement of the
graphical arrangement on the torus 7" and acyclic orientations with the vertex v
as the unique sink. For a region R of the arrangement, intersect it with the hyper-
plane x, = 0 to obtain the face S. Let H’ be the arrangement Hg together with the
hyperplane x, = 0. Lift S to a face S in the periodic arrangement H’ in R”. Ob-
serve that S is the interior of a polytope. When minimizing the linear functional
L(x) =x1 + --- + x, on the closure of the face §L the optimum is a lattice point
k = (k1,...,k,). Pick a point x = (x1,...,x,) in S close to the optimum, that is,
each coordinate x; lies in the interval [k;, k; + €) for some small € > 0.

Let y = (y1,..., yu) be the image of the point x on the torus 7", that is, y; =
x; mod 1. Note that each entry y; lies in the half open interval [0, 1) and that y, = 0.
Construct an orientation of the graph G by letting the edge ij be oriented i — j if
yi > y;. Note that this orientation is acyclic and has the vertex v as a sink.
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To show that the vertex v is the unique sink, assume that the vertex i is also a
sink, where i # v. In other words, for all neighbors j of the vertex i, we have that
yi <yj. We can continuously move the point x in S by decreasing the value of the
ith coordinate x;. Observe that there is no hyperplane in the periodic arrangement
blocking the coordinate x; from passing through the integer value k; and continuing
down to k; — 1 + €. This contradicts the fact that we chose the original point x close
to the optimum of the linear functional L. Hence the vertex i cannot be a sink.

It is straightforward to verify that this map from regions to the set of acyclic ori-
entations with the unique sink at v is a bijection. g

The technique of assigning a point to every region of a toric arrangement using
a linear functional was used by Novik, Postnikov, and Sturmfels in their paper [39].
See their first proof of the number of regions of a toric arrangement.

3.3 The Toric Bayer—Sturmfels Result

Define the foric Zaslavsky invariant of a graded poset P having 0 and 1 by

zZPy= Y PO u0x)==nrP 3 p(0.a).

x coatom of P x coatom of P

We reformulate Theorem 3.6 as follows.

Theorem 3.11 For a toric hyperplane arrangement H on the torus T" that sub-
divides the torus into open n-dimensional balls, the number of regions is given by
Z:(P), where P is the intersection poset of the arrangement H.

As a corollary of Theorem 3.11, we can describe the f-vector of the subdivision
T; of the torus. For similar results for more general manifolds, see [48, Sect. 3].

Corollary 3.12 The number of i-dimensional regions in the subdivision T; of the
n-dimensional torus is given by the sum

firiMy= (=11 Y e, y),
dim(zy=i
dim(y)=0
where (1(x,y) denotes the Mobius function of the interval [x, y] in the intersection
poset P.

Proof Each i-dimensional region is contained in a unique i-dimensional sub-
space x. By restricting the arrangement to the subspace x and applying The-
orem 3.6, we have that the number of i-dimensional regions in x is given by
(=D foy,dim(y):O ©(x,y). Summing over all x, the result follows. O

For the remainder of this section, we will assume that the induced subdivision of
the torus is a regular cell complex. Let T; be the face poset of the subdivision of the
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torus induced by the toric arrangement. Define the map z; : 7, — P U {6} by sending
each face to the smallest toric subspace in the intersection poset that contains the face
and sending the minimal element in 7;* to 0. Observe that the map z; is order- and
rank-preserving, as well as being surjective. As in the central hyperplane arrangement
case, we view the map z, as a map from the set of chains of 7,* to the set of chains of
P U {0}.

Let x be an element in the intersection poset P of a toric hyperplane arrange-
ment H. Then the interval [x, i] is the intersection poset of a toric arrangement in
the toric subspace x. The atoms of the interval [x, 1] are the toric hyperplanes in this
smaller toric arrangement.

More interesting is the geometric interpretation of the interval [6, x]. It is the in-
tersection lattice of a central hyperplane arrangement in R”~4m®) Without loss of
generality we may assume that x contains the zero point (0, ..., 0), that is, when we
lift the toric subspace x to an affine subspace V in R”, we may assume that V is a
subspace of R". Any toric subspace y in the interval [0, x], that is, a toric subspace
containing x, can be lifted to a subspace W containing the subspace V. In particular,
the toric hyperplanes in [0, x] lift to hyperplanes in R” containing V. This lifting is
a poset isomorphism, and we obtain an essential central arrangement of dimension
n — dim(x) by quotienting out by the subspace V. We conclude by noticing that an
interval [x, y] in P, where y < 1, is the intersection lattice of a central hyperplane
arrangement.

The toric analogue of Theorem 2.3 is as follows.

Theorem 3.13 Let P be the intersection poset of a toric hyperplane arrangement
whose inducec{ subdivision is regular. Let ¢ = {6 =X)<X] <. <Xf= i} be a
chain in P U {0} with k > 2. Then the cardinality of the inverse image of the chain c
is given by the product

k—1

1z o] = 1_[ Z([xi—1, xi1) - Zi ([xx—1, x2]).

i=2

Proof We need to count the number of ways we can select a chain d = {6 =y <
V<< Y= i} in T;* such that z;(y;) = x;. The number of ways to select the
element y;_1 in 7;* is the number of regions in the arrangement restricted to the toric
subspace xi_1. By Theorem 3.11 this can be done in Z; ([xx—1, xx]) number of ways.
Observe now that all other elements in the chain d contain the face y;_.

To count the number of ways to select the element y;_», we follow the original ar-
gument of Bayer—Sturmfels. We would like to pick the face yx_» such that it contains
the face y;_1 and it is a region in the toric subspace x;_>. This is equal to the num-
ber of regions in the central arrangement having the intersection lattice [xx_7, xx—1],
which is given by Z([xx—2, xx—1]). By iterating this procedure until we reach the
element yq, the result follows. O

Corollary 3.14 The flag f-vector entry fs(1;) of the face poset Ty of a toric arrange-

ment whose induced subdivision is a regular subdivision of T" is divisible by 215171
for S C{l,....,n+ 1} with S # 0.
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Proof The proof follows from the fact that the Zaslavsky invariant Z is an even inte-
ger and that a given flag f-vector entry is the appropriate sum of products appearing
in Theorem 3.13. g

3.4 The Connection between Posets and Coalgebras

For an ab-monomial v, define the linear map A, by letting

(a—b)" if v =b™ for some m > 0,
r()={(a—b)y"t! if v =b"a for some m >0,
0 otherwise.

Define the linear operator H' on Z{a, b) to be the one which removes the last letter
in each ab-monomial, thatis, H'(w -a) = H'(w - b) = w and H'(1) = 0. We use the
prime in the notation to distinguish it from the H map defined in [8, Sect. 8], which
instead removes the first letter in each ab-monomial. From [8] we have the following
lemma.

Lemma 3.15 For a graded poset P with 1 of rank greater than or equal to 2, the
following identity holds:

HWP)= > w(0.x]).

x coatom of P

The next lemma gives the relation between the toric Zaslavsky invariant Z; and
the map A;.

Lemma 3.16 For a graded poset P with 1 of rank greater than or equal to 1, the
following identity holds:

A (W(P)) = Z,(P)-(a—b)P P71,

Proof When P has rank 1, both sides are equal to 1. For an ab-monomial v different
from 1, we have that A;(v) = B(H'(v)) - (a— b). Hence

A (W(P))=B(H'(¥(P)))-(a—Dh)
= Y Bw(0a]) @

x coatom of P

==DPP N p(0.x) - @a—b)y P

x coatom of P

which concludes the proof. g
Define a sequence of functions ¢, x : Z(a, b) — Z{a, b) by ¢; 1 =k and, for k > 2,

@1k (V) = ZK(U(U) ‘b-n(@) -b-n@az)-b---b-ne—1)-b-Aw)-
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Finally, let ¢ (v) be the sum ¢; (v) =D ;o1 @1k (V).
Theorem 3.17 The ab-index of the face poset T; of a toric arrangement is given by
W(T)* = (¥(PU{D})).

Proof The ab-index of the poset T; is given by the sum W(T;) =), |z,_1 ()] - wt(c).
Fix k > 2 and sum over all chains ¢ = {6 =X)<X| < <Xp= i} of length k. We
then have

>z @] - wie)

= Z 1_[ [xl 1, x, Z;j([)ck_l7 xk]) -(a— b)P(XO,Xl)—l

c =2

‘b---b-(a—bh)PCr-15)~1
k—1

= Z ([xo, x11)) n(b (W ([xi—1, xi1))) - b A (W ([xr—1, x¢1))

i=2
k—1

—Zx(wm) [T n@wae)) b rway)

i=2
= (pt,k (w) )
where we let w denote the ab-index of the augmented intersection poset P U {6}. For
k = 1, we have that (a — b)?T)—1 = @1 (W (P U{0})). Summing over all k > 1, we
obtain the result. O
3.5 Evaluating the Function ¢,

Proposition 3.18 For an ab-monomial v, the following identity holds:

@) =K@+ Y _ o) b A ve).

Proof Using the coassociative identity A1 = (A¥=2 @ id) o A, for k > 2, we have
that

@1k (v) = ZK(U(I)) “b-n(@)-b---b-nwe-1)-b- A (V)
v
= ZZK(U(M)) ‘b-n(az) -b---b-naik-1)-b- A (v2)
vV

= Z(Pk—l(v(l)) b A (v2)).
v
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By summing over all k > 1, the result follows. O

Lemma 3.19 Let v be an ab-monomial that begins with a, and let x be either a or b.
Then

p(v-a-x)=k(-a-x)+1/2-w(v-ab).
Proof Using Proposition 3.18, we have
pr(v-a-x)=xk@-a-x)+ew-a)-b-A(1)+¢w)-b-A(x)
+> o)) b2 b-x)
v
=k@w-a-x)+¢p)-c-b+¢)-b-(a—b)

=«kw-a-x)+ol)-d
=k(w-a-x)+1/2-w(v-ab),

since A;(v(2) - b - x) =0. O

Lemma 3.20 Let v be an ab-monomial that begins with a, let k be a positive integer,
and let x be either a or b. Then the following evaluation holds:

¢ (v-abl-x) =k (v-abl-x) +1/2- w(v-abl™h).
Proof Using Proposition 3.18, we have
(p,(voabk ~x) —K(voabk ~x)
=¢(v-ab*) b1 (1) +¢@-a)-b-2 (b x)

+o@) b2 (b x)+ Y p(v-ab™) b-a,(bx)
i+j=k—2

=¢(u)-<2dck‘ ‘b+c-b-(a—b)*+b-(a—b)ft!

+ Z 2dc! ~b-(a—b)-/+1). (3.3)

itj=k—2

In order to simplify this expression, consider the butterfly poset of rank k. This is the
poset consisting of two rank i elements, fori =1, ...,k — 1, adjoined with a minimal
and maximal element. Each of the rank i elements covers the rank i — 1 element(s)
fori =1,...,k— 1. The butterfly poset is the unique poset having the cd-index c¢<~!.
It is also Eulerian. Applying (2.2) to the butterfly poset, we have

d'=@-n!"'+2. Y ¢-b-@a-b).
i+j=k—2
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Using this relation to simplify (3.3), we obtain
(p,(voabk ~x) —K(voabk ~x) =(p(v)'d~ck
=1/2-w(v-ab*t). O

By combining Lemmas 3.19 and 3.20, we have the following proposition.

Proposition 3.21 For an ab-monomial v that begins with the letter a, the following
holds:

@i(v) =k@)+1/2-w(H'(v) - b).

We now obtain the main result for computing the ab-index of the face poset of a
toric arrangement.

Theorem 3.22 Let H be a toric hyperplane arrangement on the n-dimensional torus
T" that subdivides the torus into a regular cell complex. Then the ab-index of the face
poset Ty can be computed from the ab-index of the intersection poset P as follows:

T = @b 4 3o B (W(P) b)

Observe that in Lemmas 3.19 and 3.20, Proposition 3.21, and Theorem 3.22 no
rational coefficients were introduced. Only the ab-monomial a” is mapped to a cd-
polynomial with an odd coefficient, hence 1/2 - w (v - b) has all integer coefficients.

Continuation of Example 3.3 The flag f-vector of the intersection poset P in
Example 3.3 is given by (fy, f1, f2, f1i2) = (1,3,7,15), the flag h-vector by
(hg, hi,hy, h12) =(1,2,6,6), and so the ab-index is W(P) = a?+2.-ba+6-ab+
6 -b?. Thus

W(T)=@-b)’+1/2-w(a-H'(a®+2-ba+6-ab+6-b”)-b)"
=(@-b>+1/2-0(a-(7-a+8-b)-b)*
=(@-b)?’+1/2-o(7-a’b+8-ab?)"
=@—b)’+7-dc+8-cd,

which agrees with the calculation in Example 3.3.

Theorem 3.22 gives a different approach from Corollary 3.12 for determining the
f-vector of T;. For notational ease, for positive integers i and j, let [7, j] = {i,i +
I,....j}and [j1={1,..., j}.

Corollary 3.23 The number of i-dimensional regions in the subdivision T; of the
n-dimensional torus is given by the following sum of flag h-vector entries from the
intersection poset P:

fi+1(Tt) = hin—i 1(P) + hin—in—11(P) + hin—i+1,n1(P) + hjn—i+1,n—17(P)
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for 1 <i <n — 1. The number of vertices is given by fi(T;y) =1+ h,(P) and the
number of maximal regions by fn11(T;) = hp—17(P) + b (P).

Proof Let (- | -) denote the inner product on Z(a, b) defined by (u | v) = §,, for two
ab-monomials # and v. For 1 <i <n — 1, we have
Jir1(Ty) =1+ hi1 1 (Th)
=1+ (a'ba"" | W(T)))

-(a'ba"™" |w(a- H'(¥(P)) -b)")

N = N =

[ de" ]w(a- H'(¥(P)) - b)*
1
2

=(a" -ab-b ' +a" "' ab.b' |a- H'(¥(P))-b)

+ = -[elde" " w(a- H'(¥(P))-b)*
=(@""" ' (a+b)- b | H(¥(P)))
=@ @a+b)-b (a+b) | ¥(P))

Expanding in terms of the flag h-vector the result follows. The expressions for f; and
Ja+1 are obtained by similar calculations. d

The fact that Corollaries 3.12 and 3.23 are equivalent follows from the coalgebraic
techniques in Theorem 2.5.

4 The Complex of Unbounded Regions

4.1 Zaslavsky and Bayer—Sturmfels

The unbounded Zaslavsky invariant is defined by
Zw(P)=Z(P)—2-Zp(P).

As the name suggests, the number of unbounded regions in a noncentral arrangement
is given by this invariant. By taking the difference of the two statements in Theo-
rem 2.2 part (ii), we immediately have the following result.

Lemma 4.1 For a noncentral hyperplane arrangement H, the number of unbounded
regions is given by Z,,(L), where L is the intersection lattice of the arrangement H.

Let H be a noncentral hyperplane arrangement in R” with intersection lattice £
having the empty set ¥ as the maximal element. Let £, denote the unbounded inter-
section lattice, that is, the subposet of the intersection lattice consisting of all affine
subspaces with the points (dimension zero affine subspaces) omitted but with the
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empty set @ continuing to be the maximal element. Equivalently, the poset L, is the
rank-selected poset L£([1,n — 1]), that is, the poset £ with the coatoms removed.

Let T be the face lattice of the arrangement H with the minimal element 0 denot-
ing the empty face and the maximal element denoted by 1. Similarly, let 7;;, denote
the set of all faces in the face lattice 7 which are not bounded. Observe that T,
includes the minimal and maximal elements of T and that T, is the face poset of
an (n — 1)-dimensional sphere. Pick R large enough so that all of the bounded faces
are strictly inside a ball of radius R. Intersect the arrangement H with a sphere of
radius R. The resulting cell complex has face poset T,,. Our goal is to compute the
cd-index of T, in terms of the ab-index of £,;,.

The collection of unbounded faces of the arrangement H forms a lower order ideal
in the poset 7*. Let Q be the subposet of 7* consisting of this ideal with a maximal
element 1 adjoined. We define the rank of an element in Q to be its rank in the original
poset T*, that is, for x € Q, let pg(x) = pr+(x). This rank convention will simplify
the later arguments. As posets 7', and Q are isomorphic. However, since their rank
functions differ, their ab-indexes satisfy W (7,,,)* - (a —b) = W (Q).

Restrict the zeromap z : T* — L U {f)} to form the map z,,: Q — L U {6}. Note
that the map z,p is order- and rank-preserving, but not necessarily surjective. As
before, we view the map z,, as a map from the set of chains of Q to the set of
chains of LU {6}. We have the following theorem, which is analogous to the Bayer—
Sturmfels result (Theorem 2.3).

Theorem 4.2 Let ‘H be a noncentral hyperplane arrangement with intersection lat-
tice L. Letc—{O—xo <X < <Xk = 1} be a chain in EU{O} with k > 2. Then
the cardinality of the inverse image of the chain c under zy, is given by

k—1

|2 ()] = H Z([xi—1. xi1) - Zup (=1, xi1).

i=2

Proof We need to count the number of ways we can select a chain d = {6 =y <
V<< V= i} in the poset of unbounded regions Q such that z,,(y;) = x;. The
number of ways to select the element y;_; in Q is the number of unbounded regions
in the arrangement restricted to the subspace x;_1. By Lemma 4.1 this can be done in
Zup([xx—1, xx]) number of ways. Since y_ is an unbounded face of the arrangement
and all other elements in the chain d contain the face yx_1, the other elements must
be unbounded.

The remainder of the proof is the same as that of Theorem 3.13. g

Corollary 4.3 The flag f-vector entry fs(Typ) is divisible by 25! for any index set
SC{l,...,n}

Proof The proof is the same as Corollary 3.14 with the extra observation that the
Zaslavsky invariant Z, is even. Il
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4.2 The Connection between Posets and Coalgebras
Define A, by Ayp =n —2- 8. By (2.5) and (2.6), for a graded poset P we have
hub (W (P)) = Zup(P) - (a—b)? D)=L,

Define a sequence of functions ¢y« : Z(a,b) — Z({a,b) by ¢, 1 =« and for k > 1,

Qubk (V) =Y K1) b)) b-n@E) bbb hup (V).

Finally, let ¢, (v) be the sum @, (v) = Y 1~ 1 Pub k (V).
Similar to Theorem 3.17 we have the next result. The proof only differs in replac-
ing the map z, : 7,* — P U {0} with z,, : Q — £ U {0} and the invariant Z; by Z,.

Theorem 4.4 The ab-index of the poset Q of unbounded regions of a noncentral
arrangement is given by

W(Q) = gup(¥(£ U {0})).
4.3 Evaluating the Function ¢,
In this subsection we analyze the behavior of ¢,,.

Lemma 4.5 For any ab-monomial v,

Pup(V) =) =2 Y () -b- Bve).

Proof Using the coassociative identity Ak — (Ak_2 ®id) o A, we have for k > 2,

Qubk (V) = @r(v) =2 Y k() b N b-b- -1y b BVw)

= @) —2-) Y k@a.n)-b-nway) -b-bn@ai1)-b-Be)

vV

=@e(0) —2: Y g1 (o) - b Bu).

The result then follows by summing over all £k > 2 and adding ¢, 1(v) =« (v) =
®1(v). 0

Lemma 4.6 Let v be an ab-monomial. Then
up(v-2a) =@(v) - (a —b).
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Proof By Lemma 4.5 and the Newtonian relation (2.3) we have

Qup(v-2a) =@(v-a) —2-9() -b-B(1) —=2- Y @) -b- By -a).

By (2.7), (v - a) = ¢(v) - ¢. The summation above is zero because B(v() - a) is
always zero. Hence ¢, (v -a) = ¢(v) - (¢ —2b) = ¢(v) - (a—b). Il

Lemma 4.7 Let v be an ab-monomial. Then
Pub(v-bb) =@y (v-b) - (a—b).
Proof Letu =v-b. Applying Lemma 4.5 and the Newtonian relation (2.3) to u gives

Qub (4 -b) = @@ -b) =2 9@) -b-B(1) =2 9u) -b-pluw -b)

=¢)-(c—2b) -2 Z‘P(u(l)) b-Buw)-(@a—b)

= (cp(u) —2-Y @uay-b- ﬂ(u(z>)) (a—b)
= Qup(u) - (@ —b).

Here we have used the two facts ¢(u - b) = ¢(u) - ¢ and B(up) - b) = B(u()) -
(a—b). O

Lemma 4.8 Ler v be an ab-monomial. Then ¢, (v - ab) = 0.

Proof Directly we have

@up(v-ab) =¢(v-ab) —2-¢()-b-B(b) —2-¢(v-a)-b-B(1)
—Z'ZQD(v(l))'b'ﬂ(U(z)'ab)
=p)-2d—2-¢()-b-(a—b)—2-¢(v)-cb
=2~¢(v)-(d—b(a—b)—cb)
=0,

where we have used the facts ¢ (v - ab) = ¢(v) - 2d and B(v(2) - ab) =0. O

The previous three lemmas enable us to determine ¢,;. In order to obtain more
compact notation, define the map r: Z{a, b) — Z(a,b) by r(1) =0, r(v-a) = v, and
r(v -b) = 0. By using the chain definition of the ab-index, it is straightforward to see
that W (L) =r(¥(L)).
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Proposition 4.9 Let w be an ab-polynomial homogeneous of degree greater than
zero. Then

oup(@-w) = a)(a . r(w)) -(a—b).

Proof The case w = v - a follows from Lemma 4.6. The remaining case is w =
v - b. Note that a - v - b can be factored as u - ab - b* for a monomial u. Hence
@up(u - ab - b*) = @, (u - ab) - (a — b)* =0 by Lemmas 4.7 and 4.8. O

We combine all these results to conclude that the cd-index of the poset of un-
bounded regions T, can be computed in terms of the ab-index of the unbounded
intersection lattice £,p.

Theorem 4.10 Let H be a noncentral hyperplane arrangement with the unbounded
intersection lattice L, and poset of unbounded regions T,p. Then the ab-index of
Tup is given by

U(Tp) =o(a- V(Lw))".
Proof We have that

Y (Tup)* - (a—b) =¥ (Q)
= gup(a- V(L))
=a)(a~r(\1'(/3))) -(a—b)
=ow(a - Y(Lyp)) - (a—Dbh).

By cancelling a — b on both sides of this identity, the result follows. g

Example 4.11 Consider the noncentral hyperplane arrangement consisting of the
six hyperplanes x = 0,1, y =0, 1, and z =0, 1. See Fig. 3. After intersecting this
arrangement with a sphere of large enough radius, we obtain the cell complex in
Fig. 4. The polytopal realization of this complex is known as the rhombicubocta-
hedron. The dual of the face lattice of this spherical complex is not realized by a
zonotope. However, one can view the dual lattice as the face lattice of a2 x 2 x 2 pile
of cubes.

The intersection lattice £ is the face lattice of the three-dimensional crosspoly-
tope, in other words, the octahedron. Hence the lattice of unbounded intersections
Lyp has the flag f-vector (fy, f1, f2, f12) = (1,6,12,24) and the flag h-vector
(hg, hi,ha, h12) = (1,5,11,7). The ab-index is given by W (L) = aZ+5-ba+
11-ab + 7 -b%. Hence the cd-index of T is

W(Tup) = w(a® +5-aba+11-a’b+7-ab?)"
=c*+22-dc+24-cd.
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Fig. 3 The noncentral
arrangement x, y,z =0, 1

Fig. 4 The spherical
subdivision obtained from the
noncentral arrangement
x,y,z2=0,1

5 Concluding Remarks

For regular subdivisions of manifolds, there is now a plethora of questions to ask.

(1) What is the right analogue of a regular subdivision in order that it be polytopal?
Can flag f-vectors be classified for polytopal subdivisions?
(i1) Is there a Kalai convolution for manifolds that will generate more inequalities
for flag f-vectors? [33]
(iii) Is there a lifting technique that will yield more inequalities for higher dimen-
sional manifolds? [17]
(iv) Are there minimization inequalities for the cd-coefficients in the polynomial W ?
As a first step, can one prove the nonnegativity of W? [7, 18]
(v) Is there an extension of the toric g-inequalities to manifolds? [4, 32, 34, 42]
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(vi) Can the coefficients for W be minimized for regular toric arrangements as was
done in the case of central hyperplane arrangements? [8]

The most straightforward manifold to study is the n-dimensional projective
space P". We offer the following result in obtaining the ab-index of subdivisions
of P".

Theorem 5.1 Let Q be a centrally symmetric regular subdivision of the n-dimen-
sional sphere S". Assume that when antipodal points of the sphere are identified, a
regular subdivision Q' of the projective space P" is obtained. Then the ab-index of Q'
is given by

cn+1 + (a _ b)n+l 1)

v(QH= -,
(£2) 5 +2

where the ed-index of Q is W(Q) = "t + ®.

Proof Each chain ¢ = {0 =xp < x| < -+ < xx = 1} with k > 2 in €’ corresponds
to two chains in  with the same weight wt(c). The chain ¢ = {f) =X0 < X| = i}
corresponds to exactly one chain in € and has weight (a — b)"+1. Hence W () =
2. W(Q) — (a—b)"t!, proving the result. O

The results in this paper have been stated for hyperplane arrangements. In true gen-
erality one could work with the underlying oriented matroid, especially since there
are nonrealizable ones such as the non-Pappus oriented matroid. All of these can be
represented as pseudo-hyperplane arrangements. However, we have chosen to work
with hyperplane arrangements in order not to lose the geometric intuition.

Poset transformations related to the @ map appear in [16, 23, 29]. Are there toric
or affine analogues of these poset transforms?

Another way to encode the flag f-vector data of a poset is to use the quasisymmet-
ric function of a poset [14]. In this language the @ map is translated to Stembridge’s
¥ map; see [9, 44]. Would the results of Theorems 3.22 and 4.10 be appealing in the
quasisymmetric function viewpoint?

Richard Stanley has asked if the coefficients of the toric characteristic polynomial
are alternating. If so, is there any combinatorial interpretation of the absolute values
of the coefficients?

A far reaching generalization of Zaslavsky’s results for hyperplane arrangements
is by Goresky and MacPherson [25]. Their results determine the cohomology groups
of the complement of a complex hyperplane arrangement. For a toric analogue of
the Goresky—MacPherson results, see the work of De Concini and Procesi [12]. For
algebraic considerations of toric arrangements, see [13, 36-38].

Greene and Zaslavsky [26] also give an interpretation of the derivative of the chro-
matic polynomial of a graph evaluated at 1. Given an edge ij of a graph G, the num-
ber of acyclic orientations of the graph with unique source at i and unique sink at j
is given by (—1)" - %X (G; t)]s=1. Is there a geometric proof of this fact analogous to
the proof of Theorem 3.10?

In Sect. 3 we restricted ourselves to studying arrangements that cut the torus into
regular cell complexes. In a future paper [24], two of the authors are developing the
notion of a c¢d-index for nonregular cell complexes.
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