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AFFINE BRAID GROUP ACTIONS ON DERIVED

CATEGORIES OF SPRINGER RESOLUTIONS

 R BEZRUKAVNIKOV  S RICHE

A. – In this paper we construct and study an action of the affine braid group associated
with a semi-simple algebraic group on derived categories of coherent sheaves on various varieties re-
lated to the Springer resolution of the nilpotent cone. In particular, we describe explicitly the action
of the Artin braid group. This action is a “categorical version” of Kazhdan-Lusztig-Ginzburg’s con-
struction of the affine Hecke algebra, and is used in particular by the first author and I. Mirković in the
course of the proof of Lusztig’s conjectures on equivariant K-theory of Springer fibers.

R. – Dans cet article nous construisons et étudions une action du groupe de tresses affine
associé à un groupe algébrique semi-simple sur les catégories dérivées de faisceaux cohérents sur
diverses variétés liées à la résolution de Springer du cône nilpotent. En particulier, nous décrivons
explicitement l’action du groupe de tresses d’Artin. Cette action est une « version catégorique » de
la construction géométrique de l’algèbre de Hecke affine due à Kazhdan-Lusztig et Ginzburg, et est
utilisée par le premier auteur et I. Mirković au cours de la preuve des conjectures de Lusztig sur la
K-théorie équivariante des fibres de Springer.

Introduction

0.1. – The goal of this paper is to introduce an action of the affine braid group on the derived
category of coherent sheaves on the Springer resolution (and some related varieties) and
prove some of its properties.

The most direct way to motivate this construction is via the well-known heuristics of
Springer correspondence theory. Let g be a semi-simple Lie algebra over C,(1) let π : �g → g
be the Grothendieck-Springer map and π� : �N → N ⊂ g be the Springer map; here N is the
nilpotent cone and �N is the cotangent bundle to the flag variety. Let greg ⊂ g be the subset of
regular elements and �greg = π−1(greg). Then π|�greg is a ramified Galois covering with Galois
group W , the Weyl group of g. Thus W acts on �greg by deck transformations. Although the

(1) In the body of the paper we work over a finite localization of Z or over a field of arbitrary characteristic rather
than over C. Such details are ignored in the introduction.
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536 R. BEZRUKAVNIKOV AND S. RICHE

action does not extend to an action on �g, it still induces various interesting structures on
the Springer resolution �N . The most well-known example is the Springer action of W on
(co)homology of a fiber of π�, called a Springer fiber. The procedure of passing from the
action of W on �greg to the Springer action can be performed using different tools, such as
minimal (Goresky-MacPherson) extension of a perverse sheaf (see [47] for the original idea
of this construction, and [40] for a detailed treatment and further references), nearby cycles
(see [31]), or degeneration of the correspondence cycle (see [28, 22]).

The main result of this paper can also be viewed as a realization of that general idea.
Namely, we show that a “degeneration” of the action of W on �greg provides an action of the

corresponding Artin braid group B on the derived categories of coherent sheaves Db
Coh(�N ),

Db
Coh(�g). More precisely, we consider the closure Zw of the graph of the action of w ∈ W

on �greg. Using this as a correspondence we get a functor Db
Coh(�g) → Db

Coh(�g); we then
prove that there exists an action of B on Db

Coh(�g) where a minimal length representative
Tw ∈ B of w ∈ W acts by the resulting functor. It also induces a compatible action
on Db

Coh(�N ).

The fact that functors admitting such a simple description give an action of the braid
group is perhaps surprising; it implies that the closures of the graphs are Cohen-Macaulay.

Furthermore, the categories in question carry an obvious action of the weight lattice X

of G which is identified with the Picard group of the flag variety; here an element λ ∈ X acts
by twist by the corresponding line bundle. We prove that this action of X together with the
above action of B generate an action of the extended affine braid group(2) Baff .

In fact we construct a structure stronger than just an action of Baff on the two derived
categories of coherent sheaves; namely, we show the existence of a (weak) geometric action
of this group. Informally, this means that the action of elements of the group come from
“integral kernels,” i.e. complexes of sheaves on the square of the space, and relations of the
group come from isomorphisms between convolutions of the kernels. Formal definition of
this convolution requires basic formalism of differential graded schemes. On the other hand,
this geometric action induces a usual action on the derived categories of varieties obtained
from �N , �g by base change. In the simplest case of base change to the transversal slice to
a subregular nilpotent orbit we recover the action of Baff on the derived category of the
minimal resolution of a Kleinian singularity considered e.g. in [57, 17].

Here the term “weak” indicates that our kernels satisfy the relations in Baff only up to
isomorphism. There is a stronger notion of group action on a category (see [24]) in which
some compatibility conditions are imposed on these isomorphisms. We do not consider such
a notion in this paper. Let us mention however that it follows from our results that the action
of the Artin braid group B can be endowed with such a structure, see Remark 2.2.2(4).

(2) In the standard terminology (see [15]) this is the extended affine braid group of the Langlands dual group LG.
In fact, this may be viewed as the simplest manifestation of the relation of our Baff -action to Langlands duality
mentioned below.
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AFFINE BRAID GROUP ACTIONS 537

0.2. – We now list some contexts where the action of Baff appears and plays an essential role
(see [9] for a complementary discussion).

The work [11] uses the geometric theory of representations of semi-simple Lie algebras
in positive characteristic developed in [13, 12] to deduce Lusztig’s conjectures on numerical
properties of such representations (see [48, 49]). It uses the action considered in this paper,
which is related to the action of Baff on the derived category of modular representations by
intertwining functors (or shuffling functors, or Radon transforms, in a different terminology).
In fact, [11] and the present paper are logically interdependent. This application was our
main motivation for considering this action over a localization of Z. The action studied in
this paper (and in particular its version for certain differential graded schemes) also plays a
technical role in the study of Koszul duality for representations of semi-simple Lie algebras
in positive characteristic (see [55]).

The induced action of Baff on the Grothendieck group of C∗-equivariant coherent sheaves
factors through an action of the affine Hecke algebra, i.e. the action of simple reflections
satisfies a certain quadratic relation. A weak form of the categorical counterpart of the
quadratic relation is used in [11]; a more comprehensive development of the idea that our
action induces an action of the “categorical affine Hecke algebra” is the subject of [25].

In fact, in view of the work of Lusztig and Ginzburg, the monoidal category
Db

CohG×C∗

(�g ×g �g) (or the �N -version; the monoidal structure on these categories is
defined below) can be considered as a categorification of the affine Hecke algebra; see [10]
and announcement in [9] for an equivalence between this categorification and another one
coming from perverse sheaves on the affine flag variety of the dual group. Such an equiv-
alence, inspired by the ideas of local geometric Langlands duality theory, also implies the
existence of the Baff -action constructed in this paper (at least over C).

Another approach to the construction of the B-action (over C) relates it to the well-known
action of B on the category of D-modules on the flag variety by Radon transforms (see
e.g. [5]). Passing from D-modules to coherent sheaves on the cotangent bundle is achieved
by means of the Hodge D-modules formalism. We plan to develop this approach in a future
publication.

Finally, we would like to mention that in the �N -version of the construction, (inverses
of) simple generators act by reflection at a spherical functor in the sense of [2, 56] (see
Remark 1.6.2), and that in the particular case of groups of type A the action (in its non-
geometric form, and over C rather than a localization of Z) has been constructed in [45] and
more recently, as a part of a more general picture, in [21].

0.3. Contents of the paper

In Section 1 we prove that there exists an action of Baff on Db
Coh(�g) and Db

Coh(�N )

where generators associated with simple reflections in W and elements of X act as stated
above. This result was already proved under stronger assumptions and by less satisfactory
methods in [54]. We also extend this result to the schemes over a finite localization of Z.

In Section 2 we prove that, if p is bigger than the Coxeter number of G, the action of
the element Tw ∈ B (w ∈ W ) is the convolution with kernel OZw

. This proof is based on
representation theory of semi-simple Lie algebras in positive characteristic. We also extend
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538 R. BEZRUKAVNIKOV AND S. RICHE

this result to the schemes over a finite localization of Z, and (as an immediate consequence)
over an algebraically closed field of characteristic zero.

In Section 3 we prove generalities on dg-schemes, extending results of [55, §1]. (Here, we
concentrate on quasi-coherent sheaves.) In particular, we prove a projection formula and a
(non-flat) base change theorem in this context.

In Section 4 we use the results of Section 3 to show that the action of Baff induces actions
on categories of coherent sheaves on various (dg-)varieties related to �N and �g, in particular
inverse images of Slodowy slices under the Springer resolution.

Finally, in Section 5 we prove some equivariant analogues of the results of Section 4 which
are needed in [11].
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1. Existence of the action

1.1. Notation

Let GZ be a split connected, simply-connected, semi-simple algebraic group over Z.
Let TZ ⊂ BZ ⊂ GZ be a maximal torus and a Borel subgroup in GZ. Let tZ ⊂ bZ ⊂ gZ be
their respective Lie algebras. Let also UZ be the unipotent radical of BZ, and nZ be its Lie
algebra. Let Φ be the root system of (GZ, TZ), and Φ+ be the positive roots, chosen as the
roots of gZ/bZ. Let Σ be the associated system of simple roots. Let also X := X∗(TZ) be the
weight lattice. We let g∗Z be the coadjoint representation of GZ.

Let W be the Weyl group of Φ, and let S = {sα, α ∈ Σ} be the set of Coxeter generators
associated with Σ (called simple reflections). Let WCox

aff := W �ZR be the affine Weyl group,
and Waff := W � X be the extended affine Weyl group. Let B ⊂ BCox

aff ⊂ Baff be the braid
groups associated with W ⊂ WCox

aff ⊂ Waff (see e.g. [12, §2.1.1] or [54, §1.1]). Note that W

and WCox
aff are Coxeter groups, but not Waff in general. For s, t ∈ S , let us denote by ns,t the

order of st in W . Recall (see [14] or [50, § 3.3]) that Baff has a presentation with generators
{Ts, s ∈ S } and {θx, x ∈ X} and the following relations:

(i) TsTt · · · = TtTs · · · (ns,t elements on each side);

(ii) θxθy = θx+y;

(iii) Tsθx = θxTs if s(x) = x;

(iv) θx = Tsθx−αTs if s = sα and s(x) = x − α.

Relations of type (i) are called finite braid relations.
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AFFINE BRAID GROUP ACTIONS 539

Recall that there exists a natural section Waff �→ Baff of the projection Baff � Waff ,
denoted by w �→ Tw (see [12, §2.1.2], [14]). We denote by Saff the set of simple affine
reflections, i.e. the natural set of Coxeter generators of WCox

aff (which contains S ), and by Σaff

the set of affine simple roots. By definition, Σaff is in bijection with Saff via a map denoted
by α �→ sα. We denote by � the length function on WCox

aff , and extend it naturally to Waff .
Note that B is generated by the elements Ts (s ∈ S ), BCox

aff is generated by the elements Ts

(s ∈ Saff ), and Baff is generated by the elements Ts (s ∈ Saff ) and Tω (ω ∈ Ω := {w ∈ Waff |

�(ω) = 0}).

In this paper we study an action(3) of the group Baff on certain derived categories of
coherent sheaves. Let us introduce the varieties we will consider.

Let R be any (commutative) algebra. We replace the index Z by R in all the notations
introduced above to denote the base change to R. Let BR := GR/BR be the flag variety.

Let �N R := T ∗ BR be its cotangent bundle. We have the more concrete description

�N R = GR ×BR (gR/bR)∗ = {(X, gBR) ∈ g∗R ×R BR | X|g·bR
= 0}.

Let also �gR be the Grothendieck resolution, defined as

�gR = GR ×BR (gR/nR)∗ = {(X, gBR) ∈ g∗R ×R BR | X|g·nR
= 0}.

There is a natural inclusion i : �N R �→ �gR, and a natural morphism �gR → g∗R induced by
the projection on the first summand.

The varieties �gR and �N R are endowed with an action of GR ×R (Gm)R, where GR acts
by the natural (diagonal) action, and (Gm)R acts via

t · (X, gBR) = (t2X, gBR).

We will also consider the diagonal action of GR ×R (Gm)R on �gR ×R �gR and �N R ×R
�N R.

For any R-scheme X endowed with an action of (Gm)R, we denote by

�1� : Db
Coh(Gm)R(X) → Db

Coh(Gm)R(X)

the shift functor, i.e. the tensor product with the tautological (Gm)R-module associated with
the natural identification (Gm)R

∼= GL(1, R). We denote by �j� the j-th power of �1�.

If λ ∈ X, we denote by O BR
(λ) the line bundle on BR naturally associated with λ. If

X → BR is a variety over BR, we denote by OX(λ) the inverse image of O BR
(λ).

For any R-scheme X, we denote by ∆X ⊂ X ×R X the diagonal copy of X.

(3) As in [13, 9, 54], here we consider the weak notion: an action of a group Γ on a category C is a group morphism
from Γ to the group of isomorphism classes of auto-equivalences of C . See Remark 2.2.2(4) for comments on a
stronger structure.
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1.2. Convolution

Let R be a finite localization of Z or a field, let X be a regular scheme of finite type over R,
and let p1, p2 : X ×R X → X be the projections on the first and on the second component.
We define the full subcategory

Db
PROPCoh(X ×R X) ⊂ Db

Coh(X ×R X)

as follows: an object of Db
Coh(X×R X) belongs to Db

PROPCoh(X×R X) if it is isomorphic
to the direct image of an object of Db

Coh(Y ) for a closed subscheme Y ⊂ X×R X such that
the restrictions of p1 and p2 to Y are proper. Any F ∈ Db

PROPCoh(X ×R X) gives rise to a
functor

F F
X :

�
Db

Coh(X) → Db
Coh(X)

M �→ R(p2)∗( F
L

⊗X×RX (p1)
∗ M).

Let p1,2, p2,3, p1,3 : X ×R X ×R X → X ×R X be the natural projections. The category
Db

PROPCoh(X ×R X) is endowed with a convolution product, defined by

F � G := R(p1,3)∗
�
(p1,2)

∗ G
L

⊗X×RX×RX (p2,3)
∗ F

�
.

With these definitions, for F , G ∈ Db
PROPCoh(X×R X) we have a natural isomorphism (see

e.g. [54, Lemma 1.2.1] or [36])
F F

X ◦ F
G

X
∼= F

F � G
X .

One can define similarly convolution functors for equivariant coherent sheaves. We will
use the same notation in this setting also.

The convolution formalism is compatible with base change: if R� is an R-algebra,
and if X � = X ×Spec(R) Spec(R�), then the (derived) pull-back under the morphism
X � ×R� X � → X ×R X is monoidal, and the (derived) pull-back under the morphism
X � → X is compatible with the actions.

1.3. Statement

Let R be a finite localization of Z. For s ∈ S , we denote by

Zs,R

the closure of the inverse image of the GR-orbit of (BR/BR, sBR/BR) ∈ BR ×R BR (for
the diagonal action) under the morphism �gR ×g∗

R
�gR �→ �gR ×R �gR � BR ×R BR. It is

a reduced closed subscheme of �gR ×g∗
R

�gR. We also define the following closed subscheme

of (�N R ×R �gR):

Z �
s,R := Zs,R ∩ (�N R ×R �gR).

(Note that here we consider the scheme-theoretic intersection.) It is easy to prove (see e.g.
Lemma 2.12.1 below for a more general claim in the case of a field) that Z �

s,R is in fact a

closed subscheme of �N R ×g∗
R

�N R.
The main result of this section is the following.

T 1.3.1. – There exists an action b �→ Jb, respectively b �→ J
�
b, of Baff on the

category Db
Coh(�gZ), respectively Db

Coh(�N Z), such that

1. For s ∈ S , JTs
, respectively J

�
Ts

, is isomorphic to F
OZs,Z

�gZ

, respectively F
OZ�

s,Z

�N Z

;
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2. For x ∈ X, Jθx
, respectively J

�
θx

, is isomorphic to F
O∆�gZ

(x)

�gZ

, respectively F
O
∆�N Z

(x)

�N Z

, or

equivalently to the functor of tensoring with the line bundle O�gZ
(x), respectively O �N Z

(x).

Moreover, these two actions are compatible (in the obvious sense) with the inverse and direct
image functors

Db
Coh(�N Z)

Ri∗ �� Db
Coh(�gZ).

Li∗
��

In fact, we will also prove an equivariant analogue of this result:

T 1.3.2. – There exists an action b �→ J
eq
b , respectively b �→ J

�,eq
b , of Baff on the

category Db
CohGZ×Z(Gm)Z(�gZ), respectively Db

CohGZ×Z(Gm)Z(�N Z), such that

1. For s ∈ S , Jeq
Ts

, respectively J
�,eq
Ts

, is isomorphic to F
OZs,Z

�1�

�gZ

, respectively F
OZ�

s,Z

�1�

�N Z

;

2. For x ∈ X, Jeq
θx

, respectively J
�,eq
θx

, is isomorphic to F
O∆�gZ

(x)

�gZ

, respectively F
O
∆�N Z

(x)

�N Z

, or

equivalently to the functor of tensoring with the line bundle O�gZ
(x), respectively O �N Z

(x).

Moreover, these two actions are compatible (in the obvious sense) with the inverse and direct
image functors

Db
CohGZ×Z(Gm)Z(�N Z)

Ri∗ �� Db
CohGZ×Z(Gm)Z(�gZ).

Li∗
��

1.4. Preliminary results

Let R be a finite localization of Z, and let A be a finitely generated R-algebra, which is flat
over R. We denote by Mod(A) the category of A-modules, and by Modfg(A) the subcategory
of finitely generated modules. For any prime p ∈ Z which is not invertible in R, consider the
specialization Ap := A ⊗R Fp, and the extension of scalars Ap := A ⊗R Fp

∼= Ap ⊗Fp
Fp.

For any object M of Db
Mod(A) we set

Mp := M
L

⊗R Fp in Db
Mod(Ap),

Mp := M
L

⊗R Fp in Db
Mod(Ap).

L 1.4.1. – Let M ∈ Db
Modfg(A).

1. If Mp = 0 for any prime p ∈ Z not invertible in R, then M = 0.
2. If Mp is concentrated in degree 0 for any prime p not invertible in R, then M is concentrated

in degree 0, and is flat over R.

Proof. – First, one can clearly replace Mp by Mp in these properties.

The ring R has global dimension 1, hence any object of Db
Mod(R) is isomorphic to the

direct sum of its (shifted) cohomology objects. Hence it is enough to prove the following
properties for a finitely generated A-module M :

(∗) if M ⊗R Fp = 0 for any p, then M = 0;
(∗∗) if TorR

−1(M, Fp) = 0 for any p, then M is flat over R.
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Let us first prove (∗). It is enough to prove that for any maximal idealM ⊂ A, the local-
ization MM is zero. Then, by Nakayama’s lemma, it is enough to prove that MM/M ·MM =

M/M · M = 0. However, by the general form of the Nullstellensatz ([26, Theorem 4.19]),
A/M is a field extension of R/p·R = Fp for some prime p not invertible in R. Hence M/M·M

is a quotient of M ⊗R Fp, hence is indeed zero.
Property (∗∗) implies that multiplication by p is injective on M for any p. Hence M is

torsion-free over R, hence flat.

L 1.4.2. – Let k be an algebraically closed field.
We have

RiΓ(�gk, O�gk
)Gm =

�
k if i = 0;

0 if i �= 0.

Proof. – Let r : �gk → Bk be the natural projection. Then we have r∗ O�g ∼= S O Bk

(M),

where M is the dual to the sheaf of sections of �gk. The action of Gm on Bk is trivial; the
Gm-equivariant structure on S O Bk

(M) is given by the grading such that M is in degree −2.

Hence the claim follows from the similar result for Bk, which is well-known (see e.g. [19,
Theorem 3.1.1]).

P 1.4.3. – Let R be any finite localization of Z.
Let M ∈ Db

CohGR×R(Gm)R(�gR ×R �gR). Assume that for any prime p not invertible in R

there is an isomorphism

M
L

⊗R Fp
∼= O∆�g

Fp

in Db
Coh

G
Fp

×
Fp

(Gm)
Fp (�g

Fp
×

Fp
�g

Fp
). Then there exists an isomorphism

M ∼= O∆�gR

in Db
CohGR×R(Gm)R(�gR ×R �gR).

Proof. – By Lemma 1.4.1(2), M is concentrated in degree 0, i.e. is an equivariant coherent
sheaf, and is flat over R. Consider the object

M := RΓ(�gR ×R �gR, M)(Gm)R

in Db
Mod(R). Here, (−)(Gm)R is the functor of (Gm)R-fixed points. Note that this func-

tor is exact by [39, Lemma I.4.3.(b)], and commutes with specialization by [39, Equa-
tion I.2.11.(10)]. As �gR is proper over g∗R, the object RΓ(�gR ×R �gR, M) is an object of the
category Db

Modfg(SR(gR ⊕ gR)), hence M is in fact in the subcategory Db
Modfg(R). For

any p not invertible in R we have

Mp
∼= RΓ(�g

Fp
×

Fp
�g

Fp
, M

Fp
)
(Gm)

Fp

∼= RΓ(�g
Fp

, O�g
Fp

)
(Gm)

Fp ,

where the first isomorphism follows from the base change theorem (see e.g. [46, §3.10]).
By Lemma 1.4.2, this object is concentrated in degree 0. Hence, by Lemma 1.4.1(2), M is
concentrated in degree 0, i.e. is a finitely generated R-module.

For any prime p not invertible in R we have

M ⊗R Fp
∼= Fp,
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by the computation above and Lemma 1.4.2. Using the classical description of finitely gen-
erated modules over a principal ideal domain, it follows that M ∼= R. Hence we also have

Γ(�gR ×R �gR, M)GR×R(Gm)R ∼= R.

Let φ be the inverse image of 1 ∈ R under such an isomorphism; it is uniquely defined up
to an invertible scalar in R. We will consider φ as a (GR ×R (Gm)R)-equivariant morphism
φ : O�gR×R�gR

→ M.

Let J be the cocone of φ, so that we have a distinguished triangle

J → O�gR×R�gR

φ
−→ M

+1
−−→ .

For any p not invertible in R, O�gR×R�gR

L

⊗R Fp and M
L

⊗R Fp are both concentrated in

degree 0, and φ⊗R Fp is surjective. It follows that J
L

⊗R Fp is also concentrated in degree 0.
By Lemma 1.4.1(2), we deduce that J is concentrated in degree 0, i.e. that φ is surjective. It
follows that

M ∼= OX

for some GR ×R (Gm)R-stable closed subscheme X ⊂ �gR ×R �gR.

For any p not invertible in R we have X ×Spec(R) Spec(Fp) ∼= ∆�g
Fp

. In particular,
this fiber product is reduced. As moreover X is flat over R, the arguments of [19, Proof of
Proposition 1.6.5] imply that X itself is reduced.

Let Y be the restriction of X to (�gR×R�gR)�(∆�gR). For any p not invertible in R we have

OY
L

⊗R Fp = 0. By Lemma 1.4.1(1) we deduce that Y is empty. As X is reduced, it follows that
X is included in ∆�gR, i.e. that φ factors through a (GR ×R (Gm)R)-equivariant morphism

ψ : O∆�gR
→ OX .

Let I be the cone of ψ. Then for any p not invertible in R we have I
L

⊗R Fp = 0. By
Lemma 1.4.1(1) again we deduce that I = 0, i.e. that ψ is an isomorphism.

1.5. Reduction to the case of an algebraically closed field of positive characteristic

To prove Theorem 1.3.1, it is easier to replace R by an algebraically closed field of positive
characteristic. In this subsection we explain how to justify this reduction.

Let s ∈ S . Then the subscheme Zs,Z ⊂ �gZ×Z�gZ can be described explicitly (see [54, §1.4]).
Let Ps,Z ⊂ GZ be the minimal parabolic subgroup of GZ containing BZ associated with s,
and let Ps,Z = GZ/Ps,Z be the associated partial flag variety. Then Zs,Z is a vector bundle
over BZ× Ps,Z

BZ, of rank rkZ(bZ)−1. (Note that in [54] we work over an algebraically closed
field; the case of Z is similar. Also, if s = sα for α ∈ Σ, the scheme Zs is denoted by Sα in
[54].) In particular, Zs,Z is a smooth scheme, flat over Z. And, for any algebraically closed
field k, the reduction Zs,k := Zs,Z ×Spec(Z) Spec(k) is also smooth, and is also the closure of
the inverse image in �gk ×g∗

k
�gk of the orbit of (Bk/Bk, sBk/Bk) ∈ Bk ×k Bk.

L 1.5.1. – There exist isomorphisms in Db
CohGZ×Z(Gm)Z(�gZ ×Z �gZ):

OZs,Z
(−ρ, ρ − α) � OZs,Z

∼= O∆�gZ
�−2�,

OZs,Z
� OZs,Z

(−ρ, ρ − α) ∼= O∆�gZ
�−2�.
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Proof. – Let M := OZs,Z
(−ρ, ρ − α) � OZs,Z

�2�. By Proposition 1.10.3 below, for any p

we have a (G
Fp

×
Fp

(Gm)
Fp

)-equivariant isomorphism

M
L

⊗Z Fp
∼= O∆�g

Fp
.

By Proposition 1.4.3, we deduce that M ∼= O∆�gZ
in Db

CohGZ×Z(Gm)Z(�gZ ×Z �gZ). The second
isomorphism can be proved similarly.

Proof of Theorems 1.3.1 and 1.3.2. – Consider first the case of �gZ. What we have to prove
is that the kernels OZs,Z

(s ∈ S ) and O∆�gZ
(x) (x ∈ X) satisfy the relations of the affine braid

group Baff given in §1.1 in the monoidal category (Db
PROPCohGZ×Z(Gm)Z(�gZ ×Z �gZ), �).

Using Lemma 1.5.1, one can rewrite these relations as stating that certain objects of
Db

CohGZ×Z(Gm)Z(�gZ ×Z �gZ) are isomorphic to O∆�gZ
. By Proposition 1.4.3, it is enough

to prove the isomorphisms after applying the derived specialization (−
L

⊗Z Fp). In this set-
ting, relation (i) is proved in Corollary 1.12.4, and the other relations are proved in the end
of §1.10.

The case of �N Z is similar. The compatibility of the actions with the functor Ri∗ easily
follows from the definitions and the projection formula. The compatibility with Li∗ follows
by adjunction.

1.6. Statement for an algebraically closed field

From now on and until the end of the section we fix an algebraically closed field k of
characteristic p ≥ 0. All the schemes we will consider will be over k. In particular, we will
consider the specialization of all the varieties defined over Z above. For simplicity we drop
the index “k.” In particular we have the variety Zs defined in §1.5. We set

Z �
s := Zs ∩ (�N × �g) ∼= Z �

s,Z ×Spec(Z) Spec(k).

This is a closed subscheme of �N × �N .

In the end of this section we will prove the following result, which is a version of Theo-
rems 1.3.1 and 1.3.2 over k. Note that the case p = 0 is not excluded, though it is not needed
to prove Theorems 1.3.1 and 1.3.2.

T 1.6.1. – There exists an action b �→ Jb, respectively b �→ J
�
b, of Baff on the

category Db
Coh(�g), respectively Db

Coh(�N ), such that

1. For s ∈ S , JTs
, respectively J

�
Ts

, is isomorphic to F
OZs

�g
, respectively F

OZ�
s

�N
;

2. For x ∈ X, Jθx
, respectively J

�
θx

, is isomorphic to F
O∆�g(x)

�g
, respectively F

O
∆�N

(x)

�N
, or

equivalently to the functor of tensoring with the line bundle O�g(x), respectively O �N (x).

Moreover, these two actions are compatible (in the obvious sense) with the inverse and direct
image functors

Db
Coh(�N )

Ri∗ �� Db
Coh(�g).

Li∗
��

Similar results hold for the categories Db
CohG×Gm(�g), Db

CohG×Gm(�N ).
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This theorem was announced by the first author in [9]. It was proved, in the case G has no
component of type G2 (with some restriction on p), by the second author in [54]. The proof
in this paper is new and avoids any assumption on p or case-by-case analysis.

The proof of the theorem is given in §1.10 and Corollary 1.12.4. It is based on a different
interpretation of the scheme Zs, see Remark 1.8.5.

R 1.6.2. – Let s ∈ S , and consider the associated parabolic flag variety Ps

(see §1.5). Set �N s := T ∗(Ps), and let Ds := �N s × Ps
B. We have a closed embedding

is : Ds �→ �N (where Ds is a divisor) and a projection ps : Ds → �N s, which is a P1-bundle.
It follows from [2, Example 3] that the functor

R(is)∗L(ps)
∗ : Db

Coh(�N s) → Db
Coh(�N )

is a spherical functor of dimension 2. Hence this is also the case for the functor

M �→ O �N (−ρ) ⊗ O�N
R(is)∗L(ps)

∗(M)

(see [2, Proposition 2.(2)]). It is not hard to see, using the exact sequences of [54, Lemma 6.1.1],
that the corresponding twist functor defined in [2] (see also [56]) is isomorphic to the action
of (Ts)

−1 constructed here. Since the element Tsα0
for an affine simple root α0 ∈ Saff � S

is conjugate to Ts for some s ∈ S (see [11, Lemma 2.1.1]), we see that in the �N -version of
our action all inverses of Coxeter generators of BCox

aff act by reflection at a spherical functor.

1.7. More notation

For each positive root α, there are subgroups Uα, U−α of G naturally attached to α and
−α. We choose isomorphisms of algebraic groups uα : k

∼
→ Uα and u−α : k

∼
→ U−α such

that for all t ∈ T we have t · uα(x) · t−1 = uα(α(t)x) and t · u−α(x) · t−1 = u−α(α(t)−1x),
and such that these morphisms extend to a morphism of algebraic groups ψα : SL(2, k) → G

such that

ψα

�
1 x

0 1

�
= uα(x), ψα

�
1 0

x 1

�
= u−α(x), x ∈ k,

ψα

�
y 0

0 y−1

�
= α∨(y), y ∈ k×.

We define the elements

eα := d(uα)0(1), e−α := d(u−α)0(1), hα := [eα, e−α] = d(α∨)1(1).

We let

n+ :=
�

α∈Φ+

k · eα.

Then n+ is the Lie algebra of the unipotent radical of the Borel subgroup of G opposite to B

with respect to T . We also let ρ ∈ X be the half sum of positive roots.

If P is a parabolic subgroup of G and V is any finite dimensional P -module, there exists
a natural vector bundle LG/P (V ) on G/P associated with V (see [39, §I.5.8]). If X → G/P

is a variety over G/P , we denote by LX(V ) the inverse image of LG/P (V ).
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1.8. Regular elements in g∗

In this subsection we prove some elementary facts about the coadjoint action of G in g∗.
If p is not too small, then g∗ is isomorphic to g as a G-module, and all the results we need are
well known (see e.g. [40]). However, these facts have to be checked directly (without using g)
if we want to relax the assumptions on p. Some of these facts are proved in [61, §5], using the
same arguments as those of [40] and some results of [41].

Let ξ ∈ (g/n)∗. The restriction morphism (g/n)∗ → (b/n)∗ is B-equivariant, and the
B-action on (b/n)∗ is trivial. It follows that the centralizer ZB(ξ) has dimension at least the
rank r of G. The same is true a fortiori for ZG(ξ). By [41, Lemma 3.3] we have g∗ = G·(g/n)∗.
Hence for all ξ ∈ g∗ we have dim(ZG(ξ)) ≥ r. We denote by g∗reg the set of regular elements
in g∗, i.e. the set of ξ ∈ g∗ such that dim(ZG(ξ)) = rk(G). By standard arguments, this set is
open in g∗ (see e.g. [35, §1.4]).

L 1.8.1. – Let ξ ∈ g∗, and assume that ξ|n⊕n+ = 0. Then ξ is regular if and only if
for all α ∈ Φ, ξ(hα) �= 0.

Proof. – This follows from [41, Lemma 3.1(i), (ii), (iv)].

Let g∗rs ⊂ g
∗ be the set of regular semi-simple elements, i.e. of ξ ∈ g∗ such that there exists

g ∈ G such that g · ξ satisfies the conditions of Lemma 1.8.1. By [41, Theorem 4(vi)], under
our hypotheses this set is non-empty and open in g∗. By Lemma 1.8.1 it is contained in g∗reg.

R 1.8.2. – If G = SL(2, k) and p = 2, then the set of regular semi-simple
elements of g is empty, whereas g∗rs �= ∅.

Let us denote by (g/n)∗rs, respectively (g/(n⊕ n+))∗rs the intersection g∗rs ∩ (g/n)∗, respec-
tively g∗rs ∩ (g/(n⊕ n+))∗.

L 1.8.3. – The action morphism induces an isomorphism of varieties

U × (g/(n⊕ n+))∗rs
∼
−→ (g/n)∗rs.

Proof. – Let us first show that this morphism is surjective. Let ξ ∈ (g/n)∗rs. We have
dim(ZB(ξ)) ≥ r, hence ZG(ξ)◦ = ZB(ξ)◦, hence in particular ZG(ξ)◦ ⊂ B. As ξ is regular
semi-simple, ZG(ξ)◦ is a maximal torus. Hence there exists b ∈ B such that ZG(b · ξ)◦ =

b · ZG(ξ)◦ · b−1 = T . Then T stabilizes b · ξ, hence b · ξ ∈ (g/(n⊕ n+))∗. Writing b = tu for
some t ∈ T , u ∈ U , we have u · ξ ∈ (g/(n⊕ n+))∗rs.

Now we prove that the morphism is injective. For u ∈ U and ξ ∈ (g/(n ⊕ n+))∗ we have
u·ξ−ξ ∈ (g/b)∗. Hence, using the decomposition (g/n)∗ = (g/(n⊕n+))∗⊕(g/b)∗, it follows
that ξ is uniquely determined by u · ξ. Then if ξ is regular semi-simple and u1 · ξ = u2 · ξ

we have (u1)
−1u2 ∈ ZG(ξ) ⊂ NG(ZG(ξ)◦). By Lemma 1.8.1 we have ZG(ξ)◦ = T , hence

(u1)
−1u2 ∈ NG(T ) ∩ U , which implies u1 = u2.

Then one can prove that the inverse bijection (g/n)∗rs → U ×(g/(n⊕n+))∗rs is a morphism
exactly as in [40, §13.3].

Let �grs be the inverse image of g∗rs under the natural morphism π : �g → g∗. Using [61,
Lemma 5.4, Lemma 5.5(iii)], one obtains the following (see also [40, §13.4]).
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C 1.8.4. – There exists a free action of W on the variety �grs, such that the
restriction πrs : �grs → g∗rs of π is a principal W -bundle.

R 1.8.5. – Let s ∈ S . Using the action of Corollary 1.8.4, one can give a different
interpretation of the variety Zs: it is the closure of the graph of the action of s on �grs. Indeed,
Zs clearly contains this closure, and both schemes are reduced, irreducible and of the same
dimension.

1.9. Action of W on �greg
Consider the morphism π : �g→ g∗. Let now �greg be the inverse image of g∗reg under π. In

this subsection we prove that the action of W on �grs (see Corollary 1.8.4) extends to �greg.

L 1.9.1. – Let ξ ∈ (g/n)∗reg, and α ∈ Σ. Then either ξ(hα) or ξ(eα) is non-zero.

Proof. – Let Pα be the minimal standard parabolic subgroup of G attached to α, and
let pα be its Lie algebra. Assume ξ(hα) = ξ(eα) = 0. Consider the restriction morphism

(g/(n⊕ khα ⊕ keα))∗
q
−→ (pα/(n⊕ khα ⊕ keα))∗.

There are natural Pα-actions on both spaces, and this morphism is Pα-equivariant. More-
over, the Pα-action on (pα/(n ⊕ khα ⊕ keα))∗ is trivial. Hence q(Pα · ξ) = q(ξ), and
dim(Pα · ξ) ≤ #(Φ+) − 1. It follows that dim(G · ξ) ≤ #Φ − 2, hence ξ is not regular.

P 1.9.2. – There exists an action of W on the variety �greg, whose restriction
to �grs is the action of Corollary 1.8.4.

Proof. – Let s ∈ S , and let Zreg
s be the restriction of Zs to �g2reg. Consider the projection

on the first component p1 : Zreg
s → �greg. This morphism is proper, birational, with normal

image. Moreover, it follows easily from the explicit description of Zs in [54] and Lemma 1.9.1
that it is bijective (see e.g. Lemma 2.9.1 below). Hence it is an isomorphism of varieties.
Similarly, the projection on the second component p2 : Zreg

s → �greg is an isomorphism.
Let us denote by fs : �greg → �greg the isomorphism given by the composition of p2 with the
inverse of p1. We claim that the assignment

s �→ fs

extends to an action of the group W on the variety �greg.
First, for any s ∈ S , by symmetry of Zs under the exchange of the two copies of �g, fs is

an involution. Hence we only have to check that these morphisms satisfy the braid relations.
However, these morphisms stabilize the dense open subset �grs ⊂ �greg, and their restrictions
satisfy the braid relations by Corollary 1.8.4. Hence the braid relations are satisfied on the
whole of �greg. This finishes the proof.

R 1.9.3. – Assume that p is odd and a good prime for G, and that g admits a
G-invariant non-degenerate bilinear form. Then one can give a different proof(4) of Propo-
sition 1.9.2 as follows. By [20, Corollary 3.4], the restriction of the coadjoint quotient
g∗ → g∗/G to g∗reg is a smooth morphism. Then, the arguments of [29, Remark 4.2.4(i)]

(4) This proof was explained to us by V. Ginzburg.
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prove that the natural morphism �greg → g∗reg ×t∗/W t
∗ is an isomorphism. There exists a

natural action of W on g∗reg ×t∗/W t
∗, which induces the desired action on �greg.

The precise description of �greg will not be important for us. The only property that we
need is the following.

P 1.9.4. – The codimension of �g� �greg in �g is at least 2.

Proof. – By G-equivariance, it is sufficient to prove that the codimension of
(g/n)∗ � (g/n)∗reg in (g/n)∗ is at least 2.

First, we have

(1.9.5) (g/n)∗rs = (g/(n⊕ n+))∗rs + (g/b)∗.

Indeed, the inclusion ⊆ follows from Lemma 1.8.3. Now if ξ is in the right-hand side, by the
arguments of [41, §3.8] there exists u ∈ U such that u ·ξ ∈ (g/(n⊕n+))∗rs. Hence ξ ∈ (g/n)∗rs.

By (1.9.5) and Lemma 1.8.1, the irreducible components of the complement of (g/n)∗rs
in (g/n)∗ are the subspaces

Cα = { ξ ∈ (g/n)∗ | ξ(hα) = 0 }

for α ∈ Φ+. To prove the proposition, it is sufficient to prove that (g/n)∗reg intersects any Cα.

By [62, §4.1], there is only a finite number of G-orbits in the “dual nilpotent cone”
N �

:= G · (g/b)∗. Hence there exist regular nilpotent elements in g∗, which implies that
(g/b)∗reg �= ∅. Moreover, elements of (g/b)∗reg are obviously in Cα∩(g/n)∗reg for any α, which
finishes the proof.

1.10. Kernels associated with simple reflections

Fix α ∈ Σ, and let s = sα. Consider the minimal standard parabolic subgroup Ps

associated with α, and the corresponding partial flag variety Ps = G/Ps. Let ps be the Lie
algebra of Ps, and pnil

s its nilpotent radical. Consider the variety

�gs := G ×Ps (g/pnil
s )∗ = {(X, gPs) ∈ g

∗ × Ps | X|g·pnil
s

= 0}.

There is a natural morphism �πs : �g → �gs, and we consider the (scheme-theoretic) fiber
product �g ×�gs

�g. It is reduced, and has two irreducible components, Zs and Z1 = ∆�g (see
[54, §1.4]). Recall that there exist exact sequences of G × Gm-equivariant coherent sheaves
on �g× �g

O∆�g�−2� �→ O�g×�gs
�g � OZs

;(1.10.1)

OZs
(−ρ, ρ − α) �→ O�g×�gs

�g � O∆�g,(1.10.2)

see [54, Corollary 5.3.2]. Let us observe that for both sequences the surjection is induced
by restriction of functions, and that the second sequence is induced by the natural exact
sequence of sheaves on B × B

O B× Ps
B(−ρ, ρ − α) �→ O B× Ps

B � O∆ B.

These exact sequences allow to give a simpler proof of statement (2) of the following
proposition, which was proved by explicit computation in [54, Proposition 1.5.2].
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P 1.10.3. – 1. There exist isomorphisms

O�g×�gs
�g � OZs

∼= O�g×�gs
�g, OZs

� O�g×�gs
�g
∼= O�g×�gs

�g

in the category Db
PROPCohG×Gm(�g× �g).

2. The kernel OZs
�1� is invertible, with inverse OZs

(−ρ, ρ−α)�1�. In other words, there exist
isomorphisms in Db

PROPCohG×Gm(�g× �g):
OZs

(−ρ, ρ − α) � OZs
∼= O∆�g�−2�, OZs

� OZs
(−ρ, ρ − α) ∼= O∆�g�−2�.

Proof. – (1) We only prove the first isomorphism, the second one can be treated similarly.
Arguments similar to those of [54, Proposition 5.2.2] show that there is an isomorphism

O�g×�gs
�g � OZs

∼= L(Id × �πs)
∗ ◦ R(Id × �πs)∗ OZs

.

Now the morphism
Id × �πs : Zs → �g× �gs

is proper, has normal image (indeed, this image coincides with the graph �g ×�gs
�gs of �πs,

hence is isomorphic to �g), and is birational when considered as a morphism from Zs to this
image. Hence, by Zariski’s Main Theorem, (Id×�πs)∗ OZs

∼= O�g×�gs
�gs

. Moreover, by the same
arguments as in [54, Proposition 2.4.1], Ri(Id × �πs)∗ OZs

= 0 for i ≥ 1. To finish the proof,
we only have to prove that

L(Id × �πs)
∗ O�g×�gs

�gs
∼= O�g×�gs

�g.

The isomorphism in cohomological degree 0 is the definition of the fiber product. The higher
vanishing can be proved as follows: decompose the morphism �πs as �πs = p ◦ j, where
j : �g �→ �gs × Ps

B is the natural embedding, and p : �gs × Ps
B � �gs is the projection.

Then we have

(1.10.4) L(Id × �πs)
∗ O�g×�gs

�gs
∼= L(Id × j)∗ O�g×�gs

(�gs× Ps
B)

∼= O�g×�g
L

⊗�g×(�gs× Ps
B) O�g×�gs

(�gs× Ps
B).

Now �g×�g is defined locally by one equation in �g× (�gs × Ps
B), hence locally O�g×�g has a free

O�g×(�gs× Ps
B)-resolution with only two terms of rank 1, and as differential the multiplication

by this equation. As �g×�gs
(�gs× Ps

B) is an integral scheme not contained in �g×�g, the equation
is not a zero divisor in O�g×�gs

(�gs× Ps
B), hence the right hand side of (1.10.4) is concentrated

in degree 0.

(2) Again, we only prove the first isomorphism. Consider the exact sequence (1.10.2), and
convolve it with OZs

on the right; we obtain a distinguished triangle in Db
PROPCohG×Gm(�g× �g):

OZs
(−ρ, ρ − α) � OZs

→ O�g×�gs
�g � OZs

→ O∆�g � OZs

+1
−−→ .

By (1), the middle term is isomorphic to O�g×�gs
�g, and the term on the right hand side is

isomorphic to OZs
. Moreover, the morphism on the right identifies with the restriction of

functions O�g×�gs
�g → OZs

. Hence this triangle can be identified with the one associated with
the exact sequence (1.10.1). In particular we obtain the expected isomorphism.

R 1.10.5. – We have remarked above that Zs is a smooth variety. Statement (2)
implies that its canonical sheaf is OZs

(−ρ, ρ − α) (see [36]).
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To prove Theorem 1.6.1 for �g, we have to check that the kernels OZs
(s ∈ S ) and O∆�g(x)

(x ∈ X) satisfy the relations of the presentation of Baff given in §1.1 in the monoidal category
Db

PROPCohG×Gm(�g × �g), up to isomorphism. It is explained in [54, §1.6] that relations (ii)

and (iii) are trivial, and that relations (iv) follow easily from Proposition 1.10.3(2). In the rest
of this section we give a proof of relations (i) (finite braid relations), inspired by the methods

of [8]. It is explained in [54, §4] how to deduce the theorem for �N from the case of �g. Note
in particular that if s = sα (α ∈ Σ), the inverse of OZ�

s
�1� for the convolution product is

OZ�
s
(−ρ, ρ−α)�1�. The compatibility of the actions with the functor Ri∗ easily follows from

the definition and the projection formula. The compatibility with Li∗ follows by adjunction.

1.11. Line bundles on �g
Let us begin with some generalities on line bundles on �g. First, the following lemma

immediately follows from [39, II.8.5(1)].

L 1.11.1. – Let λ ∈ X, such that λ − ρ is dominant. Then O�g(λ) is an ample line
bundle on �g.

Next, let X+ ⊂ X be the set of dominant weights. Consider the X-graded G×Gm-equiv-
ariant algebra

Γ(�g) :=
�

λ∈X+

Γ(�g, O�g(λ)).

There is a natural functor

Γ :

�
QCohG×Gm(�g) → ModG×Gm

X (Γ(�g)),
M �→

�
λ∈X+ Γ(�g, M ⊗ O�g O�g(λ))

,

where ModG×Gm

X (Γ(�g)) is the category of X-graded G×Gm-equivariant modules over Γ(�g).
We let TorG×Gm

X (Γ(�g)) ⊂ ModG×Gm

X (Γ(�g)) be the subcategory of objects which are direct
limits of objects M such that there exists µ ∈ X such that the λ-component of M is zero for
any λ ∈ µ+X+. As the morphism �g→ g∗ is projective and using Lemma 1.11.1, we have the
following version of Serre’s theorem. (To prove this result, one can e.g. adapt the arguments
of the proof of [4, Theorem 1.3].)

P 1.11.2. – The composition

QCohG×Gm(�g) Γ
−→ ModG×Gm

X (Γ(�g)) → ModG×Gm

X (Γ(�g))/TorG×Gm

X (Γ(�g))
is an equivalence of abelian categories.

If A is any subset of X, we denote by DA the smallest strictly full thick triangulated
subcategory of Db

CohG×Gm(�g) containing the line bundles O�g(λ) for λ ∈ A and stable under
the functors �j� for j ∈ Z. We denote by conv(λ) the intersection of X with the convex hull
of W · λ, and by conv0(λ) the complement of W · λ in conv(λ).

In the next lemma we will also use the following notation. If B is a triangulated category,
and A ⊂ B is a full thick triangulated subcategory, for M,N ∈ B we write M ∼= N mod A

if the images of M and N in the quotient category B/A (in the sense of Verdier) are iso-
morphic.

L 1.11.3. – Let α ∈ Σ, and s = sα.
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1. For any λ ∈ X, the functors F
OZs

�g
, F

OZs (−ρ,ρ−α)

�g
preserve the subcategory Dconv(λ).

2. Let λ ∈ X such that �λ, α∨� = 0. Then we have

F
OZs

�g
( O�g(λ)) ∼= O�g(λ), F

OZs(−ρ,ρ−α)

�g
( O�g(λ)) ∼= O�g(λ)�−2�.

3. Let λ ∈ X such that �λ, α∨� < 0. Then

F
OZs

�g
( O�g(λ)) ∼= O�g(sλ) �−2� mod Dconv0(λ).

4. Let λ ∈ X such that �λ, α∨� > 0. Then

F
OZs (−ρ,ρ−α)

�g
( O�g(λ)) ∼= O�g(sλ) mod Dconv0(λ).

Proof. – Recall the notation for Ps, Ps := G/Ps, �gs (see §1.10). The variety �gs is
endowed with a natural G × Gm-action, such that the morphism �πs : �g → �gs is
G×Gm-equivariant. Using exact sequences (1.10.1) and (1.10.2) and [54, Proposition 5.2.2],
for any F in Db

CohG×Gm(�g) there exist distinguished triangles

F �−2� → L(�πs)
∗ ◦ R(�πs)∗ F → F

OZs

�g
( F )

+1
−−→;(1.11.4)

F
OZs (−ρ,ρ−α)

�g
( F ) → L(�πs)

∗ ◦ R(�πs)∗ F → F
+1
−−→ .(1.11.5)

Let j : �g �→ �gs × Ps
B be the natural inclusion. There exists an exact sequence

(1.11.6) O�gs× Ps
B(−α)�−2� �→ O�gs× Ps

B � j∗ O�g.

(Indeed, (g/n)∗ ⊂ (g/pnil
s )∗ is defined by one equation, of weight (−α,−2) for B×Gm.) Let

also p : �gs × Ps
B → �gs be the projection. Then �πs = p ◦ j.

Using triangles (1.11.4) and (1.11.5), to prove (1) it is sufficient to prove that for any λ ∈ X,
L(�πs)

∗ ◦ R(�πs)∗ O�g(λ) is in Dconv(λ). The case �λ, α∨� = 0 is trivial: in this case we have
L(�πs)

∗ ◦ R(�πs)∗ O�g(λ) ∼= O�g(λ) ⊕ O�g(λ)�−2� by the projection formula. Here we have used
the well-known isomorphism

R(�πs)∗ O�g ∼= O�gs
⊕ O�gs

�−2�.

The property (2) also follows, using triangles (1.11.4) and (1.11.5).

Now, assume that �λ, α∨� > 0. Tensoring (1.11.6) by O�gs× Ps
B(λ) we obtain an exact

sequence

O�gs× Ps
B(λ − α)�−2� �→ O�gs× Ps

B(λ) � j∗ O�g(λ).

Then, applying the functor Rp∗ and using [39, §I.5.19, Proposition II.5.2.(c)] we obtain a
distinguished triangle

L�gs
(IndPs

B (λ − α))�−2� → L�gs
(IndPs

B (λ)) → R(�πs)∗ O�g(λ)
+1
−−→ .

(Observe that here �λ − α, α∨� ≥ −1.) Applying the functor L(�πs)
∗ we obtain a triangle

L�g(IndPs

B (λ − α))�−2� → L�g(IndPs

B (λ)) → L(�πs)
∗ ◦ R(�πs)∗ O�g(λ)

+1
−−→ .

Now it is well known (see again [39, Proposition II.5.2.(c)]) that the Ps-module IndPs

B (λ) has
weights λ, λ − α, . . . , sλ. Hence L�g(IndPs

B (λ)) has a filtration with subquotients O�g(λ),
O�g(λ − α), . . . , O�g(sλ). Similarly, L�g(IndPs

B (λ − α)) has a filtration with subquotients
O�g(λ − α), . . . , O�g(sλ + α). This proves (1) in this case, and also (4).
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Now assume �λ, α∨� < 0. Using similar arguments, there exists a distinguished triangle

L(�πs)
∗ ◦ R(�πs)∗ O�g(λ) → L�g(R

1IndPs

B (λ − α))�−2� → L�g(R
1IndPs

B (λ)).

Moreover, L�g(R
1IndPs

B (λ)) has a filtration with subquotients O�g(sλ − α), . . . , O�g(λ + α),
and L�g(R

1IndPs

B (λ − α)) has a filtration with subquotients O�g(sλ), . . . , O�g(λ). As above,
this proves (1) in this case, and (3).

R 1.11.7. – 1. The case (2) of the proposition is not needed for our arguments.
We only include it for completeness.

2. It follows from the proof of the proposition that if �λ, α∨� = 1, then the isomorphism
of (4) can be lifted to an isomorphism in Db

CohG×Gm(�g). Similarly, if �λ, α∨� = −1,
the isomorphism of (3) can be lifted to an isomorphism in Db

CohG×Gm(�g).
3. If �λ, α∨� /∈ {−1, 0, 1}, we do not have an explicit description of the objects

F
OZs

�g
( O�g(λ)) or F

OZs (−ρ,ρ−α)

�g
( O�g(λ)) as in (2). The proof of the proposition gives a

recipe for computing their class in equivariant K-theory, however. The answer can be
given in terms of Demazure-Lusztig operators as in [22, Theorem 7.2.16]. (See §2.13
below for more details in this direction.)

The following lemma is a generalization of [8, Lemma 5] (where it is assumed that p = 0).
The proof is similar.

L 1.11.8. – Let λ, µ ∈ X.

We have Ext•DbCohG(�g)( O�g(λ), O�g(µ)) = 0 unless λ − µ ∈ Z≥0R
+.

Similarly, for any i ∈ Z we have Ext•DbCohG×Gm (�g)( O�g(λ), O�g(µ)�i�) = 0 unless

λ − µ ∈ Z≥0R
+.

Proof. – We give a proof only in the first case. Recall that Db
CohG(�g) is equivalent to the

full subcategory of Db
QCohG(�g) whose objects have coherent cohomology (see [3, Corol-

lary 2.11]). Hence we can replace Db
CohG(�g) by Db

QCohG(�g) in the statement. Moreover,
for any i ∈ Z there is a natural isomorphism

(1.11.9) Exti
DbQCohG(�g)( O�g(λ), O�g(µ)) ∼= Hi

�
R(ΓG)( O�g(µ − λ))

�
,

where ΓG denotes the functor which sends a G-equivariant quasi-coherent sheaf F to the
G-invariants in its global sections, and R(ΓG) is its derived functor.

Recall also that, by definition, we have �g = G ×B (g/n)∗. Hence the restriction functor
F �→ F |{1}×(g/n)∗ induces an equivalence of categories

QCohG(�g) ∼
−→ QCohB

�
(g/n)∗

�

(see e.g. [18, §2]). Moreover, the following diagram commutes, where ΓB is defined as ΓG

above:

QCohG(�g)

�

��

ΓG

��

QCohB((g/n)∗)
ΓB

�� Vect(k).
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It follows, using isomorphism (1.11.9), that for any i ∈ Z we have

(1.11.10) Exti
DbQCohG(�g)( O�g(λ), O�g(µ)) ∼= Hi

�
R(ΓB)( O(g/n)∗ ⊗k kB(µ − λ))

�
.

The functor ΓB is the composition of the functor

Γ((g/n)∗,−) : QCohB((g/n)∗)
∼
−→ ModB(S(g/n)),

which is an equivalence of categories because (g/n)∗ is affine, and the B-fixed points functor
IB : ModB(S(g/n)) → Vect(k). (Here, S(g/n) is the symmetric algebra of the vector space
g/n.) Hence, using isomorphism (1.11.10) we deduce that for any i ∈ Z we have

(1.11.11) Exti
DbQCohG(�g)( O�g(λ), O�g(µ)) ∼= Hi

�
R(IB)(S(g/n) ⊗k kB(µ − λ))

�
.

Now IB is the composition of the forgetful functor For : ModB(S(g/n)) → Rep(B) and
the B-fixed points functor JB : Rep(B) → Vect(k). Of course the functor For is exact, and
in the category ModB(S(g/n)) there are enough objects of the form IndB

{1}(M) ∼= M⊗kk[B],
for M a S(g/n)-module, whose images under For are acyclic for the functor JB . Hence for
any i ∈ Z we have

(1.11.12) Exti
DbQCohG(�g)( O�g(λ), O�g(µ)) ∼= Hi

�
R(JB)(S(g/n) ⊗k kB(µ − λ))

�
,

where for simplicity we have omitted the functor For.

Finally, as B ∼= T � U , the functor JB is the composition of the U -fixed points functor
JU , followed by the T -fixed points functor JT (which is exact). Hence RJB ∼= JT ◦ RJU ,
and we only have to prove that

(1.11.13) JT
�
R(JU )(S(g/n) ⊗k kB(ν))

�
= 0

unless ν is a sum of negative roots. But R(JU )(S(g/n) ⊗k kB(ν)) can be computed by the
Hochschild complex C(U, S(g/n) ⊗k kB(ν)) (see [39, I.4.16]). And the T -weights of this
complex are all in Z≥0R

+ (because all weights of S(g/n) and of k[U ] are in Z≥0R
+). Then

(1.11.13) easily follows.

1.12. Braid relations

P 1.12.1. – Let α,β ∈ Σ, and s = sα, t = sβ . For any dominant weight λ we
have an isomorphism

F
OZs (−ρ,ρ−α)

�g
◦ F

OZt
(−ρ,ρ−β)

�g
◦ · · ·

�
O�g(λ)

�

∼= F
OZt

(−ρ,ρ−β)

�g
◦ F

OZs (−ρ,ρ−α)

�g
◦ · · ·

�
O�g(λ)

�

in Db
CohG×Gm(�g), where the number of functors appearing on each side is ns,t.

Proof. – To fix notation, let us assume that α and β generate a sub-system of type A2.
(The proof is similar in the other cases.) By Proposition 1.10.3(2) we have an isomorphism
of functors �

F
OZs

�g

�−1 ∼= F
OZs (−ρ,ρ−α)

�g
�2�,
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and similarly for β. Hence proving the proposition is equivalent to proving that

(1.12.2) Eλ := F
OZs

�g
◦ F

OZt

�g
◦ F

OZs

�g
◦ F

OZt
(−ρ,ρ−β)

�g

◦ F
OZs (−ρ,ρ−α)

�g
◦ F

OZt
(−ρ,ρ−β)

�g
( O�g(λ))

is isomorphic to O�g(λ)�−6�. First, it follows from Lemma 1.11.3 that

(1.12.3) Eλ
∼= O�g(λ)�−6� mod Dconv0(λ).

Consider the subcategory D⊥
conv0(λ) ⊂ Db

CohG×Gm(�g) whose objects M satisfy the

condition Hom(N,M) = 0 for all N in Dconv0(λ). By Lemma 1.11.8, O�g(λ) is in D⊥
conv0(λ).

Hence, as all the functors involved preserve the subcategory D⊥
conv0(λ) (because their inverse

preserves Dconv0(λ) by Lemma 1.11.3), also Eλ is in the subcategory D⊥
conv0(λ). By definition

of the Verdier quotient, it follows from (1.12.3) that Eλ
∼= O�g(λ)�−6� in Db

CohG×Gm(�g), as
claimed.

Before the next corollary we introduce some notation. If λ is a dominant weight, we write
that a property is true for λ � 0 if there exists a positive integer N such that the property is
true for any weight λ such that �λ, α∨� ≥ N for any positive root α.

C 1.12.4. – The kernels OZs
, s ∈ S , satisfy the finite braid relations in the

monoidal category Db
PROPCohG×Gm(�g × �g). More precisely, for s, t ∈ S there exists a

canonical isomorphism
OZs

� OZt
� · · · ∼= OZt

� OZs
� · · · ,

in Db
CohG×Gm(�g× �g), where the number of terms on each side is ns,t.

Proof. – To fix notation, let us assume that s and t generate a subgroup of W of type A2.
(The other cases are similar.) The kernel OZs

is invertible (see Proposition 1.10.3(2)), with
inverse

( OZs
)−1 := RHom O�g×�g( OZs

, O�g×�g) ⊗ O�g×�g p∗2ω�g[dim(g)].

The same is true for t instead of s. Hence we only have to prove that

OZs
� OZt

� OZs
� ( OZt

)−1 � ( OZs
)−1 � ( OZt

)−1 ∼= O∆�g.

For simplicity, let us denote by K s,t the object on the left hand side of this equation.
First, let j : �greg × �greg �→ �g × �g be the inclusion. We claim that there exists a canonical

isomorphism

(1.12.5) j∗ K s,t
∼= O∆�greg .

Indeed, the functor j∗ is monoidal. And there exist isomorphisms

j∗ OZs
∼= OZreg

s

j∗( OZs
)−1 ∼= RHom O�greg×�greg

( OZreg
s

, O�greg×�greg) ⊗ O�greg×�greg
p∗2ω�greg [dim(g)],

where as above Zreg
s = Zs∩ (�greg×�greg). For simplicity, we denote the right hand side of the

second line by ( OZreg
s

)−1. The same formulas also hold for t instead of s. Now there exists a
canonical isomorphism

(1.12.6) OZreg
s

� OZreg
t

� OZreg
s

∼= OZreg
t

� OZreg
s

� OZreg
t

,
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because each side is canonically isomorphic to functions on the graph of the action of
sts = tst. (Here we use Proposition 1.9.2.) By standard adjunction properties for Fourier-
Mukai kernels we have

Hom DbCohG×Gm (�greg×�greg)( OZreg
s

� OZreg
t

� OZreg
s

, OZreg
t

� OZreg
s

� OZreg
t

)

∼= Hom DbCohG×Gm (�greg×�greg)( OZreg
s

� OZreg
t

� OZreg
s

� ( OZreg
t

)−1, OZreg
t

� OZreg
s

)

∼= · · · ∼= Hom DbCohG×Gm (�greg×�greg)(j
∗ K s,t, O∆�greg).

Hence (1.12.6) induces a canonical morphism

j∗ K s,t → O�greg ,

which also is an isomorphism.

To prove the isomorphism of the corollary it is sufficient, using Lemma 1.11.1 and Propo-
sition 1.11.2, to prove that for λ, µ � 0 we have R �=0Γ(�g × �g, K s,t(λ, µ)) = 0 (this implies
that K s,t is concentrated in degree 0, i.e. is a sheaf), and that there exist canonical isomor-
phisms

Γ(�g× �g, K s,t(λ, µ)) ∼= Γ(�g× �g, O∆�g(λ, µ)),

compatible with the natural action of Γ(�g× �g).
The object K s,t is the kernel associated with the functor

Fs,t := F
OZs

�g
◦ F

OZt

�g
◦ F

OZs

�g
◦ (F

OZt

�g
)−1 ◦ (F

OZs

�g
)−1 ◦ (F

OZt

�g
)−1.

We have seen in Proposition 1.12.1 that Fs,t fixes any line bundle O�g(λ) with λ ∈ X+. More-

over, for any λ, µ we have, by the projection formula, RΓ(�g, F
Ks,t

�g
( O�g(λ)) ⊗ O�g O�g(µ)) ∼=

RΓ(�g × �g, K s,t(λ, µ)). It follows, using [34, Theorem III.5.2], that for λ, µ � 0 we have
R �=0(�g× �g, K s,t(λ, µ)) = 0 and, moreover, there is an isomorphism

Γ(�g× �g, K s,t(λ, µ)) ∼= Γ(�g, O�g(λ + µ)) ∼= Γ(�g× �g, O∆�g(λ, µ)).

It remains to show that these isomorphisms can be chosen in a canonical way, so that they
are compatible with the action of Γ(�g×�g). We claim that the restriction morphisms induced
by j∗:

Γ(�g× �g, K s,t(λ, µ)) → Γ(�greg × �greg, j∗ K s,t(λ, µ)),

Γ(�g× �g, O∆�g(λ, µ)) → Γ(�greg × �greg, O∆�greg(λ, µ))

are isomorphisms. Indeed, the first morphism coincides (via the projection formula) with the
restriction morphism

Γ(�g, F
Ks,t

�g
( O�g(λ)) ⊗ O�g O�g(µ)) → Γ(�greg, F

j∗ Ks,t

�greg
( O�greg(λ)) ⊗ O�greg

O�greg(µ))

induced by the inverse image under the inclusion �greg �→ �g. As the sheaf F
Ks,t

�g
( O�g(λ)) ⊗ O�g O�g(µ)

is a line bundle, and the complement of �greg in �g has codimension at least 2 (see Proposi-
tion 1.9.4), the latter morphism is an isomorphism. The arguments for the second morphism
are similar.

It follows that there exists a unique isomorphism

Γ(�g× �g, K s,t(λ, µ)) ∼= Γ(�g× �g, O∆�g(λ, µ))
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which is compatible with our canonical isomorphism (1.12.5). With this choice, the compat-
ibility with the action of the algebra

Γ(�g× �g) ∼=
�

λ,µ∈X+

Γ(�greg × �greg, O�greg×�greg(λ, µ))

is clear.

This corollary finishes the proof of Theorem 1.6.1.

2. Description of the kernels

2.1. Statement

Let R = Z[ 1
h! ], where h is the Coxeter number of GZ. For any w ∈ W , we define

Zw,R

as the closure in�gR×R�gR of the inverse image under the morphism�gR×g∗
R
�gR �→ �gR×R�gR →

BR×R BR of the GR-orbit of (BR/BR, w−1BR/BR) ∈ BR×R BR (for the diagonal action).
It is a reduced closed subscheme of �gR ×g∗

R
�gR.

We also set

Z �
w,R := Zw,R ∩ (�N R ×R �gR).

(Note that here we take the scheme-theoretic intersection.) It is easy to see that Z �
w,R is in fact

a closed subscheme of �N R ×R
�N R. (See Lemma 2.12.1 below in the case of a field.)

The main result of this section is the following.

T 2.1.1. – Let R = Z[ 1
h! ].

Let w ∈ W , and let w = s1 · · · sn be a reduced expression (where si ∈ S ). There exists

an isomorphism in Db
CohGR×R(Gm)R(�gR ×R �gR), respectively in Db

CohGR×R(Gm)R(�N R ×R
�N R):

OZs1,R
� · · · � OZsn,R

∼= OZw,R
,

respectively OZ�
s1,R

� · · · � OZ�
sn,R

∼= OZ�
w,R

.

Let again w ∈ W , and let w = s1 · · · sn be a reduced expression (where si ∈ S ). Then by
definition Tw = Ts1

· · ·Tsn
. Theorem 2.1.1 allows to give an explicit description of the action

of Tw on Db
Coh(�gR) or Db

Coh(�N R) obtained from the action of Theorem 1.3.1 by base

change to R. Namely, Tw acts via the functor F
OZw,R

�gR
on Db

Coh(�gR), and via the functor

F
OZ�

w,R

�N R

on Db
Coh(�N R).

As for Theorem 1.3.1, the proof of Theorem 2.1.1 is based on the reduction to the case of
an algebraically closed field of positive characteristic, which will be treated using Represen-
tation Theory. We first treat this case. The proof of Theorem 2.1.1 for �gR is given in §2.11.
The case of �N R is treated in §2.12.
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2.2. Kernels for the finite braid group: case of a field

From now on and until §2.11, we fix an algebraically closed field k of characteristic p > h.
We use the same notation as in Section 1, and we drop the index “k” for simplicity.

For w ∈ W , we denote by X0
w ⊂ B × B the G-orbit of (B/B, wB/B) for the diagonal

action (a Schubert cell), and by Xw its closure (a Schubert variety). We denote by

Zw ⊂ �g× �g
the closure of the inverse image of X0

w−1 under the morphism �g ×g∗ �g �→ �g × �g � B × B.
This is a reduced closed subscheme of �g×g∗ �g. Note that it is not clear at this point that Zw is
isomorphic to Zw,R×Spec(R)Spec(k) (because the latter scheme is a priori not reduced). This
will follow from our results (see Remark 2.11.1 below). The fiber of Zw over (B/B, w−1B/B)

is �
g/(n+ w−1 · n)

�∗
.

In particular, by G-equivariance the restriction of Zw to the inverse image ofX0
w−1 is a vector

bundle over X0
w−1 , of rank dim(b) − �(w).

For w ∈ W , we define
Zreg

w ⊂ �greg × �greg
to be the graph of the action of w provided by Proposition 1.9.2. Then one easily checks that
Zreg

w = Zw ∩ (�greg × �greg) and that Zw is the closure of Zreg
w .

We also set
Z �

w := Zw ∩ (�N × �g).
It is easy to check that Z �

w is in fact a closed subscheme of �N ×�N (see Lemma 2.12.1 below).
The version over k of Theorem 2.1.1 is the following.

T 2.2.1. – Assume p > h.

Let w ∈ W , and let w = s1 · · · sn be a reduced expression (si ∈ S ). There is an

isomorphism in Db
CohG×Gm(�g× �g), respectively in Db

CohG×Gm(�N × �N ):

OZs1
� · · · � OZsn

∼= OZw
,

respectively OZ�
s1

� · · · � OZ�
sn

∼= OZ�
w
.

Moreover, Zw, respectively Z �
w, is Cohen-Macaulay with dualizing sheaf

OZsn
(−ρ, ρ − αn) � · · · � OZs1

(−ρ, ρ − α1),

respectively OZ�
sn

(−ρ, ρ − αn) � · · · � OZ�
s1

(−ρ, ρ − α1),

where si = sαi
(αi ∈ Σ). In particular, these objects are also concentrated in degree 0, i.e. are

coherent sheaves.

R 2.2.2. – 1. Probably, the restriction on the characteristic is not necessary.
For instance, it follows from [54] that the theorem is true for all p if w is an element of
a parabolic subgroup of W of type A1×A1 or A2, and for p �= 2 if w is an element of a
parabolic subgroup of W of type B2. To obtain a weaker restriction on p in the general
case, it would certainly be necessary to understand better the geometric properties of
the varieties Zw. For instance, it is proved in [54] that Zw is normal if p and w are as
above. We do not know if this property is true in general.
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2. The case p = 0 is excluded from Theorem 2.2.1. However, it follows from Theo-
rem 2.1.1 that Theorem 2.2.1 is also true in this case (by compatibility of convolution
with change of scalars; note that Zw ×R Q is reduced by [19, Proposition 1.6.5]). One
can also prove Theorem 2.2.1 over C directly, using Saito’s theory of mixed Hodge
modules. This will be the subject of a future publication.

3. As in the proof of Corollary 1.12.4, once we have proved the theorem, one can check
using restriction to �greg that the isomorphisms

OZs1
� · · · � OZsn

∼= OZw
, OZ�

s1
� · · · � OZ�

sn

∼= OZ�
w

can be chosen in a canonical way.
4. It follows from the theorem that for any v, w ∈ W such that �(vw) = �(v)+�(w), there

exists an isomorphism
OZv

� OZw
∼= OZvw

.

Again by the same arguments as in the proof of Corollary 1.12.4, this isomorphism
can be chosen canonically. With this choice, one easily checks that the condition of [24,
Theorem 1.5] holds. Hence the restriction of our action to the Artin braid group B can
be “lifted” to an action in the strong sense of [24]. We do not know if this property holds
for the whole of Baff in general. It holds if p = 0, as proved (by completely different
methods) in [25].

We first concentrate on the case of �g. The proof of Theorem 2.2.1 in this case is given in
§2.10. The case of �N is treated in §2.12.

Let again w ∈ W , and let w = s1 · · · sn be a reduced expression (si ∈ S ). For
i = 1, . . . , n, let αi ∈ Σ be the simple root attached to the simple reflection si. Then we
define

Kw := OZs1
� · · · � OZsn

,

K †
w := OZsn

(−ρ, ρ − αn) � · · · � OZs1
(−ρ, ρ − α1),

considered as objects in Db
Coh(�g×�g). By Corollary 1.12.4, these objects do not depend on

the choice of the reduced expression (up to isomorphism). We will sometimes use the fact that
Kw has a canonical lift to an object of Db

CohG×Gm(�g × �g). (This is also the case for K †
w,

but we will not use it.)

By definition we have isomorphisms of functors JTw
∼= F Kw

�g
and JT−1

w

∼= F
K†

w

�g
.

Moreover, we have

(2.2.3) K †
w

∼= RHom O
�g2

(Kw, O�g2)[dim(g)]

(see [36, Proposition 5.9] for details). Let δ be the automorphism of �g × �g which exchanges
the two factors. Then we have

(2.2.4) δ∗ Kw
∼= Kw−1 , δ∗ K †

w
∼= K †

w−1 .

The proof of Theorem 2.2.1 is based on Representation Theory, and more precisely on
localization theory for Lie algebras in positive characteristic, as studied in [13, 12, 11]. Hence
sometimes we will rather consider Kw and K †

w as sheaves on �g(1)×�g(1), where (1) denotes the
Frobenius twist, i.e. we will twist the structures as sheaves of k-vector spaces. For simplicity
we do not indicate this in the notation.
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2.3. More notation

Recall that if X is a scheme, and Y ⊂ X a closed subscheme, one says that an OX -module
F is supported on Y if F |X−Y = 0. We write CohY (X) for the full subcategory of Coh(X)

whose objects are supported on Y .

We denote by h the universal Cartan subalgebra of g. It is canonically isomorphic
to b0/[b0, b0] for any Lie algebra b0 of a Borel subgroup of G. In particular, h identifies
naturally with t via the morphism t

∼
−→ b/n ∼= h.

For s = sα (α ∈ Σ), we denote by sl(2, s) the subalgebra of g generated by hα, eα and
e−α. It is isomorphic to sl(2, k).

The extended affine Weyl group Waff naturally acts on X. We will also consider the
“twisted” action defined by

w • λ := w(λ + ρ) − ρ

for w ∈ Waff , λ ∈ X, where ρ is the half sum of the positive roots.

Recall that an element χ ∈ g∗ is said to be nilpotent if it is conjugate to an element
of (g/b)∗.

Let Z be the center of Ug, the enveloping algebra of g. The subalgebra of G-invariants
ZHC := (Ug)G is central in Ug. This is the “Harish-Chandra part” of the center, isomorphic
to S(t)(W,•), the algebra of W -invariants in the symmetric algebra of t, for the dot-action.
The centerZ also has another part, the “Frobenius part”ZFr, which is generated as an algebra
by the elements Xp − X [p] for X ∈ g. It is isomorphic to S(g(1)), the functions on the
Frobenius twist g∗(1) of g∗. Under our assumption p > h, there is an isomorphism (see [41]
or [53]):

ZHC ⊗ZFr∩ZHC
ZFr

∼
−→ Z.

Hence a character of Z is given by a “compatible pair” (ν, χ) ∈ t∗ × g∗(1). In this paper we
only consider the case where χ is nilpotent, and ν is integral, i.e. in the image of the natural
map X → t∗. (Such a pair is always “compatible.”) If λ ∈ X, we still denote by λ its image
in t∗. If λ ∈ X, we denote by Modfg

(λ,χ)(Ug) the category of finitely generated Ug-modules

on which Z acts with generalized character (λ, χ). Similarly, we denote by Modfg
λ (Ug) the

category of finitely generated Ug-modules on which ZHC acts with generalized character λ.

The translation functors for Ug-modules are defined e.g. in [13, §6.1]. More precisely,
for λ, µ ∈ X and χ ∈ g∗(1), the functor

Tµ
λ : Modfg

(λ,χ)(Ug) → Modfg
(µ,χ)(Ug)

sends the module M to
prµ

�
M ⊗k V (µ − λ)

�
,

where V (µ − λ) is the standard (induced) G-module with extremal weight µ − λ (i.e. with
highest weight the dominant W -conjugate of µ − λ), and prµ is the functor which sends a
locally finite ZHC-module to its generalized eigenspace associated with µ.

We will also consider the baby Verma modules, as defined e.g. in [13, §3.1.4]. Namely, let b0
be the Lie algebra of a Borel subgroup of G. Let χ ∈ g∗(1) be such that χ

|b
(1)
0

= 0, and

let λ ∈ X. Then the associated baby Verma module Mb0,χ;λ is by definition the Ug-module

Mb0,χ;λ := (Ug)χ ⊗( Ub0)χ
kλ.
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Here (Ug)χ := (Ug) ⊗ZFr
kχ, (Ub0)χ is the subalgebra generated by the image of b0, and λ

defines a character of (Ub0)χ via the morphism

b0 → b0/[b0, b0] ∼= h ∼= t
λ
−→ k.

Finally, we will need the functors Tensµ
λ of [12, §2.1.3]. Consider the sheaf of algebras �D

on B defined as follows (see [13, §3.1.3]). Let p : G/U → G/B be the natural quotient; it is
a torsor for the abelian group B/U (acting via multiplication on the right). Then

�D := p∗(DG/U )B/U ,

where DG/U is the sheaf of crystalline differential operators on G/U (see [13, §1.2]). The sheaf

of algebras �D can be naturally considered as a sheaf of algebras on the scheme �g(1)×h∗(1) h∗,
where the morphism �g → h∗ sends (X, gB) to X|g·b ∈ (g · b/[g · b, g · b])∗ ∼= h∗, and the
morphism h∗ → h∗(1) is the Artin-Schreier map defined by the algebra morphism

�
S(h(1)) → S(h)

X ∈ h(1) �→ Xp − X [p].

Moreover, it is an Azumaya algebra on this scheme.
For χ ∈ g∗(1), we denote by B

(1)
χ the inverse image of χ under the natural morphism

�g(1) → g∗(1), endowed with the reduced subscheme structure. We denote by Modc(�D) the
category of quasi-coherent, locally finitely generated �D-modules (equivalently, either on B
or on �g(1)×h∗(1)h∗). For ν ∈ X (considered as a linear form on t ∼= h) and χ ∈ g∗(1) we denote

by Modc
ν(�D), respectively Modc

(ν,χ)(
�D), the full subcategory of Modc(�D) whose objects are

supported on �N
(1)

×{ν} ⊂ �g(1) ×h∗(1) h∗, respectively on B
(1)
χ ×{ν} ⊂ �g(1) ×h∗(1) h∗. Then

for λ, µ ∈ X we consider the equivalence of categories

Tensµ
λ :

�
Modc

(λ,χ)(
�D) → Modc

(µ,χ)(
�D)

F �→ O B(µ − λ) ⊗ O B
F .

2.4. Reminder on localization in positive characteristic

Recall that a weight λ ∈ X is called regular if, for any root α, �λ + ρ, α∨� /∈ pZ, i.e. if λ is
not on any reflection hyperplane of WCox

aff (for the dot-action). Under our assumption p > h,
0 ∈ X is regular; in particular, regular weights exist. By [13, Theorem 5.3.1] we have:

T 2.4.1. – Let λ ∈ X be regular, and let χ ∈ g∗(1) be nilpotent. There exists an
equivalence of triangulated categories

Db
CohB(1)

χ
(�g(1)) ∼= Db

Modfg
(λ,χ)(Ug).

Let us recall briefly how this equivalence can be constructed. We use the notation of
[13]. Consider the sheaf of algebras �D (see §2.3). If λ ∈ X is regular, the global sections
functor RΓλ : Db

Modc
λ(�D) → Db

Modfg
λ (Ug) is an equivalence of categories. Its inverse

is the localization functor L λ̂. These functors restrict to equivalences between the categories
Db

Modc
(λ,χ)(

�D) and Db
Modfg

(λ,χ)(Ug).

Next, the Azumaya algebra �D splits on the formal neighborhood of B
(1)
χ × {λ}

in �g(1) ×h∗(1) h∗. Hence, the choice of a splitting bundle on this formal neighborhood
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yields an equivalence of categories CohB(1)
χ ×{λ}(�g(1) ×h∗(1) h∗) ∼= Modc

(λ,χ)(
�D). Finally, the

projection �g(1)×h∗(1) h∗ → �g(1) induces an isomorphism between the formal neighborhoods

of B
(1)
χ × {λ} in �g(1) ×h∗(1) h∗ and of B

(1)
χ in �g(1) (see [12, §1.5.3.c]). This isomorphism

induces an equivalence CohB(1)
χ ×{λ}(�g(1) ×h∗(1) h∗) ∼= CohB(1)

χ
(�g(1)). Combining these three

equivalences yields the equivalence of Theorem 2.4.1.

We choose the normalization of the splitting bundles as in [12, §1.3.5]. We denote
by M(λ,χ) the splitting bundle associated with λ, and by

γ(λ,χ) : Db
CohB(1)

χ
(�g(1)) ∼

−→ Db
Modfg

(λ,χ)(Ug)

the associated equivalence.

2.5. Reminder on [12] and [54]

Let us recall the representation-theoretic interpretation of the braid group action in
positive characteristic.

Let us fix a character λ ∈ X in the fundamental alcove (i.e. such that for all α ∈ Φ+ we
have 0 < �λ + ρ, α∨� < p), and some χ ∈ g∗(1) nilpotent. There is a natural right action of
the group Waff on the set Waff • λ, defined by

(w • λ) ∗ v := wv • λ

for v, w ∈ Waff .

For α ∈ Σaff , let µα ∈ X be a weight on the α-wall of the fundamental alcove, and on no
other wall. Then, for s = sα we define the functor

ITs
:= Cone

�
Id → Tλ

µα
◦ Tµα

λ

�
: Db

Modfg
(λ,χ)(Ug) → Db

Modfg
(λ,χ)(Ug).

(Here the morphism of functors is induced by adjunction.) This functor is well defined,(5) and
does not depend on the choice of µα, see [12, Corollary 2.2.7]. Also, for ω ∈ Ω, we put

ITω
:= Tω•λ

λ : Db
Modfg

(λ,χ)(Ug) → Db
Modfg

(λ,χ)(Ug).

(Observe that λ and ω • λ have the same image in t∗/(W, •).)

Let w ∈ Waff , and µ ∈ Waff • λ. Write w = s1 · · · snω, where si ∈ Saff , ω ∈ Ω, and
�(w) = n. Recall ([12, §2.1.3]) that one says that w increases µ if for each i = 1, . . . , n,
µ ∗ (s1 · · · si−1) < µ ∗ (s1 · · · si) for the standard order on X.

The following theorem follows from [12, Theorem 2.1.4].

T 2.5.1. – 1. The assignment Ts �→ ITs
(s ∈ Saff), Tω �→ ITω

extends to a
right action of the group Baff on Db

Modfg
(λ,χ)(Ug).

(5) Recall that if A , B are abelian categories, F, G : A → B are exact functors and φ : F → G is a morphism of
functors, the functor







Cb(A ) → Cb(B)

X �→ Cone(FX
φ(X)
−−−→ GX)

descends to derived categories. The resulting functor is denoted by Cone(F → G).
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2. For b ∈ Baff , we denote by

Ib : Db
Modfg

(λ,χ)(Ug) → Db
Modfg

(λ,χ)(Ug)

the action of b. Then for µ ∈ Waff • λ and w ∈ Waff such that w increases µ, there is an
isomorphism of functors

L�µ∗w ◦ ITw
∼= Tensµ∗w

µ ◦ L�µ.

R 2.5.2. – The right action of Theorem 2.5.1 is related to the (left) action of [12,
Theorem 2.1.4] as follows: our functor Ib is the action of b−1 in [12], where we used the
identification of the local braid group with Baff given by the choice of λ.

We point out a correction in the proof of [12, Theorem 2.1.4]: in [12, Proposition 2.2.8],
the functor I

∗
α should be replaced by I

!
α, and the functor Tens

µ,
•
µ

should be added in the
right hand side. Similar corrections should be made in [12, §2.3.1]. Proposition 2.2.8 and the
argument of [12, §2.3.1] follow directly from [12, Lemma 2.2.3] which is stated correctly. With
this correction in place, the action of [12] sends a simple generator Ts to what is presently
denoted by I

−1
Ts

.

Let us recall that property (2) implies the following description of the action of (lifts of)
dominants weights (see [12, Proposition 2.3.3]).

C 2.5.3. – For ν ∈ X dominant and for F in Db
CohB(1)

χ
(�g(1)), there is an

isomorphism

ITν
◦ γ(λ,χ)( F ) ∼= γ(λ,χ)( F ⊗ O

�g(1)
O�g(1)(ν))

which is functorial in F .

Now we consider the Bernstein presentation of Baff (see §1.1). The relations in this pre-
sentation are symmetric. Hence there is a natural anti-automorphism ι : Baff

∼
−→ Baff which

is the identity on the generators Ts (s ∈ S ) and θx (x ∈ X). The following theorem is a cor-
rected version of [54, Theorem 5.4.1]. (The same proof as in [54] works, taking into account
the corrections to [12] given above.) It provides a link between the geometric braid group
action of Theorem 1.6.1 and the representation-theoretic braid group action constructed in
[12].

T 2.5.4. – For any b ∈ Baff the following diagram:

Db
CohB(1)

χ
(�g(1))

γ(λ,χ) �

��

Jb �� Db
CohB(1)

χ
(�g(1))

γ(λ,χ)�

��

Db
Modfg

(λ,χ)(Ug)
Iι(b)

�� Db
Modfg

(λ,χ)(Ug)

is commutative up to an isomorphism of functors.
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R 2.5.5. – The same formalism also applies to formal completions. For simplic-
ity, here we assume that χ = 0. For λ ∈ X regular, by [13, Theorem 5.4.1] there is an equiv-
alence of categories

�γλ : Db
Coh(

�
B

(1)
)

∼
−→ Db

Modfg((Ug)
�λ)

between the derived category Db
Modfg((Ug)

�λ) of finitely generated modules over the com-

pletion (Ug)
�λ of Ug at the central character (λ, 0) and the derived category Db

Coh(
�
B

(1)
)

of coherent sheaves on the formal neighborhood
�
B

(1) of the zero section B
(1) in �g(1). There

exist a geometric action of Baff on Db
Coh(

�
B

(1)
) and a representation-theoretic action

on Db
Modfg((Ug)

�λ), and a statement similar to Theorem 2.5.4 also holds in this context.

2.6. The kernels are sheaves

From now on and until §2.9, we fix some w ∈ W .

For λ ∈ X regular, recall the splitting bundle M(λ,0) for the Azumaya algebra �D on the

formal neighborhood of B
(1)

×{λ} in �g(1) ×h∗(1) h∗ (see §2.4). Here, for simplicity, we write
Mλ for M(λ,0). We will rather consider Mλ as a vector bundle on the formal neighborhood
�
B

(1) of B
(1) in �g(1), see §2.4. Recall that there exists a Gm-equivariant vector bundle Mλ

on �g(1) such that Mλ is the restriction of Mλ to
�
B

(1), i.e. the completion of Mλ for the I -adic
topology, where I is the sheaf of ideals of the closed subscheme B

(1)
⊂ �g(1) (see [11] or [55,

§9.4]).

Recall also that the restriction �D
�λ

of the sheaf of algebras �D to the formal neighborhood

of B
(1)

× {λ} in �g(1) ×h∗(1) h∗, identified with
�
B

(1), is isomorphic to End O �
B(1)

(Mλ). Hence

(�D
�λ
)opp is isomorphic to End O �

B(1)
(M∨

λ), where M∨
λ is the vector bundle dual to Mλ. Observe

finally that M∨
λ is the restriction of M

∨
λ := Hom O

�g(1)
(Mλ, O�g(1)) to

�
B

(1).

Let p1, p2 : �g(1) × �g(1) → �g(1) be the projections. Then

(2.6.1) p∗1(M0) ⊗ O
�
B(1)

2
K †

w ⊗ O
�
B(1)

2
p∗2(M∨

w−1•0)

is naturally a �D
�0

� (�D
�w−1•0

)opp-module. (Here, the tensor products can be replaced by
derived tensor products without any change.) As a sheaf, it is the restriction of

p∗1(M0) ⊗ O
(�g(1))2

K †
w ⊗ O

(�g(1))2
p∗2(M

∨
w−1•0)

to the formal neighborhood of the zero section in �g(1) × �g(1). Taking the derived global

sections of (2.6.1), we obtain an object in the derived category of (Ug�0, Ug
�w−1•0)-bimodules.

Moreover, here we have Ug
�w−1•0 = Ug�0. Our first observation is the following.

L 2.6.2. – There is an isomorphism in the derived category of Ug�0-bimodules

RΓ
�
p∗1(M0) ⊗ O

�
B(1)

2
K †

w ⊗ O
�
B(1)

2
p∗2(M∨

w−1•0)
�
∼= (Ug)

�0.
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Proof. – As above, let I be the sheaf of ideals of the closed subscheme B
(1)

⊂ �g(1), and
let n ∈ Z>0. By the projection formula, and then the definition of Fourier-Mukai transform
we have

RΓ(p∗1(M0)
L

⊗ O
�
B(1)

2
K †

w

L

⊗ O
�
B(1)

2
p∗2(M∨

w−1•0/ I
n
M∨

w−1•0))

∼= RΓ0(M0
L

⊗ O
�g(1)

�
R(p1)∗(K †

w

L

⊗ O
(�g(1))2

p∗2(M∨
w−1•0/ I

n
M∨

w−1•0))
�
)

∼= RΓ0

�
M0

L

⊗ O
�g(1)

F
δ
∗ K†

w

�g(1)
(M∨

w−1•0/ I
n
M∨

w−1•0)
�
.

Now by isomorphisms (2.2.4) and Theorem 2.5.4 the latter object is isomorphic to

IT−1
w

◦ RΓ0(M0 ⊗ O
�g(1)

(M∨
w−1•0/ I

n
M∨

w−1•0)).

(Observe that ι(T−1
w−1) = T−1

w .) The element w increases the weight w−1 • 0, and
(w−1 • 0) ∗ w = 0. Hence by Theorem 2.5.1(2) we have an isomorphism of functors

(2.6.3) L
�0 ◦ ITw

∼= Tens0w−1•0 ◦ L
�w−1•0.

Taking inverses on both sides, we obtain

IT−1
w

◦ RΓ0
∼= RΓw−1•0 ◦ Tensw−1•0

0 .

Moreover, by definition O B(w−1 • 0)⊗ O B
M0

∼= Mw−1•0 (see [12, §1.3.5]). Hence we obtain
finally

RΓ(p∗1(M0)
L

⊗ O
�
B(1)

2
K †

w

L

⊗ O
�
B(1)

2
p∗2(M∨

w−1•0/ I
n
M∨

w−1•0))

∼= RΓw−1•0(Mw−1•0

L

⊗ O
�g(1)

(M∨
w−1•0/ I

n
M∨

w−1•0)).

Then, taking the inverse limit over n and using [32, Theorem 4.1.5] applied to the projective
morphisms �g(1) → g∗(1) and (�g(1))2 → (g∗(1))2 we obtain

RΓ(p∗1(M0) ⊗ O
�
B(1)

2
K †

w ⊗ O
�
B(1)

2
p∗2(M∨

w−1•0))
∼= RΓ(Mw−1•0 ⊗ O

�g(1)
M∨

w−1•0).

The latter object is isomorphic to

RΓ(�D
�w−1•0

) ∼= Ug
�w−1•0 = Ug

�0.

(For the first isomorphism we have used [13, Proposition 3.4.1 and §5.4].) One easily checks
that all our isomorphisms are compatible with the Ug�0-bimodule structures.

C 2.6.4. – The object K †
w has cohomology only in non-positive degrees.

Proof. – It is sufficient to prove the same property for the object

p∗1(M0) ⊗ O
(�g(1))2

K †
w ⊗ O

(�g(1))2
p∗2(M

∨
w−1•0).

Moreover, this object is in the essential image of the forgetful functor

Db
CohGm(�g(1) × �g(1)) → Db

Coh(�g(1) × �g(1)).
Hence it is sufficient to show that its restriction to the formal neighborhood of the zero-
section, namely

p∗1(M0) ⊗ O
�
B(1)

2
K †

w ⊗ O
�
B(1)

2
p∗2(M∨

w−1•0),
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has the same property. Now recall that the derived global sections functor RΓ�0 is an equiv-

alence of categories between the derived categories of coherent �D
�0

� (�D
�w−1•0

)opp-modules
and of finitely generated (Ug)�0-bimodules, with inverse the localization functor �L�0 (see [13,

Theorem 5.4.1] and Remark 2.5.5). Hence we have isomorphisms of �D
�0
�(�D

�w−1•0
)opp-mod-

ules

p∗1(M0) ⊗ O
�
B(1)

2
K †

w ⊗ O
�
B(1)

2
p∗2(M∨

w−1•0)

∼= �L�0 ◦ RΓ�0
�
p∗1(M0) ⊗ O

�
B(1)

2
K †

w ⊗ O
�
B(1)

2
p∗2(M∨

w−1•0)
�
∼= �L�0((Ug)

�0)

(where the second isomorphism follows from Lemma 2.6.2), and the object on the right hand
side is concentrated in non-positive degrees since �L�0 is right-exact.

Now we consider the kernel Kw. We consider the couple (−2ρ, 0) as a Harish-Chandra
character for the Lie algebra g× g.

L 2.6.5. – The object

RΓ(−2ρ,0)((M−2ρ � M0) ⊗�g(1)×�g(1) Kw)

is concentrated in degree 0.

Proof. – By the projection formula, and Theorem 2.5.4 (see also Remark 2.5.5) we have

RΓ(−2ρ,0)((M−2ρ � M0) ⊗�g(1)×�g(1) Kw) ∼= RΓ0(M0 ⊗�g(1) F Kw

�g(1)
(M−2ρ))

∼= IT
w−1 ◦ RΓ0(M0 ⊗�g(1) M−2ρ).

(Here we use ι(Tw) = Tw−1 .) Now by [12, Lemma 3.0.6 and its proof], we have an isomor-
phism M−2ρ

∼= M∨
0 . Hence we obtain

RΓ(−2ρ,0)((M−2ρ � M0) ⊗�g(1)×�g(1) Kw) ∼= IT
w−1 ◦ RΓ(�D

�0
) ∼= IT

w−1 (Ug
�0).

The object on the left hand side of these isomorphisms has, by definition, only cohomology in
non-negative degrees. On the other hand, again by definition, the functor IT

w−1 stabilizes the

subcategory Db,≤0
Modfg(Ug�0). (It suffices to prove this statement when �(w) = 1, in which

case it is trivial.) Hence the object on the right hand side has cohomology only in non positive
degrees. As these objects are isomorphic, they have to be concentrated in degree 0.

A proof similar to that of Corollary 2.6.4 gives the following result.

C 2.6.6. – The object Kw has only cohomology in non-positive degrees.

We can finally prove:

P 2.6.7. – The objects Kw and K †
w are concentrated in degree 0.
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Proof. – Recall the following well-known fact, if X is a smooth k-variety and F a coher-
ent sheaf on X:

(#) Ext i
OX

( F , OX) = 0 for i < codimX(Supp( F )),

where Supp( F ) is the support of F .

By Corollary 2.6.6, Kw has cohomology only in non-positive degrees. Moreover, by
definition Supp(Kw) = Zw, hence codim(Supp(Kw)) = dim(g). Hence, using (#), it
follows that

RHom O
�g(1)×�g(1)

(Kw, O�g(1)×�g(1))

has cohomology only in degrees≥ dim(g). Using (2.2.3) we deduce that K †
w has cohomology

only in non-negative degrees. Then, by Corollary 2.6.4, K †
w is concentrated in degree 0.

The same arguments apply to Kw.

2.7. Two preliminary lemmas

Now we want to prove that the sheaf Kw is generated by its global sections. For this we
need two lemmas: one on the representation-theoretic side, and one on the geometric side.

Let us fix λ ∈ X in the fundamental alcove. Its differential induces a linear form on h, via
the natural isomorphism t

∼
−→ b/n ∼= h. Recall the definition of baby Verma modules, §2.3.

As usual, we let w0 ∈ W be the longest element. We will use only the special case λ = 0,
χ = 0 of the next lemma (which we state in full generality for completeness).

L 2.7.1. – Let b0 ⊂ g be the Lie algebra of a Borel subgroup, and χ ∈ g∗(1) be such
that χ

|b
(1)
0

= 0. For any nonzero submodule N ⊆ Mb0,χ;w0(λ) we have T−ρ
λ N �= 0.

Proof. – This claim is obviously independent of the choice of b0 (because the action
of G on Borel subgroups is transitive), hence we can assume b0 = b. It follows from [38,
Proposition B.3] that Mb,χ;w0(λ) is a submodule of Tλ

−ρ(Mb,χ;ρ). (Beware that Jantzen uses
positive Borel subalgebras to define baby Verma modules, while here b is the negative Borel
subalgebra.) Hence there is a nonzero morphism N → Tλ

−ρ(Mb,χ;ρ). By adjunction, we have
an isomorphism

Homg(N,Tλ
−ρ(Mb,χ;ρ)) ∼= Homg(T

−ρ
λ (N), Mb,χ;ρ).

Hence the right hand side is nonzero, which implies T−ρ
λ N �= 0.

In the next lemma, we consider Kw as a sheaf on �g × �g. We let p2 : �g × �g → �g be the
projection on the second component.

L 2.7.2. – For any w ∈ W we have an isomorphism

R(p2)∗ Kw
∼= O�g

in Db
CohG×Gm(�g). In particular,

RΓ(�g× �g, Kw) ∼= Γ(�g, O�g) ∼= S(g) ⊗S(h)W S(h)

as (G × Gm)-equivariant algebras.
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Proof. – Let us begin with the first statement. By definition of convolution functors,
R(p2)∗ Kw

∼= F Kw

�g
( O�g). By definition again, the functor F Kw

�g
is the composition of functors

of the form F
OZs

�g
for s ∈ S . Hence it is sufficient to prove that F

OZs

�g
( O�g) ∼= R(p2)∗ OZs

is
isomorphic to O�g. However, the morphism p2 : Zs → �g is proper, birational, and has normal
image. Hence (p2)∗ OZs

∼= O�g by Zariski’s Main Theorem. And the vanishing of Ri(p2)∗ OZs

for i > 0 can be proved exactly as in [54, Proposition 3.4.1].

The second statement follows from the obvious isomorphism RΓ(�g×�g,−) ∼= RΓ(�g,−) ◦

R(p2)∗, and the isomorphisms

RiΓ(�g, O�g) ∼=

�
0 if i �= 0

S(g) ⊗S(h)W S(h) if i = 0

(see [13, Proof of Proposition 3.4.1] and references therein).

R 2.7.3. – In other words, the first statement in Lemma 2.7.2 is that we have an
isomorphism

JTw
( O�g) ∼= O�g

for any w ∈ W . See also [11, Lemma 1.3.4(c)].

2.8. The sheaf Kw is globally generated

In the proof of the following proposition, we will consider localization functors for both
groups G and G × G, and always for the case χ = 0. For simplicity and to avoid confusion,
we write γG

λ , respectively γG×G
(λ,µ) , for γ(λ,0), respectively γ((λ,0),(µ,0)). In the second functor,

λ, µ ∈ X, so that the pair (λ, µ) defines a character of the maximal torus T × T ⊂ G × G.
We use similar notation for the functors �γG

λ , �γG×G
(λ,µ) (see Remark 2.5.5).

P 2.8.1. – The sheaf Kw is generated by its global sections.

Proof. – It is enough to prove the following property: (‡) For any Borel subalgebras b1, b2
of g, and any nonzero morphism of O�g(1)×�g(1)-modules Kw → O{(0,b1),(0,b2)}, the morphism

Γ(�g(1) × �g(1), Kw) → k

obtained by taking global sections is also nonzero.

Indeed, assume that property (‡) is satisfied, and that Kw is not globally generated. Let F
be the cokernel of the natural morphism

Γ(�g(1) × �g(1), Kw) ⊗k O�g(1)×�g(1) → Kw.

By assumption, F �= 0. The sheaf Kw is Gm-equivariant, hence the same is true for F . It
follows that there exist Borel subalgebras b1, b2 of g such that the fiber of F at the point�
(0, b1), (0, b2)

�
∈ �g(1)×�g(1) is nonzero. By Nakayama’s lemma (and adjunction), it follows

that there exists a nonzero morphism F → O{(0,b1),(0,b2)}. Consider the composition

(2.8.2) Kw � F → O{(0,b1),(0,b2)},
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which is also nonzero. By property (‡), the morphism obtained by taking global sections is
nonzero. In other words, there exists a morphism O�g(1)×�g(1) → Kw whose composition with
(2.8.2) is nonzero. This is absurd since this morphism can be factored through a morphism

O�g(1)×�g(1) → Γ(�g(1) × �g(1), Kw) ⊗k O�g(1)×�g(1) → Kw → F ,

which is zero by definition of F .

So, let us now prove (‡). The idea of the proof is to translate this property in representa-
tion-theoretic terms; then it easily follows from Lemma 2.7.1. Consider a nonzero morphism

(2.8.3) Kw → O{(0,b1),(0,b2)}.

Restricting this morphism to the formal neighborhood of the zero section of �g(1) ×�g(1), and
applying the equivalence �γG×G

(−2ρ,0), we obtain a nonzero morphism

(2.8.4) RΓ(−2ρ,0)((M−2ρ � M0) ⊗�g(1)×�g(1) Kw) → γG×G
(−2ρ,0)( O{(0,b1),(0,b2)}).

By definition (and using the Künneth formula),

γG×G
(−2ρ,0)( O{(0,b1),(0,b2)})

∼= γG
−2ρ( O{(0,b1)}) ⊗k γG

0 ( O{(0,b2)}).

And, by [13, Proposition 3.1.4], we have isomorphisms

γG
−2ρ( O{(0,b1)})

∼= M(b1,0;0), γG
0 ( O{(0,b2)})

∼= M(b2,0;2ρ).

(Here we consider the baby Verma modules for the Lie algebra g.)

Let q : �g(1) × �g(1) → g∗(1) × �g(1) be the natural morphism, and let �q be the induced
morphism on the formal neighborhoods of the zero sections. Let also η, respectively �, be
the inclusion of the formal neighborhood of the zero section in �g(1) × �g(1), respectively
g∗(1) × �g(1), so that q ◦ η = � ◦ �q.

By Lemma 2.6.5, the object on the left hand side of morphism (2.8.4) is concentrated in
degree 0. Then, by Lemma 2.7.1, the morphism obtained by applying the functor T

(−ρ,0)
(−2ρ,0)

to this morphism is nonzero. (Observe that T
(−ρ,0)
(−2ρ,0) = T

(w0•(−ρ),0)
(w0•(−2ρ),0) = T

(−ρ,0)
(0,0) .) On the

other hand, by [12, Lemma 2.2.5], the morphism obtained by applying T
(−ρ,0)
(−2ρ,0) to (2.8.4)

is a morphism

�γG×G
(−ρ,0)(R(�q)∗ ◦ η∗ Kw) → γG×G

(−ρ,0)(Rq∗ O{(0,b1),(0,b2)}).

There are isomorphisms R(�q)∗ ◦ η∗ Kw
∼= �∗ ◦ Rq∗ Kw (see [32, Theorem 4.1.5]) and

Rq∗ O{(0,b1),(0,b2)}
∼= O{0,(0,b2)}. It follows that the morphism

(2.8.5) R(p2)∗ Kw → O{(b2,0)}

obtained by applying the functor R(p2)∗ to (2.8.3) is nonzero. Here, p2 : �g(1) × �g(1) → �g(1)
is the projection on the second factor.

By Lemma 2.7.2, we have an isomorphism R(p2)∗ Kw
∼= O�g(1) . Hence the mor-

phism obtained by applying RΓ(�g(1),−) to the morphism (2.8.5) is nonzero. But, as
RΓ(�g(1) × �g(1),−) ∼= RΓ(�g(1),−) ◦ R(p2)∗, the latter morphism is obtained by taking
global sections of (2.8.3). This finishes the proof.

Let us remark that, using similar arguments, one can prove the following fact (which will
not be used in this paper).
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P 2.8.6. – Let λ ∈ X be in the fundamental alcove. Let F be an object
of CohGm(�g(1)), and let �F be its restriction to the formal neighborhood of the zero section

B
(1)

⊂ �g(1).
Assume that the object �γw0•λ(�F ) is concentrated in degree 0. Then F is generated by its

global sections.

2.9. Irreducibility of a fibre product

The main result of this subsection is Proposition 2.9.4. Before we can prove it, we need
several easy preliminary results.

The following fact follows from the explicit description of Zs in [54]. We denote as above
by p1 and p2 the projections �g× �g→ �g.

L 2.9.1. – Let s ∈ S . The fiber of the projection p1 : Zs → �g, respectively
p2 : Zs → �g, over (X, gB) is one point if X|g·sl(2,s) �= 0, and is isomorphic to P1 otherwise.

We denote by Fs the closed subvariety of codimension 2 of �g defined by

Fs := {(X, gB) ∈ �g | X|g·sl(2,s) = 0}.

Recall that there is a natural morphism

ν : �g→ h∗,
sending (X, gB) to the restriction X|g·b, considered as a linear form on (g · b)/(g · n) ∼= h.
Then for any w ∈ W the image of Zw under ν×ν : �g×�g→ h∗×h∗ is the graph Graph(w, h∗)

of the action of w on h∗. Indeed the inverse image of Graph(w, h∗) under (ν × ν) contains
Zreg

w , hence also Zw; it follows that (ν × ν)(Zw) ⊆ Graph(w, h∗); we conclude using the fact
the morphism p1 : Zw → �g is proper and birational, hence surjective.

L 2.9.2. – Let w ∈ W , and let v ∈ W such that v < w. Let V be the fiber of Zw over
(B/B, v−1B/B) ∈ B × B (a closed subvariety of (g/n)∗). Then ν(V × {B/B}) is included
in the space of fixed points of v−1w on h∗.

Proof. – Let X ∈ V . By definition, ν(X, v−1B/B) = v · ν(X, B/B). On the other hand,
as (X, B/B, v−1B/B) ∈ Zw, by the remarks above we have ν(X, v−1B/B) = w·ν(X, B/B).
We deduce that v · ν(X,B/B) = w · ν(X, B/B), which gives the result.

Recall the remarks of §2.2. We set d := dim(g).

C 2.9.3. – Let w ∈ W and s ∈ S such that ws > w. Then

dim
�
(Fs × �g) ∩ Zw

�
≤ d − 2.

Proof. – For simplicity, let us denote the variety
�
(Fs × �g) ∩ Zw

�
red

by Y s
w. (We will use

this notation only in this proof.) First, Y s
w is included strictly in Zw, hence has dimension

lower than d − 1. Assume that it has dimension d − 1. By G-equivariance, and as G has
only finitely many orbits on B × B, there exists u ≤ w such that the restriction (Y s

w)|X0
u−1

has dimension d − 1. Moreover, u �= w as the restriction of Y s
w to X0

w−1 has dimension
dim(g)−2. (This follows from our assumption ws > w or, equivalently, w(α) > 0 for s = sα,
α ∈ Σ.) By G-equivariance again, the fiber of Y s

w over (B/B, u−1B/B) has dimension
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d − 1 − dim(X0
u−1) = d − 1 − �(u) − dim(B). On the other hand, this fiber is included

in the fiber of (�g×g∗ �g) ∩ (Fs × �g) over (B/B, u−1B/B), which is itself included in

V := {X ∈ g∗ | X|n+u−1·n = 0 and X(hs) = 0}.

The subspace V has dimension d − 1 − �(u) − dim(B). Hence the fiber of Y s
w over

(B/B, u−1B/B) equals V . In particular, the fiber of Zw over (B/B, u−1B/B) contains V .
Now we derive a contradiction. By definition we have

ν(V × {B/B}) = {X ∈ (b/n)∗ | X(hs) = 0},

i.e. ν(V × {B/B}) ⊂ h∗ is the reflection hyperplane of s. By Lemma 2.9.2, this subspace is
included in the fixed points of u−1w. Hence either u−1w = s, or u−1w = 1. This is absurd
since u < w < ws.

Let w ∈ W and s ∈ S . Consider the scheme Zs ×�g Zw, where the morphism Zs → �g
(respectively Zw → �g) is induced by the second (respectively the first) projection.

P 2.9.4. – Let w ∈ W and s ∈ S such that ws > w. The scheme Zs ×�g Zw

is irreducible, of dimension dim(g).

Proof. – The scheme Zs ×�g Zw is the scheme-theoretic intersection of the subvarieties
(Zs × �g) and (�g × Zw) of �g3. Each of these subvarieties has dimension 2 dim(g). As �g has
a finite covering by open subsets isomorphic to Adim(g), the dimension of each irreducible
component of Zs ×�g Zw is at least dim(g) (see [34, Proposition I.7.1]).

We have (Zs ×�g Zw) ∩ (�greg)3 = Zreg
s ×�greg Zreg

w , hence this intersection is irreducible
(because it is isomorphic to �greg). Hence any irreducible component of Zs×�gZw is either the
closure of Zreg

s ×�greg Zreg
w , or is included in (�g � �greg)3. Assume that there is a component

Y included in (�g � �greg)3. By the arguments above, dim(Y ) ≥ dim(g). Consider the image
Y � of Y under the projection p2,3 : Zs ×�g Zw → Zw. Then Y � is strictly included in Zw,
hence has dimension lower than dim(g) − 1. As the fibers of p2,3 have dimension at most 1

(see Lemma 2.9.1), we have dim(Y �) = dim(g) − 1, dim(Y ) = dim(g), and all the fibers of
the restriction (p2,3)|Y have dimension exactly 1. It follows that Y � ⊂ (Fs × �g)∩Zw. This is
absurd, since dim((Fs × �g) ∩ Zw) ≤ dim(g) − 2 by Corollary 2.9.3.

2.10. End of the proof of Theorem 2.2.1 (case of �g)
We can finally finish the proof of Theorem 2.2.1 in the case of �g.

Proof of Theorem 2.2.1. – We prove the theorem by induction on the Bruhat order. First,
the statement is clear by definition if �(w) is 0 or 1. Now assume it is known for w, and
let s ∈ S be a simple reflection such that ws > w. We only have to prove that Kws

∼= OZws

as (G × Gm)-equivariant sheaves. Indeed, once we know this isomorphism, the fact that
K †

ws is a sheaf implies that Zws is Cohen-Macaulay, and that K †
ws is its dualizing sheaf (see

Equation (2.2.3)).
By definition of convolution, and the induction hypothesis,

Kws
∼= Kw � OZs

∼= R(p1,3)∗( OZs×�g

L

⊗�g3 O�g×Zw
).

By induction hypothesis, �g× Zw is a Cohen-Macaulay scheme. Moreover, Zs × �g is defined
locally in �g3 by a regular sequence of length dim(g). (This is a general fact for smooth
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subvarieties of smooth varieties, and it is checked explicitly in this case in [54].) We have
proved in Proposition 2.9.4 that (Zs×�g)∩(�g×Zw) = Zs×�gZw has dimension dim(g). Using
a Koszul complex ([51, (18.D) Theorem 43]) and [51, (16.B) Theorem 31], the derived tensor

product OZs×�g

L

⊗ O
�g3

O�g×Zw
is concentrated in degree 0. Hence it equals OZs×�gZw

. Moreover,
Zs ×�g Zw is Cohen-Macaulay (see [51, (16.A) Theorem 30]). By Proposition 2.9.4 it is also
irreducible, and it is smooth on an open subscheme (e.g. the intersection with �g3reg). Hence
it is reduced (see [51, p. 125]). It follows that p1,3 induces a birational and proper (hence
surjective) morphism p1,3 : Zs ×�g Zw → Zws, and that we have

(2.10.1) Kws
∼= (p1,3)∗ OZs×�gZw

.

(Recall that Kws is a sheaf by Proposition 2.6.7.)
On the other hand, let

f : �g× �g p2
−→ �g → (g∗ ×h∗/W h

∗)

be the natural morphism. By Proposition 2.8.1, Kws is globally generated. Hence the adjunc-
tion morphism f∗f∗ Kws → Kws is surjective. Using also Lemma 2.7.2, it follows that there
exists a natural surjective (G × Gm)-equivariant morphism

O�g×�g � Kws.

In other words, Kws is the structure sheaf of a closed subscheme of �g × �g. By Equa-
tion (2.10.1), this subscheme is reduced, and coincides with Zws. This finishes the proof.

2.11. Proof of Theorem 2.1.1 for �gR
We come back to the setting of Theorem 2.1.1. In particular, let R = Z[ 1

h! ], let w ∈ W ,
and let w = s1 · · · sn be a reduced expression.

Consider the object
Kw,R := OZs1,R

� · · · � OZsn,R

of Db
CohGR×R(Gm)R(�gR×R �gR). Note that for every prime p > h, Kw,R

L

⊗R Fp is the object
“ Kw” of §2.2 for the field k = Fp. Hence, by Lemma 1.4.1(2) and Proposition 2.6.7, Kw,R

is a coherent sheaf, which is flat over R.
Let M := RΓ(�gR ×R �gR, Kw,R). By Lemma 1.4.1(2) again and Lemma 2.7.2, M is

concentrated in degree 0. By the same arguments as in the proof of Proposition 1.4.3, we
have M (Gm)R ∼= R. Hence also

Γ(�gR ×R �gR, Kw,R)GR×R(Gm)R ∼= R.

Let φ be the inverse image of 1 ∈ R under such an isomorphism; it is uniquely defined up
to an invertible scalar in R. We will consider φ as a GR ×R (Gm)R-equivariant morphism
O�gR×R�gR

→ Kw. By the same arguments as in the proof of Proposition 1.4.3, φ is surjective.
In other words, we have an isomorphism OXw

∼
−→ Kw for some (GR ×R (Gm)R)-stable

closed subscheme Xw ⊂ �gR ×R �gR. Again by the same arguments as in the proof of
Proposition 1.4.3, Xw is reduced, and its restriction to (�gR ×R �gR) � Zw,R is empty. (Here
we use that Zw,R ×Spec(R) Spec(Fp) and the scheme Zw defined in §2.2 for k = Fp have the
same underlying topological space.) Hence Xw is a reduced closed subscheme of Zw,R.

On the other hand, let Uw be the inverse image under the projection �gR ×R �gR → BR ×R BR

of the GR-orbit of (BR/BR, w−1BR/BR) ∈ BR ×R BR, and let Z∗
w,R be the intersection
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of Uw with �gR ×g∗
R

�gR (so that, by definition, Zw,R is the closure of Z∗
w,R). It is easy to check

(using the fact that the Bott-Samelson resolution associated with the reduced expression
w−1 = sn · · · s1 is an isomorphism over the inverse image of the orbit of w−1) that we have

Kw,R|Uw
∼= OZ∗

w,R
.

Hence Xw∩Uw = Z∗
w,R, which implies that Xw contains Zw,R. We deduce that Xw = Zw,R,

which finishes the proof of Theorem 2.1.1 in the case of �gR.

R 2.11.1. – Let k be an algebraically closed field of characteristic p > h. As we

have observed in the proof above, Kw,R
L

⊗R k is the object “ Kw” of §2.2 for the field k (by
compatibility of convolution with change of scalars). On the other hand, the isomorphism
Kw,R

∼= OZw,R
implies that Kw,R ⊗R k ∼= OZw,R×Spec(R)Spec(k). We deduce that

Zw,R ×Spec(R) Spec(k) ∼= Zw,

where “Zw” is the scheme defined in §2.2 for the field k. In other words, Zw,R×Spec(R)Spec(k)

is reduced.

2.12. Geometric action for �N and �N R

In this subsection we prove Theorems 2.1.1 and 2.2.1 in the case of �N . For simplicity, we
only treat the case of a field; the case of R is similar. Hence we fix again an algebraically closed
field k of characteristic p > h.

Let w ∈ W . Recall the scheme Z �
w defined in §2.2. As Zw is Cohen-Macaulay (by

Theorem 2.2.1), and dim(Z �
w) ≤ dim(�N ×g∗ �N ) = dim(g) − dim(t), one easily checks

that Z �
w is Cohen-Macaulay, and that

OZ�
w

∼= OZw

L

⊗�g2 O �N ×�g

(see §2.10 for a similar argument).

L 2.12.1. – Z �
w is a closed subscheme of �N × �N .

Proof. – It is sufficient to prove that the morphism S(h) → OZ�
w

induced by the morphism

Z �
w �→ �g× �g p2

−→ �g→ h∗

is zero. But this morphism coincides with

Z �
w �→ �g× �g p1

−→ �g→ h∗ w
−→ h∗

(see the remarks before Lemma 2.9.2). Hence indeed it is zero, by definition of Z �
w.

It follows in particular from this lemma that OZ�
w

can be considered as a coherent sheaf

on �N ×�N . Now an easy argument, similar to that of [54, Corollary 4.3], proves the isomor-
phism of Theorem 2.2.1. The description of the dualizing sheaf for Z �

w can be proved using
an analogue of Formula (2.2.3) for �N .
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2.13. Application to K-theory

In [54, §§6.1, 6.2], we have explained how the braid group action of Theorem 1.6.1,
for k = C, is related to the K-theoretic description of the affine Hecke algebra, and
Springer’s geometric construction of the representations of W . In this subsection and the
next one we explain some consequences of Theorem 2.2.1 in this context. (Recall that, by
Remark 2.2.2(2), Theorem 2.2.1 is also true for k = C.)

For the moment, consider an arbitrary algebraically closed field k, and the fiber product

Z := �g×g∗ �g.

L 2.13.1. – The scheme Z is reduced.

Proof. – It is well known that Z has dimension d := dim(g) (see e.g. [40, §10]), and is
defined by d equations in the smooth variety �g × �g. Hence it is Cohen-Macaulay (see [51,
(16.A) Theorem 30 and (16.B) Theorem 31]). Moreover, it is smooth on the inverse image
of g∗rs ⊂ g

∗, which is dense. One concludes using [51, p. 125].

R 2.13.2. – One can interpret the schemes Zw from yet another point of view
using this definition: they are the irreducible components of the variety Z (see e.g. [40, §10]).

On the other hand, the scheme-theoretic fiber product �N ×g∗ �N is not reduced in general.
(For example, it is not reduced for G = SL(2, k) if char(k) = 2.) We set

Z � := (�N ×g∗ �N )red.

Now for simplicity we specialize to the case k = C. First, recall the algebra isomorphism

(2.13.3) H aff
∼
−→ KG×C×

(Z �)

due to Kazhdan-Lusztig and Ginzburg. Here G×C× acts on Z � via (g, t) · (X, g1B, g2B) :=

(t−2g · X, gg1B, gg2B),

H aff := Z[v, v−1][Baff ] / �(Ts + v−1)(Ts − v), s ∈ S �

is the (extended) affine Hecke algebra, and we consider Lusztig’s isomorphism defined in [48,
Theorem 8.6] (and not Ginzburg’s isomorphism, defined in [22], which is slightly different).
In order to follow Lusztig’s conventions, we consider the algebra structure on the right-hand
side of (2.13.3) which is induced by the analogue of the convolution product on the category
Db

CohG×C×

Z� (�N ×�N ) defined in §1.2, but where the role of the two copies of �N is exchanged.
By [54, §6.1], this isomorphism sends Ts to (−v−1) · [ OZ�

s
].

One can check that restriction with supports associated with the embedding �N ×�g �→ �g×�g
induces an algebra isomorphism KG×C×

(Z)
∼
−→ KG×C×

(Z �), see e.g., [52]. Composing it
with (2.13.3) we obtain an algebra isomorphism

(2.13.4) H aff
∼
−→ KG×C×

(Z),

which sends Ts to (−v−1) · [ OZs
].

Theorem 2.2.1 implies the following.

P 2.13.5. – Let w ∈ W . Under isomorphism (2.13.4), respectively isomor-
phism (2.13.3), Tw ∈ H aff is sent to (−v−1)�(w) ·[ OZ

w−1 ], respectively to (−v−1)�(w) ·[ OZ�

w−1
].
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In particular, this result gives a geometric description of two standard bases of the affine
Hecke algebra, given by {Twθx | w ∈ W, x ∈ X} and {θxTw | w ∈ W, x ∈ X}. Namely, these
bases are given by the classes of some shifts of the following (G×C×)-equivariant coherent
sheaves on Z:

OZ
w−1 (0, x), respectively OZ

w−1 (x, 0).

2.14. Application to homology

Let L(Z �) be the quotient of the (non equivariant) K-theory K(Z �) (considered as the

Grothendieck group of the category Db
CohZ�(�N ×�N )) by the subgroup generated by classes

of sheaves whose support has dimension strictly smaller than dim(Z �). Then the convolution
product on K(Z �) induces a product on L(Z �), see e.g. [28, §5.1]. (Here we follow the same
conventions on products as in §2.13.) The Z-module L(Z �) has a natural basis consisting
of classes of structure sheaves of irreducible components of Z �. Hence the morphism which
assigns to the class [ OY ], where Y is an irreducible component of Z �, its cycle class [Y ] (see
[27, §19.1]) is an isomorphism

ι : Q ⊗Z L(Z �)
∼
−→ H BM

top (Z �),

where H BM
top (Z �) is the rational top Borel-Moore homology of the variety Z �. The resulting

convolution product on H BM
top (Z �) can be described directly in terms of homological opera-

tions as in [22, §3.4], see [28, §5.1].
By [28, Proposition 5.3] (see also [43, §5.5]), there exists an algebra isomorphism

Q[W ]
∼
−→ Q ⊗Z L(Z �).

Composing with ι we obtain an algebra isomorphism

(2.14.1) Q[W ]
∼
−→ H BM

top (Z �).

(See also [22, §3.4] for a direct construction of this isomorphism). The isomorphism (2.14.1)
can be described as follows (see [28, Section 6] or [43]). For w ∈ W , consider the regular holo-
nomic systemMw on B corresponding to the Verma module with highest weight −w(ρ)−ρ

under Beı̆linson-Bernstein’s equivalence (see [43, §2] for details). The holonomic systemMw

is B-equivariant, hence induces a G-equivariant regular holonomic system �Mw on B × B.
Then isomorphism (2.14.1) sends w to the characteristic cycle Ch(�Mw) of �Mw. By [54, §6.2],
the image of s ∈ S is also the cycle class [Z �

s] = ι([ OZ�
s
]) of Z �

s.

Now Theorem 2.2.1 (in the case of �N ) implies the following.

P 2.14.2. – Let w ∈ W . Under isomorphism (2.14.1), w ∈ W is sent
to ι([ OZ�

w−1
]) ∈ H BM

top (Z �). In particular we have an equality Ch(�Mw) = ι([ OZ�

w−1
]).

R 2.14.3. – As pointed out to us by V. Ginzburg, one can also derive the equality
Ch(�Mw) = ι([ OZ�

w−1
]) from [28, Equation (6.2.3)].

Proposition 2.14.2 can be used to check that Z �
w is not reduced in general. Recall that the

irreducible components of the Steinberg variety Z � are the closures of the conormal bundles
to the G-orbits on B × B (see [28, 22] or [43, §4.1]). For y ∈ W , let us denote by

Yy := T ∗
X0

y
(B × B)
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the corresponding component, endowed with the reduced subscheme structure. It can be
easily checked that the reduced subscheme associated with Z �

w is

(Z �
w)red =

�

y≤w−1

Yy.

(Here,≤ is the Bruhat order.) However, the multiplicity of Yy in Z �
w can be more than 1, which

will prove that Z �
w is not reduced in these cases.

Indeed, for w ∈ W , in addition to Mw defined above, consider the regular holonomic
system Lw on B which corresponds to the simple Ug-module with highest weight −w(ρ)−ρ

under Beı̆linson-Bernstein’s equivalence (see again [43, §2] for details). By Proposition 2.14.2,
the multiplicity of Yy in Z �

w is the coefficient of the cycle [T ∗
ByB/B(B)] in the decomposition of

the characteristic cycle Ch(Mw−1) as a sum of elements [T ∗
BzB/B(B)], z ∈ W . To prove that

one of these coefficients is greater than 1, it is sufficient to prove that one of the coefficients of
the decomposition of Ch(Mw−1) as a sum of elements Ch(Ly) is greater than 1. However,
the latter coefficients are given by values at 1 of Kazhdan-Lusztig polynomials, which are
related to singularities of Schubert varieties.

For example, consider the group G = SL(4). Let s1, s2, s3 be the standard generators of
the Weyl group W , and let w = s2s1s3s2, y = s2. Then Py,w(q) = 1+q, hence the coefficient
of Ch(Lw0w) in the decomposition of Ch(Mw0y) is 2. It follows that the multiplicity of Yw0w

in Z �
y−1w0

is at least(6) 2, hence that Z �
y−1w0

is not reduced.

3. Generalities on dg-schemes

In the next two sections, we develop a general framework to define group actions on
derived categories of coherent (dg-)sheaves on (dg-)schemes. We will use this framework to
extend the action of Theorem 1.6.1 to other related categories.

First, in this section we extend the formalism of dg-schemes of [55, §1] to a setting more
adapted to quasi-coherent dg-sheaves. Then we extend the base change theorem and the
projection formula to this setting.

In this section and the next one, a scheme is always assumed to be separated and noethe-
rian of finite Krull dimension. It follows that the morphisms of schemes are always quasi-
compact and separated.

3.1. Definitions

Recall the following definitions ([23, §2.2], [55, §1.8]).

D 3.1.1. – 1. A dg-scheme is a pair (X, A) where (X, OX) is a scheme
(with the conventions stated above), and A is a quasi-coherent, non-positively graded,
graded-commutative sheaf of OX -dg-algebras on X.

2. A morphism of dg-schemes f : (X, AX) → (Y, AY ) is the data of a morphism of
schemes f0 : X → Y , and a morphism of sheaves of dg-algebras (f0)

∗ AY → AX .

(6) In fact, it is checked in [42] that if n ≤ 7, for the group G = SL(n) we have Ch(Ly) = [T ∗

ByB/B
(B)] for y ∈ W .

Hence here the multiplicity is exactly 2.
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Let us fix a dg-scheme (X, A). Remark that, as the image of OX in A is in degree 0, it
is killed by the differential d A of A. It follows that d A is OX -linear. The same applies to all
sheaves of A-dg-modules.

We denote by C(X, A) the category of all sheaves of A-dg-modules, and by Cqc
(X, A)

the full subcategory of dg-modules whose cohomology sheaves are quasi-coherent over OX .
We denote by D(X, A) and Dqc

(X, A) the corresponding derived categories. Note that
Dqc

(X, A) is equivalent to the full subcategory of D(X, A) whose objects are in Cqc
(X, A).

The category D(X, A) is triangulated in a natural way. It is not clear from the definition that
Dqc

(X, A) is a triangulated subcategory; we will eventually prove that this is the case under
our hypotheses (see Proposition 3.3.2).

We denote by CQCoh(X, A) the category of sheaves of A-dg-modules which are quasi-
coherent over OX , and by DQCoh(X, A) the corresponding derived category.

Recall the following definition (see [59, Definition 1.1], [55, Definition 1.3.1]).

D 3.1.2. – An object F of C(X, A) (respectively CQCoh(X, A)) is said to be
K-injective if for any acyclic object G in C(X, A) (respectively CQCoh(X, A)), the complex
of abelian groups Hom A( G, F ) is acyclic.

Let us consider OX as a sheaf of dg-algebras concentrated in degree 0, with trivial dif-
ferential. We have defined the categories C(X, OX), Cqc

(X, OX), CQCoh(X, OX) and the
corresponding derived categories. Recall that the forgetful functor

For OX : CQCoh(X, OX) → C(X, OX)

has a right adjoint
Q OX : C(X, OX) → CQCoh(X, OX),

called the quasi-coherator (see [7, p. 187, Lemme 3.2]). As C(X, OX) has enough K-injectives
(see [59, Theorem 4.5]), Q OX admits a right derived functor

RQ OX : D(X, OX) → DQCoh(X, OX).

The functor Q OX sends K-injective objects of C(X, OX) to K-injective objects of
CQCoh(X, OX) (because it has an exact left adjoint functor). One easily deduces that
RQ OX is right adjoint to the forgetful functor For OX : DQCoh(X, OX) → D(X, OX). The
functor Q OX also induces a functor

Q A : C(X, A) → CQCoh(X, A),

which is right adjoint to

For A : CQCoh(X, A) → C(X, A).

Under our hypotheses C(X, A) has enough K-injectives (see [55, Theorem 1.3.6]), hence Q A

has a right-derived functor RQ A , which is right adjoint to For A : DQCoh(X, A) → D(X, A)

(for the same reasons as above).

P 3.1.3. – 1. The functors

For OX : DQCoh(X, OX) → Dqc
(X, OX),

RQ OX : Dqc
(X, OX) → DQCoh(X, OX)
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are quasi-inverse equivalences of categories.
2. Dqc

(X, OX) is a triangulated subcategory of D(X, OX).

Proof. – Statement (1) is proved in [7, p. 191, Proposition 3.7] (see also [1, Proposition 1.3]
for a more general version).

Let us prove (2). Let

F
f
−→ G → H

+1
−−→

be a distinguished triangle in D(X, OX), and assume that F , G have quasi-coherent coho-
mology. By (1) there exist F �, G � in DQCoh(X, OX), and a morphism f � : F � → G � such
that F = For OX ( F �

), G = For OX ( G �
), f = For OX (f �). By usual properties of triangulated

categories, one can complete the morphism f � to a distinguished triangle

F � f �

−→ G � → H � +1
−−→

in DQCoh(X, OX). Then, again by usual properties of triangulated categories, there exists
an isomorphism For OX (H �

) ∼= H in D(X, OX). It follows that H has quasi-coherent
cohomology.

3.2. K-flats and inverse image

Let (X, AX) be a dg-scheme. As AX is graded-commutative, we have an equivalence
between left and right AX -dg-modules (see [6]). In particular we can take tensor products of
two left AX -dg-modules, and we still obtain a left AX -dg-module. Also, this tensor product
is commutative.

Recall the definition of a K-flat object (see [59, Definition 5.1], [55, Definition 1.3.1]).

D 3.2.1. – An object F of C(X, AX) is said to be K-flat if for any acyclic
object G in C(X, AX), the dg-module F ⊗ AX

G is acyclic.

Under our hypotheses, every quasi-coherent OX -module is the quotient of a quasi-
coherent flat OX -module. (This can be deduced from [1, Proposition 1.1] and its proof.)
Statement (1) of the following proposition is proved in [55, Theorem 1.3.3]; statement (2)
can be proved similarly using this remark.

P 3.2.2. – 1. For any F in C(X, AX) there exist a K-flat AX -dg-module

P and a quasi-isomorphism P
qis
−−→ F .

2. For any F in CQCoh(X, AX) there exist a quasi-coherent AX -dg-module P such that

For AX (P) is K-flat in the category C(X, AX), and a quasi-isomorphism P
qis
−−→ F .

It follows from this proposition that if f : (X, AX) → (Y, AY ) is a morphism of
dg-schemes, the left derived functors

Lf∗ : D(Y, AY ) → D(X, AX),

Lf∗
qc : DQCoh(Y, AY ) → DQCoh(X, AX)
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in C(X, A), then For( I ) is weakly K-injective in C(X, OX). (This follows from [59, Propo-
sition 5.15(b)] applied to the natural morphism of dg-ringed spaces (X, A) → (X, OX).)
Hence it is enough to prove that weakly K-injective objects of C(X, OX) are split on the
right for the functor Q OX . And for this, using the existence of right K-injective (in partic-
ular, weakly K-injective) resolutions (see [59, Theorem 4.5]), it is enough to prove that if J
is weakly K-injective and acyclic, then Q OX ( J ) is acyclic.

So, let J be such an object. By Proposition 3.2.2, there exists an object P of CQCoh(X, OX)

such that For OX (P) is K-flat in C(X, OX), and a quasi-isomorphism P
qis
−−→ Q OX ( J ). Let

us denote by H (X, OX), respectively H QCoh(X, OX), the homotopy category associated
with C(X, OX), respectively CQCoh(X, OX). By adjunction, there is an isomorphism

Hom H QCoh(X, OX)(P, Q OX ( J )) ∼= Hom H (X, OX)(For OX (P), J ).

The complex of abelian groups Hom OX
(For OX (P), J ) is acyclic by [59, Proposition 5.20].

Taking the 0-th cohomology of this complex, we deduce Hom H (X, OX)(For OX (P), J ) = 0,
hence Hom H QCoh(X, OX)(P, Q OX ( J )) = 0. In particular, the quasi-isomorphism
P → Q OX ( J ) is homotopic to zero, which implies that Q OX ( J ) is acyclic.

P 3.3.2. – 1. The subcategory Dqc
(X, A) is a triangulated subcategory

of D(X, A).
2. The functors

For A : DQCoh(X, A) → Dqc
(X, A),

RQ A : Dqc
(X, A) → DQCoh(X, A)

are quasi-inverse equivalences of triangulated categories.
3. There are enough K-injectives in the category CQCoh(X, A).

Proof. – (1) This is an easy consequence of Proposition 3.1.3(2).

(2) We have already seen that these functors are adjoint. Hence there are natural adjunc-
tion morphisms For A ◦ RQ A → Id and Id → RQ A ◦ For A . By Lemma 3.3.1, the following
diagram commutes:

Dqc
(X, A)

RQ A

��

For

��

DQCoh(X, A)
For A

��

For

��

Dqc
(X, OX)

RQ OX

�� DQCoh(X, OX).
For OX

��

Hence it follows from Proposition 3.1.3 that for every F in DQCoh(X, A) and G in Dqc
(X, A)

the induced morphisms For A ◦RQ A( G) → G and F → RQ A ◦For A( F ) are isomorphisms.
Statement (2) follows.

(3) We have seen in §3.1 that Q A sends K-injectives to K-injectives, and that there are
enough K-injectives in the category C(X, A). Let F be an object of CQCoh(X, A), and
let I be a K-injective resolution of For A( F ) in C(X, A). Then in DQCoh(X, A) we have
F ∼= RQ A ◦ For A( F ) ∼= Q A( I ). Moreover, as the dg-module Q A( I ) is K-injective, we can
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represent this isomorphism as a quasi-isomorphism F
qis
−−→ Q A( I ) in CQCoh(X, A). This

proves (3).

R 3.3.3. – It follows from Proposition 3.3.2(2) and diagram (3.2.3) that we have
Lf∗

�
Dqc

(Y, AY )
�
⊂ Dqc

(X, AX).

It follows from statement (3) of Proposition 3.3.2 and the existence of K-injective reso-
lutions in C(X, AX) that if f : (X, AX) → (Y, AY ) is a morphism of dg-schemes, we can
consider the right derived functors

Rf∗ : D(X, AX) → D(Y, AY ),

Rfqc
∗ : DQCoh(X, AX) → DQCoh(Y, AY ).

(Note that, by [34, Proposition II.5.8(c)], under our assumptions the direct image of
a quasi-coherent OX -module is a quasi-coherent OY -module.) As usual, we denote
by f0 : (X, OX) → (Y, OY ) the associated morphism of ordinary schemes. We also
have the associated derived functors

R(f0)∗ : D(X, OX) → D(Y, OY ),

R(f0)
qc
∗ : DQCoh(X, OX) → DQCoh(Y, OY ).

L 3.3.4. – 1. We have R(f0)∗(Dqc
(X, OX)) ⊂ Dqc

(Y, OY ).
2. The following diagram commutes:

DQCoh(X, OX)
R(f0)

qc
∗ ��

For OX

��

DQCoh(Y, OY )

For OY

��

D(X, OX)
R(f0)∗

�� D(Y, OY ).

Proof. – (1) is proved in [33, Proposition II.2.1]. (See [46, Proposition 3.9.2] for a proof
under less restrictive hypotheses.) Let us deduce (2). By Proposition 3.3.2(2), it is enough to
prove that

R(f0)
qc
∗ ◦ RQ OX ∼= RQ OY ◦ R(f0)∗.

It is known that

(3.3.5) (f0)
qc
∗ ◦ Q OX ∼= Q OY ◦ (f0)∗

(see [7, p. 188, Lemma 3.4]). Moreover, Q OX sends K-injectives to K-injectives, and (f0)∗
sends K-injectives to weakly K-injectives (see [59, Proposition 5.15]), which are split on the
right for Q OY (see the proof of Lemma 3.3.1). Hence the result follows from isomorphism
(3.3.5).

Now we deduce analogues of these properties for A-dg-modules.

P 3.3.6. – 1. We have R(f)∗(Dqc
(X, AX)) ⊂ Dqc

(Y, AY ).
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2. The following diagram commutes:

DQCoh(X, AX)
Rfqc

∗ ��

For AX

��

DQCoh(Y, AY )

For AY

��

D(X, AX)
Rf∗

�� D(Y, AY ).

3. The following diagram also commutes:

DQCoh(X, AX)
Rfqc

∗ ��

ForX

��

DQCoh(Y, AY )

ForY

��

DQCoh(X, OX)
R(f0)

qc
∗ �� DQCoh(Y, OY ).

Proof. – Recall that the following diagram commutes:

(3.3.7)

D(X, AX)
Rf∗

��

ForX

��

D(Y, AY )

ForY

��

D(X, OX)
R(f0)∗

�� D(Y, OY ),

see [55, Corollary 1.5.3]. Then (1) follows from Lemma 3.3.4(1).

Statement (2) can be proved similarly to Lemma 3.3.4(2). For this we use the fact that
a weakly K-injective AY -dg-module is also weakly K-injective as an OY -dg-module (see
[59, Proposition 5.15(b)]) hence it is split on the right for the functor Q OY (see the proof of
Lemma 3.3.1), which implies that it is also split on the right for the functor Q AY .

Finally, consider the diagram of (3). By definition there is a natural morphism of functors
ForY ◦ Rfqc

∗ → R(f0)
qc
∗ ◦ ForX . The fact that it is an isomorphism follows from diagram

(3.3.7), statement (2), and Lemma 3.3.4(2).

Because of these compatibility results, we will not write the supscript “qc” if no confusion
can arise.

C 3.3.8. – Let f : (X, AX) → (Y, AY ) and g : (Y, AY ) → (Z, AZ) be
morphisms of dg-schemes. Then we have isomorphisms

R(g ◦ f)∗ ∼= Rg∗ ◦ Rf∗ and R(g ◦ f)qc
∗

∼= Rgqc
∗ ◦ Rfqc

∗ .

Proof. – The first isomorphism is proved in [55, Corollary 1.5.3]. The second one follows,
using Proposition 3.3.6(2).
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3.4. Adjunction

P 3.4.1. – 1. The functors

Lf∗ : D(Y, AY ) → D(X, AX),

Rf∗ : D(X, AX) → D(Y, AY )

are adjoint.
2. Similarly, the functors

Lf∗
qc : DQCoh(Y, AY ) → DQCoh(X, AX),

Rfqc
∗ : DQCoh(X, AX) → DQCoh(Y, AY )

are adjoint.

Proof. – These results follow from general properties of derived functors, see [44,
Lemma 13.6]. But they can also be proved directly, as follows. First, (1) is proved (by direct
methods) in [55, Theorem 1.6.2]. Let us deduce (2). Let F be an object of DQCoh(Y, AY ),
and G an object of DQCoh(X, AX). First we have:

Hom DQCoh(X, AX)(Lf∗
qc F , G) ∼= Hom D(X, AX)(For AX ◦ Lf∗

qc F ,For AX G)

∼= Hom D(X, AX)(Lf∗ ◦ For AY F ,For AX G).

Here the first isomorphism follows from Proposition 3.3.2(2), and the second one from
diagram (3.2.3). Hence, by (1) we have

Hom DQCoh(X, AX)(Lf∗
qc F , G) ∼= Hom D(Y, AY )(For AY F , Rf∗ ◦ For AX G).

Then, using Proposition 3.3.6(2) and again Proposition 3.3.2(2), we deduce

Hom DQCoh(X, AX)(Lf∗
qc F , G) ∼= Hom D(Y, AY )(For AY F ,For AY ◦ Rfqc

∗ G)

∼= Hom DQCoh(Y, AY )( F , Rfqc
∗ G).

These isomorphisms are functorial.

3.5. Projection formula

In this subsection we generalize the classical projection formula (see [33, Proposi-
tion II.5.6]) to dg-schemes.

L 3.5.1. – 1. The functors R(f0)∗ and Rf∗ commute with filtered direct limits.
2. For F in D(X, OX) and G in Dqc

(X, OX) we have a functorial isomorphism

R(f0)∗( F
L

⊗ OX
L(f0)

∗ G) ∼= (R(f0)∗ F )
L

⊗ OY
G.

Proof. – (1) The case of R(f0)∗ can be proved as in [55, Corollary 1.7.5]. (In loc. cit.,
“direct sum” can be replaced by “filtered direct limit” without any trouble.) Then the case
of Rf∗ follows, using diagram (3.3.7).

Assertion (2) is proved in [46, Proposition 3.9.4].

P 3.5.2 (Projection formula). – For F ∈ D(X, AX) and G ∈ Dqc
(Y, AY )

we have a functorial isomorphism

Rf∗( F
L

⊗ AX
Lf∗ G) ∼= (Rf∗ F )

L

⊗ AY
G.
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Proof. – By the same arguments as in [33, Proposition II.5.6] or in [46, §3.4.6], there is a
morphism of functors

(Rf∗ F )
L

⊗ AY
G → Rf∗( F

L

⊗ AX
Lf∗ G).

We want to prove that it is an isomorphism. First we can assume that G is the image of
an object of CQCoh(Y, AY ) (see Proposition 3.3.2(2)). Then, by the proof of Proposi-
tion 3.2.2(2), G is quasi-isomorphic to the direct limit of some AY -dg-modules Pp such
that, for any p, Pp has a finite filtration with subquotients of the form AY ⊗ OY

G0 with
G0 in CQCoh(Y, OY ), K-flat in C(Y, OY ). Hence, by Lemma 3.5.1(1), we can assume that
G = AY ⊗ OY

G0 for such a G0. Then G is K-flat, we have in D(X, OX)

Lf∗ G ∼= f∗ G ∼= AX ⊗ OX
(f0)

∗ G0,

and the OX -dg-module (f0)
∗ G0 is K-flat. Hence

F
L

⊗ AX
Lf∗ G ∼= F ⊗ OX

(f0)
∗ G0

∼= F
L

⊗ OX
(f0)

∗ G0.

Similarly we have

(Rf∗ F )
L

⊗ AY
G ∼= (Rf∗ F )

L

⊗ OY
G0.

Hence the result follows from Lemma 3.5.1(2) and the compatibility between Rf∗ and
R(f0)∗, see diagram (3.3.7).

3.6. Quasi-isomorphisms

P 3.6.1. – Let f : (X, AX) → (Y, AY ) be a morphism of dg-schemes
such that f0 is a closed embedding, and the induced morphism AY → (f0)∗ AX is a quasi-
isomorphism of dg-algebras. Then the functors

Rf∗ : D(X, AX) → D(Y, AY ),

Lf∗ : D(Y, AY ) → D(X, AX)

are quasi-inverse equivalences of triangulated categories. They induce equivalences of triangu-
lated categories

Dqc
(X, AX) ∼= Dqc

(Y, AY ), DQCoh(X, AX) ∼= DQCoh(Y, AY ).

Proof. – One can factor f as the composition

(X, AX)
f1
−→ (Y, (f0)∗ AX)

f2
−→ (Y, AY ).

Hence, using Corollaries 3.3.8 and 3.2.4, it is sufficient to prove the result for f1 and f2. The
case of f2 is treated in [55, Proposition 1.5.6]. (The proof is similar to the usual case of a
dg-algebra, see [6].) And for f1, the (non-derived) functors (f1)∗ and (f1)

∗ are already (exact)
equivalences.
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3.7. Derived fiber product and base change

In this subsection we generalize the usual flat base change theorem ([33, Proposi-
tion II.5.12], [46, Theorem 3.10.3]) to dg-schemes. One of the main advantages of con-
sidering dg-schemes is that, in this generality, one can replace fiber products by derived fiber
products, and then get rid of the flatness (or “independence”) assumption.

First, a morphism of dg-schemes f : (X, AX) → (Y, AY ) is said to be smooth if the
underlying morphism of schemes f0 : X → Y is smooth, and AX is K-flat over (f0)

∗ AY .
Let now X = (X, AX), Y = (Y, AY ), Z = (Z, AZ) be dg-schemes and let f : X → Z,

g : Y → Z be morphisms. As in the case of ordinary schemes ([34, p. 87]), one can easily
define the fiber product dg-scheme

X ×Z Y.

(If X0, Y0 and Z0 are affine, the fiber product is given by the tensor product of dg-algebras.)
Assume now that the morphisms f0 : X0 → Z0 and g0 : Y0 → Z0 are quasi-projective(7).
Then one can factor these morphisms as compositions

X
f1
�→ X

� f2
−→ Z, Y

g1
�→ Y

� g2
−→ Z,

where f1 and g1 are quasi-isomorphic closed embeddings (i.e. satisfy the assumptions of
Proposition 3.6.1), and f2 and g2 are smooth. (See [23, Theorem 2.7.6] for the existence of
such factorizations.) Then one can “define” the dg-scheme

X
R

×Z Y

as X
� ×Z Y, or equivalently X ×Z Y

�, or equivalently X
� ×Z Y

�. More precisely, this

dg-scheme is defined only “up to quasi-isomorphism.” However, the categories D(X
R

×Z Y)

and DQCoh(X
R

×Z Y) are well defined, thanks to Proposition 3.6.1. These are the only

objects we are going to use. To give a more precise definition of X
R

×Z Y, one would have
to consider a “derived category of dg-schemes” as in [23, §2.2]; we will not do this here.

There are natural projections p1 : X
R

×Z Y → X, p2 : X
R

×Z Y → Y, represented by
the morphisms of dg-schemes X ×Z Y

� → X, X
� ×Z Y → Y. Note that the following

diagram commutes, where i : X ×Z Y
� → X

� ×Z Y
� is the morphism induced by f1, and

p�1 : X� ×Z Y
� → X

� is induced by g2:

D(X ×Z Y
�)

Ri∗ ��

R(p1)∗

��

D(X� ×Z Y
�)

R(p�
1)∗

��

D(X)
R(f1)∗

�� D(X�)

(see Corollary 3.3.8). As R(f1)∗ and Ri∗ are equivalences of categories with respective
inverses L(f1)

∗ and Li∗ (by Proposition 3.6.1), we also have R(p1)∗ ∼= L(f1)
∗ ◦R(p�1)∗ ◦Li∗.

Similar results apply for the inverse image functors, and for Y instead of X. It follows from
these remarks that, even if p1 and p2 are “not well defined” as morphisms of dg-schemes
(because their source is not well defined), the associated direct and inverse image functors

(7) More generally, for the definition of the derived fiber product one only has to assume that f0 factors through
a closed embedding X0 �→ X�

0 where the morphism X�

0 → Z0 is smooth, and similarly for g. In the proof of
Proposition 3.7.1, we will also need the assumption that f0 is of finite type.
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are well defined (i.e. are compatible with the natural equivalences between the categories of

dg-sheaves associated with the different realizations of X
R

×Z Y as a dg-scheme).

P 3.7.1 (Base change theorem). – Consider the diagram

X
R

×Z Y
p2
��

p1

��

Y

g

��

X
f

�� Z.

Then for F in DQCoh(X) we have a functorial isomorphism

Lg∗ ◦ Rf∗ F ∼= R(p2)∗ ◦ L(p1)
∗ F .

Proof. – As usual, there is a morphism of functors from the left hand side to the right
hand side of the isomorphism we are trying to prove. (See [46, Proposition 3.7.2] for the
similar statement for ordinary schemes.) What we have to show is that it is an isomorphism.

Using resolutions as above, one can assume that f and g are smooth. In this case, X
R

×Z Y

is simply X ×Z Y. Let �g : (Y, (g0)
∗ AZ) → (Z, AZ), �p1 : (X ×Z Y, (p1,0)

∗ AX) → (X, AX)

and �p2 : (X×ZY, (p1,0)
∗ AX) → (Y, (g0)

∗ AZ) be the natural morphisms of dg-ringed spaces.
By definition, and the ordinary flat base change theorem ([33, Proposition II.5.12] or [46,
Proposition 3.9.5]) we have

Lg∗ ◦ Rf∗ F ∼= AY ⊗(g0)∗ AZ
(�g)∗ ◦ Rf∗ F

∼= AY ⊗(g0)∗ AZ
R( �p2)∗ ◦ ( �p1)

∗ F .

On the other hand, by definition of the fiber product we have

AX×ZY
∼= (p1,0)

∗ AX ⊗(p1,0)∗(f0)∗ AZ
(p2,0)

∗ AY .

Hence, by the projection formula (Proposition 3.5.2),

R(p2)∗ ◦ L(p1)
∗ F ∼= R(p2)∗(AX×ZY ⊗(p1,0)∗ AX

( �p1)
∗ F )

∼= AY ⊗(g0)∗ AZ
R( �p2)∗ ◦ ( �p1)

∗ F .

This concludes the proof.

3.8. Compatibility of projection and base change

To finish this section, we observe that one can prove some compatibility result for the
isomorphisms of Propositions 3.5.2 and 3.7.1. This is similar to [46, Proposition 3.7.3], and
left to the interested reader.

4. Convolution and geometric actions

In this section we present the formalism of functors on derived categories of coher-
ent sheaves arising from “integral kernels.” We fix two dg-schemes X = (X, AX) and
Y = (Y, AY ), and consider a morphism of dg-schemes f : X → Y such that f0 is
quasi-projective.
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4.1. Convolution

In this subsection we will consider the category

KX,Y := DQCoh(X
R

×Y X).

An important particular case is when X = X and Y = Y are ordinary schemes, such that

(4.1.1) Torf−1 OY

�=0 ( OX , OX) = 0.

Then the dg-scheme X
R

×Y X “is” the ordinary scheme X ×Y X, and KX,Y
∼= DQCoh(X ×Y X).

P 4.1.2. – There is a natural convolution product on KX,Y, which endows this
category with a monoidal structure.

Sketch of proof. – We only give the definition of the product. Its main properties are
easy to check using the projection formula (Proposition 3.5.2), the base change theorem
(Proposition 3.7.1) and their compatibility (§3.8). A similar construction has been considered
in [52] in a special case.

For simplicity, using the constructions of §3.7, one can assume that the morphism
X → Y is smooth, so that all the derived fiber products become ordinary fiber products. For
(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, we denote by qi,j : X0 ×Y0

X0 ×Y0
X0 → X0 ×Y0

X0 the
projection on the i-th and j-th factors, and by Zi,j the following dg-scheme:

Zi,j :=
�
X0 ×Y0

X0 ×Y0
X0, (qi,j)

∗ AX×YX

�
.

There is a natural morphism of dg-schemes pi,j : Zi,j → X ×Y X, and associated functors
R(pi,j)∗, L(pi,j)

∗. (In the general case, when X → Y is not assumed to be smooth, the
dg-scheme Zi,j can be defined as the derived fiber product

�
X

R

×Y X
� R

×
X0

R
×Y0

X0

�
X0

R

×Y0
X0

R

×Y0
X0

�
,

where the morphism X0
R

×Y0
X0

R

×Y0
X0 → X0

R

×Y0
X0 is the derived version of qi,j .)

Let also q2 : X0×Y0
X0×Y0

X0 → X0 be the projection on the second factor, and consider
the sheaf of dg-algebras q∗2 AX on X0 ×Y0

X0 ×Y0
X0. There is a natural bifunctor

(−⊗2 −) :

�
CQCoh(Z1,2) × CQCoh(Z2,3) → CQCoh(Z1,3)

( F , G) �→ F ⊗q∗
2 AX

G.

(Here we forget about the action of the middle copy of AX on F ⊗q∗
2 AX

G.) This bifunctor
has a derived bifunctor between the corresponding derived categories, which we denote

by (−
L

⊗2−). It can be computed using K-flat resolutions.

Then the convolution product can be defined as follows for F , G in KX,Y:

F � G := R(p1,3)∗
�
L(p1,2)

∗ G
L

⊗2 L(p2,3)
∗ F

�
.

As explained above, the basic properties of this product can be proved by copying the usual
proofs for schemes. In particular, the unit object for this product is the direct image of the

structure sheaf under the diagonal embedding ∆ : X → X
R

×Y X.
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R 4.1.3. – Suppose that X and Y are ordinary schemes, which satisfy the Tor
vanishing assumption (4.1.1). Then the assertion of Proposition 4.1.2 does not involve
dg-schemes. However, its proof (the construction of the monoidal structure on KX,Y )

makes use of the triple product X
R

×Y X
R

×Y X, which reduces to an ordinary scheme only
under a stronger Tor vanishing assumption, which does not hold in the examples of interest
to us.

4.2. Action by convolution

Our main interest in the category KX,Y comes from the following result.

P 4.2.1. – 1. The category DQCoh(X) carries a natural convolution
action of the monoidal category KX,Y.

2. Assume that X and Y are ordinary schemes, that f is proper, and that X is a regu-
lar noetherian scheme. Let K coh

X,Y ⊂ KX,Y be the full subcategory which consists of
complexes with a finite number of nonzero cohomology sheaves, each of which is a coherent
sheaf on
X ×Y X. Then K coh

X,Y is a monoidal subcategory, and its action preserves the full

subcategory Db
Coh(X) ⊂ DQCoh(X).

Sketch of proof. – We only give the definition of the convolution action, leaving the
details to the interested reader. By definition there are morphisms of dg-schemes

p1, p2 : X
R

×Y X → X. For F in KX,Y, the associated functor is given by:




DQCoh(X) → DQCoh(X)

G �→ R(p2)∗
�
F

L

⊗
X

R
×YX

L(p1)
∗ G

�
,

where
L

⊗
X

R
×YX

stands for the (derived) tensor product over A
X

R
×YX

.

R 4.2.2. – We will mainly apply Proposition 4.2.1 in the situation of (2).
Notice that this action factors through another monoidal category which is simpler
to define, namely the category Db

CohX×Y X(X × X) which is the full subcategory
in Db

Coh(X × X) consisting of complexes set-theoretically supported on X ×Y X; more
precisely, the action of statement (2) is the composition of the action of the monoidal cat-
egory Db

CohX×Y X(X × X) on Db
Coh(X) and the functor of “direct image under closed

embedding” K coh
X,Y → Db

CohX×Y X(X × X). The motivation for introducing the more
complicated category KX,Y is the base change construction of Proposition 4.2.3 below.

P 4.2.3. – Let Y
� → Y be a morphism of dg-schemes, whose underlying

morphism of schemes is quasi-projective, and set X
� := X

R

×Y Y
�.

1. The pull-back functor KX,Y → KX�,Y� is monoidal.
2. The pull-back functor DQCoh(X) → DQCoh(X�) is compatible with the actions

of KX,Y, where the action on DQCoh(X�) is the composition of the action of KX�,Y�

given by Proposition 4.2.1(1) and the monoidal functor of (1).
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Proof. – Observe that there is a natural quasi-isomorphism of dg-schemes

X
� R

×Y� X
�

qis
∼= (X

R

×Y X)
R

×Y Y
�.

Similarly, let Zi,j , (i, j) ∈ {(1, 2), (2, 3), (1, 3)}, be defined as in the proof of Proposi-
tion 4.1.2, and let Z

�
i,j be the dg-scheme defined similarly for X

�,Y� instead of X,Y. Then
we have

Z
�
i,j

qis
∼= Zi,j

R

×Y Y
�.

Using these remarks, the proposition follows from the base change theorem. Indeed, the
following diagram is cartesian (in the derived sense):

Z
�
1,3

p�
1,3

��

�� Z1,3

p1,3

��

X
� R

×Y� X
�

�� X
R

×Y X.

Applying Proposition 3.7.1 and the compatibility of the tensor product with inverse images,
one obtains (1). Statement (2) can be proved similarly.

R 4.2.4. – In most examples relevant for us X, Y and Y
� will be ordinary

schemes, and we will have Tor
(π◦f �)−1 OY

�=0 ((f �)−1 OY � , (π�)−1 OX) = 0 for the morphisms
π : Y � → Y , f � : X � → Y �, π� : X � → X, so that X � is also an ordinary scheme. More-
over, X will be regular, and f : X → Y will be proper, so that we are in the situation of
Proposition 4.2.1(2).

4.3. Geometric actions

Motivated by the constructions of §§4.1, 4.2, we introduce the following notion.

D 4.3.1. – A (weak) geometric action of a group Γ on a dg-scheme X over Y

is a homomorphism from Γ to the group of isomorphism classes of invertible objects in the
monoidal category KX,Y.

Under the assumptions of Proposition 4.2.1(2), a weak geometric action is called finite if
its image is contained in K coh

X,Y .

According to Proposition 4.2.3, a weak geometric action induces a usual weak action of Γ

by auto-equivalences of DQCoh(X�) for any X
� as in that proposition.

R 4.3.2. – The above constructions certainly admit a variant when an algebraic
group G acts on X,Y and we work with categories of equivariant sheaves, or perhaps more
generally for stacks. Our elementary approach of Section 3 is not adapted to these settings,
however. (See Section 5 below for some partial results in this direction.)

Now we come back to the setting of Theorem 1.3.1. Using the terminology introduced
above, Theorem 1.3.1 and Theorem 1.6.1 give statement (1) of the following theorem. State-
ment (2) follows from Proposition 4.2.3. (The compatibility for the direct image functor fol-
lows from the compatibility for the inverse image functor by adjunction.)

T 4.3.3. – Let R be either Z or an algebraically closed field.
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1. There exists a natural finite geometric action of the group Baff on �gR (respectively �N R)
over g∗R.

2. For any morphism of dg-schemes X → g∗R whose underlying morphism of schemes is

quasi-projective, there exist actions of Baff on the categories DQCoh(�gR
R

×g∗
R

X) and

DQCoh(�N R
R

×g∗
R

X). Moreover, the direct and inverse image functors

DQCoh(�gR)
Lp∗

�� DQCoh(�gR
R

×g∗
R

X)
Rp∗

��

for the projection p : �gR
R

×g∗
R

X → �gR commute with these actions, and similarly for �N R.

R 4.3.4. – Note that the existence of the action for �N cannot be obtained from
that for �g using Proposition 4.2.3. Indeed the fiber product �g×g∗ N � is not reduced in general,

hence not isomorphic to �N . Here N �
:= G · (g/b)∗ ⊂ g∗ is the “dual nilpotent cone.”

4.4. Examples

Now we get back to the notation of Sections 1 and 2. For simplicity we assume that k

is of characteristic 0. In particular, in this case there exists an isomorphism of G-modules
g ∼= g∗, which identifies the “dual nilpotent cone” N � of Remark 4.3.4 with the usual
nilpotent cone N .

Consider a nilpotent element χ ∈ g∗. Let S be the corresponding Slodowy slice (see
[58, 30]; here we follow the notation of [30, §1.2]). We also consider the (scheme theoretic)
fiber product

�S := �N ×g∗ S.

By [30, Proposition 2.1.2], this scheme is a smooth variety, of dimension 2 dim(B) − dim(G · χ)

(i.e. twice the dimension of the associated Springer fiber).

L 4.4.1. – The dg-scheme
�N R

×g∗ S

is concentrated in degree 0, i.e. is quasi-isomorphic to the variety �S.

Proof. – This follows from a simple dimension-counting: one observes that the codimen-
sion of �N ×g∗ S in �N is dim(G · χ), which is exactly the codimension of S in g∗. The result
follows, using a Koszul complex argument. (See §2.10 for similar arguments.)

Using this lemma and Theorem 4.3.3, one deduces the following.

C 4.4.2. – There exists a natural finite geometric action of Baff on �S over S.
Moreover, the inverse and direct image functors

Db
Coh(�N ) �� Db

Coh(�S)��

are compatible with this action and the one given by Theorem 1.6.1.
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Assume now that G is simple, and that χ is subregular. Then, according to Brieskorn and
Slodowy,

S ∩ N

is a Kleinian singularity, and �S is its minimal resolution (see [58]). In this case, the braid
group action of Corollary 4.4.2 is related to spherical twists and mirror symmetry, and has
been extensively studied by several mathematicians (see [57, 17, 37, 16]). In particular, it is
proved in [16] (extending results of [57]) that, if G is simply laced, the restriction of the action
on �S to B is faithful. It follows easily that the actions on Db

Coh(�N ) and Db
Coh(�g) are also

faithful. Similarly, in [37] it is proved that if G is of type A, then the restriction of the action
on �S to BCox

aff is faithful. Again, it follows that the actions on Db
Coh(�N ) and Db

Coh(�g) are
also faithful.

5. Equivariant version

We were not able to extend the theory of dg-sheaves on dg-schemes to the equivariant
setting, i.e. to the situation where the dg-scheme is endowed with an action of an algebraic
group, and we consider dg-sheaves which are equivariant for this action. In this section
we provide direct arguments to prove an extension of Theorem 1.3.2 in the spirit of Theo-
rem 4.3.3. This statement is used in [11].

This section is independent of Sections 2, 3 and 4. In particular, the assumptions on
schemes in Sections 3 and 4 are not in order anymore. We use the general theory of
unbounded derived categories of equivariant quasi-coherent sheaves over schemes as
developped e.g. in [60, §1.5].

5.1. Statement

In this section we let R be either Z, or an algebraically closed field. For simplicity, we write
× for ×R, and ⊗ for ⊗R.

As in §1.1, we consider the varieties g∗R, �N R, �gR over R. Let G be an algebraic group
over R with a fixed homomorphism to GR× (Gm)R. We denote by BC G , respectively BC �

G ,
the category of affine noetherian schemes S endowed with a G-action and an equivariant
morphism to g∗R such that the natural morphism of dg-schemes

S ×g∗
R

�gR → S
R

×g∗
R

�gR, respectively S ×g∗
R

�N R → S
R

×g∗
R

�N R,

is a quasi-isomorphism. Morphisms are assumed to be equivariant and over g∗R. For such an

S, we set �S := S ×g∗
R

�gR, respectively �S� := S ×g∗
R

�N R.

T 5.1.1. – For any S in BC G , respectively BC �
G , there exists an action of Baff on

the category Db
Coh G(�S), respectively Db

Coh G(�S�), such that for any G-equivariant morphism
S1 → S2, the action commutes (up to isomorphism) with the direct and inverse image functors

Db
Coh G(�S1)

�� Db
Coh G(�S2),��

respectively

Db
Coh G(�S�

1)
�� Db

Coh G(�S�
2).��
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These actions are also compatible with the change of equivariance functors (for a group
morphism G � → G over GR × (Gm)R).

The proof of Theorem 5.1.1 will be completed in §5.4. We give the details only in the case
of �gR; the case of �N R is similar.

For S in BC G , we write S = Spec(AS), where AS is a G-equivariant SR(gR)-algebra. If

f : S → g∗R is the structure morphism, we denote by �f : �S → �gR the morphism obtained by
base change.

5.2. Quasi-isomorphisms of equivariant dg-schemes

As explained above, it is not obvious how to develop a general theory of equivariant
dg-schemes. However, part of the theory is easy to adapt. (See also [52, Section 1] for such
results.)

Let X := (X, A), where X is a scheme and A is a graded-commutative, non-positively
graded, quasi-coherent sheaf of OX -dg-algebras. We assume furthermore that an algebraic
group H acts on X, that A is H-equivariant, and that the multiplication and differential are
equivariant. We call such objects H-equivariant dg-schemes. We assume furthermore that
every H-equivariant quasi-coherent sheaf on X is a quotient of an H-equivariant quasi-
coherent sheaf which is flat as an OX -module. (See [60, Remark 1.5.4] for comments on this
assumption.)

We denote by CQCohH(X) the category of H-equivariant, quasi-coherent sheaves
of A-dg-modules on X, and by DQCohH(X) the associated derived category. It follows
easily, as in [55, Theorem 1.3.3], that there are enough objects in the category CQCohH(X)

which are K-flat as A-dg-modules. Then one can adapt the proof of [6, Theorem 10.12.5.1]
to prove the following.

P 5.2.1. – Let (X, A) and (X, A�
) be two H-equivariant dg-schemes over the

same ordinary H-scheme X which satisfies the assumption above, and let φ : A → A� be an
H-equivariant quasi-isomorphism of dg-algebras. Then the extension and restriction functors
induce equivalences of categories

DQCohH(X, A) ∼= DQCohH(X, A�
).

5.3. Definition of the kernels

From now on, for any S in BC G we fix a G-equivariant graded-commutative
S(gR)-dg-algebra DS which is K-flat as an SR(gR)-dg-module, and a quasi-isomorphism

of G-equivariant SR(gR)-dg-algebras DS
qis
−−→ AS . (For existence, see the arguments of [23,

Proof of Theorem 2.6.1].)

Fix some S as above, and denote by f : S → g∗R the associated morphism. By assumption,
the derived tensor product

O�gR

L

⊗S(gR) AS

is concentrated in degree 0. Hence the morphism of dg-algebras

O�gR
⊗S(gR) DS → O�gR

⊗S(gR) AS
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is a quasi-isomorphism. The morphism �f : �S → �gR is affine, hence the functor �f∗ is
exact, and identifies the category Coh G(�S) with the category of G-equivariant coherent
�f∗ O�S-modules on �gR. Moreover, there is an isomorphism

�f∗ O�S
∼= O�gR

⊗S(gR) AS .

We deduce from these remarks, using Proposition 5.2.1, that there is a natural equivalence
of categories

(5.3.1) DQCoh G(�S) ∼= DQCoh G(�gR, O�gR
⊗S(gR) DS).

Similar remarks apply to the schemes �S × �gR, �gR × �S, �S × �S. (For the latter scheme, one
uses the dg-algebra DS ⊗ DS , with multiplication defined by (d1 ⊗ d2) · (d�1 ⊗ d�2) =

(−1)|d2||d
�
1|(d1d

�
1 ⊗ d2d

�
2).)

Recall that, for any t ∈ S , we have defined the kernel OZt,R
in the category

CohGR×(Gm)R(�gR × �gR). Consider the object

L( �f × Id�gR
)∗ OZt,R

in Db
Coh G(�S × �gR).

L 5.3.2. – For any S in BC G , there exists an object KS
t in Db

Coh G(�S × �S) and an
isomorphism

R(Id�S × �f)∗ KS
t

∼= L( �f × Id�g)
∗ OZt,R

in Db
Coh G(�S × �g). Moreover, these objects can be chosen in such a way that:

1. the objects KS
t are compatible (up to isomorphism) with change of equivariance functors;

2. if g : S1 → S2 is a morphism in the category BC G , with morphism �g : �S1 → �S2 obtained
by change change, there is an isomorphism

(5.3.3) R(Id�S1
× �g)∗ KS1

t
∼= L(�g × Id�S2

)∗ KS2

t

in Db
Coh G(�S1 × �S2).

Proof. – By the variant of equivalence (5.3.1) for �S × �gR, we have an equivalence of
categories

DQCoh G(�S × �gR) ∼= DQCoh G��gR × �gR, O�gR×�gR
⊗S(gR)⊗S(gR) (DS ⊗ S(gR))

�
.

Under this equivalence, the object L( �f × Id�g)
∗ OZt,R

corresponds to

OZt,R
⊗S(gR)⊗S(gR) (DS ⊗ S(gR)).

To prove the first assertion of the lemma, using the variant of equivalence (5.3.1) for
�S × �S, it is enough to check that this dg-module can be endowed with the structure of an
O�gR×�gR

⊗S(gR)⊗S(gR) (DS ⊗ DS)-dg-module. However, by definition Zt,R is a subscheme
of �gR ×g∗

R
�gR. Hence it suffices to extend the action of DS to an action of DS ⊗ DS via the

multiplication map DS ⊗ DS → DS .

Let us consider a morphism S1 → S2 in BC G , associated with an algebra morphism
A2 → A1. Here, for simplicity, we write A1 for AS1

and A2 for AS2
. Similarly, we write D1

and D2 for DS1
and DS2

. Then A1 is a D1 ⊗S(gR) D2-dg-algebra. Hence one can choose
a D1 ⊗S(gR) D2-dg-algebra D1 which is graded-commutative and K-flat as a D1 ⊗S(gR)

D2-dg-module (hence also automatically as a S(gR)-dg-module), and a quasi-isomorphism
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D1
qis
−−→ A1. Then, we have a quasi-isomorphism D1

qis
−−→ D1, and a dg-algebra morphism

D2 → D1. As above, we have equivalences of categories

DQCoh G��gR × �gR, O�gR×�gR
⊗S(gR)⊗S(gR) (D1 ⊗ D1)

�

∼= DQCoh G��gR × �gR, O�gR×�gR
⊗S(gR)⊗S(gR) (D1 ⊗ D1)

�

∼= DQCoh G(�S1 × �S1).

In the first category, the object KS1

t defined above corresponds to the dg-module

OZt,R
⊗S(gR)⊗S(gR) (D1 ⊗ S(gR)),

endowed with a D1 ⊗ D1-action which factors through the multiplication map. Similarly,
there is an equivalence

DQCoh G(�S1 × �S2) ∼= DQCoh G��gR × �gR, O�gR×�gR
⊗S(gR)⊗S(gR) (D1 ⊗ D2)

�
.

Under this equivalence and the preceding one, the functor R(Id�S1
×�g)∗ is simply a restriction

of scalars functor induced by the dg-algebra morphism D2 → D1. One can describe similarly
the functor L(�g × Id�S2

)∗ as an extension of scalars functor, and then isomorphism (5.3.3) is
clear.

The change of equivariance can be treated similarly.

The object KS
t defined in Lemma 5.3.2 will be the kernel for the action of Tt. However,

as �S is not a regular scheme in general, it is not obvious that the associated convolution
functor restricts to an endo-functor of Db

Coh G(�S). This will be proved in the following
proposition. Here, we extend the notation of §1.2 and set, for any H-scheme X and any F
in DQCohH(X × X),

F F
X :

�
DQCohH(X) → DQCohH(X)

H �→ R(p2)∗( F
L

⊗X×X L(p1)
∗ H ).

P 5.3.4. – 1. Let t ∈ S and S in BC G . Let f : S → g∗R be the structure

morphism, and �f : �S → �gR the morphism obtained by base change. Then the following
diagram commutes:

DQCoh G(�S)

F
KS

t
�S
��

R( �f)∗
�� DQCoh G(�gR)

F
OZt,R

�g

��

DQCoh G(�S)
R( �f)∗

�� DQCoh G(�gR).

2. The functor F
KS

t

�S
stabilizes the subcategory Db

Coh G(�S).
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Proof. – (1) This follows easily from the projection formula and our definition of KS
t .

Indeed, for H an object of DQCoh G(�S), we have isomorphisms

R( �f)∗F
KS

t

�S
(H ) ∼= R( �f)∗R(p

�S
2 )∗(KS

t

L

⊗�S×�S L(p
�S
1 )∗ H )

∼= R(q2)∗R(Id�S × �f)∗(KS
t

L

⊗�S×�S L(p
�S
1 )∗ H )

∼= R(q2)∗R(Id�S × �f)∗(KS
t

L

⊗�S×�S L(Id�S × �f)∗L(q1)
∗ H ).

Here, q1 : �S × �gR → �S and q2 : �S × �gR → �gR are the projections. Now, by the projection
formula, we obtain

R( �f)∗F
KS

t

�S
(H ) ∼= R(q2)∗

�
(R(Id�S × �f)∗ KS

t )
L

⊗�S×�gR
L(q1)

∗ H
�
.

By the definition of KS
t (see Lemma 5.3.2), we have R(Id�S × �f)∗ KS

t
∼= L( �f × Id�gR

)∗ OZt,R
.

Hence, using again the projection formula,

R( �f)∗F
KS

t

�S
(H ) ∼= R(p

�gR

2 )∗R( �f × Id�g)
�
(L( �f × Id�g)

∗ OZt,R
)

L

⊗�S×�gR
L(q1)

∗ H
�

∼= R(p
�gR

2 )∗
�
OZt,R

L

⊗�gR×�gR
R( �f × Id�g)∗L(q1)

∗ H
�
.

Now it is clear that R( �f × Id�g)∗L(q1)
∗ H ∼= L(p

�gR

1 )∗R( �f)∗ H . This concludes the proof.

(2) Fix some H in Db
Coh G(�S). First, we claim that KS

t

L

⊗�S×�S L(p
�S
1 )∗ H is in

Db
QCoh G(�S × �S). As �f is an affine morphism it is enough to prove that the object

R( �f × �f)∗
�
KS

t

L

⊗�S×�S L(p
�S
1 )∗ H

�
is bounded. However, by the computations in the proof of

(1) we have

R( �f × �f)∗
�
KS

t

L

⊗�S×�S L(p
�S
1 )∗ H

�
∼= OZt,R

L

⊗�gR×�gR
L(p

�g
1)

∗R( �f)∗ H .

Hence the claim follows from the fact that �gR × �gR is regular.

Then, one can easily check that the object KS
t

L

⊗�S×�S L(p
�S
1 )∗ H is in fact in Db

Coh G(�S×�S).

The result follows, using the property that the projection Supp(KS
t ) → �S is proper.

5.4. Proof of Theorem 5.1.1

Now we can prove Theorem 5.1.1. In this subsection, we denote by the same symbol “�”
the convolution functors

DQCoh G(�S × �S) × DQCoh G(�S × �S) → DQCoh G(�S × �S),

DQCoh G(�S × �gR) × DQCoh G(�S × �S) → DQCoh G(�S × �gR),

DQCoh G(�gR × �gR) × DQCoh G(�S × �gR) → DQCoh G(�S × �gR)

defined as in §1.2.
For any t ∈ S , the action of the generator Tt ∈ Baff on the category Db

Coh G(�S) is defined
as the functor

F
KS

t

�S
: Db

Coh G(�S) → Db
Coh G(�S)

(see Proposition 5.3.4(2)). Through the composition �S → �gR → BR, we can consider �S as a
scheme over BR, hence we have line bundles O�S(x) for any x ∈ X. We define the action of θx

as the functor
F

O∆ �S(x)

�S
: Db

Coh G(�S) → Db
Coh G(�S).
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Note that this functor is just the twist by the line bundle O�S(x). Hence the claims of Propo-
sition 5.3.4 are also true for the kernel O∆�S(x).

To prove that these functors associated with the generators induce an action of Baff , one
easily checks that it is enough to prove the following claims (see §1.10):

1. If t = sα, there are isomorphisms

KS
t � KS

t (−ρ, ρ − α) ∼= KS
t (−ρ, ρ − α) � KS

t
∼= O∆�S

in DQCoh G(�S × �S).
2. The kernels KS

t (t ∈ S ) satisfy the finite braid relations in the monoidal category
(DQCoh G(�S × �S), �).

We will only give the proof of the second claim; the first one can be obtained similarly.
Our proof is copied from [54, §4]. To fix notations, we take r, t ∈ S whose braid relation
is TrTtTr = TtTrTt. (The other cases are similar.) We have to prove that there is an
isomorphism

KS
r � KS

t � KS
r

∼= KS
t � KS

r � KS
t ,

or equivalently using claim (1) that there is an isomorphism

(5.4.1) KS
t (−ρ, ρ − α) � KS

r (−ρ, ρ − β) � KS
t (−ρ, ρ − α) � KS

r � KS
t � KS

r
∼= O∆�S ,

where t = sα, r = sβ . As �f is an affine morphism, it is enough to prove that

H i
�
R(Id�S ×

�f)∗
�
KS

t (−ρ, ρ− α) � KS
r (−ρ, ρ− β) � KS

t (−ρ, ρ− α) � KS
r � KS

t � KS
r

��
= 0

if i > 0 and that there is an isomorphism of (Id�S × �f)∗ O�S×�S-modules

H 0
�
R(Id�S × �f)∗

�
KS

t (−ρ, ρ − α) � KS
r (−ρ, ρ − β) � KS

t (−ρ, ρ − α) � KS
r � KS

t � KS
r

��

∼= (Id�S × �f)∗ O∆�S .

For any M in DQCoh G(�S × �S) and M� in DQCoh G(�gR × �gR) we have isomorphisms

O
Γ( �f) � M ∼= R(Id�S × �f)∗ M, M� � O

Γ( �f)
∼= L( �f × Id�g)

∗ M�,

where Γ( �f) is the graph of �f . (See [54, Lemma 1.2.3] for the first isomorphism, and the proof
of [54, Corollary 4.3] for the second one.) In particular, using Lemma 5.3.2, for any u = sγ

(γ ∈ Σ) we obtain isomorphisms

O
Γ( �f) � KS

u
∼= OZu,R

� O
Γ( �f),

O
Γ( �f) � KS

u(−ρ, ρ − γ) ∼= OZu,R
(−ρ, ρ − γ) � O

Γ( �f).

Hence, convolving the left hand side of (5.4.1) on the left with O
Γ( �f) we obtain

�
OZt,R

(−ρ, ρ− α) � OZr,R
(−ρ, ρ− β) � OZt,R

(−ρ, ρ− α) � OZr,R
� OZt,R

� OZr,R

�
� OΓ( �f).

Now we have proved in Corollary 1.12.4 that there is an isomorphism

OZt,R
(−ρ, ρ− α) � OZr,R

(−ρ, ρ− β) � OZt,R
(−ρ, ρ− α) � OZr,R

� OZt,R
� OZr,R

∼= O∆�gR

in Db
CohGR×(Gm)R(�gR × �gR). The result follows.
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Compatibility with direct images can be proved as in Proposition 5.3.4(1), using Equa-
tion (5.3.3). Then, compatibility with inverse images follows by adjunction. Finally, compat-
ibility with change of scalars functors is clear by construction and Lemma 5.3.2.
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