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Abstract Humans interact with their environment through
sensory information and motor actions. These interactions
may be understood via the underlying geometry of both
perception and action. While the motor space is typically
considered by default to be Euclidean, persistent behavioral
observations point to a different underlying geometric struc-
ture. These observed regularities include the “two-thirds
power law”, which connects path curvature with velocity,
and “local isochrony”, which prescribes the relation between
movement time and its extent. Starting with these empiri-
cal observations, we have developed a mathematical frame-
work based on differential geometry, Lie group theory and
Cartan’s moving frame method for the analysis of human
hand trajectories. We also use this method to identify possi-
ble motion primitives, i.e., elementary building blocks from
which more complicated movements are constructed. We
show that a natural geometric description of continuous repet-
itive hand trajectories is not Euclidean but equi-affine. Spe-
cifically, equi-affine velocity is piecewise constant along
movement segments, and movement execution time for a
given segment is proportional to its equi-affine arc-length.
Using this mathematical framework, we then analyze experi-
mentally recorded drawing movements. To examine
movement segmentation and classification, the two funda-
mental equi-affine differential invariants—equi-affine
arc-length and curvature are calculated for the recorded
movements. We also discuss the possible role of conic sec-
tions, i.e., curves with constant equi-affine curvature, as
motor primitives and focus in more detail on parabolas, the
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equi-affine geodesics. Finally, we explore possible schemes
for the internal neural coding of motor commands by showing
that the equi-affine framework is compatible with the com-
mon model of population coding of the hand velocity vector
when combined with a simple assumption on its dynamics.
We then discuss several alternative explanations for the role
that the equi-affine metric may play in internal representa-
tions of motion perception and production.

1 Introduction

How do humans and animals recognize an object when it
undergoes a certain transformation such as rotation or trans-
lation? How do they recognize and imitate movements or ges-
tures made by others when the observer’s viewpoint changes?
In vision research, these and similar questions have led to
a major interest in geometrical aspects of visual percep-
tion and object recognition based on the identification of
different types of invariants (e.g., algebraic, differential).
While similar also arise in the study of motor control, less
emphasis has been placed on a rigorous investigation of geo-
metrical aspects of motion planning and control. Thus, in
recent years greater efforts have been directed at evaluating
similarities and differences among different movement in-
stantiations, when performed by the same individual within
different contexts or by different individuals. Nevertheless,
a greater focus on the identification of motor invariants may
help in gaining further insight into how movements are inter-
nally represented and stored in memory and how these inter-
nal representations are used to successfully generate the entire
motor repertoire.

A particularly important question in this regard is what
spatial and temporal variables are used by such internal
representations (Stein et al. 1985; Wolpert and Ghahramani
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2000; Flash and Sejnowski 2001). Inevitably, these variables
must be associated with both kinematic and dynamic aspects
of movement generation. Nevertheless, many recent load
adaptation studies have demonstrated that sufficient practice
in the presence of external dynamic loads restores the ori-
ginal kinematic and spatial aspects of the movements (Flash
and Gurevich 1997; Shadmehr and Mussa-Ivaldi 1994), even
though this may require significant modifications of muscle
activation patterns (Padoa-Schioppa et al. 2004). These obser-
vations suggest that within the nervous system there exist
central representations which are primarily concerned with
more abstract geometric and temporal attributes of the move-
ments, rather than with motor execution or muscle activations.

Capacity constraints make it highly unlikely that the com-
mands to all possible movement instantiations are stored in
memory in the form of a motor tape. The motor system seems
to rely on much more parsimonious representations of motor
information. One line of evidence favoring such parsimony of
representation is the existence of certain spatial and temporal
features of the movement that are kept invariant under differ-
ent spatial and temporal transformations, such as translation,
rotation, amplitude and speed scaling. Support for the exis-
tence of motor invariants is derived from numerous studies
of both reaching and curved movements (Lacquaniti 1989;
Flash and Hogan 1987; Viviani and Flash 1995; Richardson
and Flash 2002), and more complicated sequential behav-
iors, e.g., scribbling (Soechting and Terzuolo 1987a,b), writ-
ing (Lacquaniti 1989), drawing (Viviani and Cenzato 1985;
Viviani and Flash 1995) and typing (Soechting and Flanders
1997). These observations suggest that the motor system may
store a much more limited set of templates or motor proto-
types, as in a motor alphabet, and that the rich repertoire
of human and animal movements is generated by applying
certain basic operations or transformations to this basic set
of primitives. These, in turn, are joined together using some
form of syntactic rules. For reviews see Mussa-Ivaldi and
Solla (2004), Poggio and Bizzi (2004), Flash and Hochner
(2005).

A series of neurophysiological and behavioral studies
support the existence of motor primitives at the more periph-
eral levels which are involved in motor execution (Mussa-
Ivaldi and Solla 2004). The evidence for the existence of
motor primitives at the kinematic or more abstract levels is
less direct and derives from developmental studies in infants
(Von-Hofsten 1991; Berthier 1996), human arm trajectory
modification and target interception studies (Flash and Henis
1991; Milner 1992), patient studies (Krebs et al. 1999; Rohrer
et al. 2002), and studies dealing with motor learning through
practice (Sosnik et al. 2004) or through imitation (Schaal et
al. 2003). In spite of earlier efforts, mostly directed at empir-
ically inferring the underlying motor primitives, we still lack
conceptual and theoretical formalisms or approaches for
examining the validity of the existence of motor primitives

and whether the entire repertoire of possible actions can be
derived from a limited set of such elementary units. Inves-
tigating these ideas raises several questions of fundamental
significance:

1. Is it possible to identify a certain motor alphabet from
which more elaborate “syllables”, words and sentences
can be composed?

2. What are the characteristics of such motor elementary
units and how are they internally coded? What makes
each primitive distinctly different from the others?

3. What attributes or invariants can assist us in establishing
whether two apparently different movements were gen-
erated from the same basic element by applying differ-
ently parameterized but qualitatively similar transfor-
mations?

4. What movement generation rules (basic operations or
transformations) are used to generate a large repertoire
of movements from relatively few elements?

5. What syntactic rules are used by the motor system to
join motor elements or units of action?

Here, focusing mainly on the first three questions, we illus-
trate how the language of differential geometry and Lie alge-
bra is particularly suitable for addressing these issues.

In particular, studies of drawing and scribbling movements
have led to the discovery of several particular “conservation
laws” in human movement. One of these laws is the two-
thirds power law, formulated by Lacquaniti et al. (1983) to
account for the puzzling coupling between Euclidean veloc-
ity and curvature empirically observed during 2D handwrit-
ing and drawing movements (Viviani and Cenzato 1985;
Flash and Hogan 1987; Edelman and Flash 1987; Soechting
and Terzuolo 1987b; Viviani and Flash 1995; Sternad and
Schaal 1999). In earlier studies Pollick and Sapiro (1997)
and Flash and Handzel (1996) have independently shown
that the two-thirds power law is compatible with movements
being generated with a piecewise constant equi-affine veloc-
ity. The purpose of the present study is to use this discovery
as a starting point for further investigations aimed at charac-
terizing motor primitives and their internal representations.

In particular, we first discuss the importance of identify-
ing what possible metrics are used for internally represent-
ing arm movements and show how the equi-affine distance
is a more appropriate metric than the Euclidean one. Under
affine transformations different segments of a curve can be
stretched to different degrees along the horizontal and vertical
directions but parallel lines remain parallel. The equi-affine
transformation is a more restricted transformation that also
preserves the area of the parallelogram defined by the equi-
affine tangent and equi-affine normal to the curve. We show
that the two-thirds power law is compatible with an internal
representation in which the equi-affine velocity of the move-
ments being planned and generated is piecewise constant.
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We make then further use of the equi-affine geometrical
framework to develop a mathematical formalism that will
allow us to better analyze and characterize human arm move-
ments. In particular, we derive equi-affine differential invar-
iants and signature curves of the observed movements which
can be used for the identification and classification of motion
primitives and for movement segmentation. We also show
that the equi-affine velocity being piecewise constant may
reflect the characteristics of the neural code used by corti-
cal cells to represent the movement. Finally we discuss the
relationship between the use of equi-affine arc-length as the
internal metric for motor representation, the isochrony prin-
ciple and the time scaling property of human movements.

1.1 Basic characteristics of human drawing and scribbling
movements

It has often been suggested that in motor tasks, such as
handwriting or drawing, the motor system need not inter-
nally represent all possible letters or figural forms but may
instead use a limited set of basic primitives or strokes that
are then concatenated to form more complicated movements
(Lacquaniti 1989). Such motion segments have been identi-
fied by detecting changes in movement curvature, tangential
velocity or the coefficient relating these two variables to each
other, as in the two-thirds power law (Viviani and Cenzato
1985; Viviani 1986). Thus, in spite of the presumable inde-
pendence between the geometrical form of the trajectory and
the velocity of movement along the path, evidence has accu-
mulated pointing to the inherent dependence between these
two variables during human and monkey movements. In par-
ticular, in naturally executed curved and drawing movements,
the angular velocity decreases with increasing curvature and
is proportional to the two-thirds power of the latter (Lacqua-
niti et al. 1983) as follows:

A = G × k2/3

where A is the angular velocity and k is the movement cur-
vature. An equivalent formulation of this expression, called
the one third power law, is: v(t) = Gr1/3 or k × v3 = G

where r = 1/k is the Euclidean radius of curvature and v is
the Euclidean velocity, i.e., the derivative of the Euclidean
arc-length s with respect to time t , i.e., v = ds

dt
= A

k
. The

gain factor of the above relationship, G, which was called
the velocity gain factor, was found to be piecewise constant
and to be determined by the linear extent of each segment. It
was also suggested that hand velocity during any particular
movement need not be explicitly coded but may be automati-
cally derived from the coupling between speed and curvature,
as expressed by the two-thirds power law (Lacquaniti et al.
1983).

Different explanations, either at the kinematic, dynamic or
neural levels have been suggested for this law. Optimization

principles, such as smoothness maximization (Flash and
Hogan1987;RichardsonandFlash2002) or variance minimi-
zation (Harris and Wolpert 1998), can produce the observed
relationship between geometrical form and velocity. Others
have suggested that this power law may reflect the mechan-
ical properties of the neuromuscular system, such as the
low-pass filtering properties of muscles (Gribble and Ostry
1996). Nevertheless, recent neurophysiological findings
(Schwartz 1992, 1993, 1994; Moran and Schwartz 1999a,b;
Schwartz and Moran 1999) have demonstrated that the law
does reflect central control mechanisms and not merely
low-level mechanical factors. Finally, de’Sperati and Viviani
(1997) have shown that smooth pursuit eye movements also
obey the two-thirds power law.

The temporal aspect of movement generation has not been
sufficiently explored beyond the context of Fitt’s law. Nev-
ertheless, three important features of human arm trajectories
described in earlier studies are global and local isochrony

(Viviani 1986; Viviani and Cenzato 1985; Viviani and Flash
1995) and the scaling property of trajectories with respect
to speed. Global isochrony is associated with the relative
insensitivity of the total movement duration to changes in
the overall size of the trajectory. Another feature of human
movements is local isochrony, namely the modulation of
speed within individual movement segments according to
their Euclidean amplitude, thus keeping the duration of each
individual segment relatively insensitive to its length. Finally,
a third feature of human movements relates to their scaling
property with respect to speed (Hollerbach and Flash 1982;
Atkeson and Hollerbach 1985), namely that the instanta-
neous speed is scaled by a multiplicative factor, whose value
depends on the ratio of the overall movement duration to that
of some reference movement.

1.2 Affine metrics, differential invariants and motor
primitives

Beyond our wish to account for the 2/3 power law, our more
general objective is to develop a mathematical framework,
rooted in geometry, which will allow us to examine the nature
of motion primitives. Such a framework may enable us to
investigate whether different movements that belong to the
same subclass, are generated from the same template by a
parametrically different but qualitatively similar set of oper-
ations. We found the language of differential geometry and
Lie algebra (Olver 1993) to be especially suitable for devel-
oping such a mathematical framework. With this language
we can now seek a group of actions or operations where we
can unravel one particular trajectory by repeatedly applying
a single member from this group of motions to some geomet-
rical element, representing, say, instantaneous hand position
and orientation. Similarly, it is possible to generate an entire
family of trajectories from one orbit or template by each
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time applying a different member from that particular group
of motions or transformations. More specifically, a whole
movement along either a 2D or 3D curve might be generated
by varying the value of the arc-length parameter, be it Euclid-
ean or equi-affine. The arc-length parameter therefore consti-
tutes the group’s metric. Similarly, it is possible to generate a
whole family of orbits or trajectories by each time applying a
different element or member of the Euclidean or equi-affine
group of motions, while keeping some attributes or charac-
teristics of the movement invariant modulo the group trans-
formation. Below we discuss two terms which are of crucial
importance for the discussion of internal representations of
motion—metrics and differential invariants.

1.2.1 Internal metrics

The notion of a metric with respect to which movements are
planned, internally coded, or selected is of crucial importance
for motor control. A metric is related to the ability to define “a
distance” between two different states within a metric space.
A metric space is a set S equipped with a distance, that is
a function d mapping of S × S into R and satisfying for all
a, b, c, d ∈S:

1. d(a, b)≥0
2. d(a, b) = 0 iff a = b

3. d(a, b) = d(b, a)

4. d(a, c)≤d(a, b) + d(b, c)

For example, Riemannian geometry is associated with the
Riemannian metric, the norm induced by an inner product
and is defined by ds2 = gα,βdyαdyβ . Although the notion
of a metric is particularly important when discussing inter-
nal representations of either sensory or motor variables, very
little is known about the metrics used by the motor or sensory
systems. The few studies that have investigated the nature
of such metrics in the context of motor control have tested
whether there is an internally consistent spatial representa-
tion with, for example, a Riemannian structure (Fasse 1992).

The notion of a metric is also quite significant when assum-
ing an underlying objective of the optimization of costs asso-
ciated with performance of a motor task. We present evidence
here that the metric used by internal motor representations is
the equi-affine rather than the Euclidean metric. This is par-
ticularly interesting given the claim in vision research that
visual perception is represented in terms of affine metrics. In
a recent study, Todd et al. (2001) have shown that observ-
ers’ judgements are systematically distorted relative to the
physical environment but have instead an internally consis-
tent affine structure. Here we will suggest that the equi-affine
metric might be more appropriate than the Euclidean metric
for describing the neural code subserving the representations
of arm (and perhaps also eye) trajectories.

1.2.2 Differential invariants

Invariants, particularly differential invariants, are a highly
pertinent concept for deciding whether a series of move-
ments was generated from the same prototype or primitive by
using each time a different action or transformation from the
same group of motions. In vision research, certain symmetry
groups and their associated differential invariants have assu-
med a great significance in the study of shape recognition
and image processing. One such problem is the recognition
of a curve or planar object that may be partially occluded
and has been transformed by a geometric viewing condition.
This common visual recognition task is naturally based on
the use of different invariants under various groups of view-
ing transformations. Given the difficulties associated with
the use of algebraic invariants, the use of differential invar-
iants, which are local and are determined for each point on
a curve, was suggested as an alternative. Hence, just as the
ordinary invariants of a group action serve to characterize
invariant equations, differential invariants completely char-
acterize invariant systems of differential equations for the
group, as well as invariant variational principles. Differential
invariants, therefore, form the basis for many physical theo-
ries where one begins by postulating an invariance of differ-
ential equations or a variational principle under the action
of a particular symmetry group. In particular, in recent years
differential invariants were found to be highly significant in
the study of curve evolution based on the use of invariant
heat-flow type diffusion equations (Sapiro and Tannenbaum
1994).

Here, we are interested in how a geometry induced by a
transformation group is applied to a smooth curve or a tra-
jectory. In describing a given trajectory, it is important to
distinguish between the geometric concept of a plane curve
and its parametric description. It is, therefore, useful to con-
sider the image (or trace) of the curve C(p) denoted by
I mg[C(p)] (or the equivalent path, using motor control ter-
minology). Hence, if a curve C(p) is parameterized by a
new parameter w such that w = w(p),

∂p
∂w

≥ 0, we obtain
that I mg[C(p)] = I mg[C(w)]. In general, the parametri-
zation through a parameter p gives the “velocity” of the
trajectory. Given a transformation group R, the curve can
be parameterized by what is called the arc-length, dr which
is an invariant of the group and is useful for defining differ-
ential invariant descriptors (Olver et al. 1994). To perform
this parametrization the group metric, g, is defined by the
expression: dr = gdp for any parametrization p where r

is obtained via the relation: r =
∫ p

0 g(ξ)dξ . We have, of
course, I mg[C(p)] = I mg[C(r)]. Based on the group met-
ric and arc-length, the group curvature can be computed
using either Lie theory or Cartan’s moving frame method
(Cartan 1935; Faugeras 1993). The group curvature as a
function of arc-length is defined as the simplest non-trivial
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differential invariant of the group. The fact that for transitive
group actions, an object can be fully reconstructed modulo
group transformations from a prescribed and finite collection
of differential invariants is a consequence of a general theo-
rem by Elie Cartan (Cartan 1935; Faugeras 1993; Calabi et
al. 1996).

In the Euclidean case, for example, we have geuc = ‖ ∂C
∂p

‖
and the Euclidean arc-length is given by s =

∫ p

0 ‖ ∂C
∂ξ

‖dξ .
This parametrization is an Euclidean invariant since the norm
is invariant. The simplest differential invariant in the Euclid-
ean case, is the Euclidean curvature which is invariant under
the Euclidean group of motions consisting of translations and
rotations. A curve in Euclidean space is uniquely determined
modulo translation and rotation by its invariant curvature and
the first derivative of curvature with respect to Euclidean arc-
length. Hence, it is fully prescribed by its Euclidean signature
curve, which is parameterized by the Euclidean curvature
and its derivative with respect to arc-length.

Here we consider another group of motions, namely equi-
affine transformations. The affine arc-length σ is defined as

σ =
∫

k
1
3 ds where s and k are the Euclidean arc-length and

curvature, respectively. A curve is the affine plane is fully
prescribed by its affine signature curve which is parameter-
ized by the affine curvature and its derivative with respect to
the affine arc-length (Calabi et al. 1996; Calabi et al. 1998).

Below we describe the methods used to derive both the
equi-affine arc-length and equi-affine velocity and the sig-
nature curves for several characteristic hand trajectories. We
also give a more formal description of Cartan’s moving frame
method for deriving differential invariants and then show that
the two-thirds power law is consistent with the equi-affine
velocity being piecewise constant. We then define the equi-
affine curvature and describe the trajectories corresponding
to constant equi-affine curvature. In particular, we describe
the mathematical expressions for parabolas, hyperbolas and
ellipses, which have constant equi-affine curvature. We note
that parabolas are affine geodesics that maximize the affine
arc-length. Given the interesting relationship between affine
velocity, the velocity gain factor and proper time, we show for
movements that obey the two-thirds power law, how speed
scaling and the isochrony principles can be expressed using
the affine description. Finally we describe the numerical pro-
cedures used to analyze experimentally measured arm move-
ments, using the affine differential geometry tools developed
here.

2 Affine geometry of arm movements

Here we introduce a new approach to the study of the arm
movements of humans and other primates. The novelty of
our method lies in viewing the internal representation of the

extrinsic space associated with arm motion generation as hav-
ing a geometric structure different from the usual Euclidean
geometry. Before elaborating our approach, we set out the
scope and context of this study.

In usual motor behavior—whether point-to-point move-
ments such as reaching or continuous motion such as draw-
ing—the focus is on the position of the hand, which is referred
to as the end effector. In certain circumstances the end effec-
tor may be the elbow or the point of a tool held in the hand
(Tanaka et al. 1996). However, we shall not deal with these
cases. Since the time-dependent position of the hand is of
prime importance, it is common to study the trajectory that
the hand traces in space while ignoring the limb and the body.
Despite this simplification, mathematical analysis of end-
point trajectories does provide information about the motor
system.

The trajectories of the hand in natural reaching and contin-
uous drawing-like movements are very often restricted to one
plane or are often approximately piecewise planar in space
(Soechting and Terzuolo 1987a). This allows us to reduce the
analysis of a large class of movements to arbitrarily oriented
planes in space. For reasons explained below, we replace the
traditional Euclidean view of these planes by viewing them as
affine planes, A2. The properties of affine geometry are quite
different from those of Euclidean geometry, as we review
in the Sect. 3, and give rise to new results in the analysis of
human movement. Our work here grew from the initial obser-
vation that the empirical rule known as the “one-third power
law” relating hand velocity to path curvature is equivalent to
movement with piecewise constant equi-affine speed (Flash
and Handzel 1996; Pollick and Sapiro 1997). An important
implication of this finding is that in a large class of hand
movements the natural setting is actually affine geometry,
and this provided the initial motivation for the current work.

This equivalence is demonstrated in Sect. 3.5. This is
followed by Sect. 4 in which we discuss local isochrony
and the speed scaling property of human movements. In
Sect. 5 we focus on the analysis and mathematical descrip-
tion of parabolic segments, the equi-affine geodesics. Finally,
in Sect. 6 we describe the application of recently developed
affine invariant numerical tools to the analysis of hand tra-
jectories when tracing stereotyped figural forms.

3 Background: affine plane geometry

We now review the theory of curves in the affine plane, start-
ing with a brief description of the plane itself, emphasizing
how it differs from the Euclidean plane (Olver et al. 1996).
We then present the method of the moving of a curve, an
ingenious formalism developed by Élie Cartan (Cartan 1935;
Faugeras 1993; Guggenheimer 1977; Spivak 1979). Its main
theme is the relation between a curve and the action of a Lie
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group of transformations. Given such a group, we look for a
parametrization of curves which is invariant under the group
action. This leads to two significant results. Locally, we can
think of the curve as “unraveling” under the local action of the
group. Globally, each curve is a member of an infinite family
of curves, any pair of which is related by a transformation
of the group. Each family of curves can be represented in a
unique way by invariant functions—either the associated cur-
vature function, or a signature curve. Applications of these
representations are discussed below.

3.1 The affine plane

Affine geometry is, loosely speaking, Euclidean geometry
stripped of its metric structure, i.e., without means of mea-
suring distances or angles. A more rigorous explanation of
non-metric or pure affine space is given below. The space can
be endowed with a metric structure; if the latter conforms
to the regular Euclidean distance, it gives rise to Euclidean
geometry. In what follows, we refer to plane affine geometry.

Affine geometry contains two distinct spaces (for further
details see Calabi et al. 1996). The basic plane A2 comprises
the same points as R2, but it does not have the structure of
a vector space: the affine plane has no preferred point desig-
nated as the origin, two points cannot be added, and a scalar
product is not defined on it. The second space is a plane of
displacements, V , which is a vector space. The basic oper-
ation in the affine plane is subtraction, where the difference
between two points p1, p2 ∈ A2 is a vector in the displace-
ment plane:

p2 − p1 = v ∈ V,

which is sometimes denoted as p1 p2. Such a vector, in turn,
maps points in the affine plane to other points by translation:

p1 + v = p2. (1)

An affine coordinate system on An is determined by n + 1
affinely independent points (p0, p1, ..., pn) meaning that the
n displacement vectors ai = pi − p0 constitute a basis for
V .

The vector space V is canonical in the sense that the
tangent plane TpA2 at each point can be identified with
it. For any n-dimensional vector space one can take anti-
symmetric products of k vectors, called a wedge product
which is a generalization of the binary cross product to the
multi-variable case (Spivak 1979). The space of all possible
combinations of k-products, for k running from 0 to n, is
the exterior algebra over V (Conlon 1993). Its subspace of
k-products for a particular k is denoted by

∧k
V . For k =

n,
∧n

V is a one dimensional space of determinant forms,
which serves to define volume over V . Each basis {ei } of V

determines an n−dimensional parallelotope whose volume

is e1 ∧ e2 ∧ · · · ∧ en ∈
∧n

V ; a unit volume can thus be
fixed by choosing such a basis. Denoting by square brackets
the volume determined by n independent vectors relative to a
chosen basis: ai =

∑

x
j
i e j , the volume is given by the deter-

minant of the matrix of the vector components (the wedge
product of n of n vectors). For the affine plane, in particu-
lar, a pair of non-collinear vectors determines the area of a
parallelogram

[a1, a2] = Det

(

a1
1 a1

2
a2

1 a2
2

)

(2)

where superscripts denote the components of a vector.
As mentioned above, the pure affine structure does not

possess a measure of distances or lengths; instead the volume
in 3D or the area in 2D serve as fundamental quantities. Nev-
ertheless, a rudimentary form of length measurement exists
as the ratio between segments of parallel lines. This property
will be used below.

Strictly speaking, affine plane geometry comprises the pair
(A2, V ), but the short notation A2 will be used here, keeping
in mind that it represents the complete structure. We conclude
with a useful notion: An affine element is a vector which is
anchored at a point, namely a pair (p, v). Affine elements can
be viewed as the constituent objects of affine spaces similarly
to points in Euclidean spaces.

3.2 The Euclidean moving frame of a curve

After recalling the pertinent notions of affine spaces we are
ready to discuss curves in the affine plane, but since this
requires the introduction of additional non-trivial structure,
it is instructive to look first at curves in the more familiar
Euclidean plane.

A curve γ (t) in the plane is parameterized by a mapping

γ : I −→ R2

γ : t �−→ x(t) = {x1(t), x2(t)},
(3)

where t ∈ I = [0, 1] and xi is the i-th Cartesian coordinate.
The parametrization by time t is not unique—the same set
of points in the plane that constitutes the curve can be pro-
duced by an infinity of different maps γ (t) where t can be
replaced by any diffeomorphism h(t) of I (e.g., t �→ t2).
The tangential velocity (i.e., tangent vector) to the curve is
the velocity

v ≡ ẋ(t) = (ẋ1(t), ẋ2(t)), (4)

where the dot denotes differentiation w.r.t. the parameter t ;
the speed is

‖ v ‖ = (ẋ2
1 (t) + ẋ2

2 (t) )
1
2 . (5)
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e 2

e 1

n(s)

t(s)

θ (s)

n(s)

t(s)

x2

x1

Fig. 1 The Euclidean moving frame: the velocity and acceleration con-
stitute the directions of a Cartesian coordinate system {t, n} (the tangent
and the normal to it) at each point x(s) on a curve which is parameter-
ized by arc-length s. The frame can be thought to be rotating along the
curve relative to a fixed system {e1, e2} as the curve evolves. The angle
between t and e1 is θ(s)

There is, however, a special parametrization s of the curve,
called the arc-length, which can be defined implicitly as the
length for which the speed equals 1 along the whole curve:

‖x′(s)‖=‖v(s)‖≡ 1, (6)

where differentiation w.r.t. arc-length is denoted by prime
in order to distinguish it from the differentiation w.r.t. any
other parametrization of the curve. The change from t to s

implies the replacement of I by some other interval [0, L].
With the arc-length parametrization, velocity changes only
in direction and not in length and so the acceleration x′′(s)
is always perpendicular to velocity. To each point x(s) on
the curve we can therefore attach a local orthonormal coor-
dinate system {t, n} called a moving frame, with t being the
direction of tangential velocity and n the direction of accel-
eration, as depicted in Fig. 1 after Guggenheimer (1977).
The tangent t is rotated by angle θ relative to a fixed external
frame {e1, e2}; as the curve evolves with s, this angle changes
too, i.e., θ = θ(s).

Using a rotation matrix R(θ) for the moving frame in the
fixed frame coordinates, we have

{t, n} = R(θ) {e1, e2}. (7)

An infinitesimal rotation of the frame along the curve is deter-
mined by

d

ds
{t, n} = R′ {e1, e2} = R′ R−1 {t, n}. (8)

This gives the matrix form of the Frenet equations of the
Euclidean plane:

{t, n}′ = C(R) {t, n}, (9)

where C(R) ≡ R′ R−1 is the Cartan matrix of the rotation
R, thereby eliminating the external fixed frame and empha-
sizing the local intrinsic character of this motion. In explicit
form, the Cartan matrix is

C(R) =
(

0 k(s)

−k(s) 0

)

= k(s) J, (10)

where

J =
(

0 1
−1 0

)

(11)

and k(s) = θ ′(s) is the curvature. The Cartan matrix is an
element of the Lie algebra so(2), the generator of the group
of rotations in the plane, SO(2). Notice that this group com-
prises the set of possible transformations between frames.

The explicit form of the Euclidean curvature is

k(s) =|x′(s) ∧ x′′(s) |=| ẋ1(s) ẍ2(s) − ẋ2(s) ẍ1(s) |; (12)

and for a general parametrization t :

k(t) =
| ẋ1(t) ẍ2(t) − ẋ2(t) ẍ1(t) |

‖ ẋ(t)‖3 . (13)

The Euclidean curvature as a function of arc-length pro-
vides an invariant representation of the curve in the Euclidean
plane. This issue will be dealt with in more detail after we
examine curves in the affine plane.

3.3 The affine moving frame

We now turn to curves in the affine plane, A2 and make our
way from Euclidean to affine structure via the moving frame.
We relax the restriction that a frame be composed of a pair
of orthonormal vectors and require only that the vectors be
linearly independent.

Definition 1 An affine frame is a pair of non-collinear vec-
tors attached to a point x∈A2, i.e.,

(x; a1, a2), a1, a2 ∈Tx (A
2), (14)

where Tx (A
2) is the tangent plane at the point x.

The non-collinearity is required in order for a frame to
exist and allows defining a volume—an area for the plane—
according to Eq. (2):

�(a1, a2) = a1 ∧ a2 = [a1, a2] = 1. (15)
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Each pair of frames that obey Eq. (15) are related by an ele-
ment of the unimodular affine group G = SL(2), i.e., area-
preserving linear transformations of the plane. This group
is larger than the rotation group and, thus, by easing the
restriction on what constitutes a frame, we also obtain more
flexibility in the transformations acting on them.

Now we write the affine frame vectors in terms of the
parameterized curve:

a1 = c ẋ(t)

a2 = c ẍ(t)
(16)

where

c = |ẋ(t) ∧ ẍ(t)|−
1
2 =| ẋ1(t) ẍ2(t) − ẋ2(t) ẍ1(t) |−

1
2 (17)

is a normalization factor in order to satisfy Eq. (15). The two
frame vectors are parallel to the tangential velocity to the
curve and to its acceleration. The affine frame matrix is

A = c

(

ẋ1(t) ẋ2(t)

ẍ1(t) ẍ2(t)

)

(18)

and it relates the local frame to an external fixed orthonormal
system:

{a1, a2} = A {e1, e2}

similarly to Eq. (7) in the Euclidean case. As expected, the
affine frame matrix belongs to the corresponding group, A ∈
SL(2). Its Cartan matrix is

C(A) = A′ A−1 =

⎛

⎜

⎜

⎜

⎝

− 1
2

|ẋ ∧ ...
x |

|ẋ ∧ ẍ|
1

−
|ẍ ∧ ...

x |
|ẋ ∧ ẍ|

1
2

|ẋ ∧ ...
x |

|ẋ ∧ ẍ|

⎞

⎟

⎟

⎟

⎠

(19)

and because Trace C(A) = 0, it lies in sl(2)—the Lie algebra
that generates the group SL(2)—in analogy to the Euclidean
case.

We wish to find an invariant parameterization of the matrix
(and hence of the curve’s Frenet equations) and, in the pro-
cess, to equalize to zero as many coefficients of C(A) as
possible. The diagonal elements can be set to zero if

|ẋ ∧ ...
x | =

d

dt
|ẋ ∧ ẍ| = 0. (20)

In order to satisfy Eq. (20), we choose the parameter σ for
which

|x′ ∧ x′′| ≡ 1 (21)

with the prime denoting derivation w.r.t. σ , which is called
the affine arc-length. It is related to a general parameter t

through

|ẋ ∧ ẍ| = |x′ ∧ x′′|σ̇ 3 = σ̇ 3, (22)

where σ̇ is the equi-affine speed of the curve. Thus the explicit
expression for the affine arc-length is

σ =
∫

γ

dσ =
∫

|ẋ ∧ ẍ|
1
3 dt (23)

and it is invariant under affine transformations. The Cartan
matrix now has the form

C(A) =
(

0 1
−|x′′ ∧ x′′′| 0

)

(24)

and its only non-constant entry is the affine curvature:

κ ≡ |x′′ ∧ x′′′|, (25)

which is the second affine invariant function. The affine plane
Frenet equations are

x′ = a1

a1
′ = a2

a2
′ = −κa1,

(26)

whence x′′′ = −κa1.
The expression of the affine curvature in terms of a general

parameter t is

κ(t) = −
5

9
|ẋ ∧ ẍ|−

8
3 |ẋ ∧ ...

x |2 +
4

3
|ẋ ∧ ẍ|−

5
3 |ẋ ∧ ...

x |

+
1

3
|ẋ ∧ ẍ|−

5
3 |ẋ ∧ ....

x |, (27)

which shows that affine curvature is a fourth order differential
function even though only a third order derivative appears in
Eq. (25). We should therefore assume that the curve has at
least C4 smoothness. The relation between affine and Euclid-
ean curvatures is:

κ = −R
4
3 + 1/2

d2 R2/3

ds2 . (28)

In addition, the affine curvature being a fourth order differ-
ential function has an important practical implication.

Implication: It is impractical to compute Eq. (27) numer-
ically in real life applications, because the complexity of
the expression and because the use of a high order deriv-
ative would cause any signal to drown in noise. Fortunately,
though, a novel numerical method has recently been devel-
oped, which directly uses affine invariant quantities and alto-
gether avoids expressions such as Eq. (27). This method is
described in Sect. 6.2.
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Additional higher order differential invariant functions are
obtained by differentiating the affine curvature w.r.t. to affine
arc-length. This is an example of a general result regarding
curves that evolve under the action of a Lie group.

In this paper we are interested only in the first of these
additional functions, namely κ ′(σ ), which will be used later.
One important result in which this function appears is:

Definition 2 (Guggenheimer 1977) A sextactic point on a
C4 curve is one where κ ′(σ ) = 0.

A closed convex C4 curve has at least six sextactic points
(for a proof see Guggenheimer 1977). Thus, when studying
closed or almost smoothly closed curves traced by the hand,
we might expect oscillations in the affine curvature function.
Finally, one additional remark: at points where x′ ∧ x′′ =
0, such as inflection points, the affine frame is not defined.
Hence, these inflection points could provide natural points
for segmentation of a curve into strokes. Since, however, the
affine frame is undefined at such points, the movement in their
vicinity could be segmented into three strokes: two curved
segments, before and after the inflection point, and a third
straight segment for passing through the inflection point.

3.4 Invariant representations of curves

Above we described a curve moving frame structure. This
was used to extract invariant functions of the curve associ-
ated with a Lie group. We will now travel this path in reverse
and see how the Cartan matrix, which contains the invari-
ant functions, acts locally on the moving frame to produce
the original curve, modulo global group transformations. In
addition, these invariant functions will be used to construct
invariant representations of families of curves that are invari-
ant under global actions of the group G.

Recall that the frame matrix A(σ ) is a parameterized ele-
ment of the group, G = SL(2), i.e., it forms a curve in the
group. Its Cartan matrix C(A) is an element of the Lie alge-
bra sl(2). It, in turn, determines the local evolution of the
frame, particularly that of the tangent vector. The parameter-
dependent tangent vector field can be integrated to recon-
struct the original plane curve up to an initial position.
Moreover, according to the following lemma, the Cartan
matrix is invariant under a fixed global group transformation
and, therefore, the reconstructed curve is determined only
modulo group actions.

Lemma Given a parameterized frame matrix A(σ )∈G and

a fixed element B ∈ G, the Cartan matrix is invariant under

the group action B from the right: C(AB) = C(A) (Guggen-

heimer 1977).

Result: The frame matrix function determines a curve mod-
ulo a fixed global transformation of the group of plane affine
motions S A(2).

The only non-constant entry in C(A) is the affine curva-
ture κ(σ ) as a function of affine arc-length σ . Following the
previous result, κ(σ ) itself determines a curve modulo the
group action. Conversely, two curves can be obtained one
from the other by a group action, and both have the same
affine curvature function. The latter can therefore be thought
of as a template for an infinite family of curves related by
group actions.

There is another invariant representation of families of
curves by the pair of functions κ(σ ) and κ ′(σ ). Since both are
parameterized by σ , they determine a curve in the phase plane
(κ, κ ′), which is called the signature curve of the original
curve in the plane, A2. Signature curves of hand traced tra-
jectories are shown in Sect. 6.4.

Following the above discussion let us look at some spe-
cific example. A special case is when κ is constant, because
the Cartan matrix is then a fixed element in the Lie algebra
and it generates a one-parameter subgroup in the group. The
frame matrix can therefore be obtained directly as a matrix
exponent function of the Cartan matrix, i.e.:

A = EXP{σ C(A)} (29)

It can be shown (Guggenheimer 1977) that for constant
affine curvature and for κ 
= 0 the affine matrix is:

A(σ )

(

cos κ
1
2 σ κ− 1

2 sin κ
1
2 σ

−κ
1
2 sin κ

1
2 σ cos κ

1
2 σ

)

and for κ = 0

A(σ ) =
(

1 σ

0 1

)

.

The curves with constant affine curvature functions are the
conics (Guggenheimer 1977; Griffiths 1983). Given that the
first row of A is the tangent vector, namely velocity, integrat-
ing it for κ = 0 gives the curve:

x(σ ) − x(0) = {x1(σ ), x2(σ )} =
{

σ,
1

2
σ 2

}

(30)

which is a parabola with initial position x(0). Notice also that
its signature curve is a fixed point at the origin of the phase
plane. Section 5 is devoted to a discussion of parabolas as
affine plane geodesics. Similarly, integrating the first row of
A for gives an ellipse where κ > 0:

x′(σ ) = (cos
√

κσ, 1/
√

κ sin
√

κσ)

x(σ ) = constant + (1/
√

κ sin
√

κσ,− 1
κ

cos
√

κσ).
(31)

Finally, for the hyperbola where κ < 0:

x(σ ) = constant + (
√

|κ| cosh
√

|κ|σ,
1

|κ|
sinh

√

|κ|σ).

(32)
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We now show that the following theorem can be proven in
finding the curves corresponding to the extremum of σ =
∫

k
1
3 ds (Griffiths 1983):

Theorem 1 (Griffiths 1983) The solutions of the Euler–Lag-

range equations associated with the above integral are plane

conics with zero affine curvature. Hence, parabolas are the

unimodular affine geodesics. It can be shown that parabolic

segments are affine geodesics having zero affine curvature

and maximal affine distance (Lopez de Lima and Monte-

negro 1999). Thus if we are given two points P and Q in

the plane and two concurrent straight lines m and n pass-

ing through P and Q, respectively, then the unique arc of

parabola determined by this configuration is an extremal

for the affine distance along variations by locally convex

curves passing through P and Q and tangent to m and n at

these points (Lopez de Lima and Montenegro 1999) See also

Sect. 5.

3.5 Movement with constant affine speed

Given the above mathematical tools (Sect. 3), it is almost
trivial to show that the one-third power law is a result of
movement at constant affine speed. From the definition of
curvature (Eq. 12) we have

v(t) = |ẋ ∧ ẍ|
1
3 r

1
3 ,

where r is the Euclidean radius of curvature and from the
definition of affine velocity (Eq. 22) this is the same as

v(t) = σ̇r
1
3 .

In any segment of a trajectory during which the motion has
a constant equi-affine speed, σ̇ = G, the empirical one-third
rule is thus observed.

4 Local isochrony and speed scaling

We now show that both the local isochrony principle and the
speed scaling property of human movements are compatible
with our suggestion that arm movements are generated with
a piecewise constant equi-affine velocity. Dealing first with
local isochrony, it has been argued that the dependence of the
gain factor on the Euclidean length of the path is the most
direct expression of isochrony, i.e., the rather weak depen-
dence of the movement duration within a stroke or a motion
segment on its length, is mostly due to the modulation of
the velocity gain factor G-giving rise to local isochrony. In
particular, Viviani and Cenzato (1985) have shown that for
simple closed patterns (such as ellipses), the parameter G is
constant throughout the entire movement and is related to the
Euclidean perimeter P by a power law G = GT Pβ (GT and

β both ≥ 0), where GT depends only on the tempo selected
for the motion. Viviani and Cenzato further characterized
local isochrony for the drawing of a double ellipse (which
is similar to the limaçon treated here, see Sect. 6 below). If
in the case of a double ellipse, local isochrony is obeyed,
then: TL = TS where TL and TS are the movement durations
for the large and small ellipses, respectively. This tendency
for local isochrony is compatible with our affine differential
analysis as follows. For a single ellipse the total equi-affine

arc-length σ can be expressed as: σ = 2π2 A
1
3 where A

is the ellipse’s area. If the movement is at constant affine
velocity, then σ = GT where T is the total movement dura-
tion. Thus, if we use the usual parametrization of the ellipse
with semi-axes a and b, namely, X(u) = (a cos u, b sin u),

0 ≤ u ≤ 2π , then the affine velocity is σ̇ = (ab)
1
3 , the affine

perimeter of the ellipse is: σ = (ab)
1
3 u, and the affine curva-

ture is κ = (ab)−
2
3 . The relationship between the area of an

ellipse, A and its Euclidean perimeter, P , can be expressed
as follows (see Viviani and Cenzato 1985): A = π P2/3�(ǫ)

where �(ǫ) =
(

(1−ǫ2)
1
2

16E2(ǫ2)

)
1
3

, E denoting the complete ellip-

tic integral of the second kind and ǫ2 = 1 − b2/a2, is the
ellipse’s eccentricity. Returning to the double ellipse, if the
movement is performed at a constant equi-affine velocity
which is equal to the velocity gain factor, G, this implies that
σL/GL = σS/GS where σL and σS are the equi-affine perim-
eters and GL and GS are the velocity gain factors for the large
and small ellipses, respectively. Using the above expression
for the equi-affine perimeter, we see that this implies that
GL/GS = A

1/3
L /A

1/3
S where AL and AS are the areas of the

large and small ellipses, respectively. Hence, expressing the
area of both ellipses in terms of their Euclidean perimeters,
if the small and large ellipses have the same eccentricity,
then the relationships between their velocity gain factors can
be expressed as: GL/GS = P

2/3
L /P

2/3
S where PL and PS

are the Euclidean perimeters for the large and small ellipses,
respectively. This, therefore, is compatible with the empir-
ical observations described by Viviani and Cenzato (1985),
where the velocity gain factor was found to vary with the
ellipse’s Euclidean perimeter, according to: G = GT P2/3,
GT being some constant that was found to be only mildly
dependent on the ellipse’s eccentricity.

Another earlier observation which is compatible with our
suggestion that curved movements are generated with a con-
stant equi-affine velocity is the time scaling property of
human movements (Hollerbach and Flash 1982). If the fast
and slow movements follow the same paths while the veloc-
ities are simply scaled with speed, then: (x ′(t), y′(t)) =
(x(λt), y(λt)) where λ = T/T

′
is the scaling factor express-

ing the ratio between the slow and fast movement durations,
T and T

′
, respectively. Since according to the equi-affine

description G = Ak−2/3 = V k1/3 and σ =
∫

k
1
3 ds =
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∫

Gdt , this implies that V
′ = λV ; k

′
(t) = k(λt); G

′ =
λG, where V

′
and V are the Euclidean velocities and k and

k′ are the Euclidean curvatures for the fast and slow move-
ments, respectively. Consequently:

∫

dσ ′ =
∫

dσ , i.e., the
equi-affine arc-lengths are equal for the two paths and speed
scaling, therefore, is equivalent to keeping the equi-affine arc
length invariant under speed changes.

5 Parabolic segments

Here we focus on the description of parabolic pieces as sim-
ple segments that can be produced by moving between a pair
of initial and final locations with prescribed movement direc-
tions at these endpoints. We provide an analytic solution for
parabolic interpolation between such pairs of line elements
within equi-affine plane geometry. The desired curves are the
geodesics of equi-affine plane geometry, namely parabolic
arcs, which generalize the connection of points by straight
lines in Euclidean geometry and are invariant under the larger
group of equi-affine transformations, S A(2). The description
of parabolic segments is of particular interest since they are
repeatedly observed in human and monkey movements (see
Sect. 7).

The problem discussed here is as follows: find a smooth
curve that passes through a specified pair of end-points with
specified directions (tangents) at these end-points. In finding
such an interpolating curve, the premise is that it should be as
smooth as possible, without points of unnecessarily high cur-
vature. In vision research many studies have focused on the
problem of minimizing Euclidean curvature along the inter-
polating curve, cast as the variational problem of minimizing
the functional:

∫

k2ds (33)

where k is the usual Euclidean curvature and ds, the
Euclidean arc-length differential (Horn 1983). Scale invari-
ant variations of Eq. (33) have also been used (Bruckstein
and Netravali 1990), where the length of a curve is normal-
ized. Similar functionals which represent the elastic energy
of a flexible rod of fixed length have become popular:

∫

(αk2 + β)ds (34)

where α, β are constants. Solutions to Eq. (34) are therefore
called elastica and the long history of their investigation is
briefly recounted in Mumford (1994). Elastica are expres-
sed using elliptic integrals (Griffiths 1983; Mumford 1994)
for which numerical procedures and approximations (Sharon
et al. 2000) are needed in practice.

Here we address the problem of interpolating between a
pair of prescribed line elements that have a natural mathemat-
ical representation in affine geometry, leading to the formu-
lation of the interpolation problem as a search for the curve
which is an extremum of the affine arc-length integral:

∫

dσ. (35)

The solution to this problem is the geodesic curve of equi-
affine geometry and a natural generalization of the Euclidean
straight line.

Below we provide a proof of the maximization of the equi-
affine arc-length by parabolas, which also demonstrates that
they are the equi-affine plane geodesics. Then we describe the
parabolic interpolation scheme. A pair of contact elements
determines a pencil of conics which contains one parabola.
This pencil of conics is first constructed and the equation
of the unique interpolating parabola is then derived using
classical analytical geometry.

5.1 Affine plane geodesics

As was mentioned above (Sect. 3), the pure affine structure
does not possess a measure of distance or length; instead,
volume—i.e., area, in the plane—serves as a fundamental
quantity. Nevertheless, a rudimentary form of length mea-
surement exists as the ratio between segments of parallel
lines. This property will be used in Theorem 2.

In analogy to Euclidean geodesics, we seek curves that
are extremals of the affine arc-length integral:

∫

dσ =
∫

k
1
3 ds, (36)

where the right-hand side is expressed in terms of the Euclid-
ean curvature and arc-length. A variational approach to this
functional is somewhat tricky and requires care in dealing
with boundary conditions (Griffiths 1983). If the end-point
conditions are specified as line elements, then among all
interpolating convex curves there is a unique parabola and it
maximizes affine arc-length Eq. (36). However, this is not the
only extremum; for the same end-point conditions one can
construct infinitely many interpolating curves that asymp-
totically tend to polygons, and they have arbitrarily small
(positive) affine arc-length. The reason is the following: a
vertex of the polygon can be considered as a circular arc of
vanishing radius of curvature. The affine arc-length of this arc
is dominated by its length which tends to zero. The straight
segments have finite length but vanishing curvature, so their
affine arc-length also vanishes. Hence any polygonal curve
is a minimum of Eq. (36). In order to avoid this difficulty of
picking the correct extremum in a direct variational treatment
we instead present a constructive proof.
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Fig. 2 The support triangle △(p1, p0, p2) of a short arc Ŵ(p1, p2) is
determined by the end-points p1, p2 and by the intersection p0 of the
given tangents at the end-points. The sides of the triangle are p1 p2, p1 p0
and p0 p2. Every point p ∈ Ŵ(p1, p2), splits the arc into two smaller
ones. The tangent to p cuts the support triangle at points pa and pb. The
two small arcs have support triangles △(p1, pa, p) and △(p, pb, p2)

In such a construction, the idea is to concentrate the change
in direction of the curve, i.e., high curvature regions, into
arbitrarily short sections. For example, these sections can
be made circular, where the leading term of the affine arc-
length tends to zero as the 2/3 power of the radius of the
circle. At the sections of the curve which are almost straight,
the length is bounded, the curvature is arbitrarily small, and
the affine arc-length therefore tends to zero. Only locally
convex curves were considered in Sect. 2, i.e., those without
inflection points. We further restrict the discussion to short
segments of curves according to the following definitions
(Olver et al. 1996):

Definition 3 A locally convex arc Ŵ(p1, p2), together with
its endpoints p1 and p2, is called a short arc if no two tangent
lines to it are parallel. The equivalent statement in Euclidean
geometry is that the total turning angle of the tangent to the
curve from p1 to p2 is less than π .

Definition 4 Given a short arc Ŵ(p1, p2), its support trian-

gle △(p1, p0, p2) is prescribed by its vertices: p1, p2, and
the point p0 where the tangents to p1 and p2 intersect. Its
sides are the line p1 p2 connecting the two end-points and the
two tangents to these points, as depicted in Fig. 2.

We seek an affine invariant distance function between line
elements which corresponds to the usual affine arc-length
integral along curves. Since area is the fundamental affine
invariant quantity, the support triangle of a short arc will
be the basis for defining this affine distance. We denote by
A(p1, p2) the area of the support triangle of the short arc
Ŵ(p1, p2).

Definition 5 The affine distance between two line elements
(p1, a1) and (p2, a2) is

d(p1, p2) ≡ 2 3
√

A(p1, p2). (37)

In order to investigate the affine distance, we use the fol-
lowing construction. Let Ŵ(p1, p2) be a short arc with a sup-
port triangle △(p1, p0, p2), and let p∈Ŵ(p1, p2) be an inte-
rior point whose tangent intersects the tangents p1 p0 and
p0 p2 at pa and pb respectively. The support triangles of
the arcs Ŵ(p1, p) and Ŵ(p, p2) are thus △(p1, pa, p) and
△(p, pb, p2) (see Fig. 2).

Theorem 2 (Blaschke 1923; Calabi et al. 1996)

Part 1: The affine anti-triangle inequality Given the con-

struction above, the following inequality holds:

d(p1, p) + d(p, p2) ≤ d(p1, p2). (38)

Part 2: Equality is attained by parabolas and the condition

for equality in Eq. (38) is

p1 pa

p1 p0
=

p0 pb

p0 p2
=

pa p

pa pb

, (39)

where the ability to measure the ratio of parallel lines in the

affine plane is used.

Remark: Interestingly, the equality condition (39) corresponds
to the construction algorithm of quadratic de Casteljau–Bézier
curves (Farin 1993), which are indeed parabolas; the control
polygon of the algorithm is the support triangle△(p1, p0, p2).

Theorem 2 provides one desired property of a distance
function, namely additivity: given a pair of line elements,
their interpolating parabola can be split at any point, and the
corresponding affine distances add up to the original one.
However, to fully justify Definition 5, we have yet to show
that it is compatible with the usual affine arc-length. We use
the Taylor expansion of a parabola in a parameter σ :

x(σ ) = x0 + σ ẋ0 + σ 2 1

2
ẍ0 (40)

where x0 = x(t0) is the initial point.

Lemma (Blaschke 1923) The affine arc-length of a para-

bolic arc is related to the area of its support triangle as fol-

lows:

A(x0, x1) =
1

8
|ẋ0∧ẍ0|σ 3

1 (41)

where σ1 is the value of σ at point x1, and therefore

d(x0, x1) = |ẋ0∧ẍ0|
1
3 σ1. (42)

The right-hand side is proportional to the affine arc-length
of the parabola, with the normalization factor determined
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at the initial point. If we choose the particular parametriza-
tion σ (according to Eq. 21) then the affine distance (37)
coincides with the affine arc-length, as required. This last
result, together with the additivity of the affine arc-length
along parabolas, completes the demonstration that the affine
distance is well defined.

Finally, we extend the above to a general interpolating
short arc between affine elements. Such an arc can be par-
titioned into segments. By inequality (38), the sum of the
affine distances along these segments is a non-increasing
function under refinement of the partition. Since the distances
are positive, the series of sums is bounded from below and,
therefore, it converges. For each segment, the affine distance
approximates the affine arc-length, according to Eq. (42).
With increasing refinement the sum of distances converges
to the Riemann integral defining the affine arc-length along
a curve. This proves the following:

Theorem 3 Parabolic arcs maximize the affine arc-length
among all short arcs interpolating a pair of line elements

(Olver et al. 1996). For the parabola the affine arc-length

also equals the affine distance.

As a numerical example, we compare the affine arc-length
of a parabolic arc and a quarter-circular arc, both having the
same support triangle (whose vertices are located at (0,0),
(0,1/2) and (1/2, 0) with the tangents to the endpoints coin-
ciding with the principal axes. The equation of this parabola,
as parameterized by affine arc-length, is { 1

2σ 2, 1
2 (1 − σ)2},

σ ∈ [0, 1]; its non-parametric form is y = x −
√

2x + 1
2 .

Clearly, its affine arc-length equals 1. The affine arc-length
of the quarter-circle is:

σ(circle) =
∫

k
1
3 ds = 3

√
2 2πr/4 = 3

√
2π/4 ≈ 0.989

which, as expected, is slightly smaller than 1 since the parab-
ola maximizes the affine arc-length.

5.2 Computing parabolic arcs

When analyzing motion trajectories, it may be useful to con-
struct the parabolic arc solution for a given pair of line ele-
ments. We compute the equation of a parabola which passes
through two given line elements. We use the fact that these
boundary conditions determine a one-parameter family of
conics to which the sought parabola belongs. The two Carte-
sian coordinate variables are denoted here for convenience
by x and y. The equation of a conic is

ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0, (43)

and the condition for it being a parabola is

b2 − ac = 0. (44)

Fig. 3 The pencil of conics of double contact is determined by the two
tangents T1 and T2 and the line L connecting the two points of tangency
p1 and p2

We need to find the coefficients a through f which satisfy
the end conditions. In what follows we employ the standard
notation for algebraic curves: the term “F = 0” denotes an
algebraic plane curve, i.e., the zero level-set of a polynomial
function F in x and y.

Definition 6 Given two distinct conics C1 = 0 and C2 = 0,
a pencil of conics C is a family of conics depending on a
parameter λ (Spain 1957):

C ≡ C1 + λC2 = 0. (45)

In general, two conics have four points of intersection (not
all necessarily real), so the pencil C comprises the conics
passing through these four base points.

The product of two lines is a quadratic curve which is con-
sidered degenerate. The conics chosen to build C can there-
fore be line pairs, e.g., C1 = T1T2. A special case arises when
the base points are divided into two pairs with the points of
each pair coinciding, so that the two lines T1 =0 and T2 =0
pass through them.

Definition 7 If the four base points of a pencil “coalesce” in
pairs to two points, then the conics of the pencil are said to
have double contact.

This configuration is shown in Fig. 3: the line T1 is tangent
on the conics at point p1, and T2 is tangent at point p2; the
line L connects these points.

Another degenerate conic in the pencil is the line L taken
twice, i.e. L2. By substituting the two mentioned line pairs
for the conics C1 and C2, we obtain the following represen-
tation of the pencil

C ≡ T1T2 + λL2 = 0. (46)

This form suits our parabolic interpolation completion task
because it can be constructed directly from the given bound-
ary conditions. The next step is to calculate the value of λ for
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Fig. 4 Interpolating parabolic arcs between pairs of line elements of
various orientations, covering the broad range of turning angles between
0◦ and 152◦

which Eq. (46) is a parabola. In order to simplify the calcu-
lation, the coordinate system is transformed (by translation
and rotation) so that L lies on the x-axis, and the axes-ori-
gin coincides with point p1. The equations of the three lines
reduce to

L = y

T1 = y + t1x

T2 = y + t2x + s2

(47)

which are then substituted in the formula of the pencil of
conics (Eq. 46). Comparing it with the general equation of a
conic (Eq. 43) and by imposing the condition for a parabola
(Eq. 44), the expression for λ is obtained:

λ =
(t1 + t2)

2

4t1t2
− 1. (48)

Finally, by substituting the solution for λ in Eq. (46), we
find the explicit formula of the required parabola:

P = (t1t2)x2+
(t1+t2)

2

4t1t2
y2+(t1+t2)xy+(s2t1)x+s2 y. (49)

Transforming back to the original image coordinates is
straightforward (Spain 1957).

Figure 4 shows examples of interpolating parabolic arcs
between pairs of line elements of various relative orientations
covering a broad range of turning angles: 0◦–152◦. These
configurations are detailed in Table 1 where the slope of the
line element is given relative to the connecting line y = 0.
When the turning angle between the line elements is zero,
i.e., they lie on one straight line, the interpolating parabola
flattens to become the line as desired. A turning angle of
180◦corresponds to the line elements being parallel.

We presented here an elegant analytic solution for inter-
polating between line-elements based on equi-affine plane

Table 1 A pair of line element configurations depicted in Fig. 4

Left line element Right line element Turning angle
Slope t1 Slope t2 of curve (◦)

0 0 0
1/2 −1/6 36.1
2 −2/3 97.1
4 −4/3 129.1
4 −4 152

geometry. The given data of the problem, namely the end-
point locations and the directions of the movements at these
end-points, are naturally modeled as line elements in the
affine plane. The interpolating curves are parabolas, which
are the geodesic curves of the affine plane and they consti-
tute a natural geometric extension of the concept of Euclidean
geodesics. A straight line is the shortest path between any two
points and its length determines the distance between them;
the parabola maximizes the affine arc-length between a pair
of line elements which, in turn, equals the affine distance bet-
ween them; the respective curvature functions are zero along
both curves. It is important to note that the affine arc-length
is related to area and does not have an intuitive relation to
usual Euclidean length. Its maximization by geodesics, as
opposed to minimization in Euclidean geometry, should not
be too surprising or hindering. The parabola we have derived
is also the interpolating quadratic de Casteljau–Bézier curve.
An important property of parabolic arcs is their invariance
under equi-affine transformations: a parabolic arc remains a
parabolic arc. The group of equi-affine motions, S A(2), is
larger than the group of Euclidean motions, SE(2), and is
highly relevant to motor control, as we show here.

6 Affine analysis of human hand movements

We now analyze several examples of continuous repetitive
tracing of closed curves. The affine differential invariants σ

and κ were derived for these movements and were used to
examine movement segmentation and classification.

We begin by describing the experimental paradigms and
methods used to record movement data, followed by a
description of the numerical procedures used. Finally, we
present our results.

6.1 Experimental methods

Three types of figures previously used in Viviani and Flash
(1995) and in Richardson and Flash (2002) were investigated:
the cloverleaf, the oblate limaçon (“double ellipse”) and the
symmetric and asymmetric lemniscates (“figure eight”). Sub-
jects traced these figural forms in the horizontal plane. The
drawings were generated according to given templates drawn
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on paper. Three versions of the figure eight were tested;
all had the same total curve length of 48 cm and extended
approximately 18 cm along the longitudinal axis, but the rel-
ative size of the two loops constituting the figure was varied.
Similarly, three versions of the double ellipse were tested,
with overall length varying between 60 and 75 cm and mea-
suring about 20 cm along the longitudinal axis. The cloverleaf
covered a square area of approximately 15 cm by 15 cm.

The subjects, who were all right-handed, were asked to
trace the curves freely and continuously according to the
templates. The cloverleaf, the double ellipse and the larger
loop of the lemniscate were all traced counterclockwise; the
small loop of the lemniscate was traced clockwise. Recording
hand movement began after several cycles of movement had
been performed and the motion had stabilized. For details of
the experimental set-up and paradigms see Viviani and Flash
(1995). Coordinate data were smoothed using a Gaussian
filter with a low-pass cutoff frequency of 4 Hz. Velocity,
acceleration and jerk of the coordinates of the hand trajecto-
ries were estimated using finite difference approximation.

6.2 Affine invariant numerical calculations

We now describe the numerical method for extracting the
required functions associated with the affine moving frame
from data obtained by measuring hand trajectories. This
method was developed in Olver et al. (1996) and Calabi
et al. (1998) in the context of computer vision. The quantities
which we wish to calculate—the arc-length, the curvature,
and derivatives of the latter by the former—are invariants of
the special affine group, S A(2).

6.3 Affine differential properties of drawing movements

For a transitive group action, a plane curve can be fully recon-
structed (modulo group action) from a prescribed and finite
collection of differential invariants (Cartan 1935; Faugeras
1993). A curve in a Euclidean plane can be fully recon-
structed from its curvature C and dC

ds
, i.e., from its Euclidean

signature curve. It can be shown that any affine differential
invariant is a function of κ and its higher derivatives with
respect to σ . Furthermore, any curve in the affine plane is
uniquely prescribed by κ and its dκ

dσ
, i.e., its affine signature

(Olver et al. 1996; Calabi et al. 1998). Thus, two smooth (C5)
curves c1(σ ) and c2(σ ) can be mapped to each other by an
affine transformation, g belonging to S A(2), and only if their
signature curves are identical.

The relations between Euclidean and affine differential
invariants are as follows:

dσ

ds
= C1/3, (50)

κ = −R
4
3 + 1/2

d2 R2/3

ds2 . (51)

The construction of practical numerical approximations of
differential invariants which depend on higher order deriva-
tives of parameterized functions of the curve is a non-trivial
problem. Here we used the finite approximation methods of
Calabi et al. (1996).

An appropriate numerical approximation is needed for
estimating the underlying functions when dealing with data
in the form of discrete sampled points. Unless the numerical
procedure is chosen with care, it may destroy the invariance
under the action of the relevant group. In order to overcome
this problem, the procedure used here is based on quantities
that are “well-behaved” under the group action, namely joint

invariants of the group, which are defined as follows:

Definition 8 If G is a group of transformations acting on a
space X , then a joint invariant J is a function J (x1, x2, ..., xk)

depending on k points xi ∈ X and which does not change
under the simultaneous action of a transformation g ∈ G on
the above points, i.e.,

J (gx1, gx2, ..., gxk) = J (x1, x2, ..., xk).

Let us look at the familiar example of Euclidean motions
in a plane, namely translations and rotations. The basic joint
invariant in this case is the distance function between two
points d(p1, p2) =‖ p1 − p2 ‖ which is also the length of a
vector in the displacement plane V . Together with the exter-
nal product between two displacement vectors, they form a
complete set of joint invariants, which means that every joint
invariant of the Euclidean group is a function of these two
invariants.

In the affine plane the fundamental joint invariant is the
area of the parallelogram (or triangle) determined by three
points pi = (xi , yi ) ∈ A2:

[pi , p j , pk] = (p j − pi )∧(pk − pi ) = det

⎛

⎝

xi yi 1
x j y j 1
xk yk 1

⎞

⎠ (52)

which we denote in short by [i jk]. Every joint invariant of the
affine group is a function of the above, in complete analogy
to the Euclidean case. A useful four-point invariant is

[i jkl] = [pi , p j , pk, pl ] = (pi − p j ) ∧ (pk − pl)

= [i jl] − [i jk]

which is the difference of two areas. For five points there
are ten fundamental triangular areas, of which only five are
independent. The required computation is based on such a
five-point configuration and its associated areas,

As mentioned above, the two basic invariants of affine
plane curves are the affine arc-length and the affine curva-
ture. We wish to approximate these quantities using the joint
invariants. The approximation is based on the unique hyper-

osculating conic curve which passes through any five given
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points, which in the present context are five consecutive sam-
pled points of a trajectory traced by the hand. A conic section
has constant affine curvature and is, therefore, taken as the
approximation of the affine curvature at the central point out
of the five. The canonical equation of a conic curve is

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0, (53)

and the affine curvature is then given by

κ =
S

T 2/3

where S and T are functions of the coefficients:

S = AC − B2 = det

(

A B

B C

)

, T = det

⎛

⎝

A B D

B C E

D E F

⎞

⎠

The key fact is that S and T can be expressed as combina-
tions of the ten fundamental areas determined by the five
given points, the precise expressions of which are somewhat
cumbersome and the interested reader can find them in the
original work of Calabi et al. (1998) and Olver et al. (1996).

An approximation of the differential affine arc-length at
point i is obtained similarly. Finally, the derivative of the
affine curvature by the arc-length is computed at point i as a
simple finite difference approximation:

κ ′(σ ) =
κi+1 − κi−1

L i

where L i is the approximate affine arc-length of the segment
connecting point i −1 to pointi +1.

6.4 Results

Most of the trajectories displayed here, unless is otherwise
specified, constitute one cycle each, taken from continuous
repetitive tracing of templates of closed figures. Also, in
the current section, the term “differential equi-affine arc-
length” is used interchangeably with equi-affine velocity.
Equi-affine curvature is denoted in the following plots by κ .
When inspecting the results of the affine differential analysis
of the movement data it should be noticed that the derivation
of equi-affine variables involves the calculation of relatively
high order derivatives. Moreover, movement data are quite
noisy, both because of measurement noise and because of
intrinsic neuromotor noise. Hence, the oscillations appear-
ing in the plots of the equi-affine variables (see below) per-
sisted even when other numerical methods for calculating
those variables were used. These methods involved the use
of Fourier series expansion or of spline approximation of
the recorded movement data and the resulting approximated
position data sets were then used to calculate the equi-affine

velocity, curvature, and its derivative with respect to equi-
affine arc-length. Hence, these oscillations are not simply an
artifact due to numerical differentiation of a finite-length data
window.

6.4.1 The two-thirds power law

The kinematic power law is demonstrated through the con-
ventional presentation of Log-velocity versus Log radius of
curvature for the three figural forms analyzed here, the clo-
verleaf, Oblate Limaçon (“double-ellipse”) and the figure
eight (see Fig. 5 left column). The average slopes of the plots
of Log velocity versus Log radius of curvature (marked in all
figures by β) correspond to the exponents in the power law
relationship between velocity and radius of curvature. The
velocity gain factor, which is equal to the equi-affine veloc-
ity corresponds to the intercepts of these curves with the Log
velocity axis. The cloverleaf is characterized by one segment
(Fig. 5 top right panel). For the Oblate Limaçon (Fig. 5, mid-
dle right panel) two separate straight parts can be discerned
in this plot, both with a very similar slope but shifted relative
to each other and with a transition segment them. Each of
the straight segments corresponds to one of the loops in the
Limaçon with its own “gain factor” or equi-affine speed (see
below). For the asymmetrical figure eight (Fig. 5, bottom
right panel), again two straight segments with quite similar
slopes and a transition segment between them characterize
the Log-velocity versus Log radius of curvature plot.

6.4.2 Cloverleaf

The cloverleaf is a locally convex curve along its whole
length (Fig. 6, upper left panel). The equi-affine speed shown
for several repetitions of the drawing of the clover-leaf (Fig. 6,
upper right panel) is fairly constant throughout with small
fluctuations that lack any particular pattern, as seen in the
plot for the drawing of one cycle of drawing (middle left
panel). Consequently, the plot of the equi-affine arc-length—
integrated affine speed—as a function of time (middle right
panel) is a neat linear curve, implying that physical time
is a scalar multiple of equi-affine arc-length. The one-third
power law is clearly obeyed in tracing this figure. If equi-
affine speed is the criterion, the complete figure can be taken
as a single segment. Affine curvature of the single cloverleaf
cycle is plotted as a function of time in Fig. 6 (bottom left
panel). It is positive throughout most of the curve, similarly
to the limaçon, without any orderly pattern. Locally, there-
fore, most of the cloverleaf looks like an elliptical arc, i.e., its
hyperosculating conics are ellipses. The signature curve of
the cloverleaf (drawn in Fig. 6, bottom right panel) seems to
wind around several average values of equi-affine curvature.
This phenomenon results from the time-dependent fluctua-
tions seen in the affine curvature plot.
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Fig. 5 Plots of log Euclidean speed (V ) versus log radius of curvature
(R) for three figures: cloverleaf (top row), oblate limaçon (middle row)
and figure eight (bottom row). One cycle of drawing (left column) and
several superimposed log V versus log R plots for several repetitions
of the drawing (right column) for each figural form are shown. For the
cloverleaf the data points of the drawing (upper left panel) are marked
by circles and the corresponding points in the log V versus log R plot
(upper right panel) are approximated by a single straight line (r2 = 0.9,
β = 0.35). For the oblate limaçon (middle row), the data points of the
drawing (middle left panel) are marked by circles (for the exterior larger
loop) and by crosses (for the interior smaller loop) and the correspond-
ing data points in the log V versus log R plot (middle right panel)
are similarly marked and are separately linearly approximated by two

straight lines (r2 = 0.93 and β = 0.35 for the larger loop, upper line;
r2 = 0.91 β = 0.34 for the smaller loop, lower line). For the asym-
metric lemniscate (bottom row), data points with curvature smaller than
0.08 cm−1 are marked on the drawing (bottom left panel) by a solid line
and on the plot of log V versus log R (bottom right panel) by gray dots.
The rest of the drawing data points are divided into two according to the
two loops of the asymmetric lemniscate, and are marked by circles and
crosses, for the large and small loops, respectively (bottom left panel).
The corresponding data points in the log V versus log R plot (bottom

right panel) are again separately linearly approximated (r2 = 0.89,
β = 0.28 smaller loop, upper line; r2 = 0.88, β = 0.32, larger loop,
lower line)

6.4.3 Oblate Limaçon (“double ellipse”)

A trace of a double ellipse with two loops of different size is
shown in Fig. 7, upper left panel. Affine speed for the draw-
ing of several cycles of the Limaçon, and for only one cycle
are shown in Fig. 7, upper right panel and middle left panel,
respectively. The equi-affine speed oscillates around an aver-
age value, more prominently than the minor fluctuations seen
for the cloverleaf. This implies that, for the double ellipse,

the one-third power law is only approximately valid. A close
look at the equi-affine speed within a single trace of the tem-
plate (Fig. 7, middle left panel) shows that it varies gradually,
being greatest at the apex of the larger loop of the figure and
decreasing towards the smaller one. This pattern corresponds
to the distinct values of the velocity gain factor in each of the
loops, as reported in Viviani and Flash (1995) and as is dem-
onstrated by the different intercepts of the upper versus the
lower straight lines used in the linear approximations of the
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Fig. 6 Cloverleaf: typical
results from the affine analysis
of the drawings of a cloverleaf.
Shown are one cycle of drawing
(upper left panel), a plot of the
affine speed versus time for
several repetitions of the
drawing of a cloverleaf (upper

right panel), a “zoomed in”
portion of the upper right panel,
showing the affine speed versus
time for one cycle of the
cloverleaf (middle left panel)
and a plot of the affine
arc-length versus time for
several repetitions of the
drawing (middle right panel).
Also shown is a plot of the
affine curvature versus time for
one cycle of the cloverleaf
(bottom left panel) and the affine
signature curve for one
complete cycle of the cloverleaf
(bottom right panel)
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log velocity versus log radius of curvature data points for
the the two loops of the double ellipse (Fig. 5, middle right
panel). Also shown is a plot of the equi-affine arc-length ver-
sus time for several repetitions of the drawing of the double
ellipse (Fig. 7 middle right panel). The equi-affine arc-length
is roughly linearly related to time, exhibiting a minute effect
of the described modulations in affine speed. The equi-affine
curvature plot for a single cycle taken from a repetition of
several cycles of the template is displayed in Fig. 7, bottom
left panel; its signature curve appears to the right. Similarly
to the cloverleaf, this curve is locally convex throughout, and
its affine curvature is positive, meaning that locally it is like
an ellipse. In contrast to the cloverleaf, equi-affine curva-
ture of the double ellipse oscillates in a regular pattern as a
function of time, having many clearly identifiable extrema
(sextactic points). This is reminiscent of Theorem 3.3 on the
existence of at least six such points on a smooth closed curve.
Although the traced trajectory is not a smoothly closed curve,
in this respect it behaves as if it were. The signature curve of
the limaçon (Fig. 7, bottom right panel) exhibits an oscilla-
tory pattern matching the one of affine curvature. Since the
signature curve of an ellipse is a fixed point with constant
affine curvature, the signature curve of the limaçon can be
described as one which wobbles around two average ellipses.

6.4.4 Lemniscate (“figure eight”): symmetric

and asymmetric

Lemniscates with loops either equal or unequal in size were
examined. Single cycles of the traces of each of the two tem-
plates are shown in Figs. 8 and 9, respectively, together with
the corresponding affine functions and signature curves.

In contrast to the two previous curves, equi-affine speed
here has both positive and negative values. This results from
dσ representing the oriented area of the local affine frame.
The sign of the affine equi-speed reflects the orientation of
the motion, positive values corresponding to segments of
the curve traced counter-clockwise, and negative ones to
clockwise tracing. The equi-affine speed of these two figures
remains almost constant throughout each segment of a curve,
thus the one-third power law provides an accurate description
of the tracing of lemniscates. There is a sharp transition where
equi-affine speed changes sign between adjacent segments.
This zero-crossing of the equi-affine speed is due to passage
through inflection points at which equi-affine functions are
not well defined.

The total equi-affine arc-length of an ellipse reflects the
area which it encloses. This also holds approximately true for
convex figures which are not precise ellipses. Since the sizes
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Fig. 7 An Oblate Limaçon:
typical results from the affine
analysis of the drawings of an
oblate limaçon. Shown are one
cycle of drawing (upper left

panel), a plot of the equi-affine
speed versus time for several
repetitions of the drawing of the
limaçon (upper right panel), a
“zoomed in” portion of the
upper right panel, showing the
equi-affine speed versus time for
one complete cycle of the
drawing (middle left panel) and
a plot of the equi-affine
arc-length versus time for
several repetitions of the
drawing (middle right panel).
Also shown is a plot of the
affine curvature versus time for
one complete cycle of the oblate
limaçon (bottom left panel) and
the corresponding affine
signature curve for one cycle of
the drawing (bottom right panel)
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of the two loops of the lemniscate in Fig. 8 are more or less
equal, the equi-affine arc-lengths along these loops are also
equal (but opposite in sign), as can be seen in Fig. 8 (mid-
dle right panel). In the asymmetrical lemniscate the areas
enclosed by the two loops differ, reflected by the positive
“drift” of its affine arc-length in Fig. 9 (middle right panel).
Notice that the magnitude of the equi-affine speed in the
two loops is similar, but tracing the larger loop takes longer.
This is the source for the larger equi-affine arc-length of that
segment.

Compared with the limaçon, the equi-affine curvature of
the lemniscate, as depicted in the bottom left panels of Figs. 8,
and 9, exhibits a less orderly pattern. However, for the sym-
metrical lemniscate, equi-affine curvature fluctuates around
an average positive value in the loop sections of the curve.
In contrast to both the limaçon and cloverleaf, equi-affine
curvature at some places drops sharply to large negative val-
ues. Similarly to equi-affine speed, these reflect the passage
through inflection points in between the two loops of the
figure. When coming out of a loop, and as the path straight-
ens, the hyperosculating conic changes to hyperbolas, the
conics with negative affine curvature. As the inflection point

is approached, the affine curvature drops towards −∞. This
running-off of the affine curvature towards −∞ is seen again
in the signature curves of the lemniscates. Interestingly, the
two signature curves in Figs. 8, and 9 are similar, implying
that they could not be used to distinguish between lemnis-
cates with varying ratio of loop sizes.

7 Discussion

We have applied a mathematical framework based on affine
differential geometry to the analysis of 2D drawing move-
ments. We show that the 2/3 power law is compatible with
the equi-affine velocity being piecewise constant and have
developed a mathematical formalism for analyzing and char-
acterizing human drawing movements based on the affine
differential properties of these trajectories. Our analysis
reveals that smooth hand trajectories are performed approx-
imately with piecewise constant equi-affine velocity. Some
trajectories, however, showed a patterned deviation from a
constant equi-affine velocity, as in the tracing of the figure
eight where the affine speed increased or decreased monot-
onously throughout each trajectory segment.
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Fig. 8 Symmetrical
lemniscate: typical results from
the affine analysis of the
drawings of a symmetrical
lemniscate. Shown are one cycle
of drawing (upper left panel), a
plot of the equi-affine speed
versus time for several
repetitions of the drawing of the
symmetrical lemniscate (upper

right panel), a “zoomed in”
portion of the upper right panel,
showing the equi-affine speed
versus time for one complete
cycle of the drawing (middle left

panel) and a plot of the
equi-affine arc-length versus
time for several repetitions of
the drawing (middle right

panel). Also shown is a plot of
the affine curvature versus time
for one complete cycle of the
symmetrical lemniscate (bottom

left panel) and the
corresponding affine signature
curve for one cycle of the
drawing (bottom right panel)
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Fig. 9 Asymmetrical
lemniscate: typical results from
the affine analysis of the
drawings of an asymmetrical
lemniscate. Shown are one cycle
of drawing (upper left panel), a
plot of the equi-affine speed
versus time for several
repetitions of the drawing of the
asymmetrical lemniscate (upper

right panel), a “zoomed in”
portion of the upper right panel,
showing the equi-affine speed
versus time for one complete
cycle of the drawing (middle left

panel) and a plot of the
equi-affine arc-length versus
time for several repetitions of
the drawing (middle right

panel). Also shown is a plot of
the affine curvature versus time
for one complete cycle of the
asymmetrical lemniscate
(bottom left panel) and the
corresponding affine signature
curve for one cycle of the
drawing (bottom right panel)
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We also show that the affine description has several impli-
cations with respect to the temporal properties of human arm
trajectories. These include the time scaling property of the
movements, which is compatible with the total equi-affine
arc-length being invariant under speed scaling. Furthermore,
we show that local isochrony is consistent with the observed
relation between the velocity gain factor and the Euclidean
perimeter, as was previously observed (Viviani and Cenzato
1985; Viviani 1986).

7.1 The two third power law, affine analysis and neural
dynamics

How can we explain the tendency observed during human and
monkey arm trajectories to comply with the 2/3 power law? A
general model for the representation of movement variables
in motor cortical areas involved movement encoding by using
population vectors (Georolgopoulos et al. 1988; Schwartz
1992). Many neurophysiological studies have shown that
population vectors calculated from the activities of neurons in
the monkey motor cortex correspond to movement direction
both in straight (Georolgopoulos et al. 1988) and in curved
trajectories (Schwartz 1993, 1994). Extracting movement
direction from the direction of the hand tangential velocity,
monkeys’ hand trajectories were successfully reconstructed
by summing up the calculated time series of population vec-
tors. The reconstructed trajectories preceded the actual
motion by roughly 100–150 ms, strengthening the interpre-
tation of a causal relationship between the neuronal activity
and hand motion.

Turning now to our issue of interest—the relation between
population vector dynamics and the one-third power law—
we explore the implications of our affine analysis of arm
movement generation for the neural coding of arm move-
ments. Massey et al. (1992) suggested that the law could
result from a constraint intrinsic to neural dynamics, which is
expressed in the rotation velocity of a dynamically changing
population vector. The important study by Schwartz (1994)
established a direct link between population vector dynam-
ics and the one-third power law by showing that the recon-
structed neural trajectories obey the power law. In order to
derive a quantitative constraint on neural dynamics, we take
as our starting point the correspondence between the popula-
tion vector Pv , and the tangential velocity vector of the hand
v (Schwartz 1994):

Pv ∼ v(t). (54)

As shown in Sect. 3.5, the one-third power law is equivalent
to movement at constant affine speed

σ̇ = |ẋ∧ẍ|
1
3 = constant.

In slightly different notation, this is the same as

v × v̇ = G, (55)

where “×” is the usual vector cross product and G is a con-
stant. By substituting relation (54) into (55) we have

Pv×Ṗv = G. (56)

The left-hand side of this equation has the form of angular
momentum of the population vector, although one should
keep in mind that it is not the usual mechanical angular
momentum, as Pv does not represent a position variable. The
equation expresses a conservation law which corresponds
to the evolution of the moving frame of the hand’s trajec-
tory under area-preserving transformations, i.e., elements of
SL(2).

According to a well known principle of dynamical sys-
tems, conserved quantities usually reflect an underlying sym-
metry, expressed in the equations governing their dynamics.
Conservation of angular velocity, in particular, reflects rota-
tional symmetry; it results from the motion being determined
by a central force field (Arnold 1989), i.e., one which depends
only on the size (“norm”) of the dynamical variable, and not
on its direction. The general form of a Lagrangian with a
central force field for the population vector is therefore

L = Ṗv
2 + f (| Pv |2), (57)

where f is an unspecified scalar function of the norm of the
population vector.

We verify that if neural dynamics are governed by this
Lagrangian, they result in the conservation of the angular
velocity of the population vector, and consequently—the one-
third power law. The Euler-Lagrange equation of (57) is

d

dt
Ṗv −

∂ f

∂(| Pv |2)
Pv = 0. (58)

Taking the vector product of Pv with the Euler–Lagrange
equation gives

0 = Pv×
d

dt
Ṗv + Pv×Pv

∂ f

∂(| Pv |2)
=

d

dt

(

Pv×Ṗv

)

; (59)

thus recovering Eq. (56).
In fact, nowhere in the cortex is there any real single quan-

tity corresponding to a population vector; rather, a popula-
tion vector is a computational and conceptual tool serving as
a condensed representation of distributed neuronal activity.
The importance of Eq. (57) is, therefore, not in its explicit
form, but that it may reflect a structural constraint inherent in
the connectivity patterns and the dynamics of cortical neuron
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populations. In order to infer such constraints, neural net-
work models of cortical areas are needed for which Eq. (57)
can either restrict the model architecture or the parameter
regime. One such model was designed specifically to repro-
duce hand movement generation (Lukashin et al. 1996). Ano-
ther study showed how a network can lock onto and follow
moving oriented stimuli (Ben-Yishai et al. 1997) or model
hand trajectory generation (Ben-Yishai et al. 1995).

It is possible that variational principles such as aiming
to generate maximally smooth movements lead to the plan-
ning of hand trajectories obeying the two-thirds power law
(Richardson and Flash 2002). The minimization of other
costs, such as variance (Harris and Wolpert 1998), also results
in movements obeying this law. It is also possible that such
variational principles are reflected in the dynamics of neural
populations.

The above variational principle derived for the popula-
tion vector is consistent with the power law and may be the
underlying cause for the observed coupling between Euclid-
ean curvature and velocity. Furthermore, the notion that each
segment is performed at a constant equi-affine velocity points
to an interesting analogy between a Kepler-like Law and the
two-thirds power law by suggesting that the population vec-
tor sweeps equal areas within equal times, similarly to the
position vector in Kepler’s law.

When motor cortical activities were recorded while mon-
keys traced figure-eights (lemniscates) on a touch-sensitive
computer monitor, population vectors constructed from these
activities accurately and isomorphically represented the
shape of the drawn figures (Schwartz and Moran 1999).
The neural representation of the drawing was segmented in
the same way as the movements and the two-thirds power
law was evident in the neural correlate of the hand trajectory.
These findings are therefore consistent with the two-thirds
power law reflecting the underlying neural dynamics. This
idea is also supported by smooth pursuit eye movements that
apparently also obey the two-thirds power law (de’Sperati
and Viviani 1997). Hence, this law may express some gen-
eral principles of operation common to the different modules
controlling the motor output of both the eye and the arm.

de’Sperati and Viviani (1997) further suggested that the
neural events underlying directional coding may have their
own dynamics: the larger the change in direction, the longer
it takes to rotate the population vector. Thus, as Pellizzer et
al. (1993) also hypothesized, the two-thirds power law may
express a limitation on the rate at which higher control com-
mands can modulate the activity of neural pools collectively
coding the direction of a forthcoming movement. Moreover,
since smooth pursuit eye movements also comply with this
law, this may indicate that the same basic neural constraints
apply across different neuronal pools.

Moran and Schwartz (1999a,b) and Schwartz and Moran
(1999) have used drawing movements by monkeys to cal-

culate the prediction interval describing the time interval
between the population vector and the movement direction
that best matched that direction. This interval increased in
regions of high curvature that were also regions of low speed.
The interval between the magnitude of the movement speed
and the magnitude of population vectors varied directly with
speed. Since the same population of cells codes for both
direction and speed, the effective expression of this repre-
sentation is reciprocal, occurring in different parts of each
movement segment.

The population vectors in the Schwartz and Moran stud-
ies and in earlier studies by Georgopoulos and colleagues
(Georolgopoulos et al. 1982, 1988) were represented in a lab-
oratory-fixed Euclidean coordinate system. However, given
our hypothesis that the affine metric is more appropriate for
describing the neural coding of arm movements, using an
affine moving coordinate system and representing the popu-
lation vector in such a frame may lead to new and interesting
findings on the behavior of the population vector and the
prediction intervals. We have begun examining these possi-
bilities by analyzing whether both neural activities and arm
movements follow the power law during monkey drawing
and whether affine differential variables subserve the repre-
sentation of such movements (Polyakov et al. 2001).

7.2 On the relation between motion perception and action

Pollick and Sapiro (1997) have suggested that the power law
may result from attempting to achieve affine invariance of
the perceived movement under different visual viewing con-
ditions. Related to this hypothesis, findings by Viviani and
Stucchi (1989, 1992) indicate that the action and perceptual
systems share similar invariants. The visual system is sensi-
tive to the covariation between velocity and curvature which
constrain biological motion. Thus, when this biological con-
straint is satisfied, a dot following a simple ellipse appears to
move at a constant speed, although its velocity is highly non-
uniform (Viviani and Stucchi 1989, 1992). More recently,
Levit-Binnun et al. (2006) have confirmed this phenomenon
using different elliptical trajectories with a large range of
eccentricities, perimeters and different speeds. Furthermore,
both de’Sperati and Viviani (1997) and Levit-Binnun et al.
(2006) have demonstrated that the source of this behavior
does not lie in the occulo-motor system, since the dynamic
illusion is largely independent of eye movements.

To explain the findings of Viviani and Stucchi (1989,
1992), Pollick and Sapiro (1997) have pointed out that only
a two-thirds power law is compatible with a constant affine
velocity. Thus, two curves related to each other by an affine
transformation are traveled with the same affine velocity,
only if the affine velocity is governed by the 1/3 power of
Euclidean radius of curvature. Any other curve will not be
affine invariant (Pollick and Sapiro 1997).
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Why is it advantageous that visual perception and motor
production share a common representation and why should
this representation be invariant under affine transformations?
Viviani and Stucchi (1989, 1992) suggested that the observed
similarities between visual perception and motor production
arise from the influence of the active production of move-
ments on visual perception. In contrast, Pollick and Sapiro
(1997) argue that an affine perceptual encoding of visual form
and movement has certain advantages and that the effects of
visual perception on motor generation should not be exclu-
ded. For example, affine properties of shape are invariant to
the relative orientation of the eye and the plane of a drawing
motion. This may simplify both visual perception and motor
production. Nevertheless, another plausible explanation for
the reported similarities between the production of biological
movements and their visual perception is that they may arise
from similarities between the internal neural representations
subserving both tasks and that these representations are best
described in terms of equi-affine metrics (Levit-Binnun et al.
2006). Recently, we have conducted several studies aimed
at relating the “macroscopic” type of constraints described
here to neural activities recorded in cortical areas involved
in motor and visuo-motor representations (Polyakov et al.
2001). Our findings from such studies will be described in a
separate paper.

7.3 Equi-affine analysis and motion primitives

Another focus of the present analysis is on the hypothesis
that complicated movements are constructed from a rep-
ertoire of basic motion primitives. We suggest that affine
geometrical analysis can be used to further examine this
hypothesis. Our analysis has already led to several inter-
esting suggestions concerning movement segmentation and
motor primitives. In particular, the equi-affine description
has allowed us to define interesting relations between the
equi-affine arc-length, Euclidean perimeter and the velocity
gain factor which is equivalent to the equi-affine velocity.
We have also developed mathematical tools that have allo-
wed us to compare among the geometrical characteristics
of different drawing movements, by examining the param-
eter-dependent profiles of these affine variables (e.g., affine
arc-length and affine curvature) and the signature curves of
these movements. While here, signature curves were only
derived for complete figural forms, in ongoing studies, we
have began to use these tools to examine to what extent
different movement segments have been generated from a
common template. Here, we want to emphasize, however,
that our analysis of drawing movements suggests a possi-
ble geometrical nature for the underlying motion units and
bears some relationship to earlier suggestions concerning
what strokes may constitute such primitives. Soechting and
Terzuolo (1987b) suggested that movement segments may

be elliptical. As discussed here, ellipses are conics with con-
stant positive affine curvature. However, the drawing move-
ments analyzed here were not composed of elliptic segments.
On the other hand, our recent analysis of monkey drawing
movements has indicated that with practice monkeys tended
to generate drawing movements that could be well modeled
as a sequence of parabolic-like segments. Thus, based on
the analysis of human hand trajectories that emerge follow-
ing extensive practice (Sosnik et al. 2004), and affine differ-
ential analysis of monkey scribbling movements (Polyakov
et al. 2001), it seems that drawing movements, in spite of
their apparent continuity, are constructed of individual seg-
ments which are either straight or consist of curved, e.g., par-
abolic segments. Preliminary evidence supporting the notion
that parabolic segments constitute an important primitive in
human and monkey drawing movements, was discussed in
Polyakov et al. (2001). Although any sufficiently smooth
curve can be fitted with any specified precision by a sequence
of parabolic segments, our observations have shown that
monkey drawing movements are composed of a small
number of relatively long parabolic segments. These find-
ings will be described in greater detail in a forthcoming
publication.

Finally, it is interesting to compare the equi-affine analysis
presented here and the notions underlying optimization mod-
els. Previously it was shown that the experimentally obser-
ved exponents of a power law relationship between Euclidean
velocity and curvature can be accounted for by assuming that
the trajectories maximized motion smoothness (Viviani and
Flash 1995; Richardson and Flash 2002). Thus, based on this
result we have began to combine the analysis of hand trajecto-
ries using the affine differential geometry approach described
here and trajectory formation models based on the optimi-
zation of kinematically defined objective functions (Poly-
akov et al. 2001). Another parameter required to describe
a movement along a given path segment is the time nee-
ded to move along such segment. If, however, the movement
is performed at a constant equi-affine speed, there is a lin-
ear relationship between the time needed to reach any point
within the segment and the equi-affine length traveled till this
point. We have demonstrated the relationship between the
local isochrony principle and the equi-affine description. Fur-
ther theoretical developments and the testing of their valid-
ity based on experimental data will be discussed in a future
manuscript.

Given the success of the affine analysis in accounting for
a large number of geometrical and temporal features of hand
trajectories, we believe that our analysis of hand trajectories
in terms of the underlying geometry does shed new light on
fundamental questions such as the relation between motion
perception and production, the underlying motor primitives,
and the metrics that may subserve internal motor and visuo-
motor representations.
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