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Affine Hecke algebras and raising operators

for Macdonald polynomials

Anatol N.KIRILLOV∗1 and Masatoshi NOUMI∗2

Introduction.

In this paper we introduce certain raising operators and lowering operators for
Macdonald polynomials (of type An−1) by means of the Dunkl operators due to
I. Cherednik. The raising operators we discuss below are a natural q-analogue of
the raising operators for Jack polynomials introduced by L. Lapointe and L. Vinet
[LV1, LV2]. As an application of our raising operators, we will prove the integrality
of double Kostka coefficients which had been conjectured by I.G.Macdonald [Ma1]
(apart from the positivity conjecture). We will also include some application to a
double analogue of the multinomial coefficients.

Let K = Q(q, t) be the field of rational functions in two indeterminates (q, t)
and K[x]W the algebra of symmetric polynomials in n variables x = (x1, · · · , xn)
over K, W being the symmetric group Sn of degree n. The Macdonald polynomials
Pλ(x) = Pλ(x; q, t) (or symmetric functions with two parameters, in the terminology
of I.G.Macdonald [Ma1]), are a family of symmetric polynomials parametrized
by partitions, and they form a K-basis of K[x]W . One way to characterize these
polynomials is, among others, to consider the joint eigenfunctions in K[x]W for the
commuting family of q-difference operators

(1) D(r)
x = t(

r

2)
∑

I⊂[1,n]
|I|=r

∏

i∈I
j 6∈I

txi − xj

xi − xj

∏

i∈I

Tq,xi
(r = 0, 1, · · · , n).

The Macdonald polynomial Pλ(x) is characterized as the joint eigenfunction of D
(r)
x

(r = 0, 1, · · · , n) that has the leading term mλ(x) under the dominance order of
partitions when it is expressed as a linear combination of monomial symmetric
functions mµ(x). As in [Ma1] (VI.8.3), we also use another normalization Jλ(x) =
cλPλ(x), called the “integral form” of Pλ(x).

We define the operators Bm and Am (m = 0, 1, · · · , n), involving q-shift operators
and permutations, as

Bm =
∑

k1<k2<···<km

xk1
· · ·xkm

(1 − tmYk1
)(1 − tm−1Yk2

) · · · (1 − tYkm
),(2)

Am =
∑

k1<k2<···<km

1

xk1
· · ·xkm

(1 − Y ∗
k1

)(1 − tY ∗
k2

) · · · (1 − tm−1Y ∗
km

),
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by means of the Dunkl operators Yk and their dual version Y ∗
k (k = 1, · · · , n).

The Dunkl operators for Macdonald polynomials, defined in terms of a represen-
tation of the (extended) affine Hecke algebra, are due to Cherednik [C]. (For our
normalization of Yk and Y ∗

k , see Section 2.) The main result of this paper is:

Theorem 1. The operators Bm and Am are raising and lowering operators, re-
spectively, in the sense that

(3) BmJλ(x) = Jλ+(1m)(x), and AmJλ(x) = aλJλ−(1m)(x),

for each partition λ with ℓ(λ) ≤ m, with some aλ ∈ Z[q, t].

(See Theorem 3.1 in Section 3.)
Theorem 1 implies that, for any partition λ = (λ1, · · · , λn), the Macdonald poly-

nomial Jλ(x) is obtained by a successive application of the operators Bm starting
from J0(x) = 1:

(4) Jλ(x) = (Bn)λn(Bn−1)
λn−1−λn · · · (B1)

λ1−λ2(1).

We can make use of this expression to study transition coefficients between Macdon-
ald polynomials Jλ(x) = Jλ(x; q, t) and other symmetric functions. In particular
we have

Theorem 2. For any partition λ and µ, the double Kostka coefficient Kλ,µ(q, t) is
a polynomial in q and t with integral coefficients.

(See Theorem 3.2). Let us recall ([Ma1], (VI.8.11)) that the double Kostka coeffi-
cients (or (q, t)-Kostka coefficients) Kλ,µ(q, t) are defined via decomposition

(5) Jµ(x; q, t) =
∑

λ

Kλ,µ(q, t)Sλ(x; t),

where Sλ(x; t) are the so-called big Schur functions ([Ma1], (III.4.5)). Theorem
2 gives a partial affirmative answer to the conjecture of Macdonald proposed in
[Ma1], (VI.8.18?).

It also turns out that the raising operators Bm and the lowering operators Am

preserve the ring of symmetric functions K[x]W . On K[x]W , the action of these
operators is described by the following W -invariant q-difference operators

(Bm)sym =

m∑

r=0

(−1)rt(
r

2)+(m−n+1)r
∑

I⊂[1,n]
|I|=r

xIem−r(x[1,n]\I)aI(x)T I
q,x,(6)

(Am)sym =
m∑

r=0

(−1)rt(
r

2)
∑

I⊂[1,n]
|I|=r

x−1
I em−r(x

−1
[1,n]\I

)aI(x)T I
q,x,

respectively (Theorem 7.1). Here we used the abbreviated notations

(7) xI =
∏

i∈I

xi, T I
q,x =

∏

i∈I

Tq,xi
, aI(x) =

∏

i∈I
6∈

txi − xj

xi − xj

,
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and, for a subset J ⊂ [1, n], es(xJ ) denotes the elementary symmetric function of
degree s in the variables (xj)j∈J .

After some preliminaries on Macdonald’s q-difference operators and the Dunkl
operators (Sections 1 and 2), we formulate our main results in Section 3. Theorem 1
will be proved in Sections 5 and 6 by means of the Mimachi basis (defined in Section
4), which is a family of rational functions in two sets of variables that realizes some
representation of the Hecke algebra. Explicit formulas (6) for the raising and the
lowering q-difference operators will be determined in Section 7.

In the last section, we will give an application of our results to some combinatorial
problem. We will introduce a double analogue of the multinomial coefficients in
terms of the so-called modified Macdonald polynomials. The modified Macdonald

polynomials J̃λ(x; q, t) are defined using the λ-ring notations as

(8) J̃λ(x; q, t) = Jλ(
x

1 − t
; q, t).

It is well-known (see e.g. [GH]) that the double Kostka coefficients are characterized
also as the transition coefficients between the modified Macdonald polynomials and
the Schur functions:

(9) J̃µ(x; q, t) =
∑

µ

Kλ,µ(q, t) sλ(x).

Let us introduce a family of polynomials Bλ,µ(q, t) via decomposition

(10) J̃λ(x; q, t) =
∑

µ

Bλ,µ(q, t) mµ(x)

in terms of the monomial symmetric functions. The polynomiality of these coeffi-
cients follows from our Theorem 2. Note also that Bλ,µ(q, t) = 0 unless |λ| = |µ|.

Theorem 3. For any partitions λ and µ with |λ| = |µ|, we have

(1) Bλ,µ(q, t) ∈ Z[q, t],

(2) Bλ,µ(1, 1) =

(
|µ|

µ1, µ2, · · ·

)
,

(3) B(ℓ),µ(q, t) = qn(µ′)

[
|µ|

µ1, µ2, · · ·

]

q

if ℓ = |µ|,

(4) Bλ′,µ(q, t) = qn(λ′)tn(λ)Bλ,µ(t−1, q−1).

It follows from Macdonald’s conjecture [Ma1], (VI.8.18?) that

Conjecture 4?. Bλ,µ(q, t) ∈ N[q, t] for any partitions λ and µ.

Hence, one can consider the polynomials Bλ,µ(q, t) as a natural two-parameter
deformation of the classical multinomial coefficients.

The authors would like to express their thanks to Professor Katsuhisa Mimachi
for valuable discussions.

Notes : After we completed this paper, we found a direct proof for the fact that
the q-difference operators (6) are raising operators for Macdonald polynomials. This
method, without Dunkl operators, also provides an elementary proof of the inte-
grality of double Kostka coefficients. For this direct approach, see our forthcoming
paper [KN].
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Raising operators for Macdonald polynomials 5

§1: Macdonald’s q-difference operators.

In this section, we will make a brief review of some basic properties of the
Macdonald polynomials (associated with the root system of type An−1, or the
symmetric functions with two parameters) and the commuting family of q-difference
operators which have Macdonald polynomials as joint eigenfunctions. For details,
see Macdonald’s book [Ma1].

Let K = Q(q, t) be the field of rational functions in two indeterminates q, t
and consider the ring K[x] = K[x1, · · · , xn] of polynomials in n variables x =
(x1, · · · , xn) with coefficients in K. Under the natural action of the symmetric
group W = Sn of degree n, the subring of all symmetric polynomials will be
denoted by K[x]W .

The Macdonald polynomials Pλ(x) = Pλ(x; q, t) (associated with the root system
of type An−1) are symmetric polynomials parametrized by the partitions λ =
(λ1, · · · , λn) (λi ∈ Z, λ1 ≥ · · · ≥ λn ≥ 0). They form a K-basis of the invariant ring
K[x]W and are characterized as the joint eigenfunctions of a commuting family of

q-difference operators {D
(r)
x }n

r=0. For each r = 0, 1, · · · , n, the q-difference operator

D
(r)
x is defined by

(1.1) D(r)
x =

∑

I⊂[1,n]
|I|=r

t(
r

2)
∏

i∈I
j 6∈I

txi − xj

xi − xj

∏

i∈I

Tq,xi
,

where Tq,xi
stands for the q-shift operator in the variable xi : (Tq,xi

f)(x1, · · · , xn) =
f(x1, · · · , qxi, · · · , xn). The summation in (1.1) is taken over all subsets I of the

interval [1, n] = {1, 2, · · · , n} consisting of r elements. Note that D
(0)
x = 1 and

D
(n)
x = t(

n

2)Tq,x1
· · ·Tq,xn

. Introducing a parameter u, we will use the generating
function

(1.2) Dx(u) =

n∑

r=0

(−u)rD(r)
x

of these operators {D
(r)
x }n

r=0. Note that the operator Dx(u) has the determinantal
expression

(1.3) Dx(u) =
1

∆(x)
det(xn−i

j (1 − utn−iTq,xj
); 1 ≤ i, j ≤ n),

where ∆(x) =
∏

1≤i<j≤n(xi − xj) is the difference product of x1, · · · , xn. It is well

known that the q-difference operators D
(r)
x (0 ≤ r ≤ n) commute with each other,

or equivalently, [Dx(u), Dx(v)] = 0. Furthermore the Macdonald polynomial Pλ(x)
satisfies the q-difference equation

(1.4) Dx(u)Pλ(x) = cn
λ(u)Pλ(x), with cn

λ(u) =
n∏

i=1

(1 − utn−iqλi),

for each partition λ = (λ1, · · · , λn). Recall that each Pλ(x) can be written in the
form

(1.5) Pλ(x) = mλ(x) +
∑

uλµmµ(x) (uλµ ∈ K),
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where, for each partition µ, mµ(x) stands for the monomial symmetric function
of monomial type µ, and ≤ is the dominance order of partitions. The Macdonald
polynomials Pλ(x) are determined uniquely by the conditions (1.4) and (1.5).

We recall here on the “reproducing kernel” of the Macdonald polynomials. Con-
sider another set of variables y = (y1, · · · , ym) and assume that m ≤ n. We define
the function Π(x, y) = Π(x, y; q, t) by

(1.6) Π(x, y) =
∏

1≤i≤n
1≤j≤m

(txiyj ; q)∞
(xiyj ; q)∞

,

where (x; q)∞ =
∏∞

k=0(1 − xqk). The convergence of the infinite product above
may be understood in the sense of formal power series (or of absolute convergence
assuming that q is a complex variable with |q| < 1). It is known that the function
Π(x, y) has the expression

(1.7) Π(x, y) =
∑

ℓ(λ)≤m

bλPλ(x)Pλ(y) (bλ ∈ K),

where the summation is taken over all partitions λ with length ≤ m, and each
partition λ = (λ1, · · · , λm, 0, · · · , 0) with ℓ(λ) ≤ m is identified with the truncation
(λ1, · · · , λm) when it is used as the suffix for Pλ(y). The coefficients bλ = bλ(q, t)
in (1.7) are determined as

(1.8) bλ =
∏

s∈λ

1 − tℓ(s)+1qa(s)

1 − tℓ(s)qa(s)+1
,

in terms of the leg-length ℓ(s) = λ′
j − i and the arm-length a(s) = λi − j for a box

s = (i, j) in the Young diagram representing the partition λ.
We remark that, by (1.4), expression (1.7) is equivalent to the formula

(1.9) Dx(u)Π(x, y) = (u; t)n−mDy(utn−m)Π(x, y).

Since

(1.10) Dx(u) =
∑

I⊂[1,n]

(−u)|I|t(
|I|
2 )
∏

i∈I
j 6∈I

txi − xj

xi − xj

∏

i∈I

Tq,xi
,

We have

(1.11) Dx(u)Π(x, y) = Π(x, y)F (u; x, y),

where

(1.12) F (u; x, y) =
∑

I⊂[1,n]

(−u)|I|t(
|I|
2 )
∏

i∈I
j 6∈I

txi − xj

xi − xj

∏

i∈I
1≤k≤m

1 − xiyk

1 − txiyk

.

Hence formula (1.9) is also equivalent to

(1.13) F (u; x, y) = (u; t)n−mF (utn−m; y, x).

(See also [MN1].)
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§2: Affine Hecke algebras and the Dunkl operators.

By the work of I. Cherednik [C], it is known that Macdonald’s q-difference op-

erators {D
(r)
x } are reconstructed from the structure of affine Hecke algebras. We

recall here how the Dunkl operators for Macdonald polynomials are defined, and
how Macdonald’s commuting family of q-difference operators are recovered from
the Dunkl operators. (See also I.G.Macdonald [Ma2], and A.A.Kirillov Jr. [KJr].)
Our convention of the affine Hecke algebra and the definition of Dunkl operators
are slightly different from the ones in the references cited above.

We denote by P = Zǫ1 ⊕ · · · ⊕ Zǫn the free Z-module of rank n with basis
{ǫi}

n
i=1 and take the canonical symmetric bilinear form 〈 , 〉 : P ×P → Z such that

〈ǫi, ǫj〉 = δij for each 1 ≤ i, j ≤ n. The elements of P will be called (integral)
weights, and a weight λ =

∑n
i=1 λiǫi ∈ P will be identified freely with the n-tuple

of integers (λ1, · · · , λn). The action of the Weyl group W = Sn on P will be fixed
so that w(ǫi) = ǫw(i) for i = 1, · · · , n, namely, w(λ)i = λw−1(i) for each λ ∈ P
and i = 1, · · · , n. We will take the simple roots αi = ǫi − ǫi+1 and the simple
transpositions si = (i, i + 1) for i = 1, · · · , n − 1, as usual.

From this section on, we set τi = τxi
= Tq,xi

(i = 1, · · · , n) to avoid the conflict
with the notation of Hecke algebras. We use the notation of multi-indices both for
the multiplication operators and for the q-shift operators:

(2.1) xλ = xλ1
1 · · ·xλn

n and τµ = τµ1

1 · · · τµn

n

for each λ = (λ1, · · · , λn), µ = (µ1, · · · , µn) ∈ P . We denote by Dq,x = K(x)[τ±1]
the K-subalgebra of EndK(K(x)) generated by the multiplication by elements of
K(x) and the q-shift operators τµ (µ ∈ P ):

(2.2) Dq,x = K(x)[τ±1] =
⊕

µ∈P

K(x)τµ.

Note that the q-shift operators τµ act on K(x) as K-algebra automorphisms and that
the commutation relations between multiplication operators and q-shift operators
are determined accordingly. In particular we have

(2.3) τµxλ = q〈µ, λ〉xλτµ (λ, µ ∈ P ).

Each element w of the Weyl group W = Sn acts on K(x) as the K-algebra auto-
morphism of K(x) such that w(xi) = xw(i) for i = 1, · · · , n. We denote by Dq,x[W ]
the K-algebra of q-difference operators involving permutations:

(2.4) Dq,x[W ] =
⊕

w∈W

Dq,xw =
⊕

µ∈P,w∈W

K(x)τµw.

Note that we have the commutation relations

(2.5) w xλ = xw(λ)w and w τµ = τw(µ)w

for all λ, µ ∈ P and w ∈ W .
The K-subalgebra K[τ±1; W ] of Dq,x[W ], generated by the q-shift operators and

the Weyl group, is isomorphic to the group ring K[W̃ ] of the extended affine Weyl
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group W̃ = P ⋊ W . Let us describe the commutation relations of this algebra
in terms of generators. Firstly, the Weyl group W is generated by the simple
transpositions si (i = 1, · · · , n − 1). We define the element s0 (corresponding to
the affine simple root δ − ǫ1 + ǫn) by

(2.6) s0 = sǫ1−ǫn
τ1τ

−1
n .

These elements s0, s1, · · · , sn−1 generate the affine Weyl group W aff = Q∨⋊W , Q∨

being the coroot lattice. Note that W aff = Q∨⋊W is a subgroup of our W̃ = P ⋊W .
The fundamental relations among s0, s1, · · · , sn−1 are given by

(i) s2
i = 1 (i = 0, 1, · · · , n − 1),

(ii) sisj = sjsi (|i− j| ≥ 2),(2.7)

(iii) sisjsi = sjsisj (|i− j| = 1),

if n ≥ 3. Here the suffices for s0, s1, · · · , sn−1 are understood as elements of Z/nZ,
and |a| stands for the representative r of the class a + nZ such that 0 ≤ r < n.
If n = 2, the fundamental relations are simply given by (2.7.i). In order to obtain

the whole extended affine Weyl group W̃ = P ⋊ W , we need to adjoin an element,
denoted by ω below, corresponding to the rotation of the Coxeter diagram. We set

(2.8) ω = sn−1sn−2 · · · s1τ1 = τnsn−1sn−2 · · · s1.

As to this element ω, we have the commutation relations

(2.9) (iv) ω si = si−1 ω (i = 0, 1, · · · , n − 1).

We remark that ω has the infinite order in our W̃ , and that ωn coincides with the

Euler operator τ1 · · · τn. Summarizing, the extended affine Weyl group W̃ = P ⋊W
is generated by s0, s1, · · · , sn−1 and ω, and their fundamental relations are given
by (i) – (iv) in (2.7) and (2.9). Note also that the q-shift operators τ1, · · · , τn are
recovered by the formula

(2.10) τi = sisi+1 · · · sn−1 ω s1 · · · si−1

for i = 1, · · · , n − 1.

One important fact is that the Hecke algebra H(W̃ ) of the extended affine Weyl

group W̃ = P ⋊ W can be realized in the algebra Dq,x[W ] of q-difference operators
with permutations. We define the elements Ti (i = 0, 1, · · ·n − 1) in Dq,x[W ] by

(2.11) Ti = t +
1 − txi/xi+1

1 − xi/xi+1
(si − 1)

for i = 1, · · · , n − 1 and

(2.12) T0 = t +
1 − tqxn/x1

1 − qx /x
(s0 − 1).
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Then the following relations are verified in Dq,x[W ]:

(i) (Ti − t)(Ti + 1) = 0 (i = 0, 1, · · · , n − 1),

(ii) TiTj = TjTi (|i − j| ≥ 2),(2.13)

(iii) TiTjTi = TjTiTj (|i − j| = 1),

(iv) ω Ti = Ti−1 ω (i = 0, 1, · · · , n − 1),

with indices understood as elements of Z/nZ. We denote by H(W̃ ) the subalge-
bra of Dq,x[W ] generated by T0, T1, · · · , Tn−1 and ω±1. One can also show that
(2.13) gives a complete list of the fundamental relations among the generators
T0, T1, · · · , Tn−1 and ω±1. This is a realization of the extended affine Hecke alge-
bra (defined by the generators T0, · · · , Tn−1, ω

±1 and the relations (i) – (iv) above)
in the algebra of q-difference operators with permutations. Note also that the
K-subalgebra of Dq,x[W ] generated by T1, · · · , Tn−1 is isomorphic to the Hecke
algebra H(Sn) of the symmetric group. In what follows, we will also use the
operators T i = t−1Ti (i = 0, 1, · · · , n − 1), which satisfy the quadratic relations
(T i − 1)(T i + t−1) = 0.

We now define the Dunkl operators Y1, · · · , Yn and the dual Dunkl operators

Y ∗
1 , · · · , Y ∗

n in the extended affine Hecke algebra H(W̃ ). For each i = 1, · · · , n, we
set

Yi = T iT i+1 · · ·Tn−1 ω T
−1

1 · · ·T
−1

i−1(2.14)

= t−n+2i−1 TiTi+1 · · ·Tn−1 ω T−1
1 · · ·T−1

i−1

and

Y ∗
i = T

−1

i T
−1

i+1 · · ·T
−1

n−1 ω T 1 · · ·T i−1(2.15)

= tn−2i+1T−1
i T−1

i+1 · · ·T
−1
n−1 ω T1 · · ·Ti−1.

Note that Y1 = T 1T 2 · · ·Tn−1 ω and Yn = ω T
−1

1 · · ·T
−1

n−1. Comparing these formu-
las with (2.10), one sees that both Yi and Y ∗

i reduce to τi when t → 1. By (2.13),
one can show that the Dunkl operators Y1, · · · , Yn commute with each other, and
that

(2.16) H(W̃ ) =
⊕

w∈W

K[Y ±1]Tw =
⊕

µ∈P, w∈W

K Y µTw,

where Y µ = Y µ1

1 · · ·Y µn
n . For each w ∈ W , Tw and Tw is defined by

(2.17) Tw = Ti1 · · ·Tip
, Tw = T i1 · · ·T ip

= t−ℓ(w)Tw

by taking any reduced decomposition w = si1 · · · sip
(1 ≤ i1, · · · , ip ≤ n − 1);

these elements do not depend on the choice of reduced decompositions. The Dunkl
operators satisfy the following commutation relations with T 1, · · · , Tn−1:

T iYi+1T i = Yi, TiYj = YjTi (j 6= i, i + 1),(2.18)

T iY
∗T i = Y ∗ , TiY

∗ = Y ∗Ti (j 6= i, i + 1),
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for i = 1, · · · , n − 1.
Let us define a K-algebra homomorphism η : K[τ±1] → K[Y ±1] by the substitu-

tion τi 7→ tn−iYi for i = 1, · · · , n. Then it is known that η induces the isomorphism

(2.19) η : K[τ±1]W
∼
−→ ZH(W̃ )

from the invariant ring K[τ±1]W onto the center of H(W̃ ) (Bernstein’s theorem).
This theorem also implies that, for any f = f(τ) ∈ K[τ±1]W , the operator η(f) =
f(tn−1Y1, t

n−2Y2, · · · , Yn) ∈ Dq,x[W ] is W -invariant, hence preserves the K-algebra

K[x]W of symmetric polynomials. In this way, the center ZH(W̃ ) of the extended
affine Hecke algebra provides a commuting family of q-difference operators acting on
K[x]W . It turns out also that this family of operators is diagonalized simultaneously
by the Macdonald polynomials Pλ(x). In fact we have

(2.20) f(tn−1Y1, t
n−2Y2, · · · , Yn)Pλ(x) = f(tn−1qλ1 , tn−2qλ2 , · · · , qλn)Pλ(x),

for any partition λ = (λ1, · · · , λn). In particular, the q-difference operator Dx(u) of

Macdonald can be recovered as the restriction of an operator in ZH(W̃ ). Namely
we have

(2.21) (1 − utn−1Y1)(1 − utn−2Y2) · · · (1 − uYn)|K[x]W = Dx(u).

We remark that the dual Dunkl operators Y ∗
1 , · · · , Y ∗

n defined by (2.15) also
have properties similar to Y1, · · · , Yn in relation to Macdonald polynomials. They
commute with each other, and are related with Macdonald’s q-difference operator
through the formula

(2.22) (1 − uY ∗
1 )(1 − utY ∗

2 ) · · · (1 − utn−1Y ∗
n )|K[x]W = Dx(u).

(See Section 4.)

§3: Raising operators and transition coefficients.

In this section we introduce certain raising and lowering operators for Macdonald
polynomials. After stating our main result (Theorem 3.1), we discuss some of its
consequences, including the polynomiality and the integrality of transition coeffi-
cients related to Macdonald polynomials. At the end of this section, we formulate
the key lemma for the proof of Theorem 3.1, and give a direct proof for a special
case, to show some of the ideas in our proof of the general case in Sections 4–6.

By means of the Dunkl and the dual Dunkl operators, we can construct cer-
tain raising and lowering operators for Macdonald polynomials. Using the Dunkl
operators Y1, · · · , Yn of (2.14), we define the operator Bx

m ∈ Dq,x[W ] by

(3.1) Bx
m =

∑

1≤k1<···<km≤n

xk1
· · ·xkm

(1 − tmYk1
)(1 − tm−1Yk2

) · · · (1 − tYkm
).

for each m = 1, 2, · · · , n. Similarly we define the operator Ax
m ∈ Dq,x[W ] by

(3.2) Ax
m =

∑

1≤k1<···<km≤n

1

xk1
· · ·xkm

(1 − Y ∗
k1

)(1 − tY ∗
k2

) · · · (1 − tm−1Y ∗
km

),

where the Y ∗, · · · , Y ∗ are the dual Dunkl operators defined in (2.15).
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Theorem 3.1. (1) The operators Bx
m ∈ Dq,x[W ] (m = 1, · · · , n) are raising oper-

ators for the Macdonald polynomials such that

(3.3) Bx
m Pλ(x) =

m∏

i=1

(1 − tm−i+1qλi)Pλ+(1m)(x)

for all partition λ with ℓ(λ) ≤ m, where (1m) = ǫ1 + · · · + ǫm.
(2) The operators Ax

m ∈ Dq,x[W ] (m = 1, · · · , n) are lowering operators for the
Macdonald polynomials such that

(3.4) Ax
m Pλ(x) =

m∏

i=1

(1 − tm−iqλi)(1 − tn−i+1qλi−1)

(1 − tm−i+1qλi−1)
Pλ−(1m)(x)

if ℓ(λ) ≤ m. In particular, one has Ax
m Pλ(x) = 0 if ℓ(λ) < m.

The proof of Theorem 3.1 will be given later in Sections 4, 5 and 6. On the
K-algebra K[x]W of symmetric polynomials, the operators Bx

m and Ax
m act as q-

difference operators. Explicit formulas for these q-difference operators will be given
in Section 7. In this section, we will discuss some of the consequences of Theorem
3.1.

From Theorem 3.1, it follows that the Macdonald polynomial Pλ(x) for any
partition λ can be obtained from the constant function P0(x) = 1 by an iterated
application of the raising operators Bx

m. Namely we have

(3.5) Pλ(x) = const. (Bx
n)λn(Bx

n−1)
λn−1−λn · · · (Bx

1 )λ1−λ2(1).

In other words,

(3.6) Pλ(x) = const. Bx
µ1

Bx
µ2

· · ·Bx
µs

(1),

where µ = (µ1, · · · , µs) (µ1 ≥ · · · ≥ µs > 0) is the conjugate partition λ′ of λ. If
we take the normalization

(3.7) Jλ(x) = cλPλ(x), cλ =
∏

s∈λ

(1 − tℓ(s)+1qa(s)),

of the Macdonald polynomials ([Ma1]), the action of the operator Bx
m and Ax

m are
given as follows:

Bx
mJλ(x) = Jλ+(1m)(x),(3.8)

Ax
mJλ(x) =

m∏

i=1

(1 − tm−iqλi)(1 − tn−i+1qλi−1) Jλ−(1m)(x)

for ℓ(λ) ≤ m. In particular we have

(3.9) Jλ(x) = (Bx
n)λn(Bx

n−1)
λn−1−λn · · · (Bx

1 )λ1−λ2(1).

Namely, the “const.” in (3.5) and (3.6) is precisely the reciprocal of the cλ men-
tioned above.
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We can make use of expression (3.9) to study transition coefficients for Mac-
donald polynomials Jλ(x) = Jλ(x; q, t). By (1.5) and (3.7), the “integral form”
Jλ(x; q, t) has an expression

(3.10) Jλ(x; q, t) = cλ(q, t)
∑

µ≤λ

uλµ(q, t) mµ(x),

where cλ(q, t) = cλ ∈ Z[q, t] as in (3.7) and uλµ(q, t) ∈ K = Q(q, t) (uλλ(q, t) = 1).
Following Macdonald [Ma1], Chapter VI, let us define the double Kostka coefficients
Kλ,µ(q, t) via decomposition

(3.11) Jµ(x; q, t) =
∑

λ

Kλ,µ(q, t)Sλ(x; t),

in terms of the big Schur functions Sλ(x; t) (by taking the stable limit as n → ∞,
to be more precise). For the definition of Sλ(x; t), we refer to [Ma1], (III.4.5). By
means of expression (3.9), we can prove that cλ(q, t)uλµ(q, t) and Kλµ(q, t) are in
the polynomial ring Z[q, t] with integral coefficients, for any partitions λ and µ.

Theorem 3.2. (1) For each partition λ, the Macdonald polynomial Jλ(x; q, t) is
expressed as a linear combination of monomial symmetric functions with coeffi-
cients in the ring Z[q, t].
(2) For any partitions λ and µ, the double Kostka coefficient Kλ,µ(q, t) is a poly-
nomial in q and t with integral coefficients.

Proof. Since the divided difference operators txi−xi+1

xi−xi+1
(si−1) (i = 1, · · · , n−1) pre-

serve the ring Z[t, t−1][x], so do the operators Ti as well as T−1
i . This implies that

the Dunkl operators Y1, · · · , Yn, and accordingly the raising operators Bx
m preserve

the ring Z[q; t, t−1][x]W . Hence we have Jλ(x; q, t) ∈ Z[q; t, t−1][x]W . Note that this
statement is valid for any n. Hence, also in infinite variables, Jλ(x1, x2, · · · ; q, t) is a
linear combination of monomial symmetric functions with coefficients in Z[q; t, t−1].
We can now apply the duality of Jλ(x1, x2, · · · ; q, t) and Jλ′(x1, x2, · · · ; t, q) with
respect to q and t in [Ma1], (VI.8.6), and conclude that Jλ(x1, x2, · · · ; q, t) is a
linear combination of monomial symmetric functions with coefficients regular at
t = 0, since the involution ωq,t does not give rise to any singularity at t = 0 or
q = 0. Hence the coefficients must belong eventually to Z[q, t]. This also implies
Jλ(x; q, t) ∈ Z[q, t][x]W , which proves Statement (1).
As in [Ma1], p.241, the transition coefficients between monomial symmetric func-
tions and big Schur functions have the form p(t)/q(t), where p(t), q(t) ∈ Z[t] and
q(0) = 1. Note in particular that they belong to the ring Q[t](t) of rational functions
in t, regular at t = 0. Combining this fact with Statement (1) of Theorem, we see
that each double Kostka coefficients can be written as a finite sum of the form

(3.12) Kλ,µ(q, t) =
∑

k≥0

p
(k)
λµ (t)

q
(k)
λµ (t)

qk,

where all p
(k)
λµ (t) and q

(k)
λµ (t) belong to Z[t] and q

(k)
λµ (0) = 1. In particular we have

Kλ,µ(q, t) ∈ Q[t](t)[q]. We can now apply the duality with respect to q and t
again, between Jλ(x; q, t) and Jλ′(x; t, q) and between Sλ(x; t) and Sλ′(x; q), to
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conclude Kλ,µ(q, t) = Kλ′,µ′(t, q) ([Ma1],(VI.8.15)). Hence, we have Kλ,µ(q, t) ∈
Q[t](t)[q]∩Q[q](q)[t]. By using Taylor expansions at t = q = 0, one can easily see that
the intersection of the two subalgebras Q[t](t)[q] and Q[q](q)[t] coincides precisely
with Q[q, t]. Hence we have Kλ,µ(q, t) ∈ Q[q, t]. In expression (3.12), it means that,

for any k, p
(k)
λµ (t)/q

(k)
λµ (t) ∈ Q[t], i.e., q

(k)
λµ (t) divides p

(k)
λµ (t). Since q

(k)
λµ (0) = 1, it

follows that p
(k)
λµ (t)/q

(k)
λµ (t) ∈ Z[t] for all k. Namely we have Kλ,µ(q, t) ∈ Z[q, t]. �

Our raising operators Bx
m (m = 0, 1, · · · , n) can be regarded as a natural q-

analogue of those introduced by Lapointe-Vinet [LV1, LV2] for Jack polynomials,
although the limits of our Bx

m does not give exactly their operators. For the com-
parison with the operators of Lapointe-Vinet, we look at the “quasi-classical limits”
of our operators as q → 1. Introducing the parameter β, let us take the limit as
q → 1 with rescaling t = qβ. Then our Dunkl operators Yk (k = 1, · · · , n) have the
following quasi-classical limits:

(3.13) Dk = lim
q→1

1 − Yk

1 − q
= xk

∂

∂xk

+ β
∑

α>0

〈α, ǫk〉

1 − xα
(sα − 1),

summed over all positive roots α = ǫi−ǫj (i < j). Note that these Dunkl operators
commute with each other, i.e., [Di,Dj] = 0. With these Dk, the quasi-classical
limit limq→1(B

x
m/(1 − q)m) of the raising operator Bx

m is given by

(3.14)
∑

k1<···<km

xk1
xk2

· · ·xkm
(Dk1

+ mβ)(Dk2
+ (m − 1)β) · · · (Dkm

+ β).

Similarly, the quasi-classical limits of the lowering operators Ax
m are given by

(3.15)
∑

k1<···<km

1

xk1
xk2

· · ·xkm

(D∗
k1

)(D∗
k2

+ β) · · · (D∗
km

+ (m − 1)β),

where

(3.16) D∗
k = lim

q→1

1 − Y ∗
k

1 − q
= xk

∂

∂xk

− β
∑

α>0

〈α, ǫk〉

1 − x−α
(sα − 1),

Theorem 3.1 will be proved by investigating the action of the operators Bx
m and

Ax
m (m ≤ n) on the function Π(x, y) with the auxiliary variables y = (y1, · · · , ym).

In fact we will prove the following key lemma in Sections 5 and 6.

Lemma 3.3. The operators Bx
m and Ax

m act on Π(x, y) for y = (y1, · · · , ym) as
follows:

Bx
m Π(x, y) =

1

y1 · · · ym

Dy(1) Π(x, y),(3.17)

Ax
m Π(x, y) = y1 · · · ymDy(tn−m+1) Π(x, y).(3.18)

It is easy to see that Lemma 3.3 implies Theorem 3.1. In fact, we have

y1 · · · ym Bx
m Π(x, y) =

∑

ℓ(λ)≤m

bλBx
m(Pλ(x)) y1 · · · ym Pλ(y)(3.19)

=
∑

ℓ(λ)≤m

bλBx
m(Pλ(x)) Pλ+(1m)(y).
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As to the action of Dy(1), we have

Dy(1) Π(x, y) =
∑

ℓ(λ)≤m

bλ Pλ(x) cm
λ (1) Pλ(y)(3.20)

=
∑

ℓ(λ)≤m

cm
λ+(1m)(1) bλ+(1m) Pλ+(1m)(x) Pλ+(1m)(y),

since cm
λ (1) = (1 − tm−1qλ1) · · · (1 − tqλm−1)(1 − qλm) = 0 if λm = 0. Since (3.19)

and (3.20) are equal to each other by (3.17), we obtain

(3.21) bλ Bx
m(Pλ(x)) = cm

λ+(1m)(1) bλ+(1m) Pλ+(1m)(x),

by comparing the coefficients of Pλ+(1m)(y). This proves statement (1) of Theorem
3.1. A similar computation based on (3.18) shows that

(3.22) bλ Ax
m(Pλ(x)) = cm

λ−(1m)(t
n−m+1) bλ−(1m) Pλ−(1m)(x),

which proves statement (2) of Theorem 3.1.

Remark 3.4. It follows from Theorem 3.1 that, if λ is a partition such that ℓ(λ) ≤
m ≤ n, then

(3.23) [Dx(u), Bm]Jλ(x) = (cn
λ+(1m)(u) − cn

λ(u))BmJλ(x).

In the case of Jack polynomials, the last formula corresponds to Proposition 4.1 of
Lapointe-Vinet [LV2] and appears to be the main step of their proof of a Rodrigues
type formula for Jack polynomials [LV1]. It would be interesting to find a direct
proof of formula (3.23).

Before the proof of Lemma 3.3, we will give a proof of formula (3.17) for the case
m = 1, to show some of the ideas of our proof.

We have to compute

(3.24) Bx
1 Π(x, y) =

n∑

k=1

xk(1 − tYk)
n∏

i=1

(txiy; q)∞
(xiy; q)∞

.

Since Π(x, y) is symmetric in x = (x1, · · · , xn), we have

Yk Π(x, y) = T k T k+1 · · ·Tn−1τnΠ(x, y)(3.25)

= Π(x, y) Tk T k+1 · · ·Tn−1

(
1 − xny

1 − txny

)

= Π(x, y) Tk T k+1 · · ·Tn−1t
−1

(
1 +

t − 1

1 − txny

)
.

Hence

(3.26) (1 − tYk) Π(x, y) = Π(x, y) Tk T k+1 · · ·Tn−1

(
1 − t

1 − tx y

)
.
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The key identity in our computation is

(3.27) T k

(
1

1 − txk+1y

)
=

1

1 − txky

1 − xk+1y

1 − txk+1y
(k = 1, · · · , n − 1).

Using this identity repeatedly, we get

(3.28) T k T k+1 · · ·Tn−1

(
1

1 − txny

)
=

1

1 − txky

∏

k<i≤n

1 − xiy

1 − txiy
.

This implies

(3.29) (1 − tYk) Π(x, y) = Π(x, y)


 1 − t

1 − txky

∏

k<i≤n

1 − xiy

1 − txiy


 .

We now use the formula

(3.30)
(1 − t)xky

1 − txky
= 1 −

1 − xky

1 − txky

to compute the summation

n∑

k=1

(1 − t)xky

1 − txky

∏

k<i≤n

1 − xiy

1 − txiy
=

n∑

k=1


 ∏

k<i≤n

1 − xiy

1 − txiy
−

∏

k≤i≤n

1 − xiy

1 − txiy




(3.31)

= 1 −
∏

1≤i≤n

1 − xiy

1 − txiy
.

Hence we obtain

y

n∑

k=1

xk(1 − tYk) Π(x, y) = Π(x, y)


1 −

∏

1≤i≤n

1 − xiy

1 − txiy


(3.32)

= (1 − τy)Π(x, y).

This gives formula (3.17) of Lemma 3.3 for m = 1. A similar computation can be
done to prove (3.18) for m = 1.

For the proof of Lemma 3.3, we will make use of a certain class of rational
functions in (x, y) which is related to a systematic generalization of formula (3.28)
above. Such rational functions, which we call Mimachi basis below, were proposed
by [Mi] in the study of integral representations of q-KZ equations. It actually gives
a realization of some representations of the Hecke algebra H(W ) as is clarified in
[MN2].

The proof of Lemma 3.3 will be divided into two parts. After reformulating the
Mimachi basis in Section 4 so as to fit for our purpose, we will describe in Section
5 the action of the operator Dy(u) on Π(x, y), in terms of the Mimachi basis. On
the other hand, we will analyze in Section 6 the action of the operators Bx

m and
Ax

m on Π(x, y) by computing the action of Dunkl operators explicitly to establish
the formulas (3.17) and (3.18).
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§4: Mimachi basis and a representation of the Hecke algebra.

In this section, we will formulate the Mimachi basis in our context. Keeping
the notations of the previous section, we work with the field K(x, y) of rational
functions in x = (x1, · · · , xn) and y = (y1, · · · , ym). For the moment, we do not
assume that m ≤ n.

Note first that the field K(x, y) has a natural structure of left module over the
Hecke algebra H(W ) = H(Sx

n) defined through the operators

(4.1) T x
i = t +

1 − txi/xi+1

1 − xi/xi+1
(si − 1) (i = 1, · · · , n − 1)

as in Section 2. We use the superscript x to remind that these operators are
realized as operators with respect to the variables x = (x1, · · · , xn). As to this
H(Sx

n)-module structure of K(x, y), we construct some explicit finite dimensional
subrepresentations of K(x, y).

Let us introducing some notations. Let I ⊂ [1, n] and K ⊂ [1, m] be subsets of
indices for the variables x and y, respectively, and assume that |I| = |K| = r (0 ≤
r ≤ m∧ n). By writing these sets as I = {i1 < · · · < ir} and K = {k1 < · · · < kr},
we define a rational function hI

K = hI
K(x, y) ∈ K(x, y) as follows:

hI
K(x, y)

(4.2)

=
∑

σ∈Sr

∏

1≤µ≤r


 t − 1

1 − txiµ
ykσ(µ)

∏

iµ<j≤n

t(1 − xjykσ(µ)
)

1 − txjykσ(µ)


 ∏

1≤µ<ν≤r

tykσ(µ)
− ykσ(ν)

ykσ(µ)
− ykσ(ν)

.

Note that each hI
K(x, y) is a symmetric function in the variables (yk1

, · · · , ykr
),

while, as a function of x, it strongly depends on the inclusion I ⊂ [1, n].
For a fixed K ⊂ [1, m] with |K| = r, let Vn,r;K be the K-vector subspace of

K(x, y) spanned by the rational functions hI
K(x, y) (I ⊂ [1, n], |I| = r):

(4.3) Vn,r;K =
∑

I⊂[1,n]
|I|=r

K hI
K(x, y) ⊂ K(x, y).

Theorem 4.1. For each K ⊂ [1, m] with |K| = r (0 ≤ r ≤ m ∧ n), the vec-
tor subspace Vn,r; K is an H(Sx

n)-submodule of K(x, y). The rational functions
{hI

K(x, y); I ⊂ [1, n], |I| = r} form a K-basis of Vn,r,K; hence dimK Vn,r;K =
(
n
r

)
.

Furthermore, for each i = 1, · · · , n − 1, the action of the operator T x
i on hI

K =
hI

K(x, y) is described as follows:

(i) T x
i hI

K = t hI
K (i, i + 1 ∈ I or i, i + 1 6∈ I),

(ii) T x
i hI

K = h
si(I)
K (i 6∈ I, i + 1 ∈ I),(4.4)

(iii) T x
i hI

K = t h
si(I)
K + (t − 1)hI

K (i ∈ I, i + 1 6∈ I).

Note that formula (iii) of (4.4) is equivalent to (T x
i )−1hI

K = h
si(I)
K . We will not

prove this theorem here since it is a reformulation of a part of the results of [MN2].
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From formula (4.4), it turns out that, for each K, the H(Sx
n)-module Vn,r;K is

isomorphic to the induced representation IndH(Sn)(trivH(Sn−r×Sr)) of the trivial
representation of H(Sn−r × Sr).

For each subset I ⊂ [1, n] with |I| = r, take the permutation wI ∈ Sr defined
by

(4.5) wI =

(
1 · · · n − r n − r + 1 · · · n
j1 · · · jn−r i1 · · · ir

)
,

where I = {i1 < · · · < ir} and [1, n]\I = {j1 < · · · < jn−r}. Note that a reduced
decomposition of wI is given by

(4.6) wI = sir
· · · sn−1sir−1

· · · sn−2 · · · si1 · · · sn−r,

and that the length of wI is determined as

(4.7) ℓ(wI) =

r∑

ν=1

(n − r + ν − iν) = rn −

(
r

2

)
−
∑

i∈I

i.

From (4.4) it follows that

(4.8) hI
K(x, y) = T x

wI
h

[n−r+1,n]
K (x, y),

since T x
wI

has the expression

(4.9) T x
wI

= Tir
· · ·Tn−1Tir−1

· · ·Tn−2 · · ·Ti1 · · ·Tn−r.

Recall that each permutation w ∈ Sn can be uniquely written in the form
w = wIw

′w′′ with some I ⊂ [1, n] (|I| = r), w′ ∈ Sn−r, w′′ ∈ Sr and that ℓ(w) =
ℓ(wI)+ ℓ(w′)+ ℓ(w′′). Hence the elements TwI

(I ⊂ [1, n], |I| = r) form a free basis
of H(Sn) as a right H(Sn−r × Sr)-module. This shows that the H(Sn)-module
Vn,r;K is isomorphic to the induced representation mentioned above. Note that
the canonical generator of the induced representation corresponds to the rational

function h
[n−r+1,n]
K . We will call the rational functions {hI

K(x, y); I ⊂ [1, n], |I| = r}

the Mimachi basis of the representation Vn,r;K = H(Sx
n) h

[n−r+1,n]
K .

These properties of the Mimachi basis will be used in the Section 6.

For the proof of Lemma 3.3, we will need a dual version of the Mimachi ba-
sis as well. Let ι : K(x, y) → K(x, y) be the involutive Q-algebra automorphism
determined by

(4.10) ι(q) = q−1, ι(t) = t−1, ι(xi) = x−1
i , ι(yk) = y−1

k ,

for i = 1, · · · , n and k = 1, · · · , m. Note that ι is not an anti-automorphism. It is
easily checked that

(4.11) ι(wf) = wι(f) (w ∈ W = S
x
n), ι(τµ

x f) = τµ
x ι(f) (µ ∈ P ),

for all f ∈ K(x, y). Hence the involution ι intertwines the action of the extended

affine Weyl group W̃ = P ⋊ W . As to the action of the extended affine Hecke

algebra H(W̃ ), we have

(4.12) ι(T xf) = (T x)−1ι(f) (i = 0, 1, · · · , n − 1) ι(ωxf) = ωxι(f).
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Namely, the action of H(W̃ ) is reversed by the involution, denoted by the same
symbol, such that

(4.13) ι(Ti) = (Ti)
−1 (i = 0, 1, · · · , n − 1), ι(ω) = ω.

Note also that ι(Tw) = (Tw−1)−1 for each w ∈ W . By this involution, the Dunkl
operators and the dual Dunkl operators defined in (2.14), (2.15) are interchanged
to each other:

(4.14) ι(Yi) = Y ∗
i (i = 1, · · ·n).

Formula (2.22) for the dual Dunkl operators is also obtained from (2.21) by this
dualizing procedure. (Note that ι(Dx(u)) = Dx(ut1−n). )

It is easily seen that, by the involution ι, the rational function hI
K = hI

K(x, y) of
(4.2) is transformed into
(4.15)

∑

σ∈Sr

∏

1≤µ≤r


 (t − 1)xiµ

ykσ(µ)

1 − txiµ
ykσ(µ)

∏

iµ<j≤n

1 − xjykσ(µ)

1 − txjykσ(µ)


 ∏

1≤µ<ν≤r

tykσ(µ)
− ykσ(ν)

t(ykσ(µ)
− ykσ(ν)

)
;

namely we have

(4.16) ι(hI
K) = t−rn−(r

2)+
∑

i∈I i xIyK hI
K (|I| = |K| = r),

where xI =
∏

i∈I xi, yK =
∏

k∈K yk. If we set ℓ(I) = ℓ(wI) with the notation of
(4.7), this can be written as

(4.17) ι(hI
K) = t−ℓ(I)−2(r

2) xIyK hI
K (|I| = |K| = r).

By using the involution ι, we see that these ι(hI
K) have similar properties as (4.4):

(i) T x
i ι(hI

K) = t ι(hI
K) (i, i + 1 ∈ I or i, i + 1 6∈ I),

(ii) T x
i ι(hI

K) = t ι(h
si(I)
K ) + (t − 1)ι(hI

K) (i 6∈ I, i + 1 ∈ I),(4.18)

(iii) T x
i ι(hI

K) = ι(h
si(I)
K ) (i ∈ I, i + 1 6∈ I).

The vector subspace ι(Vn,r;K) ⊂ K(x, y) is again an H(Sx
n)-module isomorphic to

the induced representation IndH(Sn)(trivH(Sr×Sn−r)); in this case the canonical

generator corresponds to ι(h
[1,r]
K ).
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§5: Action of Dy(u) on Π(x, y).

We will now describe the action of Macdonald’s q-difference operator Dy(u) on
the kernel Π(x, y) in terms of the Mimachi basis. Recall that

(5.1) Dy(u)Π(x, y) = Π(x, y)F (u; y, x)

with the notation of (1.12), where

(5.2) F (u; y, x) =
∑

K⊂[1,m]

(−u)|K|t(
|K|
2 )
∏

k∈K
ℓ6∈K

tyk − yℓ

yk − yℓ

∏

1≤i≤n
k∈K

1 − xiyk

1 − txiyk

.

We will give an explicit development of this F (u; y, x) in terms of the Mimachi basis
hI

K(x, y).
We start with a simple formula

(5.3) tm
∏

1≤k≤m

1 − xyk

1 − txyk

= 1 +
m∑

k=1

t − 1

1 − txyk

∏

1≤ℓ≤m
ℓ6=k

tyk − yℓ

yk − yℓ

,

which can be proved by developing the left hand side into partial fractions. In order
to generalize this formula, let us introduce the notation

aK|L(y) =
∏

k∈K
ℓ∈L\K

tyk − yℓ

yk − yℓ

, aK(y) = aK|[1,m](y),(5.4)

bI
K(x, y) =

∏

i∈I
k∈K

t(1 − xiyk)

1 − txiyk

= t|I||K|
∏

i∈I
k∈K

1 − xiyk

1 − txiyk

,

for I ⊂ [1, n] and K ⊂ L ⊂ [1, m]. With this notation, one can use (5.3) to expand

b
[1,n]
[1,m] = b

[1,n]
[1,m](x, y) as follows:

b
[1,n]
[1,m] =

m∏

k=1

t(1 − x1yk)

1 − tx1yk

b
[2,n]
[1,m]

(5.5)

=


1 +

m∑

k=1

t − 1

1 − tx1yk

∏

ℓ6=k

tyk − yℓ

yk − yℓ


 b

[2,n]
[1,m]

= b
[2,n]
[1,m]

+

m∑

k=1


 t − 1

1 − tx1yk

∏

1<i≤n

t(1 − xiyk)

1 − txiyk

∏

ℓ6=k

tyk − yℓ

yk − yℓ


 b

[2,n]

{1···k̂···m}

One can use this formula repeatedly to decompose b
[2,n]
[1,m], b

[2,n]

{1···k̂···m}
, and so on. By

tracing this procedure, we reach the Mimachi basis.
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Proposition 5.1. With the notation of (5.4), one has

(5.6) b
[1,n]
[1,m](x, y) =

∑

K⊂[1,m],I⊂[1,n]
|K|=|I|

aK(y)hI
K(x, y).

Furthermore, if J = [n − s + 1, n] for some s = 0, 1, · · · , n, one has

(5.7) bJ
L(x, y) =

∑

I⊂J,K⊂L
|I|=|K|

aK|L(y)hI
K(x, y),

for any subset L ⊂ [1, m].

Note that formula (5.6) does not depend on the ordering of the variables yℓ. Al-
though it depends on the ordering of xj , formula (5.7) is obtained from (5.6) simply
by renaming the variables x1, · · · , xn as xn−s+1, · · · , xn with n replaced by n − s.
For more details of the proof of this proposition, see [MN2].

We now try to express F (u; y, x) in terms of the Mimachi basis. With the
notation of (5.4), the function F (u; y, x) can be written as

(5.8) F (u; y, x) =
∑

L⊂[1,m]

(−u)|L|t(
|L|
2 )−|L|naL(y)b

[1,n]
L (x, y).

By (5.7), we can rewrite the right-hand side into

(5.9)
∑

I⊂[1,n],K⊂[1,m]
|I|=|K|

hI
K(x, y)

∑

K⊂L⊂[1,m]

(−u)|L|t(
|L|
2 )−|L|naL(y)aK|L(y).

By the definition (5.4), it is easily seen that

(5.10) aL(y)aK|L(y) = aK(y)aL\K|[1,m]\K(y).

Write L = K ∪ M with M ⊂ [1, m]\K. Then the second summation of (5.9) takes
the form

(5.11) (−u)|K|t(
|K|
2 )−|K|naK(y)

∑

M⊂[1,m]\K

(−ut|K|−n)|M|t(
|M|
2 )aM|[1,m]\K(y).

Here we used the identity
(
a+b
2

)
=
(
a
2

)
+
(

b
2

)
+ab. This summation over M ⊂ [1, m]\K

is nothing but the action of Macdonald’s operator Dz(ut|K|−n) for the variables
z = (yℓ)ℓ∈[1,m]\K on the constant function 1; hence it is equal to (ut|K|−n; t)m−|K|.
Therefore, (5.11) is equal to

(5.12) (−u)|K|(ut|K|−n; t)m−|K|t
(|K|

2 )−|K|naK(y).

Finally we get

(5.13) F (u; y, x) =
∑

|I|=|K|

(−u)|K|(ut|K|−n; t)m−|K|t
(|K|

2 )−|K|naK(y)hI
K(x, y),

where the summation is taken over all pairs of indexing sets I ⊂ [1, n] and K ⊂
[1, m] such that |I| = |K|. Since (utr−n; t)m−r = (ut−n+m−1; t−1)m−r, formula
(5.13) is simplified when the parameter u is specialized to tn−m+1.
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Proposition 5.2. The function F (u; y, x) is expressed in terms of the Mimachi
basis as follows:

F (u; y, x) =
m∧n∑

r=0

(−u)r(utr−n; t)m−rt
(r

2)−rn
∑

|I|=|K|=r

aK(y)hI
K(x, y),

(5.14)

where I ⊂ [1, n] and K ∈ [1, m]. When u = tn−m+1, this reduces to

(5.15) F (tn−m+1; y, x) = (−1)mt−(m

2 )
∑

I⊂[1,n]
|I|=m

hI
[1,m](x, y),

if m ≤ n, and F (tn−m+1; y, x) = 0 if m > n. Hence one has

(5.16) Dy(tn−m+1)Π(x, y) = (−1)mt−(m

2 )Π(x, y)
∑

I⊂[1,n]
|I|=m

hI
[1,m](x, y),

if m ≤ n.

We remark that formula (5.15) for m = 1 recovers the formula

(5.17) 1 − tn
n∏

i=1

1 − xiy

1 − txiy
=

n∑

i=1

tn−i 1 − t

1 − txiy

∏

i<j≤n

1 − xjy

1 − txjy
.

Note that (5.16) is also equal to (t; t)−1
n−mDx(t)Π(x, y).

By the involution ι explained at the end of Section 4, we can easily obtain the
dual version of the propositions above. One has only to notice that

(5.18) ι(aK|L(y)) = t−|K|(|L|−|K|)aK|L(y), ι(bI
K(x, y)) = t−|I||K|bI

K(x, y)

and

(5.19) ι(Dy(u)) = Dy(ut1−m), ι(F (u; y, x)) = F (utn−m+1; y, x).

Proposition 5.3. With the notation of (5.4), one has

(5.20) t−mnb
[1,n]
[1,m](x, y) =

∑

I⊂[1,n],K⊂[1,m]
|I|=|K|

t−ℓ(I)−|I|(m−1)aK(y) xIyKhI
K(x, y).

Furthermore, if J = [n − s + 1, n] for some s = 0, 1, · · · , n, one has

(5.21) t−|J||L|bJ
L(x, y) =

∑

I⊂J,K⊂L
|K|=|I|

t−ℓ(I)−|I|(|L|−1)aK|L(y) xIyK hI
K(x, y),

for any subset L ⊂ [1, m].

Here we used the notation ℓ(I) = ℓ(wI) = |I|n −
(
|I|
)
−
∑

i.
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Proposition 5.4. The function F (u; y, x) is expressed in terms of the Mimachi
basis as follows:

F (u; y, x) =

m∧n∑

r=0

(−u)r(u; t)m−r

∑

|I|=|K|=r

t−ℓ(I)−(r

2)aK(y) xIyK hI
K(x, y),

(5.22)

where I ⊂ [1, m] and K ⊂ [1, m]. When u = 1, this reduces to

(5.23) F (1; y, x) = (−1)mt−(m

2 )y1 · · · ym

∑

I⊂[1,n]
|I|=m

t−ℓ(I) xI hI
[1,m](x, y),

if m ≤ n, and F (1; y, x) = 0 if m > n. Hence one has

(5.24) Dy(1)Π(x, y) = (−1)mt−(m

2 )y1 · · ·ymΠ(x, y)
∑

I⊂[1,n]
|I|=m

t−ℓ(I) xI hI
[1,m](x, y),

if m ≤ n.

We remark that formula (5.23) for m = 1 recovers the formula

(5.25) 1 −

n∏

i=1

1 − xiy

1 − txiy
=

n∑

i=1

(1 − t)xiy

1 − txiy

∏

i<j≤n

1 − xjy

1 − txjy
,

which we used in Section 3 to prove Lemma 3.3 for m = 1. Note also that (5.24) is
equal to (tm−n; t)−1

n−mDx(tm−n)Π(x, y).

§6: Computation of the Dunkl operators acting on Π(x, y).

In this section we will compute the action of the Dunkl operators and the oper-
ators

Bx
m =

∑

1≤k1<···<km≤n

xk1
· · ·xkr

(1 − tmYk1
) · · · (1 − tYkm

) and(6.1)

Ax
m =

∑

1≤k1<···<km≤n

1

xk1
· · ·xkr

(1 − Y ∗
k1

) · · · (1 − tm−1Y ∗
km

)

on Π(x, y) by means of the Mimachi basis, to complete the proof of Lemma 3.3.
From now on, we assume that m ≤ n.

Recall first that the Dunkl operators satisfy the following commutation relations:

(6.2) T iYi+1T i = Yi, TiYj = YjTi (j 6= i, i + 1),

for i = 1, · · · , n−1. If ϕ(x) is a function symmetric in (xi, xi+1), i.e., siϕ(x) = ϕ(x),
then Tiϕ(x) = tϕ(x) and T iϕ(x) = ϕ(x); hence we have

(6.3) TiYi+1ϕ(x) = Yiϕ(x), TiYjϕ(x) = Yjϕ(x) (j 6= i, i + 1).
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In the following, we will use this property of the Dunkl operators extensively.
For the computation of the action of the operators Bx

m and Ax
m, let us introduce

some abbreviated notations. For each subset I = {i1 < i2 < · · · < ir} of [1, n], we
set

(6.4) xI = xi1xi2 · · ·xir
, τI = τi1τi2 · · · τir

and YI = Yi1Yi2 · · ·Yir
.

Note that the ordering of Yi’s does not matter since they are mutually commutative.
Let J = {j1 < j2 < · · · < jm} be a subset of [1, n] and u = (u1, u2, · · · , um) an
m-tuple of parameters. We need to consider operators in Dq,x[W ] of the form

(1 − u1Yj1)(1 − u2Yj2) · · · (1 − umYjm
)(6.5)

=
m∑

r=0

(−1)r
∑

1≤ν1<···<νr≤m

uν1
· · ·uνr

Yjν1
· · ·Yjνr

.

Such an expression will be abbreviated as follows:

(6.6) (1 − uY)J =
∑

I⊂J

(−u)I|JYI , with (−u)I|J =
∏

1≤ν≤m
jν∈I

(−uν).

With this notation, one can write formulas like

(6.7) Bx
m =

∑

J⊂[1,n]
|J|=m

xJ (1 − uY)J with u = (tm, tm−1, · · · , t).

Since Π(x, y) is a symmetric function in x and y, let us start with considering the
action of Dunkl operators on symmetric functions in x = (x1, · · · , xn). Note that to
consider the action of an operator P ∈ Dq,x[W ] on the general symmetric function
f(x) is equivalent to working in the module Dq,x[W ]/

∑
w∈W Dq,x[W ](w − 1) by

identifying the symbol f(x) with the modulo class of 1. For some time from now,
f(x) stands for the general symmetric function in x in this sense.

Proposition 6.1. For the general symmetric function f(x) in x, on has

(6.8) YI f(x) = TwI
τ[n−r+1,n]f(x)

for each I ⊂ [1, n] with |I| = r, where wI ∈ W is the permutation of (4.6). Hence,
for each J ⊂ [1, n] with |J | = m, one has

(1 − uY)J f(x) =
∑

I⊂J

(−u)I|JYI f(x)(6.9)

=

m∑

r=0

∑

I⊂J
|I|=r

(−u)I|JTwI
τ[n−r+1,n]f(x),

for any parameters u = (u1, · · · , um).

Proof. By using (6.2) repeatedly, one can show that, if 1 ≤ i < j ≤ n, then

T i · · ·T j−1Yj = YiT
−1

i · · ·T
−1

j−1,(6.10)

T i · · ·T j−1Yk = YkT i · · ·T j−1. (k < i or k > j)
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Take the reduced decomposition of wI as in (4.6). Then it follows from (6.10) that

(6.11) TwI
Yn−r+1 · · ·Yn = Yi1 · · ·Yir

ι(TwI
) = Yi1 · · ·Yir

T
−1

w−1
I

,

namely

(6.12) TwI
Y[n−r+1,n]Tw−1

I
= YI .

This implies

(6.13) YI f(x) = TwI
Y[n−r+1,n]Tw−1

I
f(x) = TwI

Y[n−r+1,n]f(x),

since f(x) is symmetric. It remains to show Y[n−r+1,n]f(x) = τ[n−r+1,n]f(x). Since
f(x) is symmetric, Ynf(x) = ωf(x) = τnf(x). One can show inductively that

(6.14) Yn−r+1 · · ·Ynf(x) = τn−r+1 · · · τnf(x),

noting that the function τn−r+1 · · · τnf(x) is symmetric in (x1, · · · , xn−r) and also
in (xn−r+1, · · · , xn). The latter half of Proposition is clear. �

We now apply Lemma 6.2 to the kernel Π(x, y) regarding y as parameters. Note
for sure that the symbols τi, Ti, Ti and Yi will be used below only for operators in
the variables x. Since

τ[n−r+1,n]Π(x, y) = Π(x, y)
∏

i∈[n−r+1,n]
k∈[1,m]

1 − xiyk

1 − txiyk

(6.15)

= Π(x, y) t−rm b
[n−r+1,n]
[1,m] (x, y).

we have

(6.16) YIΠ(x, y) = Π(x, y) t−rm TwI
(b

[n−r+1,n]
[1,m] (x, y)),

for each I ⊂ [1, n] with |I| = r. To compute the action of TwI
on b

[n−r+1,n]
[1,n] , we use

the expansion by the Mimachi basis:

(6.17) b
[n−r+1,n]
[1,m] (x, y) =

∑

H⊂[n−r+1,n],K⊂[1,m]
|H|=|K|

aK(y)hH
K(x, y).

By using Theorem 4.1, one can describe the action TwI
= t−ℓ(I)TwI

on each
hH

K(x, y). Another notation for use: for two disjoint subsets A, B of [1, n], we
define the number of inversions between A and B by

(6.18) ℓ(A; B) := #{(a, b) ∈ A × B ; a > b}.

Note that, with this notation, one has ℓ(I) = ℓ(wI) = ℓ([1, n]\I; I). The action of
TwI

on hH
K(x, y) is then given by

(6.19) Tw (hH (x, y)) = t−ℓ(I)Tw hH (x, y) = t−ℓ([1,n]\I;wI(J))h
wI(H)

(x, y).
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The power of t in (6.16) is obtained by subtracting the contribution of the factors
of TwI

which acts trivially (i.e., by the multiplication by t). Hence we have

TwI
(b

[n−r+1,n]
[1,m] (x, y))(6.20)

=
∑

H⊂[n−r+1,n],K⊂[1,m]
|H|=|K|

t−ℓ([1,n]\I;wI(H))aK(y)h
w(H)

K (x, y)

=
∑

H⊂I,K⊂[1,m]
|H|=|K|

t−ℓ([1,n]\I;H)aK(y)hH
K(x, y),

where we renamed wI(H) as H. Summarizing, we get

Lemma 6.2. For each subset I ⊂ [1, n], one has

YI Π(x, y) = Π(x, y) TwI

∏

i∈[n−r+1,n]
k∈[1,m]

1 − xiyk

1 − txiyk

(6.21)

= Π(x, y)
∑

H⊂I,K⊂[1,m]
|H|=|K|

t−ℓ([1,n]\I;H)−|I|maK(y)hH
K(x, y).

Next we compute the action of the operator (1 − uY)J =
∏m

ν=1(1 − uνYjν
) on

Π(x, y) for each subset J = {j1 < · · · < jm} of [1, n] with |J | = m and for general
u = (u1, · · · , um). In view of (6.9) of Proposition 6.1, we have to compute

(6.22) (1 − uY)J Π(x, y) = Π(x, y)

m∑

r=0

∑

I⊂J
|I|=r

(−u)I|JT wI

∏

i∈[n−r+1,n]
k∈[1,m]

1 − xiyk

1 − txiyk

.

By Lemma 6.2, the summation

(6.23)
m∑

r=0

∑

I⊂J :|I|=r

(−u)I|JTwI

∏

i∈[n−r+1,n]
k∈[1,m]

1 − xiyk

1 − txiyk

.

is now equal to

∑

I⊂J

(−u)I|J

∑

H⊂I,K⊂[1,m]
|H|=|K|

t−ℓ([1,n]\I;H)−|I|maK(y)hH
K(x, y)

(6.24)

=
∑

H⊂J,K⊂[1,m]
|H|=|K|

aK(y)hH
K(x, y)

∑

H⊂I⊂J

(−u)I|J t−ℓ([1,n]\I;H)−|I|m
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Write I = H ∪A with A ⊂ J\H. Then the summation over I above can be written
in the form

(−u)H|J t−ℓ([1,n]\H;H)−|H|m
∑

A⊂J\H

(−u)A|J tℓ(A;H)−|A|m(6.25)

= (−u)H|J t−ℓ(H)−|H|m
∑

A⊂J\H

∏

ν:jν∈A

(−uνtℓ(jν ;H)−m)

= (−u)H|J t−ℓ(H)−|H|m
∏

ν:jν∈J\H

(1 − uνtℓ(jν ;H)−m)

If we set uν = utm+1−ν (ν = 1, · · · , m), the product at the end of (6.25) is simplified
to (u; t−1)m−|H|. This proves

Lemma 6.3. If u = (utm, utm−1, · · · , ut), then one has

m∑

r=0

∑

I⊂J :|I|=r

(−u)I|JT wI

∏

i∈[n−r+1,n]
k∈[1,m]

1 − xiyk

1 − txiyk

.

(6.26)

=
∑

I⊂J,K⊂[1,m]
|I|=|K|

(−u)I|J t−ℓ(I)−|I|m(u; t−1)m−|I|aK(y)hI
K(x, y),

for any subset J ⊂ [1, n] with |J | = m. Hence

(1 − uY)J Π(x, y)

(6.27)

= Π(x, y)
∑

I⊂J,K⊂[1,m]
|I|=|K|

(−u)I|J t−ℓ(I)−|I|m(u; t−1)m−|I|aK(y)hI
K(x, y).

If u = (tm, tm−1, · · · , t) (i.e., u = 1), the right hand side of formula (6.26) reduces
to the single term

(6.28) (−1)mt−(m

2 )−ℓ(J)hJ
K(x, y).

Hence by Proposition 6.1, we obtain

Proposition 6.4. Set u = (tm, tm−1, · · · , t). Then for each subset J = {j1 <
· · · < jm} of [1, n] with |J | = m, one has

(1 − uY)J Π(x, y) = (1 − tmYj1)(1 − tm−1Yj2) · · · (1 − tYjm
) Π(x, y)

(6.29)

= (−1)mt−(m

2 )Π(x, y) t−ℓ(J)hJ
[1,m](x, y).

Furthermore the action of Bx
m on Π(x, y) is expressed as follows:

Bx
m Π(x, y) =

∑

J⊂[1,n]:|J|=m

xJ(1 − uY)J Π(x, y)

(6.30)

= (−1)mt−(m

2 )Π(x, y)
∑

J⊂[1,n]
|J|=m

t−ℓ(J)xJhJ
[1,m](x, y)

Comparing (6.30) with the expression (5.24) of Proposition 5.4 we obtain
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Corollary. If m ≤ n,

(6.31) Bx
mΠ(x, y) =

1

y1 · · · ym

Dy(1) Π(x, y).

This gives the proof of formula (3.17) of Lemma 3.3.

Remark. As to the case |J | = s < m, the same argument as above shows

(1 − tmYj1) · · · (1 − tm−s+1Yjs
)Π(x, y)(6.32)

= (−1)st−(s

2)−ℓ(J) Π(x, y)
∑

K⊂[1,m]
|K|=s

aK(y)hJ
K(x, y).

The computation of the action of Ax
m can be carried out similarly. In this case,

we have

(6.33) Y ∗
I f(x) = ι(TwI

) τ[n−r+1,n]f(x) (I ⊂ [1, n], |I| = r)

with the involution ι(Tw) = (Tw−1)−1 explained in Section 4, and

(1 − vY∗)Jf(x) = (1 − v1Y
∗
j1

)(1 − v2Y
∗
j2

)(1 − vmY ∗
jm

)f(x)(6.34)

=
m∑

r=0

∑

I⊂J
|I|=r

(−v)I|J ι(TwI
) τ[n−r+1,n]f(x),

for any symmetric function f(x) in x. Hence we have

(1 − vY∗)JΠ(x, y)(6.35)

= Π(x, y)

m∑

r=0

∑

I⊂J
|I|=r

(−v)I|J ι(T wI
)

∏

i∈[n−r+1,n]
k∈[1,m]

1 − xiyk

1 − txiyk

.

To compute this formula, we have only to dualize Lemma 6.3 by the involution ι.
From Lemma 6.3, we see that, if u = (ut−m, · · · , ut−1), we have

m∑

r=0

∑

I⊂J :|I|=r

(−u)I|J t|I|mι(TwI
)

∏

i∈[n−r+1,n]
k∈[1,m]

1 − xiyk

1 − txiyk

(6.36)

=
∑

I⊂J,K⊂[1,m]
|I|=|K|

(−u)I|J (u; t)m−|I|t
|I|(m−|I|+1)aK(y)xIyKhI

K(x, y).

This implies that

(1 − tmuY∗)J Π(x, y) = (1 − uY ∗
j1

) · · · (1 − utm−1Y ∗
jm

)Π(x, y)

(6.37)

= Π(x, y)
∑

I⊂J,K⊂[1,m]
|I|=|K|

(−u)I|J (u; t)m−|I|t
|I|(m−|I|+1)aK(y)xIyKhI

K(x, y).
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If we set u = 1, this formula reduces to

(6.38) (1 − tmuY∗)JΠ(x, y) = (−1)mt−(m

2 )y1 · · · ymΠ(x, y) xJhJ
[1,m](x, y).

Hence we have

Ax
mΠ(x, y) =

∑

J⊂[1,n]
|J|=m

1

xJ

(1 − tmuY∗)J Π(x, y)(6.39)

= (−1)mt−(m

2 )y1 · · · ymΠ(x, y)
∑

J⊂[1,n]
|J|=m

hJ
[1,m](x, y)

= y1 · · · ym Π(x, y) F (tn−m+1; y, x) (by Proposition 5.2)

= y1 · · · ym Dy(tn−m+1)Π(x, y).

This completes the proof of Lemma 3.3.
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§7: q-Difference raising operators.

Let P be an operator in Dq,x[W ], and express it in the form

(7.1) P =
∑

w∈W

Pww with Pw ∈ Dq,x (w ∈ W ).

We define the q-difference operator Psym by

(7.2) Psym =
∑

w∈W

Pw ∈ Dq,x.

Then, for any symmetric function f(x), the operator P acts as the q-difference
operator Psym; namely, Pf(x) = Psymf(x). By the method we used in the previous
section, we can determine the q-difference operators on symmetric functions which
arise from our raising and lowering operators.

Theorem 7.1. The raising operator Bm and the lowering operator Am preserve
the ring K[x]W of symmetric polynomials, for m = 0, 1, · · · , n. Furthermore, these
operators act on symmetric functions as the following q-difference operators :

(Bx
m)sym =

m∑

r=0

(−1)rt(
r

2)+(m−n+1)r
∑

I⊂[1,n]
|I|=r

xIem−r(x[1,n]\I)aI(x)τI ,

(7.3)

(Ax
m)sym =

m∑

r=0

(−1)rt(
r

2)
∑

I⊂[1,n]
|I|=r

x−1
I em−r(x

−1
[1,n]\I

)aI(x)τI .

(7.4)

Here em−r(x[1,n]\I) and em−r(x
−1
[1,n]\I

) are the elementary symmetric functions of

degree m− r in the n− r variables (xj)j∈[1,n]\I and (x−1
j )j∈[1,n]\I, respectively, and

aI(x) =
∏

i∈I;j∈[1,n]\I(txi − xj)/(xi − xj).

Before the proof of Theorem 7.1, we will prove that the q-difference operators
(Bx

m)sym and (Ax
m)sym are W -invariant. Then the explicit formulas mentioned

above will be determined only by the definition (6.1) and this W -invariance. In
order to deal with Bm and Am simultaneously, we consider the operator

(7.5) Pm(u) =
∑

1≤j1<···<jm≤n

xj1 · · ·xjm
(1 − utmYj1) · · · (1 − utYjm

).

depending on a parameter u. With the notation of Section 6, we can also write

(7.6) Pm(u) =
∑

J⊂[1,n]
|J|=m

xJ (1 − uY)J with u = (utm, utm−1, · · · , ut).

Note that the operators Bm and Am are recovered from Pm(u) by

(7.7) Bm = Pm(1) and Am = ι(Pm(t−m)),

where ι is the involution defined in Section 4. Then Theorem 7.1 is an immediate
consequence of the following Propositions 7.2 and 7.3.
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Proposition 7.2. For each m = 0, 1, · · · , n, the q-difference operator Pm(u)sym is
W -invariant. Hence it preserves the ring K[x]W of symmetric polynomials.

Proof. We work in the quotient module Dq,x[W ]/
∑

w∈W Dq,x[W ](w − 1) denoting
by f(x) the modulo class of 1, as in Section 6. Then, for an operator P ∈ Dq,x[W ],
the W -invariance of (P )sym is equivalent to

(7.8) siPf(x) = f(x) (i = 1, · · · , n − 1).

By the definition (2.11) of Ti, it is also equivalent to the condition

(7.9) TiPf(x) = tf(x), i.e., T iPf(x) = f(x),

for i = 1, · · · , n− 1. We now consider the operator Pm(u) of (7.5). Note here that
the multiplication operators x1, · · · , xn have commutation relations

(7.10) T ixiT i = t−1xi+1, T ixj = xjT i (j 6= i, i + 1)

with T i (i = 1, · · · , n − 1), similar to (6.2) of the Dunkl operators. For a fixed i,
the subsets J of [1, n] with |J | = m are classified into the three groups under the
action of si:

(i) i, i + 1 6∈ J,(7.11)

(ii) i ∈ J, i + 1 6∈ J or i 6∈ J, i + 1 ∈ J,

(iii) i, i + 1 ∈ J.

If J satisfies (i), it is clear that T ixJ (1 − uY)J = xJ (1 − uY)JT i. The other two
cases are reduced essentially to

(T i − 1)[xi(1 − uYi) + xi+1(1 − uYi+1)]f(x) = 0, and(7.12)

(T i − 1)xixi+1(1 − utYi)(1 − uYi+1)f(x) = 0,

respectively, which can be checked directly by using (7.10), (6.2) and the quadratic
equation (T i−1)(T i +t−1) = 0. (Note that xi +xi+1, xixi+1 and tYi +Yi+1, tYiYi+1

commute with T i. ) �

Proposition 7.3. For each m = 0, 1, · · · , n, we have

(7.13) Pm(u)sym =
m∑

r=0

(−u)rt(
r

2)+(m−n+1)r
∑

I⊂[1,n]
|I|=r

xIem−r(x[1,n]\I)aI(x)τI .

Proof. By Proposition 6.1, we already have the formula

(7.14) P(u)f(x) =
m∑

r=0

∑

I⊂J⊂[1,n]
|I|=r,|J|=m

(−u)I|J xJTwI
τ[n−r+1,n]f(x)
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for the general symmetric function f(x). Hence we see that the q-difference operator
Pm(u)sym can be written in the form

(7.15) Pm(u)sym =

m∑

r=0

∑

I⊂[1,n]
|I|=r

pI(u; x)τI .

Since P (u)sym is W -invariant by Proposition 7.2, we conclude that, for each I ⊂
[1, n] with |I| = r, pI(u; x) = w(p[1,r](u; x)) if w ∈ W and w([1, r]) = I. Hence
we have only to determine the coefficients p[1,r](u; x) for each r = 0, 1, · · · , m. In
formula (7.14), we look at the product

TwI
τ[n−r+1,n]f(x)

(7.16)

= t−ℓ(I)(t − c(αir
) + c(αir

)sir
) · · · (t − c(αn−1) + c(αn−1)sn−1)

· · · (t − c(αi1) + c(αi1)si1) · · · (t − c(αn−r) + c(αn−r)sn−r)τ[n−r+1,n]f(x),

for each I = {i1 < · · · < ir}. Here we used the notation

(7.17) c(α) = c(ǫi − ǫj) =
1 − txi/xj

1 − xi/xj

for each positive root α = ǫi − ǫj (1 ≤ i < j ≤ n). From expression (7.14), it is
clear that the q-shift operator τ[1,r] appears only when I = [1, r] and all the terms
containing si are picked up in the expansion. In the case of I = [1, r], the product
of terms containing si is given by

(7.18) c(αr)sr · · · c(αn−1)sn−1 · · · c(α1)s1 · · · c(αn−r)sn−r =

(
N∏

k=1

c(βk)

)
wI ,

where N = ℓ(w[1,r]) = r(n−r) and {β1, · · · , βN} is the sequence of positive roots as-
sociated with the reduced decomposition (4.6) of w[1,r] = sr · · · sn−1 · · · s1 · · · sn−r:

{β1, · · · , βN} = {αr, sr(αr+1), . . . , sr · · · sn−2(αn−1), . . . ,(7.19)

. . . , sr · · · sn−1 · · · s1 · · · sn−r−1(αn−r)}

= {ǫi − ǫj ; 1 ≤ i ≤ r, r + 1 ≤ j ≤ n}.

Namely the coefficient of τ[1,r] arising from Tw[1,r]
τ[n−r+1,n]f(x) is given by

(7.20) t−r(n−r)
∏

i∈[1,r]
j∈[r+1,n]

1 − txi/xj

1 − xi/xj

= t−r(n−r)a[1,r](x).

In order to get the coefficient p[1,r](u; x), we have to take the summation

p[1,r](u; x) =
∑

J :[1,r]⊂J
|J|=m

(−u)[1,r]|JxJ t−r(n−r)a[1,r](x)

(7.21)

= (−u)rtmr−(r

2)−r(n−r)x1 · · ·xrem−r(xr+1, · · · , xn)a (x).
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Note here that (−u)[1,r]|J = (−u)rtmr−(r

2) for any J with [1, r] ⊂ J , |J | = m. From
the W -invariance of Pm(u)sym, we have

(7.22) pI(u; x) = (−u)rtmr−(r

2)−r(n−r)xIem−r(x[1,n]\I)aI(x),

for each I ⊂ [1, n] with |I| = r. This proves (7.13). �

Let us see some consequences of Proposition 7.3. We apply the operator Pm(u)
to the constant function 1. By the definition (7.5) of Pm(u), we have

(7.23) Pm(u)(1) = (ut; t)mem(x).

On the other hand, by (7.13) we have

(7.24) Pm(u)(1) =

m∑

r=0

(−u)rt(
r

2)+(m−n+1)r
∑

I⊂[1,n]
|I|=r

xIem−r(x[1,n]\I)aI(x).

By comparing the coefficients of ur in (7.23) and (7.24), we obtain

Corollary. If 0 ≤ r ≤ m ≤ n, we have

∑

I⊂[1,n]
|I|=r

xIem−r(x[1,n]\I)
∏

i∈I
j 6∈I

txi − xj

xi − xj

= t(n−m)r

[
m
r

]

t

em(x),(7.25)

∑

I⊂[1,n]
|I|=r

xIem−r(x[1,n]\I)
∏

i∈I
j 6∈I

xi − txj

xi − xj

=

[
m
r

]

t

em(x).(7.26)

Formula (7.26) is obtained from (7.25) by the transformation t → t−1. These
formulas give a refinement of the equality

(7.27) Bm(1) = (t; t)mem(x) = J(1m)(x)

We also remark that formulas (2.21) and (2.22) in Section 2 can be obtained from
Proposition 7.3 for m = n. In fact, we have

Pn(u) = x1 · · ·xn(1 − utnY1) · · · (1 − utYn) and(7.28)

Pn(u)sym = x1 · · ·xn

n∑

r=0

(−ut)rt(
r

2)
∑

I⊂[1,n]
|I|=r

aI(x)τI .

This implies (2.21).
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§8: A double analogue of the multinomial coefficients.

In this section, we will give an application of our results to combinatorics of
the multinomial coefficients, in terms of the so-called modified Macdonald polyno-
mials. The modified Macdonald polynomials were introduced by A.M.Garsia and
M. Haiman [GH] in their study of a graded representation model for Macdonald
polynomials (see also [Ma1], p.358).

Following [GH], we define the modified Macdonald polynomials in infinite number
of variables by

(8.1) P̃λ(x; q, t) = Pλ(
x

1 − t
; q, t) and J̃λ(x; q, t) = Jλ(

x

1 − t
; q, t),

in the λ-ring notation. Given a symmetric function f(x) = f(x1, x2, · · · ) in infinite
variables x = (x1, x2, · · · ), the symbol f( x

1−t
) in the λ-ring notation stands for

the symmetric function f(y(x)) obtained by the transformation of variables y(x) =
(xit

j)i≥1,j≥0. In infinite variables, the symmetric function f(x) can be written
uniquely in the form f(x) = ϕ(p1(x), p2(x), · · · ) as a polynomial of the power sums
pk(x) =

∑∞
j=1 xk

j (k = 1, 2, · · · ). Then the symbol f( x
1−t

) represents the symmetric
function

(8.2) f(
x

1 − t
) = ϕ(

p1(x)

1 − t
,

p2(x)

1 − t2
, · · · ).

obtained by the transformation pk(x) → pk(x)/(1 − tk) (k = 1, 2, · · · ). When we
consider the modified Macdonald polynomials in n variables x = (x1, · · · , xn), each

of P̃λ(x; q, t) and J̃λ(x; q, t) should be understood as the one obtained from the
corresponding symmetric function in infinite variables by setting xn+1 = xn+2 =
· · · = 0. It follows from the orthogonality property of Macdonald polynomials (see
(1.7) or [Ma1], (VI.4.13)) that

(8.3)
∑

λ

bλP̃λ(x) Pλ(y) = Π̃(x, y), where Π̃(x, y) =
∏

i,j

1

(xiyj ; q)∞
.

An advantage of modified Macdonald polynomials is that they have nice transi-
tion coefficients with classical Schur functions sλ(x):

(8.4) J̃µ(x; q, t) =
∑

λ

Kλ,µ(q, t) sλ(x),

where Kλ,µ(q, t) are the double Kostka coefficients. By Theorem 3.2, we already
know that Kλ,µ(q, t) ∈ Z[q, t] for all λ and µ.

We now introduce a family of functions Bλ,µ(q, t) via decomposition

(8.5) J̃λ(x; q, t) =
∑

λ

Bλ,µ(q, t) mµ(x)

in terms of monomial symmetric functions. Note that Bλ,µ(q, t) = 0 unless |λ| = |µ|.
Using the Kostka numbers Kλ,µ defined by

(8.6) sλ(x) =
∑

µ

Kλ,µ mµ(x),

one can express the coefficient Bλ,µ(q, t) as

(8.7) Bλ,µ(q, t) =
∑

ν

Kν,λ(q, t) Kν,µ.
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Theorem 8.1. For any partitions λ and µ of a given natural number n, we have

(1) Bλ,µ(q, t) ∈ Z[q, t],

(2) Bλ,µ(1, 1) =
n!

µ1!µ2! · · ·
,

(3) B(n),µ(q, t) = qn(µ′) (q; q)n

(q; q)µ1
(q; q)µ2

· · ·
,

(4) Bλ′,µ(q, t) = qn(λ′)tn(λ)Bλ,µ(t−1, q−1) (Duality),

where n(λ′) =
∑

s∈λ a(s) and n(λ) =
∑

s∈λ ℓ(s).

Conjecture 8.2?. Bλ,µ(q, t) ∈ N[q, t] for any partitions λ and µ.

We remark that Conjecture 8.2? follows from the positivity conjecture of Mac-
donald [Ma1], (VI.8.18?) on the double Kostka polynomials. Hence it would be
natural to consider the polynomials Bλ,µ(q, t) as a two-parameter deformation of
the multinomial coefficients.

Proof of Theorem 8.1. The first statement follows from Theorem 3.2.(2) since
Kν,µ ∈ N. As for the second statement, let us remark that Kν,λ(1, 1) = fν is
the number of standard Young tableaux of shape ν ([Ma1], (VI.8.16)). Hence

(8.8) Bλ,µ(1, 1) =
∑

ν

fνKν,µ =
n!

µ1!µ2! · · ·
.

The last equality is well-known and in fact follows for example from the Robinson-
Schensted-Knuth correspondence (see e.g. [S]). Similarly, if λ = (n), then one has
Kν,(n)(q, t) = Kν,(1n)(q) (see [Ma1], p.362). Hence

(8.9) B(n),µ(q, t) =
∑

ν

Kν,(1n)(q)Kν,µ = qn(µ′) (q; q)n

(q; q)µ1
(q; q)µ2

· · ·
.

The last equality is also well-known and is proven for example in [DJKMO] or [K],
§2.4. Finally, statement (4) follows from the corresponding duality theorem for the
double Kostka polynomials (see [Ma1], (VI.8.15) and (VI.8.5)). �
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