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AFFINE HYPERSURFACES WITH PARALLEL CUBIC FORMS
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In this note, we first investigate the symmetry properties of the tensors VC and
F2C, where V is the induced affine connection and C is the cubic form of a nondegenerate
affine hypersurface Mn in Rn + 1. In particular, we study hypersurfaces with parallel
cubic form, i.e. PC=0. In the case « = 2, this condition is known to characterize a
Cayley surface (Nomizu and Pinkall [3]). We obtain a certain class of more general
affine surfaces and hypersurfaces.

On the other hand, for an affine hypersurface M", «>3, condition VR = Q (i.e.
parallel curvature tensor field) implies that Mn is an improper affine hypersphere or a
quadric (Verheyen and Verstraelen [7]). We shall provide a generalization of this result
by proving that the condition P2Λ = 0 implies FR = Q for an affine hypersurface. Recall
that, for a Riemannian manifold, the condition V2R = Q (in fact, VkR = Q for some

integer k) implies FR = Q but that such a result does not hold for an affine connection
in general.

Our study shows the common background for these results on the covariant
differentials of the cubic form and those of the curvature tensor field.

1. Preliminaries. Although we mostly follow the notation in [3] in this paper,
we consider exclusively the classical theory of nondegenerate affine hypersurfaces Mn

in Rn+1 in the sense of Blaschke (see [1], [2], [5] and [6]).

The difference between the induced affine connection V and the Levi-Civita connec-
tion V for the affine metric h is denoted by K:

0) κx=rx-?x

and we also write

(2) KXY=KYX=K(X, Y).

The so-called apolarity condition can be expressed by

(3) trace ̂  = 0 for every X.
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The cubic form C is defined by

(4) c(x,γ,z)=(px/ι)(y,z),
which is symmetric in X, Y, and Z. This is related to K by

(5) C(X9Y,Z)=-2h(KxY9Z)9

which implies that the operator Kx is symmetric relative to h.
The Pick invariant / is defined by

(6) J = h(K,K),

where h is extended to an inner product in the tensor space. In terms of components
of the tensors involved we have

(60 j
Apolarity can be also expressed by

(5') Σ*yc^ = ° fora11

We denote by S the shape operator. The curvature tensor R of V can be expressed
by the Gauss equation

R(X, Y)Z = h(Y9Z)SX- h(X, Z)SY

in terms of S and h. We say that Mn is an affine hypersphere if S=λl, where λ is the
affine mean curvature ( = trace S/ri).

There are two known results which are closely related to our purpose.

THEOREM (Nomizu-Pinkall [4]). Let n = 2. If PC = 0 and CVO, then M2 is
equiaffinely congruent to a Cayley surface.

THEOREM (Verheyen and Verstraelen [7]). Ifn>3 and VR = Q, then C=0 (that is,
Mn is a quadric) or S=0 (that is, Mn is an improper affine sphere).

REMARK. They first prove that in the case where n>3, R(X, Y) R = 0 for all X,
yif and only if S=λl. Of course, P2Λ = 0 implies R(X, Y) R = Q and hence S=λl.

In Section 2 we study the symmetry conditions for VC and P2C. In Section 3, we
shall derive properties of affine hypersurfaces satisfying PC=0 and discuss a certain
class of affine hypersurfaces which may be considered as generalizations of Cayley
surfaces. In Section 4, we shall prove that the condition V2R = 0 for an affine hypersurface
implies FΛ = 0.

2. Total symmetry of PC and F2C. The co variant differential PC of the cubic
form C is denoted by

(PC)(t/, V, W;X) = (FXC)(U, V, W),
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where VXC is the covariant derivative of C defined by

K w)=x(C(u, v, w))-c(vxυ9 v9 w)-c(u9 vxv, w)-c(u9 v9vxw)9

U,V,Won the right-hand side being vector fields that extend vectors 17, K W9 respectively.
In terms of components, we have

where t is an index corresponding to the vector X.

Similarly, the second covariant differential V2C is denoted by

(F2C)(t7, V9 W\ X, y) = (Fr(FjrC)Xl7, V9 W)-(VVγXC)(Ό9 V, W) ,

where X on the right-hand side is a vector field extending the vector X, and Vγ(VxC}

is the covariant derivative relative to Y of the tensor field V XC. In terms of components,
we have

r2c=(cίjk,;s),
where t and s are indices corresponding to X and Y9 respectively.

This being said, we are now concerned with the symmetry properties of FC and
V2C.

First, we say that PC is totally symmetric if (PC)((7, V9 W; X ) is symmetric relative
to its four variables. (This is to say that Cijklm are symmetric in all four indices.) Since
VC is symmetric in (7, V9 W just like C, total symmetry follows if it is symmetric in X

and U.
Similarly, we may consider the covariant differential VC relative to the Levi-Civita

connection F for the affine metric and consider its symmetry properties. In fact, we prove:

LEMMA 1. VC is totally symmetric if and only ίfVCis totally symmetric.

PROOF. Using (1) we get

, V9 W) = (VXQ(U9 K W) + (KXCW9 V9 W)

W)-C(KXU9 K W)-C(U9KXV9 W)-C(U9V9KXW)

W)-C(K(X9 U\ V9 W) + 2h(K(X, V\ K(U, W)) + 2h(K(X, W\ K(U, V))

by using symmetry of C and (5). The term C(K(X, U), BV9 W) is symmetric in X and

U. The sum 2h(K(X9 V\ K(U, W)) + 2h(K(X9 W\ K(U, V)) is symmetric in X and U as
well. Thus

7, V9 W)-(VXC)(V, V9 W) = (VVC)(X, V9 WWVC)(X, V9 W},

that is,

(FXC)(17, K W)-(VυC)(X, V9 W) = (ΐxC)(U, V, W)-(VυC)(X, V, W) 9

proving our assertion.
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We note that

(7) (P*C)(17, V, W) = -2h((VxK\V, V\ W)

as follows from (5).
On the other hand, the following formula is found in the proof of Proposition 5.4

of [2].

(8) 2(VXK}(Ύ, Z ) - 2(VΎK)(X, Z) = h(Y,Z)SX- h(X, Z )SY- [_h(SY, Z)X- h(SX, Z ) Y] .

REMARK. The right-hand side is nothing but R(X, Y)Z-R*(X, Y)Z, where R is
the curvature tensor of V and R* is the curvature tensor for the induced connection of
the dual affine hypersurface.

We now prove:

LEMMA 2. VC is totally symmetric if and only if Mn is an affine hyper sphere.

PROOF. By Lemma 1 and formulas (7), (8) we see that PC is totally symmetric if
and only if

(9) h(Y, Z)SX-h(X, Z)SY- th(SY,Z)X-h(SX, Z)Y] = 0 .

The trace of the linear mapping taking X to the left-hand side of (9) is

h(Y9Z)trS-h(SY,Z)-nh(SY,Z) + h(SY,Z) = Q

and hence

SY=λY for every 7, where λ = trS/n.

Conversely, if S=λl, we have (9) and so total symmetry of PC. Π

REMARK. We may also say that M n is an affine hypersphere if and only if R = R*.
This condition is also equivalent to R(X, 7) /ι = 0.

Now assume that PC is totally symmetric and consider P2C. From its definition
we have

(9) (P2C)(C7, V, W X; y)-(F*cχi/, K W; Y;X)= -(R(X, Y) Cχi7, V, W),

where R(X, Y) acts on C as a derivation.
It follows that (P2C)(ί7, V, W\ X; Y) is symmetric in X and Y if and only if

R(X9 7) C = 0. This is the case, in particular, if R = Q (which is known to be equivalent

to S=0).
As we assume that PC is totally symmetric, (P2C)(l/, V, W; X; Y) is symmetric in

U, V, W, X. Combined with symmetry in X and F, we have total symmetry of P2C.

Thus we get:

LEMMA 3. Assume PC is totally symmetric. Then P2C is totally symmetric if and

onlyifR(X,Y) C = Q.
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We now prove:

THEOREM 1. Both VC and V2C are totally symmetric if and only ifC=0 (Mn is a
quadric) or 5=0 (Mn is an improper affine hyper sphere).

PROOF. If C=0, obviously, PC=0 and F2C=0. If 5=0, we already know that
VC is totally symmetric (Lemma 2). Moreover, 5=0 implies R = Q and hence V2C is
totally symmetric.

Assume that both VC and V2C are totally symmetric. Lemma 2 implies that S=λl,
with λ = tτS/n. The Gauss equation says

R(X, Y)Z = λlh(Y, Z)X-h(X9Z)Y] -

We use this expression and evaluate (R(X, y) C)(C7, V, W) = Q (which holds by Lemma
3). If λ 7^0, then we get

h(Y9 U)C(X, K W)-h(X9 U)C(Y, V, W) + h(Y, V)C(U, X, W)-h(X, V)C(U, Y, W)

+ h(Y, W)C(U, V,X)-h(X, W)C(U, V, Y) = 0.

Using (5) we may write this in the following form

(10) -2h(Y, U)K(X, V) + 2h(X9 U)K(Y, V)-h(Y, V)K(U9 X) + 2h(X, V)K(U, Y)

+ C(£7, V,X)Y-C(U, V, Y)X = 0.

Taking the trace of the linear mapping which takes X to the left-hand side of (10) we
obtain by using apolarity

h(K(Y9 F), U)-h(K(U, Y\ V) + C(U, V, Y)-nC(U, V, 7) = 0 ,

namely,

(n+l)C(ί/, K^) = 0, that is, C=0. Π

3. Affine hypersurfaces with parallel cubic forms. We now prove:

THEOREM 2. IfVC=ΰfor an affine hyper surf ace Mn, n>2, then C=0 or 5=0 and
we have the following consequences:

1) (VΎK)x = ̂ KΎKX for all X, Y'
2) tr{ Y-+(rγK)xZ} = 0 for all X, Z;
3) tr{ Y^(VΎ K)XZ} = 0 for all X, Z;
4) tr(KxKz) = 0 for all X, Z; thus h is an Einstein metric.
5) The Pick invariant 7=0.

PROOF. The first assertion follows from Theorem 1. To prove 1), we have by (5)
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Taking Fy of both sides and using FC=0, we obtain

(Fy hκκ(x9 υ\z)+ h((vΎκ)(x, u ), z ) = o .
Again using (5) we have

- 2h(K(K(X, U ), Y), Z ) + h((VΎK )(X, U ), Z ) = 0

and hence

Writing the left-hand side as 2KYKXU, we obtain (VΎK)X = 2KYKX.
2) Using 1) we write

(rYK)xZ=2KYKxZ=2KKxZY.

Since trace Aκxz
 = 0 ^y apolarity, we get the assertion.

3) From Proposition 5.4, [2], we get

tr{ r^(Py ̂ )XZ } = (n/2){h(X, Z ) tr S/n - h(SX, Z )} ,

which is 0 since S = λl.
4) Using (1) we get

where

(Ky *)xZ = *y(^Z)-^

Thus by apolarity and trace( ẑ̂ ) = trace(A:x^z) we get

trace{ Y^(KY - K)XZ } = - 2trace KXKZ .

Now using 2) and 3) we see trace^Λ^O.

From the formula for the Ricci tensor Ric for V (Proposition 5.2, [2]):

Ric( Y, Z ) = — [h( 7,Z)trace 5 + (n - 2)h(S Y,Z}] + trace(Ky/^z)

we see that h is an Einstein metric.
5) From 4) we have h(Kx, Kz) = 0, where h extends the affine metric to the tensor

space. If {Xl9'' ,Xn} is an orthonormal basis with h(Xt, Xi) = εi= ± 1, we get
j = h(K, K ) = Σ £ih(KXi9 Kx) = 0. D

REMARK. The proof for 4) establishes the general formula

(11) L(X, Z ) = L(X, Z ) -

where
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(12) L(X, Z) =

and

(13)

COROLLARY. IfVC=Q and C^O, then S=0, V is flat (R = 0), /=0, and h is a
hyperbolic metric with zero Riccί tensor.

REMARK 1 . Even for n = 2, there are many nondegenerate affine surfaces such that
5=0, /=0, C/0 (thus h is hyperbolic). In fact, such surfaces are essentially the same
as ruled surfaces which are improper affine spheres and can locally be represented as
the graph of z = xy + φ(y), where φ is an arbitrary differentiate function of one variable
(see [1, p. 221]).

We may consider this class of surfaces as generalized Cayley surfaces (for which
φ(y) = y3). A simple computation shows that for the affine metric h we have (writing
x1, x2 for x, y)

The affine normal ξ is given by (0, 0, 1). The cubic form C has all components 0 except
possibly C222» and similarly for PC, P2C,

If we take φ(y) = y4, then the surface satisfies P2C=0 but PCVO. Obviously, when
φ is a polynomial of degree d, the surface has the property that Pd~2C=0.

REMARK 2. These surfaces have been rediscovered by M. Magid and P. Ryan as
part of affine surfaces whose affine metrics are flat.

EXAMPLE FOR «>3. We consider the graph Mn of

jc»+1 =jc1xn+ — Σ^ + φCx") ,

where the summation £ extends for 2 < i< n — 1 . This hypersurface Mn has the following
properties: it is an improper affine sphere (5=0 and thus R = ϋ), the Pick invariant
/is 0, VC, P2C, are all totally symmetric, the affine metric h is Lorentzian and flat
(so R = Q). These assertions follow from the information below:

Ay = 0 except hln = hni=h22= - =hn_ln_i = l , hnn = φ"(xn)\

Cijk = 0 except possibly Cnnn = φ(3)

Cijk m = 0 except possibly Cnnn.n = φ(4}; and so on .

4. Affine hypersurfaces with Γ2Λ = 0. The following is our new result which extends
the theorem of Verheyen and Verstraelen.
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THEOREM 3. If Mn, «>3, is a nondegenerate hypersurface such that V2R = Q, then
C=0 or S=0.

PROOF. The assumption implies R(X, Y)-R = 0 and so S = λl by a result of
Verheyen and Verstraelen. Thus

R(U, V)W= λ\h(V, W)U - h(U, W)V] and

(vΎR)(υ, v)w=λi(rγh)(κ w)υ-(vΎh\υ, w)V}=λ\c(Y9 v, w)u-c(γ, u,
Consequently, we get

(14) (V2R)(V, V; Y 9X)W=λl(rxC)(Y9 V, W)U-(7XQ(Y9 U,

where X, Y, U, V, W may be tangent vectors at a point.
If λ 9*0, then by (14) we obtain

(rxC)(Y9V9W)U-(rxC}(Y9U9W)V=Q and therefore FC = 0.

We have thus shown that 5=0 or PC =0. By Theorem 1, we see that 5=0 or C=0.

D
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