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Abstract

This paper presents a framework for texture recognition

based on local affine-invariant descriptors and their spa-

tial layout. At modeling time, a generative model of local

descriptors is learned from sample images using the EM al-

gorithm. The EM framework allows the incorporation of

unsegmented multi-texture images into the training set. The

second modeling step consists of gathering co-occurrence

statistics of neighboring descriptors. At recognition time,

initial probabilities computed from the generative model

are refined using a relaxation step that incorporates co-

occurrence statistics. Performance is evaluated on images

of an indoor scene and pictures of wild animals.

1 Introduction

Texture representations that are invariant to a wide

range of geometric and photometric transformations are

desirable for many applications, including wide-baseline

matching [9, 13, 15], texture-based retrieval in image

databases [12, 14], segmentation of natural scenes [7],

recognition of materials [16], and recognition of semantic

texture categories, e.g., natural vs. man-made [3]. In this

paper, we investigate a texture representation that is invari-

ant to any geometric transformations that can be locally ap-

proximated by an affine model, from perspective distortions

to non-rigid deformations.

Recently, several affine-invariant region detectors have

been developed for the applications of wide-baseline match-

ing, indexing, and retrieval [9, 15]. As demonstrated in our

earlier work [4], such detectors can also make effective tex-

ture analysis tools. In this paper, we use a texture repre-

sentation based on a sparse set of affine-invariant regions to

perform retrieval and segmentation of multi-texture images.

This task is more challenging than the recognition of single-

texture images: instead of comparing distributions of local

features gathered over a large field, we are forced to clas-

sify each local feature individually. Since it is not always

possible to unambiguously classify a small image region,

we must augment the local representation with a descrip-

tion of the spatial relationship between neighoring regions.

The systems developed by Malik et al. [7] and Schmid [14]

are examples of this two-layer architecture, with intensity-

based descriptors at the first level and histograms of texton

distributions at the second.

This paper describes a conceptually similar two-stage

approach to texture modeling. The first stage consists in es-

timating the distribution of local intensity descriptors. Un-

like most existing methods, which use fixed-size windows

to compute these descriptors, ours employs shape selection:

the area over which the descriptors are computed is deter-

mined automatically using an affine adaptation process [5].

We represent the distribution of descriptors in each class

by a Gaussian mixture model where each component corre-

sponds to a “sub-class”. This generative model is used to as-

sign the most likely sub-class label to each region extracted

from a training image. At the second stage of the model-

ing process, co-occurrence statistics of different sub-class

labels are computed over neighborhoods adaptively defined

using the affine shape of local regions. Test images (which

may contain multiple textures) are also processed in two

stages. First, the generative model is used to assign initial

probability estimates of sub-class membership to all feature

vectors. These estimates are then refined using a relaxation

step that incorporates co-occurrence statistics.

The most basic form of the modeling process is fully su-

pervised, i.e., the training data contains only single-texture

images. However, we show in Section 2.2 that a weaker

form of supervision is possible: the training data may in-

clude unsegmented multi-texture images. In Section 3, we

evaluate the proposed texture representation on two data

sets. The first set consists of photographs of textured sur-

faces taken from different viewpoints and featuring signifi-

cant scale changes and perspective distortions. The second

set consists of images of animals whose appearance can be

adequately modeled by texture-based methods.

2 Modeling Textures

2.1 Feature Extraction

At the feature extraction stage, our implementation uses

an affine-adapted Laplacian blob detector based on the scale

and shape selection framework developed by Lindeberg et

al. [5, 6]. The detector begins by finding the locations in

scale space where a normalized Laplacian measure attains

a local maximum. Informally, the spatial coordinates of the
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maximum define the center of a circular “blob”, and the

scale at which the maximum is achieved becomes the char-

acteristic scale of the blob. The second stage applies an

affine adaptation process based on the second-moment ma-

trix. The regions found by the detector are ellipses defined

by (p − p0)
T M(p − p0) ≤ 1, where p0 is the center of

the ellipse, and M is a 2 × 2 symmetric local shape matrix

(see [5, 9] for details). We can normalize the patch defined

by M by applying to it any transformation that maps the

ellipse onto a unit circle. It can be shown that if two im-

age patches are initially related by an affine transformation,

then the respective normalized patches are related by a ro-

tation [5, 9]. We eliminate this ambiguity by representing

each normalized patch by a rotationally invariant descriptor.

The descriptors used in this work are intensity domain

spin images [4] inspired by the spin images used by Johnson

and Hebert [2] for matching range data. An intensity do-

main spin image is a two-dimensional histogram of bright-

ness values in an affine-normalized patch. The two dimen-

sions of the histogram are d, the distance from the center of

the normalized patch, and i, the intensity value. Thus the

“slice” of the spin image corresponding to a fixed d is sim-

ply the histogram of the intensity values of pixels located at

a distance d from the center. In this work, the size of spin

images is 10 × 10. Before using spin images as input to

the density estimation process described in the next section,

we rescale them to have a constant norm and “flatten” them

into 100-dimensional feature vectors denoted x below.

2.2 Density Estimation

In the supervised framework, the training data consists of

single-texture sample images from classes with labels Cℓ,

ℓ = 1, . . . , L. The class-conditional densities p(x|Cℓ) can

be estimated using all the feature vectors extracted from the

images belonging to class Cℓ. We model class-conditional

densities as p(x|Cℓ) =
∑M

m=1 p(x|cℓm) p(cℓm), where

the components cℓm, m = 1, . . . , M , are thought of as

sub-classes. Each p(x|cℓm) is assumed to be a Gaussian

with mean µℓm and covariance matrix Σℓm. The EM al-

gorithm is used to estimate the parameters of the mixture

model, namely the means µℓm, covariances Σℓm, and mix-

ing weights p(cℓm). EM is initialized with the output of the

K-means algorithm. In this work, we use the same num-

ber of mixture components for each class (M = 15 and

M = 10, respectively, for the experiments reported in Sec-

tions 3.1 and 3.2). We limit the number of free parameters

and control numerical behavior by using spherical Gaus-

sians with covariance matrices of the form Σℓm = σ2
ℓmI .

The EM framework provides a natural way of incorporat-

ing unsegmented multi-texture images into the training set.

Our approach is inspired by the work of Nigam et al. [10],

who have proposed techniques for using unlabeled training

data in text classification. Suppose we are given a multi-

texture image annotated with the set L of class indices that

it contains—that is, each feature vector x extracted from

this image has a label set of the form CL = {Cℓ|ℓ ∈ L}.

To accommodate label sets, the density estimation frame-

work needs to be modified: instead of partitioning the train-

ing data into subsets belonging to each class and separately

estimating L mixture models with M components each, we

now use all the data simultaneously to estimate a single mix-

ture model with L × M components. The estimation pro-

cess must start by selecting some initial values for model

parameters. During the expectation or E-step, we use the

parameters to compute probabilistic sub-class membership

weights given the feature vectors x and the label sets CL:

p(cℓm|x, CL) ∝ p(x|cℓm) p(cℓm|CL), where p(cℓm|CL) =

0 for all ℓ /∈ L and
∑

ℓ∈L

∑M

m=1 p(cℓm|CL) = 1. During

the maximization or M-step, we use the computed weights

to re-estimate the parameters by maximizing the expected

likelihood of the data in the standard fashion [1].

Overall, the incorporation of incompletely labeled data

requires only a slight modification of the EM algorithm used

for estimating class-conditional densities. However, this

modification is of great utility, since the task of segment-

ing training examples by hand becomes an odious chore

even for moderately-sized data sets. In situations where it is

difficult to obtain large amounts of fully labeled examples,

training on incompletely labeled or unlabeled data helps to

improve classification performance [10].

In the subsequent experiments, we exercise the EM

framework in two different ways. The data set of Section

3.1 contains both single- and multi-texture training images,

which are used respectively to initialize and refine the pa-

rameters of the generative model. The data set of Section

3.2 consists entirely of unsegmented multi-texture images.

2.3 Neighborhood Statistics

This section describes the second layer of our representa-

tion, which accumulates information about the distribution

of pairs of sub-class labels in neighboring regions. After the

density estimation step, each region in the training image

is assigned the sub-class label that maximizes the posterior

probability p(cℓm|x, CL). Next, we need a method for com-

puting the neighborhood of a region centered at location p0

and having local shape matrix M . The simplest approach

is to define the neighborhood as the set of all points p such

that (p−p0)
T M(p−p0) ≤ α for some constant α. How-

ever, in practice this definition produces poor results: points

with small ellipses get too few neighbors, and points with

large ellipses get too many. A better approach is to “grow”

the ellipse by adding a constant absolute amount (15 pix-

els in the implementation) to the major and minor axes, and

to let the neighborhood consist of all points that fall inside

this enlarged ellipse. In this way, the size and shape of the

neighborhood still depends on the affine shape of the region,

but the neighborhood structure is more balanced.

Once we have defined the neighborhood structure, we
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can think of the image as a directed graph with arcs emanat-

ing from the center of each region to other centers within its

neighborhood. The existence of an arc from a region with

sub-class label c to another region with label c′ is a joint

event (c, c′) (note that the order is important since the neigh-

borhood relation is not symmetric). We find the relative fre-

quencies p(c, c′) for all pairs (c, c′), and also compute the

marginals p̂(c) =
∑

c′ p(c, c′) and p̌(c′) =
∑

c p(c, c′). Fi-

nally, we compute the values

r(c, c′) =
p(c, c′) − p̂(c) p̌(c′)

[(

p̂(c) − p̂2(c)
) (

p̌(c′) − p̌2(c′)
)]

1

2

representing the correlations between the events that the la-

bels c and c′, respectively, belong to the source and destina-

tion nodes of the same arc. The values of r(c, c′) must lie

between −1 and 1; negative (resp. positive) values indicate

that c and c′ rarely (resp. frequently) co-occur as labels at

endpoints of the same edge.

In our experiments, we have found that the values of

r(c, c′) are reliable only when c and c′ are sub-classes of the

same class. Part of the difficulty in estimating correlations

across classes is the lack of data in the training set. Even

if the set contains multi-texture images, only a few arcs ac-

tually fall across texture boundaries. Unless the number of

texture classes is very small, it is quite difficult to create

a training set that would include samples of every possi-

ble boundary. Thus, whenever c and c′ belong to differ-

ent classes, we set r(c, c′) to a constant negative value that

serves as a “smoothness constraint” in the relaxation algo-

rithm described in the next section (we use values between

−0.5 and −1, all of which tend to produce similar results).

2.4 Relaxation

We have implemented the classic relaxation algorithm of

Rosenfeld et al. [11]. The initial estimate of the probability

that the ith region has label c, denoted p
(0)
i (c), is obtained

from the learned mixture model as the posterior p(c|xi).
Note that since we run relaxation on unlabeled test data,

these probabilities must be computed for all L × M sub-

class labels corresponding to all possible classes. At each

iteration, new estimates p
(t+1)
i (c) are obtained by updating

the current probabilities p
(t)
i (c) using the equation

p
(t+1)
i (c) =

p
(t)
i (c)

[

1 + q
(t)
i (c)

]

∑

c p
(t)
i (c)

[

1 + q
(t)
i (c)

]

,

q
(t)
i (c) =

∑

j

wij

[

∑

c′

r(c, c′) p
(t)
j (c′)

]

. (1)

The scalars wij are weights that indicate how much influ-

ence region j exerts on region i. We treat wij as a binary

indicator variable that is nonzero if and only if the jth region

belongs to the ith neighborhood. The weights are required

to be normalized so that
∑

j wij = 1 [11].

The update equation (1) can be justified in qualitative

terms as follows. Note that p
(t)
j (c′) has no practical effect

on p
(t)
i (c) when the ith and jth regions are not neighbors,

when c and c′ are uncorrelated, or when the probability

p
(t)
j (c′) is low. However, the effect is significant when the

jth region belongs to the ith neighborhood and the value

of p
(t)
j (c′) is high. The correlation r(c, c′) expresses how

“compatible” the labels c and c′ are at nearby locations.

Thus, p
(t)
i (c) is increased (resp. decreased) by the largest

amount when r(c, c′) has a large positive (resp. negative)

value. Overall, the probabilities of different sub-class la-

bels at neighboring locations reinforce each other in an in-

tuitively satisfying fashion. Even though the iteration of (1)

has no convergence guarantees, we have found it to behave

well on our data. To obtain the results of Sections 3.1 and

3.2, we run relaxation for 200 iterations.

2.5 Classification and Retrieval

Individual regions are classified by assigning them to the

class that maximizes pi(Cℓ) =
∑M

m=1 pi(cℓm). To perform

classification and retrieval at the image level, we need to

define a “global” score for each class. In the experiments

of the next section, the score for class Cℓ is computed by

summing the probability of Cℓ over all N regions found in

the image:
∑N

i=1

∑M

m=1 pi(cℓm), where the pi(cℓm) are the

probability estimates following relaxation. Classification of

single-texture images is carried out by assigning the image

to the class with the highest score, and retrieval for a given

texture model proceeds from highest scores to lowest.

3 Experimental Results

3.1 The Indoor Scene

Our first data set contains seven different textures present

in a single indoor scene (Figure 1). To test the invariance of

our representation, we have gathered images over a wide

range of viewpoints and scales. The data set is partitioned

as follows: 10 single-texture training images of each class;

10 single-texture validation images of each class; 13 two-

texture training images; and 45 multi-texture test images.

Table 1 shows classification results for the single-texture

validation images following training on single-texture im-

ages only. The columns labeled “image” show the fraction

of images classified correctly using the score described in

Section 2.5. As can be seen from the first column, success-

ful classification at the image level does not require relax-

ation: good results are achieved in most cases by using the

probabilities output by the generative model. Interestingly,

for class T6 (marble), the classification rate actually drops

as an artifact of relaxation. When the right class has rela-

tively low initial probabilities, the self-reinforcing nature of

relaxation often serves to diminish these probabilities fur-

ther. The columns labeled “region”, which show the frac-

tion of all individual regions in the validation images that

were correctly classified based on the probabilities pi(Cℓ),
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T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

Figure 1: Samples of the texture classes used in the experiments of Section 3.1.

Before relaxation After relaxation

Class image region image region

T1 1.00 0.61 1.00 0.97

T2 1.00 0.58 1.00 0.99

T3 0.90 0.70 0.90 0.85

T4 1.00 0.61 1.00 0.99

T5 1.00 0.45 1.00 0.95

T6 0.90 0.29 0.80 0.67

T7 0.60 0.41 0.70 0.73

Table 1: Classification rates for single-texture images.

are much more indicative of the impact of relaxation: for all

seven classes, classification rates improve dramatically.

Next, we evaluate the performance of the system for re-

trieval of images containing a given texture. Figure 2 shows

the results in the form of ROC curves that plot the posi-

tive detection rate (the number of correct images retrieved

over the total number of correct images) against the false

detection rate (the number of false positives over the total

number of negatives in the data set). The top row shows

results obtained after fully supervised training using single-

texture images only, as described in Section 2.2. The bottom

row shows the results obtained after re-estimating the gen-

erative model following the incorporation of 13 two-texture

images into the training set. Following relaxation, a mod-

est improvement in performance is achieved for most of the

classes. A more significant improvement could probably be

achieved by using more multi-texture training samples [10].

For the majority of test images, our system succeeds in

providing an accurate segmentation of the image into re-

gions of different texture. Part (a) of Figure 3 shows a typ-

ical example of the difference made by relaxation in the

assignment of class labels to individual regions. Part (b)

shows more examples where the relaxation was successful.

Note in particular the top example of part (b), where the per-

ceptually similar classes T4 and T5 are unambiguously sep-

arated. Part (c) of Figure 3 shows two examples of segmen-

tation failure. In the bottom example, classes T2 (carpet)

and T3 (chair) are confused, which can be partly explained

by the fact that the scales at which the two textures appear

in this image are not well represented in the training set.

Overall, we have found the relaxation process to be sensi-

tive to initialization, in the sense that poor initial probability

estimates lead to artifacts in the final assignment.

3.2 Animals

Our second data set consists of unsegmented images of

three kinds of animals: cheetahs, giraffes, and zebras. The

training set contains 10 images from each class, and the test

set contains 20 images from each class, plus 20 “negative”

images not containing instances of the target animals. To

account for the lack of segmentation, we introduce an ad-

ditional “background” class, and each training image is la-

beled as containing the appropriate animal and the back-

ground. To initialize EM on this data, we randomly assign

each feature vector either to the appropriate animal class,

or to the background. The ROC curves for each class are

shown in Figure 4, and segmentation results are shown in

Figure 5. Overall, our system appears to have learned very

good models for cheetahs and zebras, but not for giraffes.

We conjecture that several factors account for the weak-

ness of the giraffe model. Some of the blame can be

placed on the early stage of feature extraction. Namely, the

Laplacian-based affine region detector is not well adapted

to the giraffe texture whose blobs have a relatively com-

plex shape. At the learning stage, the system also appears

to be “distracted” by background features, such as sky and

trees, that occur more commonly in training samples of gi-

raffes than of the other animals. In the bottom image of

Figure 5, “giraffe-ness” is associated with some parts of the

background, as opposed to the animals themselves. The ar-

tificial “background” class is simply too inhomogeneous to

be successfully represented in the mixture framework. A

principled solution to this problem would involve partition-

ing the background into a set of natural classes (e.g., grass,

trees, water, rocks, etc.) and building larger training sets

that would include these classes in different combinations.

Overall, our results (though somewhat uneven) are

promising. Unlike many other methods suitable for mod-

eling natural textures, ours does not require negative ex-

amples. The EM framework shows surprising aptitude for

automatically separating positive areas of the image from

negative ones, without the need for specially designed sig-

nificance scores such as the ones used by Schmid [14].

4 Discussion and Future Work

The texture representation method proposed in this paper

offers several important advantages over other methods pro-

posed in recent literature [3, 7, 14]. The use of an interest
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Figure 2: ROC curves for retrieval in the test set of 45 multi-texture images. The dashed (resp. solid) line represents performance before

(resp. after) relaxation. Top row: single-texture training images only, bottom row: single-texture and two-texture training images.
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Figure 4: ROC curves for the animal dataset. The dashed (resp.

solid) line represents performance before (resp. after) relaxation.

point detector leads to a sparse representation that selects

the most perceptually salient regions in an image, while the

shape selection process provides affine invariance. Another

important advantage of shape selection is the adaptive deter-

mination of both levels of image structure: the window size

over which local descriptors are computed, and the neigh-

borhood relationship between adjacent windows.

In the future, we will pursue several directions for the

improvement of our system. We have found that the perfor-

mance of relaxation is sensitive to the quality of the initial

probability estimates; therefore, we need to obtain the best

estimates possible. To this end, we plan to investigate the ef-

fectiveness of discriminative models, e.g. neural networks,

that output confidence values interpretable as probabilities

of class membership. Relaxation can also be made more ef-

fective by the use of stronger geometric neighborhood rela-

tions that take into account affine shape while preserving the

maximum amount of invariance. Finally, we plan to extend

our work to modeling complex texture categories found in

natural imagery, e.g., cities, forests, and oceans.
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Original image T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

(a) Initial labeling of regions (top) vs. the final labeling following relaxation (bottom).

Original image T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

(b) Successful segmentation examples.

Original image T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

(c) Unsuccessful segmentation examples.

Figure 3: Segmentation results.
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Original image Cheetah Zebra Giraffe Background

Figure 5: Segmentation on the animal dataset.
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