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Abstract. We study representations of affine Kac-Moody algebras from a
geometric point of view. It is shown that Wakimoto modules introduced in
[18], which are important in conformal field theory, correspond to certain
sheaves on a semi-infinite flag manifold with support on its Schubert cells.
This manifold is equipped with a remarkable semi-infinite structure, which is
discussed; in particular, the semi-infinite homology of this manifold is
computed. The Cousin-Grothendieck resolution of an invertible sheaf on a
semi-infinite flag manifold gives a two-sided resolution of an irreducible
representation of an affine algebra, consisting of Wakimoto modules. This is
just the BRST complex. As a byproduct we compute the homology of an
algebra of currents on the real line with values in a nilpotent Lie algebra.

1. Introduction

In [18,19] we have introduced and studied a new class of representations of
affine Kac-Moody algebras, the so-called Wakimoto modules [44]. These repre-
sentation allow bosonic realization, the Sugawara energy-momentum tensor being
quadratic in bosons. This gives a new bosonization rule for the Wess-Zumino-
Witten (WZW) models. In [19] we explicitly constructed the intertwining
operators between Wakimoto modules and chains (or primary fields) which are
submodules of their homomorphisms, using vertex operators. Our results enable
us to give an integral representation of the correlation functions in WZW models
on the plane in spirit of [14] (it was done soon after [15,27]). In [20] we have
proposed the two-sided Bernstein-Gelfand-Gelfand (BGG) resolution, or BRST
complex, of an irreducible representation of an affine Kac-Moody algebra,
consisting of Wakimoto modules (recall that the usual BGG resolution [7, 26,
41] is one-sided and consists of Verma modules). According to Felder’s work
[23] (where a similar resolution is constructed over the Virasoro algebra), this
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enables us to compute the correlation functions in the WZW models on the torus,
“extracting” an irreducible representation from Wakimoto modules with the use
of our resolution.

Wakimoto modules also play an important role in the study of the functorial
correspondence between affine Kac-Moody algebras and the Virasoro algebra (or
W-algebras [20, 47]) and of the highest weight modules with central charge —
(dual Coxeter number) [19], Appendix B.

Thus we see that Wakimoto modules are very useful both in representation
theory and in conformal field theory.

In this work we show that Wakimoto modules naturally appear in the
representation theory of affine Kac-Moody algebras: Verma modules, contragra-
dient Verma modules and Wakimoto modules are the particular cases of the
general construction. Moreover, modules with similar properties emerge in the
case of finite-dimensional simple Lie algebras. Analogous construction seems to
exist for arbitrary Kac-Moody algebras.

The crucial point in our investigation is the correspondence between the
highest weight representations of the Lie algebra and the sheaves of Z-modules (or
constructible sheaves) on its flag manifold, lisse with respect to Schubert
stratification [1, 2, 4, 10, 34].

As well-known, the contragradient Verma module with integral highest
weight over a finite-dimensional Lie algebra corresponds to the constant sheaf
supported on the big Schubert cell and to the sheaf of local cohomology of the
appropriate invertible sheaf on a flag manifold with support on this cell. If we
take the local cohomology of the invertible sheaf, with support on another cell,
then we obtain the module, which we call the twisted Verma module. Twisted
Verma modules with equal highest weights are labelled by elements of the Weyl
group (in particular, the unit corresponds to the contragradient Verma module,
and the element of maximal length — to the Verma module). Their composition
series quotients coincide but the composition series themselves are different.

The Cousin-Grothendieck resolution of a dominant invertible sheaf with
respect to Schubert stratification of a flag manifold appears to be the contragra-
dient BGG resolution [35], the Cousin-Grothendieck resolution of a twisted
invertible sheaf gives the twisted BGG resolution, which consists of twisted
Verma modules. In particular, the element of maximal length of the Weyl group
corresponds to the usual BGG resolution.

The infinite-dimensional affine case is more interesting, Here again we have
twisted Verma modules, but additional opportunities appear.

The affine Weyl group is infinite and there are no elements of maximal length.
But let us consider a “limit element” of “semi-infinite length” of this group. The
highest weight module corresponding to is a Wakimoto module. Thus, Wakimo-
to modules are intermediate between contragradient Verma modules and Verma
modules (which correspond to the element of “infinite length™).

The sheaves, corresponding to Wakimoto modules, “live” on the limit semi-
infinite flag manifold, which is the coset space of the affine Kac-Moody group by
an appropriate subgroup. They are lisse with respect to the Schubert stratifi-
cation. The usual flag manifold of an affine Kac-Moody algebra allows two
stratifications: by cells of finite dimension or by cells of finite codimension
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[40, 39]. The cells of the semi-infinite flag manifold are both of infinite dimension
and of infinite codimension.

The semi-infinite flag manifold is endowed with a rather intriguing “semi-
infinite structure.” For example, its Schubert cells represent the semi-infinite
homology classes of this manifold. It is interesting that this homology may also
be obtained using Floer’s theory [24]. There is a remarkable Morse function of
Conley-Zehnder type [11] on this manifold, whose singular points are of semi-
infinite indices and give the same semi-infinite homology. We believe that there
exists a theory of semi-infinite manifolds, including semi-infinite sheaves and
their cohomologies. Our flag manifolds seem to be the first examples of this
theory.

A Wakimoto module corresponds to a constant sheaf, supported on a
Schubert cell of the semi-infinite flag manifold and to a sheaf of local “semi-
infinite cohomology” of the invertible sheaf with support on this cell. Cousin-
Grothendieck resolution is a two-sided BGG resolution (a similar resolution may
be obtained in a different way).

The Two-sided BGG resolution gives the semi-infinite analogue of Borel-
Weil-Bott theorem. As a corollary we obtain an unexpected result about usual
homology of the Lie algebras of currents on the real line with values in nilpotent
subalgebras of the simple Lie algebra.

The paper is arranged as follows.

In Sect. 2 we treat the finite-dimensional counterpart of our constructions.
This section illustrates the main ideas, which we apply later. In Sect. 3 we give
the definition of Wakimoto modules over affine Kac-Moody algebras and account
for their place in the representation theory of these algebras. Section 4 is devoted to
semi-infinite flag manifolds. It clarifies the relations of Wakimoto modules with
the geometry of these manifolds. In Sect. 5 we construct Wakimoto modules
overcoming certain homological problems. In Sect. 6 we establish and prove two-
sided BGG resolution and use it for computation of (co)homology. The concluding
Sect. 7 is devoted to some examples and applications.

Appendix A contains the definition of semi-infinite (co)homology [16], used
in this work. In Appendix B we sketch our results and conjectures [19] about the
structure of highest weight modules with central charge — (dual Coxeter number).

2. The Finite-Dimensional Case

2.1. Notations and Preliminaries [29, 5, 6]

Let G be acomplex simple Lie group of rank n, g isits Lie algebra,n_@h®n, is the
Cartan decomposition of g, 4=A4(G) is the root system of G, 4= A is the root
lattice of G. A=A ,u4_, where 4 ,(4_) is the set of positive (negative) roots.
Denote by a,, ..., o, the set of simple roots, E;, H;, F;— Cartan generators of g. Let
(,) be the inner product in 4*, S = S(G) is the Weyl group of G, wy, is its maximal
element.

Let F=G/B be flag manifold of G, where B is the Borel subgroup of G,
corresponding to the Lie algebra b=h@®n_. As is well-known, F decomposes into
Schubert cells F,, where s runs the Weyl group S, which are the orbits of the
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nilpotent group N ,, corresponding to the Lie algebra n,. Namely, F,=N;-5,
where §is the image of s € G under the projection G— F. The cell F is isomorphic to
sN,.s 'nN,, codimF,=1(s) is the length of the element s of the Weyl group,
defined as follows: i(s)= 4 {a€d,:s 'ae4_} (here and further 3 denotes the
number of elements of the set).

The category O of highest weight representations (in this paper highest weight
representation means any representation from the category 0) of g decomposes
into the subcategories 0, of representations, where the center of %(g) acts by the
character 6. If 1 is the dominant integral weight, and 6(1) is the corresponding
central character, then @,;, consists of the modules with highest weights of the
form s* A=s(A+¢)—g, s€S, and g is a half of the sum of positive roots of g.

2.2. Twisted Verma Modules
Let ue h* and €, be one-dimensional representation of b, =h®n.,, determined as

composition b, —~h-25 €. Denote by M, the Verma module over g with highest

weight p: M, =%(g) %gb )(Eu. Verma modules are characterized by the following
properties:

a) M, lies in the category O,

b) Hy(n_,M,)~C, (as h-module), H(n_,M,)=0, i+0.

Let M* be the contragradient Verma module. It is characterized by the
property a) and by the property

b*) H%n., M¥)~C, (as h-module), H(n., M})=0, i=0.

Our aim is to introduce highest weight modules M}, over g, where we S which
are intermediate between M, and M} in the following sense. Put n, =wn, w™".

My} is characterized by the property a) and by the property
b,) H®™(n, M) ~C,_ ¢+, (@ h-module),

Hi(n,M})=0, i%lw).

In particular, M, ~ M}, M}°=M,.

We call M}, twisted Verma modules'. They are highest weight modules with
highest weight u. M}, is free over n nn_ and dual to M}, is free over n nn,.
Their composition series quotients coincide with those of the Verma module M,
but they are “glued” in a different way. If M, is irreducible then M, ~ M}, but if it is
not so, then the composition structures of M;* and M} differ from each other.

We will construct twisted Verma modules.

But first, let us recall the correspondence between the highest weight g-modules
from @, (4 is a dominant integral weight) and certain sheaves on the flag
manifold.

Any integral weight v=w * 4 defines the linear holomorphic complex bundle &,
on F and invertible sheaf &, of its holomorphic sections. Let 9, be the sheaf of
differential operators on the sheaf Z,. We denote by &=¢, the structural sheaf.

! Using shifted cohomology Hi(n",-) of n"% with respect to the decomposition
nl = Nn,)@ MY nn ) (see Appendix A) we can rewrite b,) as follows: HXn'}, M})~C, (as
h-module), H{n%, M})=0, i%0
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The following functor UY defines the equivalence between the derived
category of the highest weight g-modules D, and of the derived category D} of
the N, -invariant holonomic 9, ,-modules on F [of amplitude <i{w)] [1]

UY:%eDy—RI(F;%)e D0y, .

There are also contravariant functors from D0, to the derived category
Con of the category Con of constructible sheaves on F, lisse with respect to
Schubert stratification.

Let M be g-module from Oy;,. Denote by £ the structural sheaf on the manifold
G/N _. The sheaf EQ M is equivariant and equipped with the left action of g and the
right action of h. Consider the complex of sheaves C,(g,é®M) on F, where
C (g, E® M) denotes the standard homological complex of g. This is the complex
of sheaves with constructible cohomology, equipped with the action of k. So, it
decomposes into direct sum:

C.(gE@M)= &2 Ci(g, E®M),
peh*

where C%(g,E®M) denotes p-eigenspace of h. The subcomplexes of sheaves
C*(g, E® M) are acyclic if u#w* L. The subcomplex C¥*4g,EQM) on G/N_
defines the complex of sheaves C%**(M) on F and the complex of sheaves with
constructible cohomologies Hom,(Cy*4(M),&,.,)=7,, on F, ¥;,,€Con. For
the point xe F denote by b, the Lie algebra of the stabilizer of x and by n, its
radical. All subalgebras b, are conjugated and we identify b, /n,=h, with h. The
stalk of ¥}, at x is isomorphic to C**(n,, M). This defines the functor ¥;": DOy,
—Con.

For a given ¥ eDerCon we can construct the 2,,,-module using the
functor of local cohomology:

Z}: ¥ eCon—»RHom,(¥,¢,.,)eD}.
Three functors, defined above, give the following commutative diagram:

D(Oo(l)

Zw

Con ——>—— DYV

Let €, be the constant sheaf with support on Schubert cell F,. 1t is well-known
that ZY(C,)=#+OF; E,,.,) [Is)] is the sheaf of local cohomology of ,.; with
support on F,, and so the g-module, corresponding to €, is the space of local
cohomology HY¥(F;E,.,). It follows from the definition, that Hf(F ;&) s
isomorphic to Mg,,., (in particular, H} (F;¢&,.,)~Mz%,, [35], HE (F 1&0ei)
:M (wow)*l)'

Thus, we see that the twisted Verma module corresponds to the sheaf of local
cohomology and to the constant sheaf with support on the Schubert cell. In

particular, V*(Mg,,).,) ~ €,
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Fig. 1a,b. Generalized BGG resolutions. a Usual BGG resolution. b Twisted BGG resolution

2.3. Generalized BGG Resolution

Now we pass to the Cousin-Grothendieck resolution of the invertible sheaf &, ;.
According to the Borel-Weil-Bott theorem [9] H'™XF;E,, )~ L,-irreducible
representation of g with highest weight A and H'(F;E,,,)=0, i=%I(w).

The spectral sequence for the computation of H'(F;¢,,,,) associated with the
filtration of F by Schubert varicties degenerates in the first term and we obtain the
Cousin-Grothendieck resolution C¥, ,, whose terms are isomorphic to

C{v*}.= @ H%?(Ewu)= @ Mfsw)*z-
seS seS
)=j isy=j

The cohomologies of this resolution are trivial in all dimensions except the
I(w)™ and the I(w)™ cohomology is isomorphic to L,.

The complex C¥ (investigated in [35]) is contragradient to the BGG resolution
[7] and consists of contragradient Verma modules. The complex C3 , ; coincides
with BGG resolution and consists of Verma modules.

We call C¥,; the generalized strong BGG resolution. It consists of twisted Verma
modules, and its I(w)'* cohomology group is isomorphic to irreducible represen-
tation L, of g. The structures of the usual and one of the twisted BGG resolutions
over sl; are shown in Fig. 1.

2.4. Algebraic Constructions

Now we will give algebraic constructions of twisted Verma modules and
generalized BGG resolutions. They will be adapted in Sect. 5 for construction of
Wakimoto modules.
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Let I, be the Heisenberg algebra with basis a,af,aew(d,)=4" and
commutation relations [a,, ag]=[a¥,a}1=0, [a,, af]1=0, s. Let n,, be an irreduc-
ible representation of I, with vacuum vector, annihilated by a,,ae 4% N4, and
by af,ae A% nA_. Denote by A, the algebra of operators on =,,, commuting with
a¥,ae A" (it consists of all polynomials on af,a e 4) and by 4, —its normalizer.
Evidently, 4,/A, is identified with Lie algebra Vect,, of vector fields on the formal
neighbourhood %,, of the cell F,,CF. Lie algebra g acts on %,, and hence imbeds
into Vect,, the space of embeddings being parametrized by H'(g, A,)~h*. Fix
p € h* and the corresponding embedding. Then n,, is g-module with highest weight
#, which is isomorphic to M. In particular, if w=1, then M} is the module of the
functions on the big cell of F, which is isomorphic to the contragradient Verma
module M}, if w=w,, then M} is the module of é-functions on F, isomorphic to
Verma module M,

Now we will give a description of the generalized weak BGG resolutions.

Let Q% be the de Rham complex on the formal neighbourhood %,, of the cell F .
Consider the corresponding complex Q% of local cohomologies:

HE)W,, Q0)—HE) U, Q1) > HE) U @) ...

Evidently, cohomologies of this complex are non-trivial only in dimension i(w)
and equal to €. Consider the tensor product complex L ®8* = Q*()). The center
of U(g) acts on J*(4) and Q*(4) decomposes into a direct sum of subcomplexes,
correspondmg to eigenvalues 0 of the center: QF(1)= @ Q¥(1),. The subcomplexes

Q) are acyclic if 0+6(A). The subcomplex Q%(A), 2 is the generalized
weak BGG resolution C¥,,. For w=1 this fact was proved in [7]. In other cases
the proof is analogous. C*_, is isomorphic to C¥,; only if w=1 or w=w,,.

We give algebraic construction of this complex.

Let T*(%,) be the tangent bundle over %,, with changed parity of fibers. The
complex Q,, is the restriction to g of the graded module over the Lie superalgebra of
vector fields on T¥(%,), which contains the canonical element-differential,
commuting with g.

Let I} be the extension of I, by odd generators ¢,, ¥, « € A% commuting with
I, and with the following anti-commutation relations:

[ow @l =L0¥, 0f1. =0, [0,05] =6,,.

Let n} be the irreducible representation of I} with vacuum vector, annihilated by
a, €AV A, and by a¥, ¥ ae A% nA _. Introduce grading on I, and n,
putting dega,=dega¥=0, degp,= —1, dego’ = 1

Denote by A¢ the algebra of operators on n,) commuting with a,, ¢,, a€ 4%,
and let A] be its normalizer in Endr;}. A{/A{ is identified with Lie superalgebra
of vector fields on T *(%,,), and since g acts on T *(%,,), there is the embedding of g
into this superalgebra.

There is a canonical element de I, of degree 1 such that [d,g]=0, [d,d], =0.
This equips n; with the structure of the complex of g-modules, which is
isomorphic to O*. Note that if w=1, then =} and Q* is nothing but the de Rham
complex on the big cell of F.
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Using this algebraic construction we can describe the generalized BGG
resolution. Introduce modified length on Weyl group. Let

p,={aed,:s lacd_}
and let A7, =w(4,)n4.. Put
L(s)= #(@n 4L ) — F#(@,nA)).

In particular, I,(s)={s), [,,,(s)= —I(s).
We have Cili"= @ MY,,. Using this result we can compute the coho-
seS
Lu(s) =i

mology H*(n';, L,). Namely,
HH—’(W)(" L).)— @ (Es*l w(e)+e

lw(s) i
as the h-module, or equally, H(n"%,L,)= @ ,,,. This is the Borel-Weil-Bott

seS
lw(s)=1i

[9] theorem.
In particular, dim Hi(n*, L,) = # {s: l(s)=i} for any w. We can compare it with
the following result:

dimH*(F;C)= #{s:l(s)=i}, H**YF;C)=0.

We will generalize this result to semi-infinite flag manifolds in Sect. 4.

In conclusion we define certain functors in the category Der @y, connected
with the Weyl group. Let T;;=U$ o« Z - V}*. We have T o T.” = T3. The functor T;,
transforms the twisted Verma module M ez t0 Migg.,. So T transforms the
generalized BGG resolution C¥,, to C¥%,,, and hence L, to L,[Il(s)—I(w)]. Note,
that Bruhat-Hecke correspondence N,, on

FxF:N,={(k,«k')eF x F:(b,,b,) are in relative position w}

gives the functor T = U} o N .0 Z} o V;}. Functors T: seem to be closely related
to Kazhdan-Lusztig theory [33]. It would be interesting to give an algebraic
construction for them.

3. Wakimoto Modules: Definition

Now we pass to representations of affine Kac-Moody algebras. The affine Kac-
Moody algebra Lg* is the unique central extension of the algebra of currents
Lg=g®((t)). The commutation relations in Lg* read

[A(m), B()]=[A,Bl(m+D)+m-6, {A,B)>-K,

where A(m) denotes AQt™ e Lg, Ae g, K is the central element, ( > is Killing form,
normalized so that (H; H;» =(a; &), where & =2a/(o, ), i=1,...,n.

Let 4 be the root system of Lg*, «y, &y, ..., o, — be the set of 51mple roots, A, (4_)
denotes the set of positive (negative) roots. The roots of Lg* are divided into
imaginary and real roots. Imaginary roots are of the form I5, where [e Z and 6 = o,
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+ Omax» Omax DEINE maximal root of g. Real roots are of the form 6+ «, where le Z,
ae .
Cartan decomposition of Lg* is given by Lg4=7#_®h®Dn,, where

Ao=n_@1®gRt™'C[t™'], hI=h@1BCK,
=n,@1PgRtC[[¢]].

Any character y of A determines the character of the algebra b, =h@#,,

b,—h, N )| [note, that y=(7,k), yeh* ke(CK)*~C,k is called the central
charge]. Let M, be Verma module %(Lg") ® C,, where C, is one-dimensional
representation of b, determined by y.  ***

The category @ of highest weight Lg*-modules [13,41] decomposes into the
direct sum of subcategories (50, where 0 is the eigenvalue of the Casimir element of
Lg* [29,30]. Denote by @0(1, the subcategory containing M, [0(x)=(x + 2¢, 1),
where g€ h*, g(¢;)=1, i=0, ..., n]. In particular, if y is the dominant integral, then
(99(1) consists of modules w1th hlghest weights of the form s * y =s(y +0) — ¢, where s
is an element of affine Weyl group S,er=3S,e(G).

The Verma module M, is characterized by the following properties (cf. Sect. 2):

a) M, belongs to the category 0,

b) Ho(ﬁ_,Mx) €, (as A-module), H(A_, M,)=0, i=+0.

Now let M} be a module contragradient to M,. M} is characterized by the
property a) and by the property

b*) H°(A,, M*)~C, (as h-module), H(n,,M})=0, i+0.

Following Sect. 2 we should consider the ﬂag manifold X = X(G)=LG*/B*
[39,40]. Here LG” denotes the unique central extension of the group of all
smooth maps S! — G and B4 denotes Lie subgroup of LG* corresponding to Lie al-
gebra b=n_@h We also need the dense submanifold X,,=X,.(G) of X, X,,

L,.G%/BA, where L, ,G* denotes the group of analytic maps S*—G, and B,
denotes the corresponding subgroup. Flag manifold X decomposes into disjoint
union of Schubert cells X, where s runs the affine Weyl group S, of G, which are
the orbits of N, (Lie group ofA,). X,= N, -5 where §is the image of se LG*in X.
The Schubert cell X, is isomorphic to sN , s~ AN ., and is of finite codimension.

Let y be integral dominant weight. Then we can introduce the functors
Uy, V¥, Z¥, acting between the appropriate derived categories. It is possible to
construct twisted Verma modules Mg, as local cohomology HY)(X,E,.),
where &, . denotes the suitable invertible sheaf on X. Twisted Verma modules
M} are generally characterized by the property

b,) H™(whA, w™ , M)~C,_ g1
Hi(wmwﬂ,M;f):o’ i l(w).

Here (w)=#{xe A, :w™ 'ae A_} is the length of we S,;. In particular, M} is the
contragradient Verma module M.

Twisted Verma modules correspond to constant sheaves, supported on the
Schubert cell. It is possible to construct them algebraically and also to define affine
Weyl twist functors T as in 2.4. Twisted Verma modules compose twisted BGG
resolutions of irreducible representation as in 2.3
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So our program may be generalized in the affine case as well. But in contrast to
the finite-dimensional case, the affine Weyl group is infinite and there are no
maximal elements. That is why, starting with the contragradient Verma module
M} we cannot pass to the Verma module M, “moving” on the Schubert cell, as in
the finite-dimensional case (where M} corresponds to the cell of maximal
dimension and M, to the cell of maximal codimension — to the point), in the affine
case there are no Schubert cells of maximal codimension.

But we can try to take into consideration twisted Verma modules, which
correspond to certain “limit elements” of the affine Weyl group (and also “limit”
cells of flag manifold).

Recall that S,;;~SocA, where S is the finite Weyl group and A is the root
lattice.

The group S, acts on Lg* as follows:

S (X, @) =X, @' @D, aed, seS, aecA.
Choose an element ye 4 and transform the subalgebra 7, by its powers:
L X, @) =X, @107,

and so when m— oo we obtain the limit subalgebra 7 (y)=limt,,(A.):

0= @ Cxa®<13((t))®<h@ ® CX«)@“E[[t]]@ ® CX,®1.

aedy

ae ae
(@, 7)<0 (@,7)=0 (@,7)=0

Note that p,=h® @ «CX, is the parabolic subalgebra of g.

acd
(@, 7)=0

The algebra 7, (y) depends only on p., so we denote a, =7, (y), where p=p,. Let
p=r,®v,, where v, is the reductive subgroup of p and r, is the nilpotent radical
of p. Then

a,=r,QC()@v,RtC[[t]]1D(v,nn,)®1.

We have the twisted Cartan decomposition of Lg*: Lg" :ap®ﬁ® ay, where *
denotes Cartan involution [29].

Itis natural to consider the infinitely twisted Verma modules W, ,, correspond-
ing to a, (and to lim¢,,) which are characterized by the property a) and by the
property

b)) H*2*a, W, )=0, i%0,

H~*(a, W, )~C, (as h-module)

where H*/?*(a,,-) denotes semi-infinite cohomology of a, with respect to
decomposition a,=a; @a,, ay =a,nA, (see Appendix A).

We call W, , Wakimoto modules (note, that in [18-20] we considered only
W, ;). Composition series quotients of W, , and M, coincide, and if M, is
irreducible, then M , is isomorphic to W, ,. W, ,is free over a, and dual to W, , is
free over a, .

One can define W, , as the limit of M in the sense of Jantzen filtration [30].
Let J'W, , and J'M% be the i terms of Jantzen filtration of W, , and M%. Then

for any j there is m, such that J'W, ,~J'M%> for i=1,...,j, m>m,,.
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According to our geometric approach, we should consider the semi-infinite flag
manifold X ,= LG"/By=LG/B,, where B is the twisted Borel subgroup corre-
sponding to Lie algebra 5 —a*(-Bﬁ (tw1sted Borel subalgebra) and its dense
submanifold X3"= L;,,,G"/B"fm = LanG/Ban

In the next section we will study the geometrical and topological properties of
X, X3". In particular, we will show that X" decomposes into Schubert cells of
semi-infinite dimensions (that is both of infinite dimension and of infinite
codimension), which are labelled by the affine Weyl group. These cells are related
to Wakimoto modules in the same way as cells on X are related to contragradient
Verma modules (or twisted Verma modules): the constant sheaf on the cell
corresponds to Wakimoto module, and the Wakimoto module is isomorphic to
the local “semi-infinite” cohomology of the invertible sheaf on X, Cousin-
Grothendieck resolution of the invertible sheaf (with respect to Schubert
stratification) gives two-sided BGG resolution of the irreducible representation,
whose terms are Wakimoto modules. Explicit algebraic constructions of Waki-
moto modules and of two-sided BGG resolutions (in spirit of 2.4) are given in
Sects. 5 and 6.

Recall that we have defined Wakimoto modules starting with the contragra-
dient Verma module M} and taking the limit element on the affine Weyl group. It
is also possible to start with Verma module M. In this way we obtain co-twisted
Verma modules, characterized by the property:

b") Hy,,(wi_w™1,"M,)~C

nt+e—wle)

HwA_w™1,*M)=0, i%lw).

(as h-module),

Evidently, "M, ~ M*.

These modules correspond to the sheaves on the “turned” flag manifold
X+ =LG"/B4, where B4 is the Lie group corresponding to b, (or on its dense
submanifold X} = L, G/B4*=). These sheaves are supported on Schubert cells X
of X*: X} =N, -5 The cell X; is isomorphic to sN_s !N, and is of finite
dimension.

Taking the limit, as above, we obtain contragradient Wakimoto modules W;*,
corresponding to limit elements of S, (and to limit cells of X*). They are
characterized by the property

bp) Hoo/2+i(a*7 W*p):"o’ l:':oa
H,(ay, WE,)~C, (as h-module),

where H,,,.{a},-) denotes semi-infinite homology of a} with respect to the
decomposition: a¥=a}* @a} ", a* =afni,.

The correspondmg flag manifold is X, e =LG"/B;*, where By + is the Lie group
corresponding to the Lie algebra 5 t=a @ﬁ

We see that the way starting w1th M is dual to the way starting with M}.
Possibly, there are other ways.

Wakimoto modules are intermediate between M, and M. The cells of X ,, X ;
may be considered as infinitely far cells of the usual flag manifolds X and X ™.

So we may consider manifolds X, X ,, X/, X * as the pieces of the unified “flag
manifold” of affine Kac-Moody algebra Lg*, whose geometry is in one-to-one
correspondence with representation theory of Lg.
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4. Semi-Infinite Flag Manifolds

In this section we will study semi-infinite flag manifolds X , and their submanifolds.

4.1. The Usual Cohomology of X,

The group By is homotoplcally equivalent to the group H (Lie group of A) for any p.
Hence LGA/BA is homotopically equlvalent to LG4/A~LG/H and to ¢= %/T
where % is a compact form of LG and T is its maximal torus, acting on % as
constant maps. So we obtain the following.

Proposition 1. For any p the semi-infinite flag manifold X, is homotopically
equivalent to the manifold X = LG*/B. In particular, the cohomologyrmgs of X,and
X coincide, and

dimH*(X ,,Z)= #{se€ Sy;:Us)=i}, H**YX,Z)=0.
Note, that H*(X, Z) was computed on [36,31,...].

4.2. Loop Spaces and Semi-Infinite Structure

Let R, be the nilpotent radical of P (Lie group of p) and N,= P/R,, the reductive
subgroup of P. V, is the product of the semi-simple Lie group G, and abelian
group H,.

Consider the space L(P) of C®-maps S'-F,=G/P. Note that
ny(L(P))~ Hy(F ,,Z) is isomorphic to the group of characters P—C* (or the
quotient of lattices 45/4 ). Denote by L(P) the universal covering space of L(P).
This space is isomorphic to the space of C*-maps D*—F,, where D? is a closed
disk, up to the following equivalence: two maps y, : D>*~F, and y,: D*—F, are
identified, if they coincide on the border of D? and are homotopically equivalent in
the class of such maps.

The natural map X ,—L(P) is a fibering, the fiber being the usual (not semi-
infinite) flag manifold Y, of the group LV;". Y, is the product of X(G,) and X(H ),
where X(H ) - “flag manifold” of LH% —is isomorphic to the product of the group
of characters of P [or to H,(F ,,Z)] and the vector space h,@tC[t] (h, 1s the Lie
algebra of H,). Thus, X , is homotoplcally equivalent to the bundle over L(P) with
fiber X(G,). Denote it by

Note that L(P) zLG/LPO, where LP, denotes the connected component of the
unit of the group LP. We put L_(P)=L,,G/L,,P,.

The manifolds L(P) and L, (P) are endowed with remarkable semi-infinite
structure. At this moment we cannot give a strict definition of such objects as semi-
infinite manifolds, sheaves on them and semi-infinite cohomology of sheaves. But
we are convinced that the suitable theory does exist and that manifolds
L(P), L,.(P) are the first examples of this theory.

As an illustration we will compute the semi-infinite homology of these
manifolds. We will propose two ways for computations.

The first one is an application of Floer’s theory [24] which is the semi-infinite
analogue of the usual Morse theory [8]. In contrast to the usual theory in Floer’s
theory the indices of the singular points of the Morse function are infinite, but the
difference of indices of two points is finite, so we can define the relative index
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putting the index of a certain marked point to be equal to 0. Singular points
compose Morse complex graded by the relative index with a differential defined as
usual and semi-infinite homologies are the homologies of this complex. In our case
there is a remarkable Morse function of Conley-Zehnder type [11], the complex
being non-trivial only in “even” dimensions (as in finite-dimensional case [8]), and
so singular points represent homology classes of L(P)

The second is the decomposition of L_(P) into Schubert cells of semi-infinite
dimensions. It means that cells are both of infinite dimension and of infinite
codimension, but they are commensurable, so that we can define the relative
dimension of the cell which is finite. Dimensions of all cells are “even” and hence
they represent semi-infinite homology classes of L, (P). Note that this cellular
decomposition is related to singular points of our Morse function.

The decomposition of L,,(P) into Schubert cells gives the decomposition of X,
into Schubert cells, which are connected with Wakimoto modules. It leads to the
semi-infinite analogue of Cousin-Grothendieck resolution which gives two-sided
BGG resolution.

4.3. Morse Function

As is well-known, F,=G/P=4%/T, (where % is a compact form of G, T, is a
compact form of P) is a symplectic manifold an orbit of the coadjoint
representation of %. Denote the symplectic form on F, by w,. Let tet, (Lie
algebra of T,) be a regular element of ¢, and h,(«) be the hamiltonian of the vector
field = on F,. It is a Morse function on F, with singular points-images of the
elements §€ S(G)/S(G,) in F, [8].

Let us define the semi- 1nﬁn1te Morse function H (y): L{(P)—C. For any 7: D?
—F, ye L(P) we put

H!(y)zjwp_ _f hrd(P -
b oy

We call H(y) the Conley-Zehnder function [11].

Its singular points are such maps y: D>—F ,, which transfer the border of D? to
§eF, (and winds the disk D on a certain element of H,(F,;Z)~ A¢/4g,). So
singular points of H (y) are labelled by S,(G)/S.(G,).

Let us compute the relative indices of singular points of H (y).

At first, recall how to compute the indices of singular points of k(). Let
A,= AGN\AG,), 4,=40u4,, Ay =4,n4,. We put

L®=#{aecd, :SaucAG)_}
(this definition is correct because s(4, )= A4, if s€ S(G,)). The index of the point §
is equal to ind(8)=2I,(3).
Denote 4, = 2(G)\3(Gp). For §&S,;(G)/S:(G), let
It,8)=#{oed) :a=15+B, Bed;}; sue A(G)_}
— % {oaed) a=I5+p, fed;;SucA(G)_}.

This definition is correct, because for any be A and e 4, thereis o' 4, : (o, b)
=(0, ).
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Now if we put ind(1)=0, then
ind®)=21,5),  §€8.(G)/S.r(G,)-

So semi-infinite homologies of E(F) are contained in even dimensions 2i and
generated over © by elements of the set M (i), where M (i)={5€ S(G)/S1(G,):

It 3)=i}.

4.4. Cellular Decomposition

The cells of L_(P) are the orbits of the group N,. Let #=N,-§
§€8,:(G)/Sa(G,), § is embedded onto L.(P). Then % is 1dent1ﬁed with
N ASN 571, where N is the subgroup of L,,G* which corresponds to Lie
algebra r,QC((1)) [note that N AsN s 1—N nN., s€S8,4(G,)]. So, putting
dim%, = 0 we obtain that relatlve d1mens1on d1m”2l-—2ltp(§) It agrees with
Sect. 4.3. Note that all cells are of “equal size” and the closure of %; consists of %,
such that dim%, < dim%,.

We also obtam the decomposmon of X3" into Schubert cells. Let s€ X, be the
image of s€ S,(G) in X3". Then the orbits of s under the action of N, give this
decomposition. Denote U=N, -sCX%". Evidently, %, is the product of the
appropnate cells of L, (P) and Y, The relatlve dimension of %, (we put dim%, =0)
is equal to 21tp(s) deﬁned as follows We have A(G)=A(P)u4?. Let

AP)={I5+a, ac A(P), leZ}, A°={l6+0, acd? IeZ}.
Then
It(s)=#{xe AP)NA(G), :s0e A(G)_} — # {xe APnA(G), : sae A(G)_} .
In particular,
Its)= #{0c A(G), :a=15+p, fed,, suc A(G)_}
— #{aeA(G), :a=15+p, Bed_, sac AG)_},

and if s=s-t,, s€S(G), bedg, then It (s)=Us)+(2¢,y). We define also It,(s)
=lt(s™h).

4.5. Connection with Wakimoto Modules

We suppose that in a semi-infinite case there are analogues of functors U, V, Z of
Sect. 2, 3, which establish the connection of Wakimoto modules W, , with sheaves
on X,

The Wakimoto module W,,, ,,-: corresponds to the space of “local semi-
infinite cohomology” with support on the Schubert cell of the invertible sheaf
Hg/2 10X, &), where It (s) is the (complex) relative codimension of the cell %,
In the next section we w1ll give algebraic construction of Wakimoto modules
which is similar to finite-dimensional construction of 2.4 and clarifics the notion
of local semi-infinite cohomology.

The constructible sheaf on X, corresponding to the Lg”-module M, has the
stalk at the point x, isomorphic to the complex of semi-infinite homology (more
exactly, its w#y eigenvalue component with respect to the action of A)
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Wik dak . M), where af  =kafx™'=a} is the Lie algebra of the stabilizer of
ke X, and we take its decomposmon

+ - + A V=1
af =ay @ay., ari=xlay . Nk

So, the Wakimoto module W, -1 corresponds to the constant sheaf on
the Schubert cell %, The irreducible representation with dominant integral
highest weight L, corresponds to the constant sheaf on X . Irreducible represen-
tations Lg,, correspond to semi-infinite analogues of Goresky-MacPherson
sheaves [4].

4.6. Cousin-Grothendieck Resolution

There is a semi-infinite analogue of Cousin-Grothendieck resolution R/2**(y) of
invertible sheaf éLwnh respect to Schubert stratification of X . Its terms are local
cohomologies of £, with support on the Schubert cell, that is Wakimoto modules:

R;o/2+i(X)= ) HOO/Z_H(XP,EZ)—— @® Ws‘*x sps— 1

codim%s =i _SeSarr
seSarr fty(s)= —i

The cohomologies of this complex coincide with cohomologies of Ex:
H*?*(X Z)=0, i+0, H**X,E)~L,.

[analogously, H*>*(X ,, &, ) =0,ifi=I1,(s), H*/> (X , &, Y~ L ]. Thisis the
analogue of the Borel-Weil-Bott theorem.

So Ry/?**(y) is the resolution of an irreducible representation. It is the limit
resolution of twisted resolutions on the usual flag manifold X. We call it two-sided
BGG resolution. This is an analogue of generalized strong BGG resolution.

In Sect. 6 we will prove a similar two-sided BGG resolution in a different way.
It is an analogue of generalized weak BGG resolution.

4.7. Grassmanian Model

There is a Grassmanian model of L(P) similar to the Grassmanian model of the
usual flag manifold [40]. We give this model for L,,SL, [40], the other models
for other algebras are direct generalizations of this.

Let # =I*(S*, C?) be Hilbert space. Let e, and e, be basic vectors in C>. We
choose the basis u;, ie Z in #, such that u,;=e,z,, u,;=1,7". The shift operator z
transforms u; to u,; ;.

There is decomposition of # into a direct sum of mutually orthogonal

subspaces:
#=H,DHVDH?,

where H , is generated (over €) by u;, i>0, HY — by u,;, i <0, H? - by u,;_,i<0.
Let us consider the manifold Gr of all subspaces H of #, commensurable
with HY or H? (see [40]), characterized by the property:
zHCH and 2"~ 'H/z"H is one-dimensional.
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The manifold Gr is isomorphic to L(B),, of Lsl,. The group L,,SL, acts on
Gr naturally, the stabilizer of H) being the group L,,B, (the connected
component of the unit of L,,B).

We say that an element u € # is of finite order g if u= Z cu, c;eC. For HCH

we put Q;={q€Z: H contains an element of order g¢}. For the set of integers Q we
put % {HeGr:Qy=0}.
The affine Weyl group S,.{SL,) is freely generated by s, and s,. Let us denote

St =S00r1 -+~ $15081, i=0,
—i times

Sy =Soor1 -+~ SoS18g, 1>0.
i times

Then i, — the cell of L(B) coincides with Y, where
Q;

Q:={i,i—2,i—4,...}.

It is the orbit of H,,=s;, under the action of N,.

5. Wakimoto Modules: Construction

In this section we will construct Wakimoto modules algebraically as certain
modules over the algebra of infinitesimal automorphisms of the bundle over the
formal neighbourhood of the cell of the manifold L(p). This is the generalization of
the finite-dimensional construction of twisted Verma modules 2.4. But in the
infinite-dimensional case we meet with some homological problems.

5.1. The Case of Borel Subalgebra

We start with the most important case p=b. Denote W,=W, ,. Wakimoto
modules W, are boson representations of Lg*, which are interesting in conformal
field theory. It is possible to obtain explicit formulae for these representations. The
formulae for Lsl# are represented in Sect. 7.

Consider the formal neighbourhood .4 of the cell %, of L(B) It isisomorphic to
the linear space N _ @ C((1)) ~C*9((1)), d(g)=(dimg — n)/2.

First of all let us study Lie algebra of vector fields on A"

Let I" be Heisenberg algebra with generators a,(m), a¥(m), ae A_, meZ and
commutation relations

La,(m), ag(D] = [az(m),af(D]=0,  [a(m),ag()]=0,,s0m, - (1

Let M be an irreducible representation of I’ with vacuum vector, annihilated by
a(m), m>0,aed_, a¥(m), mz0, e A _. Introduce grading on I" and M, putting
degaX*(m)=1, dega,(m)= —1. Denote by A, the algebra of operators M—M,
commuting with all a*(m) and by A, its normalizer in End M. The space 4,/4,=W
= @ W,is a graded Lie algebra.

iz—1
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It is easy to sec that W, consists of the operators Y g, (m)a(m), where
aed

m2T
0,m)eC,leZ.So W_, is identified with 4". Denote 4", = N_®@tC[[t]]. We have

Proposition 2 [18]. 1. The Lie algebra W, is isomorphic to the algebra of operators
a: N >N, such that dim((a(N )+ N )N )< oo, Wo@W_ | is normalizer of W_,
in W;

2. The Lie algebra W is Cartan prolongation of the pair (Wy, W_,). W is
identified with the Lie algebra of vector fields on N,

It is interesting to compute the cohomology of W with coefficients in 4, which
is identified with the space of the functions on A"

We can change W by the Lie algebra W, of “finite” vector fields, which is the
Cartan prolongation of the pair (g, V,,), where gl is the injective limit of g/, and
V., is the injective limit of vector representation V, of gl,. Denote by F(V,,) the space
of functions on V, and consider H¥(W,,F(V,)). W, =W, _ ®W,, where
Wex @ W, ;. As is well-known,

iz0
H*W,,, F(V,.)))~ H¥(W,,, )~ H¥(gl., )~ A*(ey, 5, ..),
dege,=2i—1 ,i=1,2,....

Here the first isomorphism is given by the Schapiro lemma and the second is
proved in [25].
We obtain the analogous result for W.

Theorem 1. H*(W, 4,) ~ H*(W,, ©).

Proof. The isomorphism H*(W, A,)~ H* (@ W, (E) is given by the Schapiro
lemma and the proof of the isomorphism \'=°
H*((—D Wi,(E> ~ H*(Wp, ©)
i>0
is the same as in [25]. O
The cohomology ring H*(W,, C) was computed in [22].

H*(W,, C)~S8*(c;,c¢q,...), dege;=2i,i=1,2,....

Note that H¥(W,, C)~C is generated by the well-known Tate [42] or “Japanese”
[12] or “wedge” [31a] cocycle ¢, and so H*W,A,)~C. We can give the
description of the cocycle &, generating H*(W, A,). Let W, and W, be two vector
fields on A" from W. Any point x € .4” determines two elements w,(x) and w,(x)
from W,, which are linearizations of W, and w, at k. We put

[C1 (w1, wy)] (r)=c1(W (), W(K)) .

Now we pass to Lg*. It is clear that Lg acts on 4" and it gives the embedding
Lgo W.

Proposition 3 [18]. Composition

H*(W, Ay)—H*(Lg, Ag)—~H*(Lg, A/©),
applied to ¢, is 0.
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Proof. Short exact sequence 0—>C— A,— A4,/C—0 gives

H(Lg, €)—— H*(Lg, Aj) —— H’(Lg, 4,/©).
According to Schapiro lemma,
H*(Lg, Ag)~H*(Lb,,C)~H*(Lh,C).

Denote the image of the projection of &, onto H?*(Lg,A,) by ¢;, and the
corresponding element of H?(Lh, C) by ¢. We should show that ¢ lies in the image of
¢,. Recall that H*(Lg, €)~C is generated by the central charge. It means that we
should show that ¢ (central extension of Lh) is the restriction of the central
extension of Lg. It follows from the computations below.

Let us compute ¢. In order to do it we should express operators H, (m)e Lg* (H,
is the coroot, dual to the root ae 4) via operators ay(m), aj(m).

We need some preparations. For any countable set A(m), m € Z, of operators we

put A(z)= mgz A(m)z™, A(z)=z :—Z A(z). Introduce normal ordering : :, as usual [19].
Operators H,(m) act on M as follows:
H (z)= anA (& f):ay(2)aj(2):.
Using the Wick theorem we obtain:
[H(m), Hy()] = — 0y, —- myeZA+ (@ 7)(B,7)
=0, -1 m(@ B)(—c,),

where ¢, is dual Coxeter number of g [29]. We see that ¢ is the restriction of the
central extension of Lg and Proposition 3 follows. []
We obtain the following result.

Theorem 2 [18]. The embedding Lg ¢, W is lifted to the embedding Lg* <, A,. The set
of these embeddings is the principal homogeneous bundle over H'(Lg, A,). There is
natural homomorphism h*—H'(Lg, A,). There is an n-parameter family of
Lg*-modules W,, i €h* with central charge —c, in M.

We call W, a restricted Wakimoto module. It is characterized by the
homological property:
H2P(r,@CT(1), W) =Cy;  H*?M(r,@C(1), W)=0, i+0.

W, corresponds to the cell of L(B). We studied W, in [19] (see also Appendix B).

In order to construct Wakimoto modules W, we should consider the fibering
over A4 with the fiber m,.-Fock representation of Lh* with vacuum vector
annihilated by A®QC[[t]] and central charge k'.

So we should consider the extension I" of I" by generators b{(m), i=1,...,n,
meZ, commuting with I' and with commutation relations [bym),b{(l)]
=0,,, - KH, H;». The subalgebra of I' is identified with the algebra of infinitesi-
mal automorphisms of our fibering. So Lg* imbeds into I' and it equips W, @,
with the structure of an Lg*-module with central charge k=k'—c, and highest
weight y=(J, k). So we obtain an (n+ 1)-parameter family of Lg*-modules, which
is the family of Wakimoto modules W, [18].
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5.2. General Case

Now we will construct W, , with an arbitrary parabolic subalgebra p of g.

We introduce some notations. The subgroup V), of G is the product of semi-
simple subgroup: G,=G{-.... G (where G are simple subgroups of G,) and
of the abelian subgroup H, We assume that corresponding Lie algebras g%,
i=1,...,q and h, are mutually orthogonal with respect to the Killing form.

Let Mf’;, kp) be the contragradient Verma module over Lgj':

p* — M% *
M(x kp)_M(XI k“’)®"'®M(xq k{9))»

where M, k) is a contragradient Verma module over LgP”. Let T k) beaFock
representation of Lhy with central charge k), and hlghest weight .

Consider the fibering over the formal neighbourhood .4, of the cell %, C L( P)
with fiber M% \ \®@m 4 =ME i s

We define the algebra W of vector fields on the space 47, [which is isomorphic
to R,®Q((1))] in the same way as in 5.1. Let I}, be a Helsenberg algebra with
generators a,(m), a¥(m), ae A?, me Z and commutatlon relations (1). Let M, be its
irreducible representation with a vacuum vector, annihilated by a,(m), xe 4%,
m>0 and a¥(m), ae A%, m=0. Denote by A3 the algebra of operators M,—~M,,
commuting with a*(m), ae€ A?, meZ, and by A% its normalizer W¥=A}/A} is
identified with a Lie algebra of vector fields in End M, on .4,

The algebra Aut, of infinitesimal automorphisms of the fibering defined above
is a semi-direct sum of W7 and of the algebra

EndMZ ., . .®A5=End,.

The extension of W? by Af, defined in 5.1 gives the extension of W” by End,
and of Aut, by End, Denote by ¢ the element of H Z(Autp, End,), which
corresponds to the representa’uon of Aut, in Mx 2Kk M,

We want to obtain the condition, when Lg* may ‘be embedded into Aut,. Lg
acts on .4, and hence imbeds into W?. So Lg* imbeds into Aut, if and only 1f the

composition
H?*(Aut,, End,)—»H*(Lg,End,)—~H?*(Lg, End,/C),

applied to ¢ gives 0.
Proposition 4. The composition
H?*(Aut,,End,)—~H?*(Lg,End,)—»H?*Lg, End,/C),
applied to ¢, gives O, if and only if the following conditions are satisfied:
k},")zk;,—cgy,.
Proof. The short exact sequence 0—C—End,—End,/C —0 gives:
H?*(Lg,C)—~H*(Lg,End,)~H?*Lg,End,/C).

As in Proposition 3, we see that, according to the Schapiro lemma,

H*(Lg,End,)~H* L, M2 .\ )= @ H*(LgW, M, k(,)))eaHz(Lh,,, Ty k) s
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and we should show that the restriction of ¢ to the latter cohomology space is the
restriction of the central charge of Lg. In order to do it we should compute the
extension on A Cp.

For any Hyeh we have HB=H,‘;+i H, ;, where Hheh, and H; ;eg¥.
We have the action of Hy(m) in M;l":ikp.k,;(@ M,
HP= 3 1a.@)a@): (o P-+ Hie) +H, 40),
where H(m) denotes the action of Hf(m) in . ; , Hy (m) denotes the action of

Hﬂ l(m) m M LR G
We have

[H g(m), Hy(l)]=m5m’_l<_a§1p(a’ B) (o, 7)+ Z KO(Hg w H, >+ k, HE, H‘;)).

2
q
Evidently, (Hy, H,>= Y {Hy ;, H, >+ {Hj, HY). We must obtain
i=1

[Hym), Hy(D]=mé,, -(B.7) k. 3)
So we sce that the following conditions must be satisfied for it:
k(i)=k, —Cgu), (4)

(where Cyto denotes dual Coxeter number of gV).

Then (2) is (3) with k=k},—c,.

The proposition is proved D

So we obtain that if (4) is satisfied, then M} .., . ®M, is equlpped with the
structure of an Lg*-module, which is isomorphic to W where 1= x', k), with
central charge k=k,—c,.

Our construction shows that W, ,is the Lg*-module, “semi-infinitely induced”
from the (Lg,®Lh,)*-module M2 ., ., and the existence of a central extension
imposes the constraints (4) on the central charges. Indeed, it is possible to induce
from any representation of (Lg,@®Lh,)", if the conditions (4) are satisfied.

In particular, if we induce from a Verma module, then we obtain the module
L corresponding to the cell of X :

Our construction also says that it is possible to put the sheaf of (Lg,@®Lh,)"-

modules on L(p) into correspondence with highest weight Lg4-module, by taking
the complex of semi-infinite homology C,,; .+.(r,®T((1)), M) as the stalk of this
sheaf. The corresponding sheaves may be lifted (in some sense) to the constructible
sheaves on X, (see Sect. 4).

W

X

6. Two-Sided Bernstein-Gelfand-Gelfand Resolutions

In this section we construct and prove two-sided Bernstein-Gelfand-Gelfand
(BGG) resolutions of irreducible module over Lg”, consisting of Wakimoto
modules. The approach we develop is an alternative to that of Sect. 4, where
similar resolutions appeared to be Cousin-Grothendieck on the semi-infinite flag
manifold.
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Our resolutions are the subcomplexes of the semi-infinite de Rham complex in
the neighbourhood of the big cell on the semi-infinite flag manifold (for a finite-
dimensional counterpart see 2.4).

Let I,' be the supersymmetric extension of I, by odd generators ¢,(m), ¢X(m),
ae AP, meZ commuting with I" with the followmg anticommutation relations:

Lo m), 05D = [oF(m), pf(D] .. =0,
[(Pac(m)’ (P;(l)] + 5a,ﬂ5m, —1-

Let M, be the irreducible representation of I," with vacuum vector annihilated by
a,(m), o (m), x€ A”, m>0 and by a}¥(m), ¢} (m) oe AP, m=0. Introduce grading on
I," and M, putting dega,(m)=degg,(m)= —1, degaf(m)=degp¥(m)=1. Denote
by A%* the algebra of operators M, —M,, commuting with all a¥(m), ¢}(m) and
let A2 be the normalizer of 45" in the Lie superalgebra The superalgebra A2* /45"
= WJr @ W, is a graded Lie superalgebra. We see that W,"_ | consists of the

iz—1
operators
Y, emam+ 3 gm)e,m), where LIeZ,
aedAP,mz1 acdP,mz21
and so W,'_, is identified with the the tangent bundle T+, over A, [the formal
nerghbourhood of the cell %, C L(p)] with the changed parlty of ﬁbers Wb i
identified with Lie superalgebra of vector ficlds on T*.#,. In the same way as in
Sect. 5, we obtain: H*(W,", Ag*) ~C. The generator &y of H *W,*, A3™)is induced
by Tate-“Japanese” cocycle ¢{ from H*(W,,, €)=~ C.

Now change the grading on I'; and M +, putting deg,a,(m)=deg, L F(m)=0,
degg,(m)=—1, degoX(m)=1. There isa canomcal element d (differential) in I’
such that deg,d=1, [d,d], =0, which endows M ~ with the structure of complex

= G—)Z Ri. 1t is evident that their cohomologies are contained in the 0"
dimension and equal to €. This complex is the semi-infinite analogue of de Rham
complex on A,

On the other hand, let us consider the usual de Rham complex Q% on the big
cell X, of the usual flag manifold X(G,) of the group LGy, Q%= @ Q' Denote by

iz0
F, the space of the functions on X. The tensor product complex R¥=R}® Q%

= @z R} may be considered as the semi-infinite de Rham complex on the product
of X, and .4} Denote by d its differential. Note that the product of ./}, and X, is
isomorphic to the cell of the manifold X, (see 4.2). Denote by W, the Lie
superalgebra of vector fields on T (4, x X,) (tangent bundle over .4}, x X ; with
changed parity of fibers). The Lic algebra Lg acts on T*(A, x X ;) and hence Lg
imbeds into WJr the image commuting with d. We have the following

Proposition 5. The composition
HYW,'; ABY) > HA(W,", A5* @ F ,)> H¥(Lg®Cd, A5* QF )

(the first mapping is due to the Schapiro lemma) transforms é; to 0.
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Proof is analogous to the proof of Propositions 3 and 4 (we should consider the
superconformal current algebra Lg* [32] which imbeds into I7Vp+, and fur-
thermore is the same as in the proof of Propositions 3 and 4).

So R} is equipped with the structure of complex of Lg*-modules. Its
cohomologies are trivial in all dimensions except 0", where they are equal to C.
Simple calculation by virtue of those of the proof of Propositions 3 and 4 show that
the central charge of Lg” is equal to 0 (due to supersymmetric “cancellation of
anomalies™). [

Now let L, be an irreducible representation of Lg* with dominant integral
highest weight y. Consider the complex R¥(x)=R}®L,. It is an Lg*-module with
highest weight y. Hence, the Casimir element Cas of Lg* [29] acts on R¥(x),
commuting with differential d. So R¥(x) decomposes into the direct sum of
subcomplexes R¥(x) = @ R¥(x)y, where

R¥(x)p={ceR}(x)|3Im:(Cas—0)"c=0}.

Denote R¥(x) = R¥(%)( + 20, - Cohomologies of this complex are contained in the
0" dimension and are isomorphic to L,.

R3(x) is a two-sided BGG resolution corresponding to parabolic subalgebra p
of g.
Theorem 3. R(x)= @ Wi, ,

SESacr
Itpls)= —i

Proof is equivalent to the standard [26]. It is easy to see that R*(y) is free over a,
and the dual to R*(y)is free over ;. So there is filtration of R¥(y) by Lg*-modules,
whose adjoint quotients are isomorphic to Wakimoto modules W, ,. Highest
weights x’ of these modules lie on the set §—3 y;, 7 € L,, where y; are different roots
of Lg”. Applying the arguments of [26] we see that the eigenvalue of Cas is equal to

(x+ 20, y) only if )
)c’=S()c)—A=Z1 vi=s(x+e)—e=s*y,

where {y,,....7q}={v€d,:s7'yed_}. In R¥(y) the corresponding module
W..,,p lies in the dimension — Iz ,(s). After all, the fact that filtration indeed splits
follows from homological considerations in spirit of [41].

Our resolutions enable us to compute the semi-infinite cohomology of twisted
parabolic subalgebras a, and r,@Q((t)) with coefficients in the irreducible

representation (semi-infinite Borel-Weil-Bott theorem).

Theorem 4. 1. H*?*Ya,,L)= @& C,., as h-module,

s€Sarr
Ips)= —i

2. H**i(n, @C((), L) = %9 Tseg.k+cp (GS an Lh*-module) .
Ity . (s)a;f—i

Proof. The spectral sequence corresponding to our resolution degenerates in the
first term and gives the result. []

We use this result for computing the (co)homology of Lie algebra r, @ C[[]] of
currents on the line to a nilpotent subalgebra.

We will formulate the result only for the algebra n, ®C[¢].

Denote S,=4, xS, where 4, = ® Z,a;. For se S, It (s)=1(s).
i=1
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Theorem 5. Hyn, @C[t])~ @ CLhm),—: e as h®C[t] module, where
. 3(5)

seSpge A AmT L
I(s)=i

I{s), j=1,...,n are defined as follows:
o—s(@)= Y, I{s);, I(s)eZ,, h; are generators of h.
i=1

Proofis based on the study of the action of the homologies of n, ® €[] on its semi-
infinite homology and follows from Theorem 4. [1

Detailed proof and related results will be published elsewhere.

Note that the standard methods of computing the (co)homologies of current
algebras [17] fail in this case. Thus, Theorem 5 is one of the interesting
applications of our theory.

7. Examples
7.1. Explicit Formulae for W, over Lsi},

We give the explicit formulae for the action of the generators of Lsl4, ; which were
obtained in [18]. For the simplest case Ls/4 they were obtained by Wakimoto in
[44] - that is why we call W, Wakimoto modules. Note also that formulas for Lsl3
and Lsl4 were independently obtained by A. B. Zamolodchikov (unpublished).

Denote by E;, H,, F;, i=1,...,n, standard generators of s, . Denote a;(m)
=0 .. —q,(M), 1<i<j<n affm=a_,,_ . _,, 1=2i<j<n. Commutation rela-
tions of aU(m) af{m) are given in Sect. 5.

Then

i—1 i
Ei(z)=3a§<2 aj,i—la;"ji—l_.z, aﬁdﬁ) —vakb,— y,ak
i

+ Z al+1j U Z ajl 1a11+(l+1_v2)au:

_] i+

Hi(Z):2:a11 i+ Z ( a a* : ]l lajl 1- )

n
+ Zﬂ ('aijaij_'ai+ 1, %+ 1,;-)+vbi+xi,
J=t

n

Fi(Z)zaii'i'._Z ;0% 1,55 k=v?—(n+1),

(a;;, a; denote a;(2), af(z))

define the action of Lsl', , in W, with y=(x,, ..., x,, v>—(n+1)), the central charge
is equal to v*—(n+1). We denote this module by W, ,, where {=(xy, ..., Xa)-

7.2. Co-twisted Verma Modules over Lsl4 with dominant weights are shown on
the picture {(Fig. 2). The points on the figures denote singular vectors in M, or in
its quotient, which correspond to singular vectors in the Verma module M,.
Interrelations between these vectors are expressed by the arrows.
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MX t"‘MX tZazMX tmaMX WX

[ ] ® [ ] [ ] [ ]
./ \. ./ \. / \. 0,/ \. /\.
pop X X >4
Koo o oA %i
I WO P<i el
[ ] [ ] e o ® [ r ®

XX
XX
XX
XX

Fig. 2. Twisted Verma modules and Wakimoto module over Ls/4

The chain of arrows leads from one vector to another if and only if for any
choice of vectors projecting under some factorizations into singular vectors, the
latter vector is generated by the former.

In Fig. 2 the structure of the corresponding Wakimoto module is shown (the
description of the structure of Wakimoto modules over Lsl4 was givenin [197). We
see that this structure is “approximated” by the structures of M},

7.3. Structure of Two-Sided BGG Resolutions over Lsl4 and Lsl4
The affine Weyl group S,(SL,) is generated by two simple reflections s, and s,. Let
sO=5.508; ... Soor1, 150,
—i times
$=505150 -+ Soory,  1>0.
i times

Then Ry(x)= Ww.,- We want to give explicit formulae for the differential of R¥(y).

In [21, 43, 197 composition vertex operators
B11 ..... lm(ﬁla'-wﬁm;’))la'“:ym)a liGZa ﬂiec’ yieq:’ Z yi:()a

were defined. B, (B1,-..s B3 ¥1s -+ V) acts from W, to W, ,.

N Bvey

1,(Y1» -+ Vm) D€ the operator: W, _,, ,— va [deﬁned as follows:

.....

D11 ,,,,, lm(’yla sy ’Ym)z i Z Za(il) a(lm)

Iy, b€

1 1
XBh ..... lm<;>"";;y1’---’Ym>7 .

In [19] the following theorem is proved.

M3

7;=0.

1
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\50 5,2 >< \SfJ 'S, |
s

S S¢Sy S¢S S S Sy s1
oo e @ e oo /S \ s ><S\
-3 =2 -1 0 1 2 3 \2 \2
®—
S0/ \5O 5250/ >< \50
\s, \s, S,/

-3 -2 10 12 3 4
Fig. 3a, b. Two-sided BGG resolutions over Lsl4 and Lsi{. a Lsi4, b Lsi4

1 n
Theorem 6. Let Vi=v—2()f—2(i‘1))“li: i=1,...m If ¥ y,=0 (Kac-Kazhdan
i=1

equation [30]), then Dy, ; (71, ..., Vm) is an intertwining operator between W, _,,, ,
and W, ,.

Nowlet y=(m—1,l+m~2), ,meZ, ,m>0, by the integral dominant highest
weight. Then the differential of R¥(y) d;: Ri™*(x)—Ri(y) is given by [20],

1—-2 o

dizDi,...,i(’))la -'-aym)a ys:: %ﬁ’ lf l 18 CVCI],
[+1-=2 o

d;i=D; _ {y1s--71)> Vs:jmi, if i is odd.

The differential for the two-sided BGG resolution over other algebras may be
also expressed via vertex operators. Two-sided BGG resolution over Lsl4 does
exist for any highest weight y=(j, k) with ¥ and k rational and k> —2 [19, 20].

The structure of the two-sided BGG resolution over Lsl{ and Lsl{ is shown in
Fig. 3.

The points in the figure denote Wakimoto modules. The marked point denotes
W,. The arrows show the action of the differential. The weight of the module
situated in the given point is equal to sx*y, where s is the product of simple
reflections along the way from the marked point to the given point. Note that the
pictures are composed of BGG resolutions over corresponding finite-dimension
Lie algebras sl, and si;.

Two-sided BGG resolutions R¥(y) over Lg” may be used in WZW models for
computations of the correlation functions on the torus and higher genus surfaces
in integral representation, in the same way as in Felder’s work [23].

Note that Felder’s resolution over Virasoro algebra [23] is closely connected
with our two-sided resolution over Lsl4 via the functorial correspondence between
Lsl4-modules and modules over Virasoro algebra [20, 47].

Appendix A. Semi-Infinite (Co)homology [16]
Let & be Z-graded Lie algebra &= @Q‘,, dim%, <o, n=Z0L,®...

b=%,®%_®... — its subalgebras. Let M be such an %-module that the
n-submodule generated by any vector of M is finite-dimensional.
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Put Z*= (—BZ Z¥, X*=nt@®b*, where L denotes the orthogonal complement.
le

Choose a basis ¢,, i€ Z in & and dual basis ¢}, ie Z in Z*. Let CI(Z’) be a Clifford
algebra with generators ¢,, ¢f, ieZ and anticommutation relations: [¢; ¢;]
=[of, 971+ =0, [¢; ¢F], =9,;. Introduce grading on C(Z), putting deg ;= —1,
degof =1. Let I be an irreducible representation of Cl(%') with the vacuum vector
annihilated by ¢;en and ¢} en’. The module I inherits grading.

Put o=3:0,0F0f: ¢’ where cj'-k are structural constants of & and : : denotes
normal ordering. Define the operator T: M®I—->M®]I as follows:

Tm@p)=m@p(p)+ Y. o(m®of(p), meM, pel.

Itis easy to see: T>=Id®Y b;;¢F ¢}, b;;e €. The expression Y b; 0} ¢¥ determines
the 2-form w on %, and simple calculations show that w is cocycle from H*(%). If
H*(Z)=0, then w= v, where v=Y r,0} and ¢ is differential in the cohomological
complex of Z. Define the operator d: M®I—-M®I, putting d= T—v. Evidently,
d*=0. We obtain the complex {M®1I, d}, whose i cohomologies are semi-infinite
cohomologies of & with coefficients in M with respect to the decomposition
Z =n®b. We denote them H®2 (%, M).

Semi-infinite homologies are connected with semi-infinite homologies by the
rule: H,, 5+ (%, M)=H*?"{Z, M).

Our considerations may be applied to the finite dimensional Lie algebra &.
The corresponding cohomology groups will be denoted H{(%, M) and called a
shifted cohomology with respect to the decomposition Z =n®b.

Appendix B. Modules on the Singular Hyperplane

The singular hyperplane is the hyperplane k= —c, in A*. The structure of Lg*-
modules, whose highest weights lie on the singular hyperplane, differ from the
structure of other Lg*-modules. This is caused by the fact that Segal-Sugawara
operators [28,37] of Lg* commute mutually and with Lg* if k= — ¢, So they yield
a great number of singular vectors in the Verma molecule. Let us consider a
restricted Verma module M, _,,=M,, which is the quotient of the Verma
module M _., by a submodule, generated by all singular Segal-Sugawara
vectors. In [28, 37, 45] it is proved that in general a point of the singular
hyperplane (that is if ¥ does not belong to other Kazhdan-Lusztig hyperplanes
[30]) M, is irreducible and hence isomorphic to the restricted Wakimoto module
W, defined in 5.1.

In [19] we used explicit formulae for W, for the study of the structure of a
restricted Verma module. Here we sketch our main results.

First of all we consider W, and M, over Lslj(c,=2).

Theorem B.1 [19]. If 1=0,1,2,... then M is isomorphic to W, and contains the
unique singular vector of degree-(y + 1)a,, the quotient by the submodule generated
by this singular vector being irreducible.

If ¥=—2, =3, ..., then M, is isomorphic to W;* and contains the unique singular
vector of degree (+ y + 1), the quotient by the submodule generated by this singular
vector being irreducible.

If 740,1,2 and f+ —2, —3,... then M, is irreducible and isomorphic to W,.



Affine Kac-Moody Algebras and Semi-Infinite Flag Manifolds 187

Note that Malikov has proved this result by other means [38].

For a general affine Kac-Moody algebra Lg! we have proved the theorem
about the structure of M,, if t is projective. We call y projective if the Verma
module M, over g is projective in the category ¢ [5]. It means that M, is not
contained in another Verma module over g as a proper submodule. In particular, if
M, is irreducible and is not contained in another Verma module, then y is
projective, and the dominant integral weight is projective.

Theorem B.2 [19]. If weight } is projective, then the singular vectors of M over Lg"
coincide with singular vectors of M, over g, and also My is isomorphic to W,. In
particular, if M, is irreducible and is not contained in another Verma module then M %
and W, are irreducible (and mutually isomorphic).

We also have the conjecture about non-projective highest weight modules.

Let %5, ..., x; be highest weights of Verma modules over g such that M, C M or
M, CM,, or there is j;, such that M, CM, , M,CM, . Let },,, be the maximal
weight among ¥y, ..., 7, 7. Then ., is the projective weight.

Conjecture B.3 [19]. The number of singular vectors of M, coincide with the
number of singular vectors of M,__ . In particular, if 7=s* j,, where J, is the
dominant integral weight, then the number of singular vectors in M is equal to the
order of the Weyl group S(G).

We also conjecture the acyclic resolution consisting of restricted Verma
modules. This resolution seems to be the Cousin-Grothendieck resolution of the
invertible sheaf on the manifold L(B) with respect to Schubert filtration.

Conjecture B.4 [19]. There is an acyclic resolution A(¥) ( is the dominant integral

weight) of Lg"-modules with central charge — c,, so that A'= @ My -0
t(s)=—i
s€8arr

Acknowledgements. We would like to thank A. A. Beilinson and D. B. Fuchs for helpful
discussions.
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