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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 295, Number 1, May 1986 

AFFINE MANIFOLDS AND ORBITS 
OF ALGEBRAIC GROUPS1 

WILLIAM M. GOLDMAN AND MORRIS W. HIRSCH 
Dedicated to the memory of Jacques Vey 

ABSTRACT. This paper is the sequel to The radiance obstruction and par- 
allel forms on a;ffne manifolds (lYans. Amer. Math. Soc. 286 (1984), 
629 649) which introduced a new family of secondary characteristic classes for 
affine structures on manifolds. The present paper utilizes the representation 
of these classes in Lie algebra cohomology and algebraic group cohomology to 
deduce new results relating the geometric properties of a compact affine mani- 
fold Mn to the action on Rn Of the algebraic hull A(r) of the affine holonomy 
group r c Aff(Rn). 

A main technical result of the paper is that if M has a nonzero cohomology 
class represented by a parallel k-form, then every orbit of A(r) has dimension 
> k. When M is compact, then A(r) acts transitively provided that M is 
complete or has parallel volume; the converse holds when r is nilpotent. A 
4-dimensional subgroup of Aff(R3) is exhibited which does not contain the 
holonomy group of any compact affine 3-manifold. 

When M has solvable holonomy and is complete, then M must have parallel 
volume. Conversely, if M has parallel volume and is of the homotopy type of 
a solvmanifold, then M is complete. If M is a compact homogeneous affine 
manifold or if M possesses a rational Riemannian metric, then it is shown that 
the conditions of parallel volume and completeness are equivalent. 

This paper is the sequel to our previous paper [22]. In that paper we exploited 
certain characteristic classes (exterior powers of the radiance obstruction) to obtain 
relationships between various properties of affine manifolds. Our results supported 
the conjecture (first made by L. Markus [36]) that a compact affine manifold is 
complete if and only if it has parallel volume. We shall refer to this as the main 
conjecture. 

Let M be a compact affine manifold with developing map dev: M > E and 
affine holonomy representation h: 7r > h(7r) = r c Aff(E). Here 1r is the group of 
deck transformations of the universal cover M, E is the vector space Rn, and 
Aff(E) is the group of affine automorphisms of E. The map dev is a locally 
affine immersion which is equivariant respecting h. The linear holonomy homb 
morphism is the composition A: 1r > GL(E) of h with the natural homomorphism 
L: Aff(E) > GL(E). The obstruction to r fixing a point in E is a 1-dimensional 
cohomology class CM E H1(M; Ex) with coefficients in E twisted by A. It comes 
from a universal class in the group cohomology H1 (Aff(E); EL) which contains the 

crossed homomorphism u: Aff(E) ) E, g g(0). 
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The results in our previous paper were obtained by calculating CM in various 
cohomology theories singular, tech, and de Rham. In the present work we obtain 
further information by relating CM to the cohomology of the algebraic hull A(r) of 
r in Aff(E). Our general theme is to relate geometrical properties of M to algebraic 
properties of A(r). For example the main conjecture states that completeness, a 
geometrical property of M, is equivalent to the condition that A(r) preserve volume 
in E. 

Many other properties of M can be described in terms of A(r). Thus r is 
solvable when the algebraic group A(r) has the same property. It turns out that 
this condition brings us closer to affirming the main conjecture. 

PROPOSITION S. Let M be a compact affine manifold with solvable holonomy 
group r. Then: 

(a) If M is complete, then M has parallel volume. 
(b) If M has parallel volume and the solvable rank of r is less than the dimension 

of M, then M is complete. 
(The solvable rank is the minimum sum of the ranks of the abelian quotients 

in a composition series. For example, the hypotheses of (b) are satisfied if M is 
homotopy-equivalent to a solvmanifold.) 

One of the main components of the proof of Proposition S is the following result: 
PROPOSITION T. Let M be a compact affine manifold. If M is complete, or if 

M has parallel volume, then A(r) acts transitively on E. 
As an immediate corollary we obtain 
PROPOSITION F. If M is as in Proposition T and is connected, then every 

rational function on M is constant. 
By a rational function on M we mean a function defined in a dense open set, 

which appears rational in every affine coordinate chart. Equivalently, such a func- 
tion corresponds via the developing map (from the universal covering of M to E) 
to a rational function on E which is fixed by A(r). In a similar way one defines 
polynomial functions (and more generally tensors) on M. It is unknown whether 
any compact affine manifold can support a nonconstant polynomial function. In 
dimension three this cannot happen (D. Fried [9], W. Goldman [19]). 

For certain classes of affine manifolds, transitivity of A(r) is sufficient for com- 
pleteness. These include homogeneous affine manifolds, manifolds admitting ra- 
tional Riemannian metrics, and, more generally, affine manifolds whose developing 
maps are covering maps onto semialgebraic open sets. 

Our methods give a geometric proof of the following result of J. Helmstetter [25], 
which is related to the main conjecture: 

PROPOSITION H. A left-invariant affine structure on a Lie group G is complete 
if and only if every right-invariant volume form on G is parallel. 

Our results also apply to manifolds which are not assumed to be complete or 
to have parallel volume. The basic strategy is to derive a lower bound for the 
dimensions of the orbits of A(r) from knowledge of some cohomologically nontrivial 
exterior form on the manifold; a parallel volume form is a special case. When r is 
nilpotent we use this method to strengthen some of the results of Fried, Goldman 
and Hirsch [13]: 
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PROPOSITION N. Let AI be a compact affine manifold with nilpotent holonomy 
group r. Then: 

(a) The highest degree of a nonvanishing exterior power of the radiance obstruc- 
tion equals the smallest dimension of an orbit of A(r). 

(b) M is complete if and only if A(r) acts transitively on E. 
(c) If M is incomplete, then the orbits of A(r) having smallest dimension lie 

outside the developing image (in fact there is only one). 

It seems reasonable to conjecture that a similar picture holds more generally, say 
for r solvable. This has been verified for the special case that M has dimension 
three and solvable fundamental group (Goldman [19]). 

By explicit example we show that condition (a) of Proposition N does not hold 
for arbitrary algebraic subgroups of the affine group. In this way condition (a) 
can be used to exclude certain subgroups of Aff(E) from being holonomy groups of 
compact affine manifolds. More precisely we exhibit algebraic subgroups of Aff(E) 
which act transitively on E and do not contain any such holonomy groups. 

The proofs of these results heavily use the structure theory of nilpotent affine 
groups which is developed in our previous paper [13]. The unique smallest-dimen- 
sional orbit of the algebraic hull is proved to be an affine subspace Eu, coinciding 
with what we called the Fitting subspace in [13]. This subspace is characterized 
as the unique r-invariant affine subspace upon which r acts unipotently (i.e. the 
linear part L(r) c GL(E) is a group of unipotent linear transformations). The 
dimension of Eu is a measure of completeness of the affine structure, because the 
corresponding power of the radiance obstruction is a cohomological invariant whose 
nonvanishing expresses an algebraic condition akin to parallel volume. We shall call 
the restriction of r to Eu the Fitting component of the holonomy group of M. A 
necessary condition that a unipotent affine action of a finitely generated group G be 
a Fitting component of the holonomy of a compact manifold is that the action be 
syndetic on all of E, i.e. that there exists a compact set K c E such that GK = E. 
Not every syndetic unipotent affine action can be realized as the Fitting component 
of a nilpotent holonomy group of a compact affine manifold: 

PROPOSITION E. Let G be the subgroup of Aff(R3) comprising the following 
affine automorphisms: 

1 t u s 
O 1 2v t+v2 
O 0 1 v 

(where the matrices represent respectively the linear and translational parts of an 
affine automorphism of R3). Then G acts transitively on R3 and does not con- 
tain the Fitting component of a nilpotent holonomy group of any compact affine 
3-manifold. In particular G does not contain the holonomy group of any compact 
affine 3-manifold. 

(It follows that the finitely generated discrete subgroup consisting of integral 
matrices does not contain the holonomy group of any such manifold.) 

The outline of this paper is as follows. §1 is an exposition of the cohomology 
theory of Lie algebras, Lie groups and algebraic groups as it relates to affine ac- 
tions and radiance. The main result we use is a theorem of Hochschild [29] which 
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identifies the algebraic cohomology of an algebraic group as the space of invariants (under a Levi subgroup) in the Lie algebra cohomology of its unipotent radical. From this we deduce our main technical result: 
PROPOSITION G. Let G be an algebraic subgroup of Aff(E). For x E E, the dimension of the G-orbit of x bounds from above the degrees of nonvanishing powers of the radiance obstruction of G. 
In an appendix to §1 we give an account of left-invariant affine structures on Lie groups. While most of the results detailed there are known in more general contexts by the work of Helmstetter and others, our treatment is considerably more geometric. We have included these results since they provide beautiful examples of affine structures, whose homogeneity makes them particularly understandable. §2 resumes the study of compact affine manifolds. Using Hochschild's theorem, we show how parallel volume implies the transitivity of the algebraic hull. From this we deduce several corollaries: Markus' conjecture for affine structures which are homogeneous or have rational Riemannian metrics, nonexistence of rational functions, upper bounds on the degrees of polynomial tensors, etc. The basic fact we use is the following corollary of Proposition G: 

PROPOSITION M. Let M be an affine manifold. If there exists a parallel k- form on M which has nonzero cohomology class, then every orbit of the action of the algebraic hull A(r) on E has dimension > k. 
§§3 and 4 discuss affine manifolds with solvable and nilpotent holonomy re- spectively. The partial results on Markus' conjecture use a well-known (but not as well-documented) lemma on representations of solvable groups, which may be found in [11] (which is based upon the treatment in Raghunathan [42]). The results in §4 on nilpotent holonomy depend on previous results proved in [13 and 23]. ACKNOWLEDGEMENTS. This paper has its roots in our collaboration with D. Fried, which in turn is based upon unpublished work of J. Smillie. We are grate- ful to them for many helpful conversations. Discussions with G. Hochschild and C. Moore on algebraic groups have been crucial to this work. We are grateful to J. Helmstetter, and the late J. Vey for helpful suggestions and for describing their results to us. Conversations with G. Levitt on foliations have also played an important role in the development of the ideas here. 

1. Affine representations of Lie groups, Lie algebras and algebraic groups. 
1.1 As usual E is a finite-dimensional real vector space and GL(E) (respectively Aff(E)) is the group of all linear (resp. affine) automorphisms of E. The Lie algebra gl(E) of GL(E) consists of all linear vector fields E aijxi@/0xj, while the Lie alge- bra aff(E) of Aff(E) consists of affine vector fields ,(aijxi + bj)a/0xj (aij, bj E R) . The canonical homomorphism L: Aff(E) ) GL(E) induces a Lie algebra homomor- 

phism, denoted L: aff(E) gl(E), whose kernel consists precisely of the parallel 

vector fields E bj@/@xj. If X E aff(E) as above, then the translational part u(X) is the unique parallel vector field which agrees with X at 0, namely E bj0/@xj. 

1.2 Let g be a Lie algebra. Any homomorphism p: g gl(E) gives E the struc- 

ture of a g-module. To any g-module E are associated cohomology groups H* (g, E) . (See Cartan and Eilenberg [6], Chevalley and Eilenberg [7], and Koszul [33] for more 
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details on Lie algebra cohomology.) If G is a Lie group with Lie algebra , then 
the cohomology of g is the cohomology of the complex of left-invariant differential 
forms on G. In particular the exterior algebra A*(g*) on the dual of g may be 
identified with the differential graded algebra of all left-invariant exterior forms on 
G; the resulting cohomology is H*(g). Now suppose that p: g ) gl(E) defines a 
g-module E (or Ep). Consider the trivial E-bundle over G with a left-invariant flat 
connection given by 

Vp: E ) g* X E, Vp(v): x | ) p(x)(v)) 

where v- E, x E g. This map extends to a covariant differential operator from 
exterior pforms with values in E to exterior (p + 1)-forms with values in E. The 
cohomology H*(g,E) is defined as the cohomology of the subcomplex compris- 
ing left-invariant E-valued differential forms. One can identify this complex with 
A*(g) X E, thereby obtaining a differential graded structure on A*(g) X E, with 
the usual formula for the differential. 

1.3 Let oe: g aff(E) be an affine representation of the Lie algebra g. The 

composition L o oe turns E into a g-module and u o oe is an E-valued cocycle on , 
where u: aff(E) ) E is the translational part (a Lie algebra cocycle on aff(E)). It 
is easy to see that conjugating oe by a translation does not change the structure 
of E as a g-module but alters u o oe by a coboundary. Thus the cohomology class 
of u o oe in H1(g; E) is invariant under translational conjugacy and is called the 
radiance obstruction of oe, denoted ca E H1 (g; E). Evidently ca = O precisely when 
there exists v E E such that oe(X)(v) = O for all X E g. In that case oe is conjugate 
(by translation by v) to a linear representation oe: 0 ) gl(E) c aff(E) and we say 
that oe is radiant. 

1.4 Let oe: g ) aff(E) be an affine representation. We shall always consider 
aff(E) as a subalgebra of the Lie algebra gl(E@R) using the embedding J: aff(E) 
gl(E @ R) defined by 

J(X)= L(o ) u(X) 

where X E aff(E). We define OgJ to be the composition of oe with J. (For the 
definition of OgJ in the case of a group, see [22].) 

We shall say that oe is reductive if and only if the associated linear representation 
O8J: g ) gl(E @ R) is fully reducible. (We make the same definition for affine 
representations of groups, semigroups, algebras, etc. For example if g is semisimple, 
then any finite-dimensional affine representation is reductive.) 

The following lemma is useful and well known (see Milnor [40, 2.3]): 

LEMMA. (i) A reductive affi;ne representation is radiant. 
(ii) A radiant affiine representation oe is reductive if and only if its linear part 

L o oe is fully reducible (i.e. reductive). 

1.5 Given an affine representation oe: g ) aff(E) we will consider the exterior 
powers Ak(c) E Hk(g;AkE) of its radiance obstruction. Any pairing B:E1 x 
E2 ) E3 of g-modules induces a pairing of the Lie algebra cohomology groups 
HP(g;E1) x Hq(g;E2) ) HP+q(g;E3). If E is a g-module and c E H1(g;E) is 
a cohomology class (i.e. a radiance obstruction of an affine representation), then 
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we inductively define An(c) to be the image of (c, An-1 c) under the cohomology pairing H1(g;E) x Hn-1(g;An-1E) ) Hn(g;AnE) induced by the pairing of g-modules E x An-1 E ) An E. 
1.6 Everything we have said concerning Lie algebras is an infinitesimal version of analogous statements about Lie groups. An alternative approach is to work in the differentiable cohomology of G (which is the same as the continuous cohomology of G) and then pass to the Lie algebra by differentiating cocycles on G. Since it is easier to compute with Lie algebra cohomology, instead we define the radiance obstruction ca of an affine representation ca of a connected Lie group G to be the radiance obstruction of the corresponding affine representation of its Lie algebra (the latter representation being also denoted by oe). The following basic fact (which motivated this section) illustrates the usefulness of using the cohomology of g to linearize questions about G: 

THEOREM. Let (:X: G ) Aff(E) be an affine representation of a connected Lie group G. Let cO E H1(g; E) be the radiance obstruction of (:x. If oe(G) has an orbit of dimension < k, then Am cO = O for all m > k. 
PROOF. Since the cohomology class ca is invariant under translational conju- gation, we shall assume that the G-orbit of O has dimension < k. Let fO: G ) E denote the evaluation map of oe at 0, i.e. fO:g | ) (:x(g)(O). Then the differential dfo TeG ) ToE- E satisfies dfo o j = u, where u: g ) aff(E) is the translational part of oe: g ) aff(E) and j: g ) TeG is the isomorphism defined by restricting left-inllariant vector fields on G to the identity e. Since dimoe(G)(O) < k, the image u(g) has dimension < k. Now Am(c) is represented by the cocycle Am(u) which takes values in Amu(g), which equals zero since dimu(g) = dimoe(G)(O) < k < m. Hence Am(u) = O and Am(c) is zero in Hk (g; Am (E)) . Q.E.D. 

1.7 C OROLLARY . If n = dim E and An (ca ) 78 O, then cx (G) acts transitively on . 

1.8 Next we shall examine the radiance obstruction and its powers as cohomology classes in a cohomology theory for algebraic groups. The cohomology theory we use is due to Hochschild [29] (see also Mostow [41]), and a main result of [29] reduces its calculation to Lie algebra cohomology. 
Let G be a linear algebraic group over R and suppose that p: G ) GL(V) is an algebraic representation of G on a real vector space V. (In that case we say that V is a rational G-module.) Let g denote the Lie algebra of G. The algebraic cohomology of GX denoted Ha*lg(G; Vp) (or Ha*lg(G; V) when p is understood) is defined to be the cohomology of the complex of Eilenberg-Mac Lane cochains f: G x G x x G ) V on G which are regular functions on G x G x x G. It is easy to see that the alge- braic cochains form a subcomplex of the analytic (resp. differentiable, continuous, Eilenberg-Mac Lane) cochains on G. Moreover the derivative of algebraic cocycle on G at (e,e,...,e) gives aLie algebracocycle g x g x x g ) V, whereV is given the induced g-module structure. In this way there is a natural chain map which induces a cohomology homomorphism Ha*lg(G; V) ) H*(g; V). It is well known (see e.g. Humphreys [31]) that every linear algebraic group G decomposes as a semidirect product U >< R, where the unipotent radical U is the 
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largest unipotent normal subgroup of G and R is a maximal reductive subgroup 
of G (unique up to conjugacy in G). We shall denote the unipotent radical of an 
algebraic group G by UG; it plays an essential role throughout this paper. If G 
is an algebraic subgroup of Aff(E), then the reductive subgroup R is a reductive 
group of affine transformations and is therefore radiant and conjugate in Aff(E) to 
a fully reducible linear representation. 

The basic result on calculation of algebraic cohomology is due to Hochschild [29] 
which we summarize as follows: 

THEOREM (HOCHSCHILD). Let G be a linear algebraic gro?lp over R and V a 
rational G-mod?>le. 

(i) If G is ?anipotent' then Halg(G; V) maps isomorphically onto the Lie algebra 
cohomology H* (g; V) . 

(ii) If G = U X R as above, then the restriction map Halg(G; V) ) Halg(U; V) 

is injective and its image is the space of R-invariants in Halg (U; V) H* (ll; V) 

where E1 is the Lie algebra of U. 

1.9 We apply this cohomology theory to affine representations as follows. Let E 
be, as usual, a vector space. The group Aff(E) is a linear algebraic group via the em- 
bedding J: Aff(E) > GL(E @ R). The translational part u: Aff(E) > E is a regular 
map which is a cocycle with values in the linear representation L: Aff(E) ) GL(E); 
hence u is an algebraic 1-cocycle on G with values in the Aff(E)-module E. More 
generally, if G c Aff(E) is an algebraic subgroup, its translational part u: G ) E 
is an algebraic cocycle. We call its cohomology class [u] E H1lg(G; E) the (alge- 
braic) radiance obstr?%ction CGlg of G. By taking exterior powers we obtain algebraic 
classes Ak cGlg E Hklg(G; Ak E). It is clear that under the natural homomorphism 
Hklg(G;AkE) ) Hk(g;AkE) the algebraic cohomology class AkcGlg is mapped 
to the Lie algebra cohomology class Ak cs,. 

THEOREM. Let G c Aff(E) be an algebraic s?>bgro?>p. S?>ppose that A CGg E 

Hklg(G; Ak E) is nonzero. Then the ?>nipotent radical UG cannot have an orbit in 
E of dimension < k. 

(Note that this theorem implies that every orbit of G in E must have dimension 
> k. VVe have chosen to state this theorem in its stronger form.) 

PROOF. BY Hochschild's Theorem 1.8(ii) the restriction homomorphism 

Hklg (G; A kE) ) H1Clg (UG; A kE) 

is injective; thus Ak cUgG 7& 0. BY 1.8(i) the associated Lie algebra cohomology 
class Ak ca 7& 0, where 1 is the Lie algebra of UG. Now apply 1.6. Q.E.D. 

1.10 COROLLARY. Let G c Aff(E) be an algebraic subgroup. S?lppose n = 
dim E. Then An CGg 7& 0 implies that G acts transitively on E. 

In 02 these results will be applied to compact affine manifolds. 
1.11 Equivalent conditions for transitivity of an algebraic agne group. One of 

the main techniques of this paper is to deduce transitivity of an algebraic subgroup 
of Aff(E) from various hypotheses. For this reason we collect here a number of 
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conditions on group r of affine transformations equivalent to the transitivity of its 
algebraic hull. 

A semialgebraic set is a nonempty set defined by finitely many polynomial equa- 
tions and inequalities; if there are no inequalities, such a set is algebraic, or a variety. 
Also note that if G c Aff(E) is an algebraic subgroup, then its complexification Gc 
is naturally contained in the group AffC(E @ C) of complex-affine automorphisms 
of the complexified vector space E X C. 

THEOREM. Let r be a subgroup of Aff(E). Then the following conditions are 
equivalent: 

(a) The algebraic hall A(r) of r acts transitively on E; 
(b) The anipotent radical uA(r) acts transitively on E; 
(c) r preserves no proper algebraic set; 
(d) r preserves no proper semialgebraic set; 
(e) The anipotent radical uA(r) of the algebraic hall of r preserves no proper 

semialgebraic set; 
(f) The complexification Ac(r) acts transitively on E X C; 
(g) The complexification uA(r)c of the anipotent radical of A(r) acts transi- 

tively on E X C. 
PROOF. The implications (b)>(a), (b)>(e), (d)>(c), and (g)$(f) are all ob- 

vious. We prove (a)>(b). Decompose A(r) = uA(r) >< R, where R is reductive; 
thus R fixes a point x E E. Now E = A(r)x = UA(r)Rx = UA(r)x, whence 
UA(r) acts transitively. Thus (a)$(b). Similarly it follows that (f)>(g). 

Next we prove (a)>(c). Suppose V is a r-invariant proper algebraic set in E. 
Then r preserves the ideal I(V) of polynomials vanishing on V. The condition 
g*I(V) = I(V) for g E Aff(E) is easily seen to be a polynomial condition on g 
since I(V) is finitely generated as an ideal and g preserves the filtration of I(V) by 
degree. Thus if r preserves V, so does A(r), contradicting (a). Thus (a)>(c). 

Conversely (c)$(a) because a minimum-dimensional orbit of an algebraic group 
action is automatically Zariski-closed (see, e.g., Hochschild [30] or Humphreys [31]). 

To prove (c)$(d), let S c E be a proper r-invariant semialgebraic set, with fron- 
tier (in the Euclidean topology) fr(S) = cl(S) - int(cl(S)); note fr(S) is nonempty. 
We claim: fr(S) is contained in a proper algebraic set V c E. To this end let 
P, Q, R be finite sets of nonconstant polynomials E > R such that V is defined by 
the conditions p > 0, q > O, r = 0 for p E P, q E Q, r E R. If R is nonempty, then 
take V defined by the equations r = 0 for r E R. Otherwise, when R is empty, the 
variety V defined by V = U{U-1(0): f E P U Q} is easily proved to be proper and 
to contain fr(S). 

Suppose now that S, and thus fr(S), is r-invariant, and let V be as above. 
Then S c W = 0{^yV:^y E r} is a proper and r-invariant algebraic set; therefore 
(C)$(d). 

Next we prove (e)>(b). Suppose that UA(r) does not act transitively on E. By 
a well-known result of Kostant and Rosenlicht (see Rosenlicht [43] or Hochschild 
[30]), any orbit of a unipotent algebraic group on an affine variety is Zariski closed. 
Thus the UA(r)-orbit of any x E E is a UA(r)-invariant algebraic set, contradict- 
ing (e). 

Finally we show that (b)¢}(g). Since the orbits of a unipotent algebraic group 
are all closed, transitivity of a unipotent action is equivalent to some (and hence all) 
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orbits being open. Choose x E E and let J uA(r) > E and fC uAc(r) > EXC 
be the evaluation maps at x for UA(r) and UAc(r), respectively. Clearly the 
differential of fC at e E UAC(r) is the complexification of the differential of J 
at e E UA(r). Thus UA(r) acts transitively ¢} df(e) is surjective ¢} dfc(e) 
is surjective ¢} uAC(r) acts transitively on EXC. The proof of 1.11 is now 
complete. Q.E.D. 

1.12 Dimensions of orbits and powers oJ the radiance obstruction. Theorems 1.6 
and 1.9 show a relation between the dimensions of orbits of an affine action and the 
maximum nonvanishing power of the radiance obstruction. We may rewrite 1.6 as 
an inequality 

(*) max {k: A kC0 7& o} < min{dim Gx: x E E} 

which relates an algebraic invariant to a geometric invariant of an affine action. A 
natural question is under what circumstances these two invariants are equal. 

The class c0 is zero precisely when G has a stationary point, i.e. a O-dimensional 
orbit. Evidently if either side of the inequality (*) is zero, then both are zero. 
Moreover, if G has an orbit of dimension < 2, then (*) is actually equality. 

If G possesses a subgroup which acts simply transitively on E, then equality holds 
in (*), i.e. /\nc0 7& 0 where n-dimE. We shall prove this in two steps. First, 
when G acts simply transitively, it will be proved in 01A.6 below that An c0 7& O. 
Using this result, we prove that for any group G such that H c G c Aff(E), where 

H acts simply transitively on E, that /\n Cb 7& O. For if i: b 0 is the inclusion of 

Lie algebras, then /\n C0 = O implies An cb = i* /\n C0 = 0) a contradiction. 
Using a similar argument, if G is a connected k-dimensional subgroup of a simply 

transitive affine action H c Aff(E), then equality holds in (*), i.e. /\kc0 7& O; 
however we shall not need this result. 

In general, however, the inequality (*) will be strict, even for transitive unipotent 
affine actions on R3. 

1. 13 EXAMPLE. Let E = R3 and let 0 be the Lie subalgebra of aff(E) consisting 
of affine maps of the form 

O t v s 
O O u t . 
O O O u 

The corresponding Lie group G = exp(0) comprising affine maps 

1 t v+te/2 s+(t2+ev)/2+t82/6) 
O 1 u t+82/2 

O O 1 u 

acts transitively on E. Let ,r,v,v denote elements of 0* corresponding to the 
variables s, t, a, and v. As Lie algebra cochains (with real coefficients) we have 
dr = dv = O, dv = r/\v, d¢ = v/\v. Since L(0) c sl(E), the 0-module /\3 E is one- 
dimensional with trivial action of 0. Thus the parallel volume form determines an 

isomorphism H3(0; /\3 E) H3(0). Now a cocycle representing c0 is the linear map 

0 > E defined in coordinates by (s, t, a, v) § t (S, t, a). Thus the 3-cochain ff /\ r /\ v 
represents the element of H3(0) corresponding to /\3 c0. But ff /\ r /\ v = d(v /\ v) 
whence /\3 c0 = O. 
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We claim A2 c0 7& O. The exterior 2-form w = dx A dy + (y - z2/2)dy A dz is G- 
invariant and pulls back by the evaluation map G > E to an algebraic cohomology 
class on G. Under the Hochschild isomorphism 1.8(i) this cohomology class is 
represented by the Lie algebra cocycle ff /\ v, which is nonzero. Thus 

max {k: A kC0 + o} = 2 < 3 = min{dimGx: x E E} 

proving that this inequality is sharper than inequality (*) of 1.12. 

1A. Appendix: Left-invariant affine structures on Lie groups. 
lA.1 Let G be an n-dimensional 1-connected real Lie group with Lie algebra 0 

and let E = Rn. An affine structure on G determines a developing map dev: G > E, 
unique up to composition with an element of Aff(E). This affine immersion serves 
as local affine coordinates in any open set where it is injective. 

1A.2 An affine structure on G is left-invariant if each left-multiplication map 

19: G G (g E G) is an automorphism of the structure. In this case dev determines 

a unique homomorphism oe: G > Aff(E) such that the diagram 

G E 

19 t 1a(9) 

G E 

commutes. 
Letting e E G be the identity element, we see that dev coincides with the evalua- 

tion ma? of oe at dev(e). Since dev is an open map, the developing image dev(G) is 
an open set. Evidently oe(G) acts transitively on dev(G), so that dev(G) is an open 
orbit of oe(G). Since dimG = dimE, the isotropy group at any point of dev(G) 
is discrete. We shall say that an action is locally simply transitive if there exists 
an open orbit with discrete isotropy groups. Thus the action oe arising from a left- 
invariant affine structure is locally simply transitive. Clearly the affine structure 
on G is complete if and only if oe(G) acts simply transitively on E. 

Thus to every left-invariant affine structure on G there corresponds an affine 
action oe of G on E with a distinguished open orbit oe(G)p where the action is locally 
simply transitive. Conversely suppose p: G > Aff(E) is an affine representation 
with dim G = dim E and p E E has an open orbit. Then evaluation of: at p is an 

immersion evp: G E and the action: is locally simply transitive. The unique 

affine structure on G for which evp is a developing map is left-invariant (because p 

is a homomorphism to Aff(E)). 
1A.3 Thus we may identify left-invariant affine structures on a Lie group G with 

pairs (oe, Q), where oe is a locally simply transitive affine action of G and Q is an 
open orbit. Two left-invariant affine structures are isomorphic if and only if the 
corresponding representations are conjugate in Aff(E) by a conjugacy taking one 
orbit to another. 

Fix a left-invariant affine structure on G and a corresponding pair (oe, Q). Com- 
mutativity of the diagram above shows that left-invariant tensor fields on G corre- 
spond bijectively via dev to oe(G)invariant tensor fields on the open orbit U. In 
particular G has a left-invariant parallel volume form if and only if oe(G) is con- 
tained in the special agne group SAff(E) comprising all volume-preserving affine 
automorphisms of E. Similarly G has a left-invariant radiant vector field if and 
only if oe(G) fixes a point of E. 
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If r c G is a discrete subgroup, then the space r\G of right cosets inherits an 
affine structure from the left-invariant affine structure on G and dev: G > E is a 
developing map for the affine manifold r\G. Any left-invariant tensor field on G 
descends to a left-invariant tensor field on r\G. 

Let G be a Lie group with a left-invariant affine structure. By abuse of language 
we shall say that G is radiant (respectively G has parallel volume) in case G has a 
left-invariant parallel volume form (resp. has a left-invariant radiant vector field). 

If oe: G > Aff(E) is an affine representation which is locally simply transitive at 
x E E, then the associated affine representation of Lie algebras, also denoted oe: 0 > 
aff(E), has the property that its translational part at x, given by Y | > oe(Y)(x), is 
a linear isomorphism 0 > E . The image oe(0) consists of affine vector fields on E. 
These vector fields integrate to give the action of G on E corresponding under dev to 
left-multiplication; thus these vector fields correspond to right-invariant vector fields 
on G. In summary: on a Lie group with left-invariant agne structure, the right- 
invariant vector f elds are affine vector f elds. (On the other hand, leJt-invariant 
vector fields are generally not even polynomial vector fields; see [13] .) 

1A.4 Unlike affine structures on compact manifolds, it is possible for a left- 
invariant affine structure on a Lie group to both be radiant and have parallel volume. 
Here is the simplest example. Let G1 be the subgroup of SL(2,R) comprising 
matrices of the form 

eS t 
O e-S fi 

Then G1 acts simply transitively on the half-plane {(x,y) E R2:y > 0} and there- 
fore inherits a left-invariant affine structure, which is both radiant and volume- 
preserving. 

This example also shows that in contrast to affine structures on compact mani- 
folds, where it is conjectured that parallel volume implies completeness, it is possible 
for a left-invariant affine structure to have parallel volume and be incomplete. In 
the other direction, a left-invariant affine structure which is complete does not nec- 
essarily have parallel volume. Let G2 be the subgroup of Aff(R2) consisting of 
affine maps of the form 

es 0 t 
0 1 s s 

Then G2 acts simply transitively on the entire plane and therefore the corresponding 
left-invariant affine structure is complete; however every G2-invariant area form on 
R2 must be a constant multiple of e-Y dx A dy so the left-invariant structure does 
not have parallel volume. 

For more examples and a more thorough discussion of left-invariant affine struc- 
tures on Lie groups, the reader is referred to Auslander [1], Boyom [4], Fried [10], 
Fried and Goldman [11], Fried, Goldman and Hirsch [13], Helmstetter [25, 26], 
Kim [56], Medina [38, 39], Milnor [40], and Vinberg [53]. 

1A.5 The following theorem is due to J. Helmstetter [26]: 

THEOREM. Let G be a Lie group with left-invariant aff ne structure. Then the 
afWne structure is complete if and only if right-invariant volume forms are parallel 
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COROLLARY. Suppose G is a unimodular Lie group with left-invariant affine structure. Then this structure is complete if and only if it has parallel volume. 
We shall give one and a half proofs of Helmstetter's theorem: one proof of the "if" assertion based on 1.6, and a more geometric version of Helmstetter's original proof. 
1A.6 Suppose that G is a Lie group with left-invariant affine structure. Using 1.6, we show that if right-invariant volume forms are parallel, then G is complete. We may assume that oe: G > Aff(E) is the affine representation corresponding to 

left-multiplication and that oe is locally simply transitive at the origin 0. Let WE denote a parallel volume form on E; the hypothesis that "right-invariant volume forms are parallel" is equivalent to the assertion that the volume form WG = dev*wE is right-invariant on G. We must show that G acts simply transitively on E. Since 
G already acts locally simply transitively on E, it will suffice to show that G acts 
transitively on E. By 1.6 it is enough to show that the top power /\n C; of the radiance obstruction is nonzero, where n = dim G. 

The proof that /\n C,; 78 0 uses the classical work of Koszul [33] on Lie algebra 
cohomology. Koszul defines the analog of a fundamental cohomology class in Lie algebra cohomology. Let n = dim0 and consider the 0-module /\n 0 given by the top exterior power of the adjoint representation. It is easy to see that this module is one-dimensional and the representation of 0 on it is given by the modular 
representation A: 0 > R, A(X) = tr ad(X). We shall denote this one-dimensional 

0-module by R)i. Koszul proved that the cohomology Hn(0;R,) R. (Koszul 

goes on to use a generator of this group to define a Poincare duality in H* (0) but we shall not need this.) Just as elements of /\n 0* correspond to left-invariant volume forms on G, elements of /\n 0* (8) R) correspond to right-invariant volume forms on G. Koszul's theorem asserts that a right-invariant volume form has a nonzero 
cohomology class when suitably interpreted as a left-invariant form in a certain line bundle. 

To show that /\nc0 is nonzero, consider the pairing H°(0;/\nE* X R)i) x 
Hn(0; /\n E) > Hn(0; R)i) induced by the coefficient pairing (/\n E* X R), x 
/\n E > R)i. Then the image of (WE) /\n C0) is the cohomology class of the pull- back AJG in Hn(0; R)i). By Koszul's theorem, this class is nonzero; hence /\n C0 7& O, 
whence G acts transitively. Thus G has a complete affine structure. 

1A.7 One defect of this proof is that it gives no information in the case that the affine structure is incomplete. In Helmstetter's original proof Theorem 1A.5 is 
deduced from a result showing a close relationship between the growth of volume under right-multiplication and the geometry of the frontier of the developing image. Our efforts to understand fIelmstetter's proof led us to the following geometric 1. . 

elscusslon. 

Our geometric approach to Helmstetter's theorems begins with the representa- tion of right-invariant vector fields as affine vector fields. Choose a basis X1 , . . ., Xn 
E oe(0) of affine vector fields on E representing a basis of right-invariant vector fields on G. Then the exterior product ,u = X1 /\ /\Xn is a polynomial exterior n-vector field which represents a right-invariant volume current on G. Thus we may write ,u = f(x)a/@x1 /\ /\ @/@xn where f: E > R is a polynomial of degree < n in the affine coordinates (x1, . . ., xn) of E. It follows that any right-invariant volume form on G is a constant multiple of f(x)-1dx1 /\ /\ dxn. 



AFFINE MANIFOLDS AND ORBITS OF ALGEBRAIC GROUPS 187 

The following theorem is Helmstetter's main result from which he deduces 1A.5: 
1A.8 THEOREM. The developing map dev: G > E is a covering map onto a 

connected component of the set {x E E: f(x) 7& O}. 
PROOF. Let 9G be a right-invariant Riemannian metric on G . Since 9G is 

invariant under the transitive action of G on itself by right-multiplications, the 
metric 9G is complete. Furthermore there is a symmetric 2-form 9E on E with 
rational coefficients such that 9G = dev*gE. For let X1, . . ., Xn be an orthonormal 
basis of right-invariant vector fields; then the cometric 9E dual to 9E is the tensor 
(X1)2 + + (Xn)2 which is polynomial of degree < 2 in affine coordinates, i.e. 

n 

g* = E gii(z)0/0Xi t3/t3X 
i,j=l 

where each gi; (X) is polynomial of degree < 2. Moreover det [gi; (X)] = X (x)2; and 
the matrix representing 9E is 

[9ij (X)] = [9ij (X)] - 1 = det [9ij (X)] - 1 adj [9i; (X)] 

and has rational entries. Specifically, the symmetric 2-form f(x)2gE(x) is a poly- 
nomial tensor field. Thus a right-invariant Riemannian metric on a Lie group with 
left-invariant affine structure must be rational (compare [20]). 

The developing map dev: G > E is a local isometry from G to the open subset 
Q of E where 9E is Riemannian metric. Since 9G is complete, dev is a covering map 
onto a connected component of Q. Since the tensor field f(x)2gE(x) is polynomial, 
it is everywhere defined. It follows that if x E Aw, then either 9E blows up at x or 
9E(X) is degenerate. In either case f(x) = O. Thus dev is a covering map onto a 
connected component of {x E E: f(x) 7z: O}. This completes the proof of 1A.8. 

lA.9 To deduce 1A.5 from 1A.8 we proceed as follows. We first show that 
right-invariant parallel volume forms $ completeness. Observe that right-invariant 
volume forms are parallel if and only if f(x) is constant. By 1A.8 it follows that 
dev is a covering map (and hence a diffeomorphism) onto E. Hence G is complete. 

In the converse direction it will be useful to complexify. Namely if oe: G > 
Aff(E) is locally simply transitive at 0 E E, then the complexified representation 

°ec: Gc AffC(E X C) is also locally simply transitive at 0 (see 1.13). Suppose 

G acts simply transitively on E. Then by 1.11, Gc acts transitively on E X C. 
In particular Gc must act simply transitively on E X C. Applying 1A.8 to the 
induced complete left-invariant complex affine structure on Gc, we see that the 
polynomial fc: E X C > C has no zeros, and hence is constant. The proof of 1A.5 
is complete. Q.E.D. 

2. The algebraic hull of the holonomy group of a compact affine man- 
ifold. 

2.1 Let M be a compact affine manifold with a fixed universal covering p: M 
M, and let gr = gr1(M) be the group of deck transformations. Let dev: M > E 
be a fixed developing map with holonomy homomorphism h: Tr > Aff(E). Let 
r = h(;r) c Aff(E) be the affine holonomy group and A(r) its algebraic hull in 
Aff(E). We denote the unipotent radical of A(r) by UA(r). 

The main result of this section applies Theorem 1.6 to affine structures on com- 
pact manifolds. 
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2.2 The affine tangent bundle Taff(M) of M (as described in Goldman and Hirsch [22]) is classified by a sequence of maps: 

M > Bgr > Br BAff(E)6 > BAff(E). 

(Here Aff(E)6 denotes the group Aff(E) with the discrete topology.) Taff(M) is 
classiSed as a topologically flat bundle by the Srst map, as a r-bundle by the next map, then as a flat affine bundle, and Snally as an affine bundle by the last map. 

2.3 THEOREM (2.6 OF [22]). Let M be a compact affine manifold which pos- sesses a parallel k-form S which has nonzero cohomology class [S] E Hk(M; R). 
Then /\ CM + ° 

Combining this theorem with 1.6, we obtain 
2.4 THEOREM. Let M be a compact affine manifold which possesses a parallel 

k-form which has nonzero cohomology class in Hk(M: R). Then every orbit of 
uA(r) has an orbit of dimension > k. 

2.5 COROLLARY. Let M be a compact affine manifold with parallel volume. Then A(r) acts transitively. 
(Observe that the transitivity of A(r) is equivalent to the transitivity of UA(r) and many other algebraic and geometric conditions; see 1.11.) 
In 02.7 Corollary 2.5 will be used to prove several cases of the main conjecture (that parallel volume X completeness for compact affine manifolds). Before ex- ploring the consequences of 2.5, we observe that its conclusion is valid under the 

(conjecturally equivalent) hypothesis of completeness. 
2.6 THEOREM. Let M be a compact complete affine manifold. Then A(r) acts 

transitively on E. 
PROOF. Decompose A(r) as a semidirect product uA(r) >< R of its unipotent radical UA(r) and a maximal reductive subgroup R. It suffices to show that 

UA(r) acts transitively. The group R, being reductive, Sxes a point b E E. Since 
A(r) = RUA(r) = UA(r)R, the UA(r)-orbit UA(r)b is invariant under A(r). In particular it is invariant under r. 

Let G = uA(r) and let H c G be the isotropy subgroup at b. Since G and H are unipotent algebraic groups, the exponential map induces a homeomorphism 
0/ ) G/H. Therefore UA(r)/H is contractible. 

The map f: UA(r)/H ) E deSned by gH " ) gb is injective. Since r acts freely and properly discontinuously on E, its restriction to the orbit UA(r)b is also free 

and properly discontinuous. The map UA(r) E is r-equivariant. There is a 

commutative diagram: 

UA(r)/H f E 
1 1 

r\ (uA(r)lH) ft Elr = M 
The vertical arrows are covering maps and the map f induces an isomorphism on 
fundamental groups. Since UA(r)/H and E are both contractible, it follows that f' is a homotopy equivalence. Since both r\ (UA(r)/H) and M are manifolds and M is compact, f' is surjective. It follows that dimUA(r)b= dimE. 
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Since every orbit of a connected unipotent affine action is closed (see Hochschild 
[30], Rosenlicht [43]), the orbit UA(r)b is open and closed in E and thus equals 
E. Hence UA(r), and equivalently A(r), acts transitively on E. Q.E.D. 

2.7 Now we deduce a few immediate corollaries of the transitivity of the algebraic 
hull. 

PROPOSITION. Let M be a compact affine manifold having parallel volume. 
Then the developing image dev(M) c E is not a proper semialgebraic set. 

PROOF. BY 2.5 A(r) acts transitively on E. By 1.11 it follows that r pre- 
serves no proper semialgebraic set. Since dev(M) is r-invariant, the proposition 
follows. Q.E.D. 

2.8 COROLLARY. Suppose that M is a compact affine manifold satisfying the 
hypothesis 

(**) dev: M ) E is a covering map onto a semialgebraic open set. 

If M has parallel volume, then M is complete. 

2.9 REMARKS. (a) We do not know if there exists a compact incomplete affine 
manifold whose developing map is surjective. On the other hand there are many 
examples of compact affine manifolds whose developing maps are not coverings. 
(See Smillie [45, 47], Sullivan and Thurston [49], and Goldman [14, 18] for these 
examples.) For example the product of any surface of genus > 1 with a circle admits 
an affine structure whose developing map is not a covering map. Indeed if the gen;us 
is > 1, then affine structures exist whose developing images are the complement of 
theorigininR3 andwhoseholonomy isadensesubgroupofGL(3;R). In [13] it is 
shown that if M is a compact incomplete affine manifold with nilpotent holonomy, 
then the developing map is not surjective. 

(b) In general the developing image is quite far from being semialgebraic; in fact 
the boundary of dev(M) need not be smooth or even rectiSable. For example there 
exist convex cones Q c R3 covering compact affine 3-manifolds (homeomorphic 
to a product of a surface with a circle) whose boundaries are not c2 (Kac and 
Vinberg [32], Goldman [14]). In dimension 4, there are domains in R4 = c2 
with nonrectiSable boundary, covering complex affine structures on S1 x T1(F), 
where F is a compact surface of genus > 1. (Both of these types of structures 
are affine structures induced from projective structures; see Sullivan and Thurston 
[49], Benzecri [31], or Goldman [14, 18].) There are examples where the developing 
images are bounded by cones on circle bundles over limit sets of Kleinian groups. 
See Sullivan and Thurston [49] for more details. 

2.10 THEOREM. Let M be a connected compact affine manifold. Assume that 
M is complete or has parallel volume. Then: 

(i) M admits no nonconstant rational function M ) R. 
(ii) Every rational tensor feld of type (p,q) on M is polynomial of degree < 

(p + q)An n where An = (2n - 2) !/(2n- 1 (n - 1) !) . 
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PROOF. (i) Let f: M R be a rational function on M. There exists a rational function F: M R such that the diagram 

M f E 
pl 1 
M F R 

commutes. The Euclidean closure of each level set F-l(c) which meets dev(M) is a r-invariant proper algebraic subset; this set is also A(r)-invariant. It fol- lows from 2.5-2.6 and 1.11, however, that A(r) acts transitively on E; so this is 
impossible. Q.E.D. 

(ii) Let OM be a rational (p, q)-tensor on M. There is a unique rational (p, q)- 
tensor fiJE such that dev*(E) = £ projects to fiJM. Since SE iS rational it is 
UA(r)-invariant. Since UA(r) acts transitively on E by 2.5-2.6 it suffices to prove the following: 

2.11 LEMMA. Let G c Aff(E) be a unipotent subgroup acting transitively on E. Then every G-invariant tensor fi;eld X of type (p,q) ts polynomial of degree 
< (p + q)An 

PROOF. Let g c aS(E) be the Lie algebra of G and let b be the Lie algebra of the isotropy group H = G n GL(E). Let Jq be any linear subspace complementary to b in 0, i.e. b d3 ¢4 = g. Recall that a polynomial isomorphism of vector spaces is a 

polynomial mapping f: E1 E2 which is bijective and such that f-l is polynomial. 

The proof of the following lemma is identical to the proof in the case G simply 
transitive (Theorem 8.3 of [13]) and is therefore omitted. 

2.12 LEMMA. The composition g 0 ep G E is a polynomial isomorphism 

ok > E of degree < An 
By Lemma 2.12, £(X) = (eXPf(X))#SOX where f: E ) A is the inverse to u o 

exp: Jq E and g# denotes the map induced on the tensor algebra by g E G. Thus w: E {tensors on E} is a composition of polynomial maps and is polynomial. 

Since deg f < An it follows that degx < (p + q)An. Q.E.D. 
2.13 Homogeneous affine structures. Let M be an affine manifold and let Aff(M) 

denote the group of affine automorphisms M M. Then Aff(M) is a Lie group 

of diffeornorphisms of M. We say M is homogeneous if Aff(M) acts transitively on M. For example, a Lie group with left-invariant affine structure is a homogeneous 
affine manifold. Homogeneous aSne manifolds have been studied by Koszul [34, 35], Matsushima [37], Shima [44], Yagi [54] and others. 

We shall prove the main conjecture for compact homogeneous aine manifolds: 
THEOREM. Let M be a compact homogeneous affine manifold. Then M is com- 

plete if and only if M has parallel volume. 
2.14 The first step in the proof of Theorem 2.13 is the following lemma: 
LEMMA. Let M be a homogeneous complete affine manifold. Then the atfine 

holonomy r is unipotent and M has parallel volume. 
PROOF. Since M is complete, M E/r where r C Aff(E) is a discrete sub- 

group. Aff(M) is identified with Nlr where N c Aff(E) is the normalizer of r. 
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Since r is discrete the identity component N° centralizes r. It is easy to see that 
homogeneity of M implies that N° is transitive on E. Let ey E r be any element. 
Since ey is a deck transformation it has no Sxed point, which implies that 1 is an 
eigenvalue of the linear part of ey. Therefore the Fitting component of ey is nontriv- 
ial. (The Fitting component is the largest ey-invariant affine subspace upon which 
? acts unipotently.) The centralizer of ey in Aff(E) preserves Eu; therefore Eu is 
invariant under N°. But N° is transitive, so Eu = E. Q.E.D. 

REMARKS. The same proof shows that if M is a complete affine manifold such 
that the centralizer of r in Aff(E) leaves invariant no proper affine subspace (i.e. r 
acts irreducibly on E), then r is unipotent. Using a similar technique to the proof 
of 2.14, Auslander [1] proves that the group Aff(M)°, where M is as above, is a 
nilpotent Lie group. 

2.15 PROPOSITION. Let M be a homogeneous affine manifold. Then its devel- 
oping map is a covering onto a semialgebraic open set. 

Theorem 2.13 follows from Proposition 2.15, together with Corollary 2.8. 
PROOF OF PROPOSITION 2.15. Pass to the universal covering space of M 

in order to assume that M has a homogeneous affine structure induced by an 

immersion dev: M E (any covering space of a homogeneous affine manifold is 

still homogeneous). If g E Aff(M) then g o dev is another developing map for M 
so there exists (9) E AS(E) so that dev o g = (9) o dev. It is easy to see that 
: Aff(M) ) Aff(E) is a homomorphism with respect to which dev is equivariant. 
Since Aff(M) acts transitively on M, the Aff(M)-equivariant immersion dev is a 
covering map onto its image. The developing image dev(M) is an open orbit of the 
identity component G of (Aff(M)) and for any connected subgroup G c Aff(E), 
the union of open G-orbits is a Zariski-open subset of E. (For a proof of this fact, 
let g c aff(E) be the Lie algebra of G and for X E g let L(X) and ll(X) be 
the linear part and the translational part of X, respectively. Then the differential 
of the evaluation map of G at y E E is the linear map uy: 0 ) E given by X 
L(X)y+u(X). The condition that y E E have G-orbit of dimension < k is precisely 
the condition that uy have rank < k. This is evidently a polynomial condition 
on y.) Thus the union of open G-orbits in E is Zariski open and in particular, 
since a connected component of a Zariski open set is semialgebraic, any one open 
G-orbit is semialgebraic. (Indeed, a connected component of a semialgebraic set 
is itself semialgebraic; one may prove this using the existence of semialgebraic 
triangulations of semialgebraic sets (see Hironaka [58]) although more elementary 

proofs are available.) It follows that dev: M E is a covering map onto an open 

semialgebraic set. Q.E.D. 
2.16 Rational Riemanniarl metrics. Let M be an affine manifold. A rational 

Riemannian metric on M is a Riemannian metric (deSned everywhere on M) whose 
coefficients in local affine coordinates are locally deSned rational functions. For 
further discussion and examples of rational Riemannian metrics, see Goldman and 
Hirsch [20]. 

THEOREM. Let M be a compact afWne manifold with a rational Riemannian 
metric 9. The following conditions are equivalent: 

(a) M is complete; 
(b) M has parallel volume; 
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(c) g is a polynomial Riemannian metric; 
(d) M is finitely covered by a complete affine nilmanifold. 

PROOF. Suppose 9M is a rational Riemannian metric on M. There exists a 
r-invariant rational 2-tensor 9E on E such that dev*gE = P*9M (where p: M ) M 
is the projection). Evidently 9E is invariant under A(r), because 9E is 0-invariant 
and rational. Since A(r) acts transitively on E, it follows by 2.10(ii) that 9 is 
polynomial. Thus (a)r(c) . 

Since 9E is deSned on a Zariski open subset Q c E, it follows from Proposition 
3 of [20] that dev: M ) Q is a covering onto a connected component Q0. By 
2.15, Q0 is semialgebraic; therefore 2.8 shows that (b)>(a). By [13, Theorem 8.4], 
(d)>(a). By [20, Theorem 1], (c)X(d); and (d)>(a) is clear. Q.E.D. 

3. Parallel volume and completeness for affine manifolds with solvable 
holonomy. 

3.1 One obtains interesting classes of affine manifolds by imposing algebraic 
assumptions on the affine holonomy group r. A natural assumption is that r be 
solvable, owing to the abundance of examples: all known complete affine manifolds 
have virtually solvable holonomy group. Many interesting compact incomplete 
affine manifolds have solvable holonomy; see [13, 16, 19] for examples. 

The equivalence of parallel volume and completeness was proved in [13] for 
compact affine manifolds with nilpotent holonomy; and it immediately follows for 
virtually nilpotent holonomy as well. We prove that for manifolds with virtually 
solvable holonomy, completeness > parallel volume, but we know only partial re- 
sults in the other direction. 

3.2 THEOREM. Let M be a compact complete affine manifold. Suppose that 
X = 1r1(M) is virtually solvable. Then M has parallel volume. 

PROOF. BY [11, 1.5], M has a Snite covering M which is affinely equivalent 
to a complete affine solvmanifold, i.e. an affine manifold of the form r\G where 
G is a Lie group with left-invariant complete affine structure and r c G a lattlce 
subgroup. Equivalently M = Elr where r c G c Aff(E) with G acting simply 
transitively on E. Since G admits a lattice, it is unimodular, so by Corollary 1A.5 
G is volume-preserving. Thus r is volume-preserving and M has parallel volume. 
It follows that M itself has parallel volume. Q.E.D. 

3.3 COROLLARY. Let M be a compact 3-dimensional affine manifold which is 
complete. Then M has parallel volume. 

PROOF. The proof follows from 3.2 and [11, 2.12] where it is shown that 7r1(M) 
is virtually solvable. Q.E.D. 

3.4 Now we turn to the converse statement. Let r be a solvable group and 
consider the derived series r = rl D r2 D * * * D rs = {1}, where rk+1 is the derived 
group of rk. The rank of r is deSned to equal the sum 

s-1 

E dimR(R X ri/ri+l) 
i=l 

which may be infinite (even if r is Snitely generated). If r is polycyclic (see Milnor 
[40] or Raghunathan [42] for basic properties of polycyclic groups), then each ri 
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is finitely generated and rank(r) is finite. Furthermore rank(r) equals the rank 
of r as a polycyclic group, which is the virtual cohomological dimension of r. 
Solvable holonomy groups of complete affine manifolds are known to be polycyclic, 
but Smillie (unpublished) has constructed compact affine manifolds with solvable 
but not virtually polycyclic holonomy. 

3.5 THEOREM. Let M be a compact afWne manifold with affne holonomy gro?lp 
r c Aff(E) which is solvable and rank(r) < dim M. If M has parallel volume, then 
M is complete. 

REMARK. It follows from [11, §1], that M is finitely covered by a solvmanifold. 
The condition rank(r) < dimM implies that the affine holonomy homomorphism 

r Aff(E) factors through a solvable Lie group of dimension < dim M. 

3.6 The following lemma is proved in [11, 01] (which is based upon Raghunathan 
[42, 4.28]). 

LEMMA. Let p r GL(E) be a linear representatzon of a solvable group r. 

There exists a solvable subgroup G c GL(V) having finitely many connected com- 
ponents such that p(r) c G c A(r) and dim(G) < rank(r). 

3.7 PROOF OF 3.5. Apply Lemma 3.6 to the inclusion r c A(r) to obtain a 
subgroup G with r c G c A(r) with dimG < rank(r) < dim(E). We claim that 
G c Aff(E) acts simply transitively on E. 

Decompose A(r) = A(G) in the usual way, A(r) = uA(r) X R, where R 

is reductive. Let @: A(r) R be the projection homomorphism and define the projection map 4> A(r) ) uA(r) by g g-1@(9)* One can prove (following 

Raghunathan [42, Theorem 4.28]) that for a connected solvable Lie group G con- 
sisting of matrices, 4> maps G onto UA(G). Since uA(r) = UA(G), we see that 
4S maps G onto uA(r). 

Since M is compact with parallel volume, 2.5 implies that UA(r) acts transi- 
tively. We now show G acts transitively: let y E E be a fixed point of the reductive 
group R; since q>(g)y = g-ly for g E G, Gy = uA(r)y = E. It follows that 
dim G = dimE. Since E is simply connected, each isotropy group is trivial. Thus 
G acts simply transitively. 

It is easy to see that M must now be complete. For example, we may find 
a G-invariant, and hence r-invariant, Riemarlnian metric 9E on E which defines a 
Riemannian metric 9M which is complete. Since dev: M ) E is a local isometry be- 
tween P*9M and 9E, it is a covering map onto E. Therefore M iS complete. Q.E.D. 

3.8 COROLLARY. Let M be a compact agne manifold which is aspherical and 
has virtually polycyclic fundamental group (for example, if M is homeomorphic to 
a solvmanifold). Then M is complete if and only if it has parallel vol?lme. 

PROOF. The hypotheses on M imply that 7r is virtually polycyclic of rank equal 
to dimE. 3.8 follows immediately from 3.2 and 3.5. Q.E.D. 

There are many interesting examples of compact affine manifolds with solvable 
holonomy which are convex, i.e. dev: M ) E is a bijection onto a convex open 
subset of E; see Koszul [34, 35], Goldman [16], and Vey [50, 5l, 52] for discussion. 
3.8 implies that parallel volume is equivalent to completeness for this class of affine 
structures. 
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3.9 COROLLARY. Let M3 be a compact 3-dimensional affine manifold with vir- 
tually solvable fundamental group. Then M is complete if and only if it has parallel 
volume. 

PROOF. It is proved in Evans and Moser [8] that 7r1(M) is virtually solvable of 
rank < 3. Now apply 3.2 and 3.5. Q.E.D. 

4. Affine manifolds with nilpotent holonomy. 
4.1 In what follows M will be a compact affine manifold whose affine holonomy 

group r is nilpotent. The class of affine manifolds with nilpotent holonomy is a rich 
class of structures (see [13] and Smillie [45, 47, 48]). The equivalence of parallel 
volume and completeness is proved in [13], as well as several other conditions for 
this class of manifolds. Combining this with results proved above we obtain 

THEOREM. Let M be a compact n-dimensional affine manifold with nilpotent 
affine holonomy group r c Aff(E) and developing map dev: M ) E. The following 
conditions are equivalent: 

(a) M is complete; 
(b) M has parallel volume; 
(c) dev is surjective; 
(d) the affine action of r on E is irreducible; 
(e) r is unipotent; 
(f) M is a complete affine nilmanifold; 
(g) I\ CM + O; 
(h) A(r) acts transitively. 

PROOF. The equivalence of (a), (b), (c), (d), (e), and (f) was proved in [13]. 
The implication (b)a(g) (which holds without nilpotence) follows from Theorem 
2.3, and (g)a(h) by 1.10. We prove the contrapositive of (h)a(d). Suppose that 
r is reducible, that is, r leaves invariant an affine subspace F c E. The affine 
subspace F is A(r)-invariant, contradicting transitivity of A(r). Q.E.D. 

4.2 The main result of this section is that inequality (*) of 1.12 is an equality 
for the algebraic hull of a nilpotent holonomy group of a compact affine manifold: 

THEOREM. Let M be a compact affine manifold with nilpotent affine holonomy 
group r c Aff(E). Then the largest power k such that Ak CM is nonzero equals the 
minimum dimension of an A(r)-orbit in E. Furthermore if M is incomplete, the 
unique k-dimensional orbit lies outside the developing image. 

We conjecture that Theorem 4.2 holds more generally, e.g. for compact affine 
manifolds with solvable holonomy. 

4.3 We shall deduce 4.2 by showing that the Fitting subspace of the affine holon- 
omy is the miniinum-dimensional A(r)-orbit, and a parallel volume on the Fitting 
subspace has nonzero cohomology class. Much of the proofs of these facts are con- 
tained in [13] and our joint work with G. Levitt [23]. We summarize the results 
from these papers which we need as follows: 

PROPOSITION. Let M be a compact affine manifold with nilpotent holonomy 
r c Aff(E) 

(i) There exists a unique r-invariant affine subspace Eu C E upon which r acts 
unipotently and a unique affine projection 7r: E ) Eu commuting with r. 
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(ii) ro dev: M ) Eu is a surjective fbration and Eu is disjoint from the devel- 
Optng zmage. 

(iii) There exists oy E r whose linear part L(-y) restricted to a fber of r is an 
expanston. 

4.4 The affine subspace Eu is called the Fitting subspace. Let k = dimEu. 
Since r acts unipotently on Eu it preserves a parallel volume form gu on Eu. 
The pullback fiJE = T*bJU iS a r-invariant parallel k-form on E. Hence it defines a 
parallel (and hence closed) k-form fiJM on M. 

PROPOSITION. The cohomology class [(JJM] E Hk(M; R) is nonzero. 

For the proof see Goldman, Hirsch and Levitt [23]. The following corollary 
states that the dimension of the Fitting subspace Eu is the maximum exponent of 
a nonvanishing power of the radiance obstruction: 

4.5 COROLLARY. A CM is a nonzero cohomology class in Hk(M; /\ E), but 
Ak+lcM iszeroinHk+l(M;tkE), wherek=dimEu. 

PROOF OF 4.5. That /\ CM 78 0 follows from 2.3. That /\ + CM = O follows 
from 1.6. Q.E.D. 

4.6 We shall deduce that the Fitting subspace Eu is a minimum-dimensional 
orbit of A(r) from the following: 

THEOREM. (i) A(r) acts transitively on Eu; 
(ii) Every r-invariant Zariski-closed nonempty subset of E contains Eu. 

Since an A(r)-orbit of minimum dimension is Zariski-closed, 4.6 implies that 
the Fitting subspace is an A(r)-orbit of minimum dimension. Thus for the proof 
of 4.2 it suffices to prove 4.6. 

4.7 The proof of 4.6(i) is based on the notion of a syndetic action. We shall 
say that a group G acts syndetically on a space X if and only if there exists a 
compact K c X with GK = X. If M is a compact affine manifold, then the affine 
holonomy action on the developing image is syndetic. If M has nilpotent holonomy 
r, then r acts syndetically on Eu because r: dev(M) ) Eu is surjective [13, 6.9]. 
Furthermore since the algebraic hull of rlEU is the restriction of A(r) to Eu, 4.6(i) 
follows from 

LEMMA. Let G c Aff(E) act unipotently and syndetically on E. Then A(G) 
acts transitively on E. 

PROOF OF LEMMA 4.7. If G is unipotent then so is A(G). If G acts syn- 
detically so does any group containing G. Thus we may replace G by A(G) and 
assume G is an algebraic unipotent subgroup of Aff(E). We must show that G acts 
transitively. 

If dimE = 1, then G is a nontrivial group of translations so A(G) is the full 
group of translations. Hence the lemma is true when E is 1-dimensional. 

Inductively assume that 4.7 has been proved for E having dimension less than n. 
Suppose that E has dimension n and G c Aff(E) acts unipotently and syndetically. 
Since G acts unipotently it preserves a parallel 1-form, i.e. there exists a linear func- 

tional 71: E R such that for each g E G, the expression v(g) = 71(g(x)) - 71(x) is 
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independent of x E E. One sees easily that v: G R is a homomorphism. Further- more v: G R is surjective: for otherwise 71 would be G-invariant, contradicting 

syndeticity. The kernel Kerv = G1 is a subgroup which acts on the hyperplane 

E1 = 71-1(0) Choose a right-inverse ,u: R G to v: G ) R. 

Let K be a compact fundamental set for the action of G on E, i.e. E = GK. Let K1 = U{U(t)K n E1: t E R}. We show that K1 is compact and GlK1 = E1. Since K is compact the set of t such that K intersects ,u(-t)El is a compact set of real numbers; thus the set of all t E R such that ,u(t)K n E1 is nonempty is compact. Hence K1 is compact. Furthermore GlK1 = G1,u(R)K n E1 = GK n E1 = 
Therefore G1 acts syndetically on E1 with fundamental set K1. 

By the induction hypothesis, A(G1) acts transitively on each 71-1(p). There is a commutative diagram: 

E 71 R 
1 1 

E/G 7 R/v(G) 
Since 71 is surjective, 71 is surjective, implying that R/v(G) is compact. Hence 

A(v(G)) acts transitively on R. Now the exact sequence G1 G ) R determines 

an exact sequence 
A(G1) > A(G) ) A(v(G)). 

Since A(G1) acts transitively on v-1(p) and A(v(G)) acts transitively on R, it follows A(G) acts transitively on E. Q.E.D. 
PROOF OF LEMMA 4.6(ii). Let V c E be a r-invariant subset. Then being 

Zariski-closed, V is A(r)-invariant. Write E = Eu q3 F, where F = Ker : E ) Eu. By 4.3(iii) there exists ty E r such that L(-y) restricted to F is a linear expansion. 
Let ty(8) be the semisimple part ofty; by [31], ty(8) E A(r). Then Eu is the 
stationary set of ty(8) and ty(8) preserves each coset of F in E. 

Choose a coset x + F which intersects V, where x E Eu. Then V n (x + F) is a closed subset of x + F invariant under ty(8). Since for every y E (x + E), tyny > x E Eu, we have x E V. Since A(r) acts transitively on Eu, A(r)x E Eu. Since V is A(r)- invariant, V 2 Eu. Q.E.D. 
4.8 We have seen that a compact affine manifold with nilpotent holonomy r has associated with it a certain unipotent affine action, namely the restriction of r to the Fitting subspace. We call this unipotent action the Fitting component of the affine holonomy action. It is natural to ask for criteria that a unipotent affine 

action be a Fitting component for the holonomy of a compact affine manifold with nilpotent holonomy. Obvious necessary conditions are that G be finitely generated and that G act syndetically on E. By combining 1.13 with 4.2 we see that these 
conditions are not sufficient: 

THEOREM. Let M be a compact afWne manifold with nilpotent holonomy r c 
AS(E). Suppose that the Fitting subspace Eu is three-dimensional. Then the action of r restricted to Eu cannot lie in the group of all afWne transformations of the form 

1 t-u2/2 v s 
0 1 u t . 
O 0 1 u 
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PROOF . By 4.2, A3 CM + 0. But A3 CM is the image of A3 cr under H3 (r; A3 E) 
H3(M;A3E) and A3cr is the image of A3CG under the map H3(G;A3E) 
H3(r; A3 E) induced by restriction. However A3 CG = O by 1.13. This contra- 

diction proves 4.8. 
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