Affine permutations and rational slope parking functions

Eugene Gorsky, Mikhail Mazin, Monica Vazirani

June 29, 2014

Gorsky, Mazin, Vazirani

Affine permutations and parking functions

June 29, 2014 1 / 17

< 6 k

Connect and generalize two different combinatorial constructions:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Connect and generalize two different combinatorial constructions:

Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.

A (10) A (10) A (10)

Connect and generalize two different combinatorial constructions:

- Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
- Haglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).

< 回 > < 三 > < 三 >

Connect and generalize two different combinatorial constructions:

- Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
- Paglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).

Relations to several topics in different areas:

< 回 > < 三 > < 三 >

Connect and generalize two different combinatorial constructions:

- Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
- Paglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).

Relations to several topics in different areas:

Topology of homogeneous affine Springer fibers (enumeration of cells).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Connect and generalize two different combinatorial constructions:

- Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
- Paglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).

Relations to several topics in different areas:

- Topology of homogeneous affine Springer fibers (enumeration of cells).
- Finite dimensional representations of DAHA and non-symmetric Macdonald polynomials.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Connect and generalize two different combinatorial constructions:

- Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
- Paglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).

Relations to several topics in different areas:

- Topology of homogeneous affine Springer fibers (enumeration of cells).
- Finite dimensional representations of DAHA and non-symmetric Macdonald polynomials.
- Shuffle conjecture and its generalizations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let
$$V := \{x_1 + ... + x_n = 0\} \subset \mathbb{R}^n$$
.

イロト イヨト イヨト イヨト

Let
$$V := \{x_1 + ... + x_n = 0\} \subset \mathbb{R}^n$$
.

Definition

Affine braid arrangement: $\widetilde{B}_n := \{ \{x_i - x_j = l\} : 0 < j < i \le n, l \in \mathbb{Z} \}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let
$$V := \{x_1 + ... + x_n = 0\} \subset \mathbb{R}^n$$
.

Definition

Affine braid arrangement: $\widetilde{B}_n := \{ \{x_i - x_j = l\} : 0 < j < i \le n, l \in \mathbb{Z} \}$ Connected components of the complement are called *alcoves*.

A (10) A (10) A (10)

Let
$$V := \{x_1 + ... + x_n = 0\} \subset \mathbb{R}^n$$
.

Definition

Affine braid arrangement: $\widetilde{B}_n := \{ \{x_i - x_j = l\} : 0 < j < i \le n, l \in \mathbb{Z} \}$ Connected components of the complement are called *alcoves*. Fundamental alcove: $A_0 := \{\overline{\mathbf{x}} \in V \mid x_1 > x_2 > \ldots > x_n > x_1 - 1\}$

A (10) A (10)

Let
$$V := \{x_1 + ... + x_n = 0\} \subset \mathbb{R}^n$$
.

Definition

Affine braid arrangement: $\widetilde{B}_n := \{ \{x_i - x_j = l\} : 0 < j < i \le n, l \in \mathbb{Z} \}$ Connected components of the complement are called *alcoves*. Fundamental alcove: $A_0 := \{\overline{\mathbf{x}} \in V \mid x_1 > x_2 > \ldots > x_n > x_1 - 1\}$

Definition

k-Shi arrangement: $Sh_n^k := \{ \{x_i - x_j = l\} : 0 < j < i \le n, -k < l \le k \}$

イロト イ団ト イヨト イヨト

Let
$$V := \{x_1 + ... + x_n = 0\} \subset \mathbb{R}^n$$
.

Definition

Affine braid arrangement: $\widetilde{B}_n := \{ \{x_i - x_j = l\} : 0 < j < i \le n, l \in \mathbb{Z} \}$ Connected components of the complement are called *alcoves*. Fundamental alcove: $A_0 := \{\overline{\mathbf{x}} \in V \mid x_1 > x_2 > \ldots > x_n > x_1 - 1\}$

Definition

k-Shi arrangement: $Sh_n^k := \{ \{x_i - x_j = l\} : 0 < j < i \le n, -k < l \le k \}$ Reg_n^k denote the set of connected components (regions) of the complement to Sh_n^k .

Example

n = 3, *k* = 1, 2.

Gorsky, Mazin, Vazirani

Affine permutations and parking functions

Example

n = 3, *k* = 1, 2.

Gorsky, Mazin, Vazirani

Affine permutations and parking functions

▶ < ≣ ▶ ≣ ৩৭৫ June 29, 2014 4/17

<ロ> <問> <問> < 同> < 同> < 同> 、

Example *n* = 3, *k* = 1, 2.

Gorsky, Mazin, Vazirani

Affine permutations and parking functions

イロト イヨト イヨト イヨト

Example *n* = 3, *k* = 1, 2.

Gorsky, Mazin, Vazirani

Affine permutations and parking functions

▶ < ≣ ▶ ≣ ৩৭৫ June 29, 2014 4/17

イロト イヨト イヨト イヨト

Example

Consider the function $f : \{1, 2, 3, 4\} \rightarrow \mathbb{Z}$ given by f(1) = 2, f(2) = 0, f(3) = 4, and f(4) = 0. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

< ロ > < 同 > < 回 > < 回 >

Example

Consider the function $f : \{1, 2, 3, 4\} \rightarrow \mathbb{Z}$ given by f(1) = 2, f(2) = 0, f(3) = 4, and f(4) = 0. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

A (10) A (10) A (10)

Example

Consider the function $f : \{1, 2, 3, 4\} \rightarrow \mathbb{Z}$ given by f(1) = 2, f(2) = 0, f(3) = 4, and f(4) = 0. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example

Consider the function $f : \{1, 2, 3, 4\} \rightarrow \mathbb{Z}$ given by f(1) = 2, f(2) = 0, f(3) = 4, and f(4) = 0. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example

Consider the function $f : \{1, 2, 3, 4\} \rightarrow \mathbb{Z}$ given by f(1) = 2, f(2) = 0, f(3) = 4, and f(4) = 0. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

< ロ > < 同 > < 回 > < 回 >

Example

Consider the function $f : \{1, 2, 3, 4\} \rightarrow \mathbb{Z}$ given by f(1) = 2, f(2) = 0, f(3) = 4, and f(4) = 0. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example

Consider the function $f : \{1, 2, 3, 4\} \rightarrow \mathbb{Z}$ given by f(1) = 2, f(2) = 0, f(3) = 4, and f(4) = 0. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

Remark

Note that for m = n + 1 the set $PF_{m/n}$ is exactly the set of classical parking functions PF, and for m = kn + 1 it is the set of k-parking functions PF_k .

< ロ > < 同 > < 回 > < 回 >

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

Crossing $x_i - x_j = l$ with $l > 0 \rightarrow i$ th number increase by 1.

< ロ > < 同 > < 回 > < 回 >

Crossing $x_i - x_j = I$ with $I > 0 \rightarrow i$ th number increase by 1. Crossing $x_i - x_j = I$ with $I \le 0 \rightarrow j$ th number increase by 1.

< 回 > < 三 > < 三 >

Crossing $x_i - x_j = I$ with $I > 0 \rightarrow i$ th number increase by 1. Crossing $x_i - x_j = I$ with $I \le 0 \rightarrow j$ th number increase by 1.

< 回 > < 三 > < 三 >

Crossing $x_i - x_j = I$ with $I > 0 \rightarrow i$ th number increase by 1. Crossing $x_i - x_j = I$ with $I \le 0 \rightarrow j$ th number increase by 1.

A (10) A (10) A (10)

Crossing $x_i - x_j = I$ with $I > 0 \rightarrow i$ th number increase by 1. Crossing $x_i - x_j = I$ with $I \le 0 \rightarrow j$ th number increase by 1.

< 🗇 🕨 < 🖃 >

Crossing $x_i - x_j = I$ with $I > 0 \rightarrow i$ th number increase by 1. Crossing $x_i - x_j = I$ with $I \le 0 \rightarrow j$ th number increase by 1.

Theorem (Pak-Stanley)

The map λ : $Reg_n^k \to PF_k = PF_{(kn+1)/n}$ is a bijection.

Affine Symmetric Group

Definition

The *affine symmetric group* \hat{S}_n is generated by $s_1, \ldots, s_{n-1}, s_0$ subject to

1
$$s_i^2 = 1$$
,

$${old o} \ s_i s_j s_i = s_j s_i s_j$$
 for $i - j \equiv \pm 1 \mod n$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Affine Symmetric Group

Definition

The affine symmetric group \widehat{S}_n is generated by $s_1, \ldots, s_{n-1}, s_0$ subject to

•
$$s_i^2 = 1$$
,

3
$$s_i s_j s_i = s_j s_i s_j$$
 for $i - j \equiv \pm 1 \mod n$.

 S_n acts on V with generators s_i acting by reflections in hypersurfaces $x_{i+1} - x_i = 0$ for i > 0, and s_0 acting by reflection in the hypersurface $x_n - x_1 = 1$.

A (10) A (10)

Affine Symmetric Group

Definition

The affine symmetric group \widehat{S}_n is generated by $s_1, \ldots, s_{n-1}, s_0$ subject to

1
$$s_i^2 = 1$$
,

 \hat{S}_n acts on *V* with generators s_i acting by reflections in hypersurfaces $x_{i+1} - x_i = 0$ for i > 0, and s_0 acting by reflection in the hypersurface $x_n - x_1 = 1$.

The induced action on the set alcoves is free and transitive, so that the map $\omega \mapsto \omega(A_0)$ provides a bijection from \widehat{S}_n to the set of alcoves.

A (10) A (10)

Affine Permutations

Definition

A bijection $\omega : \mathbb{Z} \to \mathbb{Z}$ is called an affine S_n -permutation, if $\omega(x+n) = \omega(x) + n$ for all x, and $\sum_{i=1}^n \omega(i) = \frac{n(n+1)}{2}$.

< ロ > < 同 > < 回 > < 回 >

Affine Permutations

Definition

A bijection $\omega : \mathbb{Z} \to \mathbb{Z}$ is called an affine S_n -permutation, if $\omega(x+n) = \omega(x) + n$ for all x, and $\sum_{i=1}^{n} \omega(i) = \frac{n(n+1)}{2}$.

In this presentation the operation is composition and the generators $s_1, \ldots, s_{n-1}, s_0$ are given by

$$s_i(x) = x + 1$$
 for $x \equiv i$ mod n ,

2
$$s_i(x) = x - 1$$
 for $x \equiv i + 1 \mod n$,

 $s_i(x) = x$ otherwise.

< 回 > < 回 > < 回 >

Stable Affine Permutations

Our main object:

イロト イヨト イヨト イヨト

Stable Affine Permutations

Our main object:

Definition

An affine permutation $\omega \in \widehat{S}_n$ is called *m*-stable, if for all *x* the inequality $\omega(x + m) > \omega(x)$ holds, i.e. there are no inversions of height *m*. The set of all *m*-stable affine permutations is denoted by \widehat{S}_n^m .

Stable Permutations

Lemma

Every k-Shi region contains a unique minimal alcove.

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Stable Permutations

Lemma

Every k-Shi region contains a unique minimal alcove. Alcove $\omega(A_0)$ is the minimal alcove of a k-Shi region if and only if $\omega \in \widehat{S}_n^m$, where m = kn + 1.

< 回 ト < 三 ト < 三

Stable Permutations

Lemma

Every k-Shi region contains a unique minimal alcove. Alcove $\omega(A_0)$ is the minimal alcove of a k-Shi region if and only if $\omega \in \widehat{S}_n^m$, where m = kn + 1.

Lemma

Let m = kn + r, where 0 < r < n. The set of alcoves $\{\omega^{-1}(A_0) : \omega \in \widehat{S}_n^m\}$ coincides with the set of alcoves that fit inside the region $D_n^m \subset V$ defined by the inequalities:

①
$$x_i - x_{i+r} \ge -k$$
 for $1 \le i \le n - r$,

2
$$x_{i+r-n} - x_i \le k+1$$
 for $n-r+1 \le i \le n$.

・ 何 ト ・ ヨ ト ・ ヨ ト

n = 3, k = 1, and m = kn + 1 = 4.

-2

イロン イ団 とく ヨン ・ ヨン …

n = 3, k = 1, and m = kn + 1 = 4.

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

n = 3, k = 1, and m = kn + 1 = 4.

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

n = 3, k = 1, and m = kn + 1 = 4.

æ

A (10) A (10)

Definition

Let $\omega \in \widehat{S}_n^m$. Then the map $\mathsf{PS}_\omega : \{1, \dots, n\} \to \mathbb{Z}$ is given by:

$$\mathsf{PS}_\omega(lpha) := \sharp \left\{ eta \mid eta > lpha, \mathsf{0} < \omega^{-1}(lpha) - \omega^{-1}(eta) < m
ight\}.$$

<ロ> <四> <四> <四> <四> <四</p>

Definition

Let $\omega \in \widehat{S}_n^m$. Then the map $\mathsf{PS}_\omega : \{1, \ldots, n\} \to \mathbb{Z}$ is given by:

$$\mathsf{PS}_\omega(lpha) := \sharp \left\{ eta \mid eta > lpha, \mathsf{0} < \omega^{-1}(lpha) - \omega^{-1}(eta) < m
ight\}.$$

In other words, $PS_{\omega}(\alpha)$ is equal to the number of inversions (i, j) of ω of height less than *m* and such that $\omega(j) = \alpha$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition

Let $\omega \in \widehat{S}_n^m$. Then the map $\mathsf{PS}_\omega : \{1, \ldots, n\} \to \mathbb{Z}$ is given by:

$$\mathsf{PS}_\omega(lpha) := \sharp \left\{ eta \mid eta > lpha, \mathsf{0} < \omega^{-1}(lpha) - \omega^{-1}(eta) < m
ight\}.$$

In other words, $PS_{\omega}(\alpha)$ is equal to the number of inversions (i, j) of ω of height less than *m* and such that $\omega(j) = \alpha$.

Theorem

If $\omega \in \widehat{S}_n^m$, then $\mathsf{PS}_\omega \in \mathsf{PF}_{m/n}$.

Definition

Let $\omega \in \widehat{S}_n^m$. Then the map $\mathsf{PS}_\omega : \{1, \dots, n\} \to \mathbb{Z}$ is given by:

$$\mathsf{PS}_\omega(lpha) := \sharp \left\{ eta \mid eta > lpha, \mathsf{0} < \omega^{-1}(lpha) - \omega^{-1}(eta) < m
ight\}.$$

In other words, $PS_{\omega}(\alpha)$ is equal to the number of inversions (i, j) of ω of height less than *m* and such that $\omega(j) = \alpha$.

Theorem

If $\omega \in \widehat{S}_n^m$, then $\mathsf{PS}_\omega \in \mathsf{PF}_{m/n}$.

Conjecture

The map $PS : \omega \mapsto PS_{\omega}$ is a bijection between \widehat{S}_n^m and $PF_{m/n}$.

3

Cases $m = kn \pm 1$

In the case m = kn + 1 on gets

æ

イロト イヨト イヨト イヨト

Cases $m = kn \pm 1$

In the case m = kn + 1 on gets

Theorem

If $\omega(A_0)$ is the minimal alcove of a k-Shi region R, then the Pak-Stanley label of R equals to PS_{ω} . In particular, PS is a bijection for m = kn + 1.

B + 4 B +

Cases $m = kn \pm 1$

In the case m = kn + 1 on gets

Theorem

If $\omega(A_0)$ is the minimal alcove of a k-Shi region R, then the Pak-Stanley label of R equals to PS_{ω} . In particular, PS is a bijection for m = kn + 1.

The case m = kn - 1 can be covered by a small modification of the above.

Example

Let n = 4. Consider the affine permutation ω given by

Example

Let n = 4. Consider the affine permutation ω given by

Example

Let n = 4. Consider the affine permutation ω given by

X	 -3	-2	-1	0	1	2	3	4	5	6	7	8	
$\omega(\mathbf{x})$	 -4	2	-1	-3	0	6	3	1	4	10	7	5	

Example

Let n = 4. Consider the affine permutation ω given by

$$x$$
 ... -3 -2 -1 0 1 2 3 4 5 6 7 8 ...
 $\omega(x)$... -4 2 -1 -3 0 6 3 1 4 10 7 5 ...

Example

Let n = 4. Consider the affine permutation ω given by

$$x$$
 ... -3 -2 -1 0 1 2 3 4 5 6 7 8 ...
 $\omega(x)$... -4 2 -1 -3 0 6 3 1 4 10 7 5 ...

Example

Let n = 4. Consider the affine permutation ω given by

$$x$$
 ... -3 -2 -1 0 1 2 3 4 5 6 7 8 ...
 $\omega(x)$... -4 2 -1 -3 0 6 3 1 4 10 7 5 ...

Example

Let n = 4. Consider the affine permutation ω given by

$$x$$
 ... -3 -2 -1 0 1 2 3 4 5 6 7 8 ...
 $\omega(x)$... -4 2 -1 -3 0 6 3 1 4 10 7 5 ...

Example

Let n = 4. Consider the affine permutation ω given by

$$x$$
 ... -3 -2 -1 0 1 2 3 4 5 6 7 8 ...
 $\omega(x)$... -4 2 -1 -3 0 6 3 1 4 10 7 5 ...

$$egin{aligned} {\sf A}_{\omega}(1) &= 2 \ {\sf A}_{\omega}(2) &= 0 \ {\sf A}_{\omega}(3) &= 4 \ {\sf A}_{\omega}(4) &= 0 \end{aligned}$$

Let
$$\delta = \frac{(m-1)(n-1)}{2}$$
. Set

Gorsky, Mazin, Vazirani

æ

イロト イヨト イヨト イヨト

Let
$$\delta = \frac{(m-1)(n-1)}{2}$$
. Set
area $(\omega) := \delta - \sum A_{\omega}(i)$, dinv $(\omega) := \delta - \sum PS_{\omega}(i)$.

æ

イロト イヨト イヨト イヨト

Let
$$\delta = \frac{(m-1)(n-1)}{2}$$
. Set
area $(\omega) := \delta - \sum A_{\omega}(i)$, dinv $(\omega) := \delta - \sum PS_{\omega}(i)$.

Define the combinatorial Hilbert series by the formula

$$H_{m/n}(q,t) := \sum_{\omega} q^{\operatorname{area}(\omega)} t^{\operatorname{dinv}(\omega)}.$$

э

Let
$$\delta = \frac{(m-1)(n-1)}{2}$$
. Set
area $(\omega) := \delta - \sum A_{\omega}(i)$, dinv $(\omega) := \delta - \sum PS_{\omega}(i)$.

Define the combinatorial Hilbert series by the formula

$$\mathcal{H}_{m/n}(q,t) := \sum_{\omega} q^{\operatorname{area}(\omega)} t^{\operatorname{dinv}(\omega)}.$$

Conjecture

It is symmetric: $H_{m/n}(q, t) = H_{m/n}(t, q)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let
$$\delta = \frac{(m-1)(n-1)}{2}$$
. Set
area $(\omega) := \delta - \sum A_{\omega}(i)$, dinv $(\omega) := \delta - \sum PS_{\omega}(i)$.

Define the combinatorial Hilbert series by the formula

$$\mathcal{H}_{m/n}(q,t) := \sum_{\omega} q^{\operatorname{area}(\omega)} t^{\operatorname{dinv}(\omega)}.$$

Conjecture

It is symmetric:
$$H_{m/n}(q, t) = H_{m/n}(t, q)$$
.

"Weak symmetry" $H_{m/n}(q, 1) = H_{m/n}(1, q)$ would follow from the bijectivity of the map PS.

3

Let
$$\delta = \frac{(m-1)(n-1)}{2}$$
. Set
area $(\omega) := \delta - \sum A_{\omega}(i)$, dinv $(\omega) := \delta - \sum PS_{\omega}(i)$.

Define the combinatorial Hilbert series by the formula

$$\mathcal{H}_{m/n}(q,t) := \sum_{\omega} q^{\operatorname{area}(\omega)} t^{\operatorname{dinv}(\omega)}.$$

Conjecture

It is symmetric:
$$H_{m/n}(q, t) = H_{m/n}(t, q)$$
.

"Weak symmetry" $H_{m/n}(q, 1) = H_{m/n}(1, q)$ would follow from the bijectivity of the map PS. In particular, the "weak symmetry" holds for $m = kn \pm 1$.

< ロ > < 同 > < 回 > < 回 >

Gorsky, Mazin, Vazirani

Affine permutations and parking functions

June 29, 2014 16 / 17

æ

• The map $PS \circ A^{-1} : PF_{m/n} \to PF_{m/n}$ generalizes Haglund's bijection ζ on Dyck paths. To recover (the rational slope of) the map ζ on should restrict the construction to the minimal length S_n -cosets representatives.

- The map $PS \circ A^{-1} : PF_{m/n} \to PF_{m/n}$ generalizes Haglund's bijection ζ on Dyck paths. To recover (the rational slope of) the map ζ on should restrict the construction to the minimal length S_n -cosets representatives.
- 2 An important algebraic variety $F_{m/n}$, called *homogeneous affine Springer fiber*, can be decomposed into affine cells enumerated by *m*-stable affine permutations.

- The map $PS \circ A^{-1} : PF_{m/n} \to PF_{m/n}$ generalizes Haglund's bijection ζ on Dyck paths. To recover (the rational slope of) the map ζ on should restrict the construction to the minimal length S_n -cosets representatives.
- ② An important algebraic variety *F_{m/n}*, called *homogeneous affine Springer fiber*, can be decomposed into affine cells enumerated by *m*-stable affine permutations. Moreover, if *ω* ∈ *S*^{*m*}_{*n*}, then the dimension of the corresponding cell
 - is equal to $\delta \operatorname{dinv}(\omega)$.

- The map $PS \circ A^{-1} : PF_{m/n} \to PF_{m/n}$ generalizes Haglund's bijection ζ on Dyck paths. To recover (the rational slope of) the map ζ on should restrict the construction to the minimal length S_n -cosets representatives.
- ② An important algebraic variety *F_{m/n}*, called *homogeneous affine Springer fiber*, can be decomposed into affine cells enumerated by *m*-stable affine permutations. Moreover, if *ω* ∈ *S*^{*m*}_{*n*}, then the dimension of the corresponding cell
 - is equal to $\delta \operatorname{dinv}(\omega)$.

3

Thank you!

æ