Affine permutations and rational slope parking functions

Eugene Gorsky, Mikhail Mazin, Monica Vazirani

June 29, 2014

Overview

Connect and generalize two different combinatorial constructions:

Overview

Connect and generalize two different combinatorial constructions:
(1) Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.

Overview

Connect and generalize two different combinatorial constructions:
(1) Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
(2) Haglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).

Overview

Connect and generalize two different combinatorial constructions:
(1) Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
(2) Haglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).
Relations to several topics in different areas:

Overview

Connect and generalize two different combinatorial constructions:
(1) Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
(2) Haglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).
Relations to several topics in different areas:
(0) Topology of homogeneous affine Springer fibers (enumeration of cells).

Overview

Connect and generalize two different combinatorial constructions:
(1) Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
(2) Haglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).
Relations to several topics in different areas:
(1) Topology of homogeneous affine Springer fibers (enumeration of cells).
(2) Finite dimensional representations of DAHA and non-symmetric Macdonald polynomials.

Overview

Connect and generalize two different combinatorial constructions:
(1) Pak-Stanley labeling of the regions of the Shi arrangements by parking functions.
(2) Haglund's bijection ζ from the set of Dyck paths to itself, turning the pair of statistics (area, dinv) into (bounce, area).
Relations to several topics in different areas:
(1) Topology of homogeneous affine Springer fibers (enumeration of cells).
(2) Finite dimensional representations of DAHA and non-symmetric Macdonald polynomials.
(3) Shuffle conjecture and its generalizations.

Shi Arrangements

Let $V:=\left\{x_{1}+\ldots+x_{n}=0\right\} \subset \mathbb{R}^{n}$.

Shi Arrangements

Let $V:=\left\{x_{1}+\ldots+x_{n}=0\right\} \subset \mathbb{R}^{n}$.

Definition

Affine braid arrangement: $\widetilde{B}_{n}:=\left\{\left\{x_{i}-x_{j}=I\right\}: 0<j<i \leq n, I \in \mathbb{Z}\right\}$

Shi Arrangements

Let $V:=\left\{x_{1}+\ldots+x_{n}=0\right\} \subset \mathbb{R}^{n}$.

Definition

Affine braid arrangement: $\widetilde{B}_{n}:=\left\{\left\{x_{i}-x_{j}=I\right\}: 0<j<i \leq n, I \in \mathbb{Z}\right\}$ Connected components of the complement are called alcoves.

Shi Arrangements

Let $V:=\left\{x_{1}+\ldots+x_{n}=0\right\} \subset \mathbb{R}^{n}$.

Definition

Affine braid arrangement: $\widetilde{B}_{n}:=\left\{\left\{x_{i}-x_{j}=I\right\}: 0<j<i \leq n, I \in \mathbb{Z}\right\}$ Connected components of the complement are called alcoves. Fundamental alcove: $\mathrm{A}_{0}:=\left\{\overline{\mathbf{x}} \in V \mid x_{1}>x_{2}>\ldots>x_{n}>x_{1}-1\right\}$

Shi Arrangements

Let $V:=\left\{x_{1}+\ldots+x_{n}=0\right\} \subset \mathbb{R}^{n}$.

Definition

Affine braid arrangement: $\widetilde{B}_{n}:=\left\{\left\{x_{i}-x_{j}=I\right\}: 0<j<i \leq n, I \in \mathbb{Z}\right\}$ Connected components of the complement are called alcoves.
Fundamental alcove: $\mathrm{A}_{0}:=\left\{\overline{\mathbf{x}} \in V \mid x_{1}>x_{2}>\ldots>x_{n}>x_{1}-1\right\}$

> Definition
> k-Shi arrangement: $S n_{n}^{k}:=\left\{\left\{x_{i}-x_{j}=l\right\}: 0<j<i \leq n,-k<l \leq k\right\}$

Shi Arrangements

$$
\text { Let } V:=\left\{x_{1}+\ldots+x_{n}=0\right\} \subset \mathbb{R}^{n} \text {. }
$$

Definition

Affine braid arrangement: $\widetilde{B}_{n}:=\left\{\left\{x_{i}-x_{j}=I\right\}: 0<j<i \leq n, I \in \mathbb{Z}\right\}$ Connected components of the complement are called alcoves. Fundamental alcove: $\mathrm{A}_{0}:=\left\{\overline{\mathbf{x}} \in V \mid x_{1}>x_{2}>\ldots>x_{n}>x_{1}-1\right\}$

Definition

k-Shi arrangement: $S h_{n}^{k}:=\left\{\left\{x_{i}-x_{j}=l\right\}: 0<j<i \leq n,-k<l \leq k\right\}$ $R e g_{n}^{k}$ denote the set of connected components (regions) of the complement to $S h_{n}^{k}$.

Example

$$
n=3, k=1,2 .
$$

Rational Slope Parking Functions

Example

Consider the function $f:\{1,2,3,4\} \rightarrow \mathbb{Z}$ given by $f(1)=2, f(2)=0$, $f(3)=4$, and $f(4)=0$. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

Rational Slope Parking Functions

Example

Consider the function $f:\{1,2,3,4\} \rightarrow \mathbb{Z}$ given by $f(1)=2, f(2)=0$, $f(3)=4$, and $f(4)=0$. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

Rational Slope Parking Functions

Example

Consider the function $f:\{1,2,3,4\} \rightarrow \mathbb{Z}$ given by $f(1)=2, f(2)=0$, $f(3)=4$, and $f(4)=0$. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

$$
f \in \mathrm{PF}_{7 / 4}
$$

Rational Slope Parking Functions

Example

Consider the function $f:\{1,2,3,4\} \rightarrow \mathbb{Z}$ given by $f(1)=2, f(2)=0$, $f(3)=4$, and $f(4)=0$. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

$$
f \in \mathrm{PF}_{7 / 4}
$$

Rational Slope Parking Functions

Example

Consider the function $f:\{1,2,3,4\} \rightarrow \mathbb{Z}$ given by $f(1)=2, f(2)=0$, $f(3)=4$, and $f(4)=0$. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

$$
\begin{aligned}
& f \in \mathrm{PF}_{7 / 4} \\
& f \notin \mathrm{PF}_{5 / 4}
\end{aligned}
$$

Rational Slope Parking Functions

Example

Consider the function $f:\{1,2,3,4\} \rightarrow \mathbb{Z}$ given by $f(1)=2, f(2)=0$, $f(3)=4$, and $f(4)=0$. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

$$
\begin{aligned}
& f \in \mathrm{PF}_{7 / 4} \\
& f \notin \mathrm{PF}_{5 / 4}
\end{aligned}
$$

Rational Slope Parking Functions

Example

Consider the function $f:\{1,2,3,4\} \rightarrow \mathbb{Z}$ given by $f(1)=2, f(2)=0$, $f(3)=4$, and $f(4)=0$. The corresponding Young diagram fits under diagonal in a 4×7 rectangle:

$$
\begin{aligned}
& f \in \mathrm{PF}_{7 / 4} \\
& f \notin \mathrm{PF}_{5 / 4}
\end{aligned}
$$

Remark

Note that for $m=n+1$ the set $\mathrm{PF}_{m / n}$ is exactly the set of classical parking functions PF, and for $m=k n+1$ it is the set of k-parking functions PF_{k}.

Pak-Stanley Labeling

Pak-Stanley Labeling

Pak-Stanley Labeling

Crossing $x_{i}-x_{j}=I$ with $I>0 \rightarrow i$ th number increase by 1.

Pak-Stanley Labeling

Crossing $x_{i}-x_{j}=I$ with $I>0 \rightarrow i$ th number increase by 1 . Crossing $x_{i}-x_{j}=I$ with $I \leq 0 \rightarrow j$ th number increase by 1 .

Pak-Stanley Labeling

Crossing $x_{i}-x_{j}=I$ with $I>0 \rightarrow i$ th number increase by 1 . Crossing $x_{i}-x_{j}=I$ with $I \leq 0 \rightarrow j$ th number increase by 1 .

Pak-Stanley Labeling

Crossing $x_{i}-x_{j}=I$ with $I>0 \rightarrow i$ th number increase by 1 . Crossing $x_{i}-x_{j}=I$ with $I \leq 0 \rightarrow j$ th number increase by 1 .

Pak-Stanley Labeling

Crossing $x_{i}-x_{j}=I$ with $I>0 \rightarrow i$ th number increase by 1 . Crossing $x_{i}-x_{j}=I$ with $I \leq 0 \rightarrow j$ th number increase by 1 .

Pak-Stanley Labeling

Crossing $x_{i}-x_{j}=I$ with $I>0 \rightarrow i$ th number increase by 1 . Crossing $x_{i}-x_{j}=I$ with $I \leq 0 \rightarrow j$ th number increase by 1 .

Theorem (Pak-Stanley)

The map $\lambda: \operatorname{Reg}_{n}^{k} \rightarrow \mathrm{PF}_{k}=\mathrm{PF}_{(k n+1) / n}$ is a bijection.

Affine Symmetric Group

Definition

The affine symmetric group \widehat{S}_{n} is generated by $s_{1}, \ldots, s_{n-1}, s_{0}$ subject to
(1) $s_{i}^{2}=1$,
(2) $s_{i} s_{j}=s_{j} s_{i}$ for $i-j \not \equiv \pm 1 \bmod n$,
(3) $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ for $i-j \equiv \pm 1 \bmod n$.

Affine Symmetric Group

Definition

The affine symmetric group \widehat{S}_{n} is generated by $s_{1}, \ldots, s_{n-1}, s_{0}$ subject to
(1) $s_{i}^{2}=1$,
(2) $s_{i} s_{j}=s_{j} s_{i}$ for $i-j \not \equiv \pm 1 \bmod n$,
(3) $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ for $i-j \equiv \pm 1 \bmod n$.
\hat{S}_{n} acts on V with generators s_{i} acting by reflections in hypersurfaces $x_{i+1}-x_{i}=0$ for $i>0$, and s_{0} acting by reflection in the hypersurface $x_{n}-x_{1}=1$.

Affine Symmetric Group

Definition

The affine symmetric group \widehat{S}_{n} is generated by $s_{1}, \ldots, s_{n-1}, s_{0}$ subject to
(1) $s_{i}^{2}=1$,
(3) $s_{i} s_{j}=s_{j} s_{i}$ for $i-j \not \equiv \pm 1 \bmod n$,
(3) $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ for $i-j \equiv \pm 1 \bmod n$.
\hat{S}_{n} acts on V with generators s_{i} acting by reflections in hypersurfaces $x_{i+1}-x_{i}=0$ for $i>0$, and s_{0} acting by reflection in the hypersurface $x_{n}-x_{1}=1$.
The induced action on the set alcoves is free and transitive, so that the map $\omega \mapsto \omega\left(A_{0}\right)$ provides a bijection from \widehat{S}_{n} to the set of alcoves.

Affine Permutations

Definition

A bijection $\omega: \mathbb{Z} \rightarrow \mathbb{Z}$ is called an affine S_{n}-permutation, if $\omega(x+n)=\omega(x)+n$ for all x, and $\sum_{i=1}^{n} \omega(i)=\frac{n(n+1)}{2}$.

Affine Permutations

Definition

A bijection $\omega: \mathbb{Z} \rightarrow \mathbb{Z}$ is called an affine S_{n}-permutation, if $\omega(x+n)=\omega(x)+n$ for all x, and $\sum_{i=1}^{n} \omega(i)=\frac{n(n+1)}{2}$.

In this presentation the operation is composition and the generators $s_{1}, \ldots, s_{n-1}, s_{0}$ are given by
(1) $s_{i}(x)=x+1$ for $x \equiv i \bmod n$,
(2) $s_{i}(x)=x-1$ for $x \equiv i+1 \bmod n$,
(3) $s_{i}(x)=x$ otherwise.

Stable Affine Permutations

Our main object:

Stable Affine Permutations

Our main object:

Definition

An affine permutation $\omega \in \widehat{S}_{n}$ is called m-stable, if for all x the inequality $\omega(x+m)>\omega(x)$ holds, i.e. there are no inversions of height m. The set of all m-stable affine permutations is denoted by \widehat{S}_{n}^{m}.

Stable Permutations

Lemma

Every k-Shi region contains a unique minimal alcove.

Stable Permutations

Lemma

Every k-Shi region contains a unique minimal alcove. Alcove $\omega\left(A_{0}\right)$ is the minimal alcove of a k-Shi region if and only if $\omega \in \widehat{S}_{n}^{m}$, where $m=k n+1$.

Stable Permutations

Lemma

Every k-Shi region contains a unique minimal alcove. Alcove $\omega\left(A_{0}\right)$ is the minimal alcove of a k-Shi region if and only if $\omega \in \hat{S}_{n}^{m}$, where $m=k n+1$.

Lemma

Let $m=k n+r$, where $0<r<n$. The set of alcoves
$\left\{\omega^{-1}\left(\mathrm{~A}_{0}\right): \omega \in \widehat{S}_{n}^{m}\right\}$ coincides with the set of alcoves that fit inside the region $D_{n}^{m} \subset V$ defined by the inequalities:
(1) $x_{i}-x_{i+r} \geq-k$ for $1 \leq i \leq n-r$,
(2) $x_{i+r-n}-x_{i} \leq k+1$ for $n-r+1 \leq i \leq n$.

Example

$$
n=3, k=1, \text { and } m=k n+1=4
$$

Example

$$
n=3, k=1, \text { and } m=k n+1=4
$$

Example

$$
n=3, k=1, \text { and } m=k n+1=4
$$

Example

$$
n=3, k=1, \text { and } m=k n+1=4
$$

Map PS

Definition

Let $\omega \in \widehat{S}_{n}^{m}$. Then the map $\mathrm{PS}_{\omega}:\{1, \ldots, n\} \rightarrow \mathbb{Z}$ is given by:

$$
\mathrm{PS}_{\omega}(\alpha):=\sharp\left\{\beta \mid \beta>\alpha, 0<\omega^{-1}(\alpha)-\omega^{-1}(\beta)<m\right\} .
$$

Map PS

Definition

Let $\omega \in \widehat{S}_{n}^{m}$. Then the map $\mathrm{PS}_{\omega}:\{1, \ldots, n\} \rightarrow \mathbb{Z}$ is given by:

$$
\operatorname{PS}_{\omega}(\alpha):=\sharp\left\{\beta \mid \beta>\alpha, 0<\omega^{-1}(\alpha)-\omega^{-1}(\beta)<m\right\} .
$$

In other words, $\mathrm{PS}_{\omega}(\alpha)$ is equal to the number of inversions (i, j) of ω of height less than m and such that $\omega(j)=\alpha$.

Map PS

Definition

Let $\omega \in \widehat{S}_{n}^{m}$. Then the map $\mathrm{PS}_{\omega}:\{1, \ldots, n\} \rightarrow \mathbb{Z}$ is given by:

$$
\operatorname{PS}_{\omega}(\alpha):=\sharp\left\{\beta \mid \beta>\alpha, 0<\omega^{-1}(\alpha)-\omega^{-1}(\beta)<m\right\} .
$$

In other words, $\mathrm{PS}_{\omega}(\alpha)$ is equal to the number of inversions (i, j) of ω of height less than m and such that $\omega(j)=\alpha$.

Theorem
If $\omega \in \widehat{S}_{n}^{m}$, then $\mathrm{PS}_{\omega} \in \mathrm{PF}_{m / n}$.

Map PS

Definition

Let $\omega \in \widehat{S}_{n}^{m}$. Then the map $\mathrm{PS}_{\omega}:\{1, \ldots, n\} \rightarrow \mathbb{Z}$ is given by:

$$
\operatorname{PS}_{\omega}(\alpha):=\sharp\left\{\beta \mid \beta>\alpha, 0<\omega^{-1}(\alpha)-\omega^{-1}(\beta)<m\right\} .
$$

In other words, $\mathrm{PS}_{\omega}(\alpha)$ is equal to the number of inversions (i, j) of ω of height less than m and such that $\omega(j)=\alpha$.

Theorem
If $\omega \in \widehat{S}_{n}^{m}$, then $\mathrm{PS}_{\omega} \in \mathrm{PF}_{m / n}$.

Conjecture

The map PS : $\omega \mapsto \mathrm{PS}_{\omega}$ is a bijection between \widehat{S}_{n}^{m} and $\mathrm{PF}_{m / n}$.

Cases $m=k n \pm 1$

In the case $m=k n+1$ on gets

Cases $m=k n \pm 1$

In the case $m=k n+1$ on gets

Theorem

If $\omega\left(\mathrm{A}_{0}\right)$ is the minimal alcove of a k-Shi region R, then the Pak-Stanley label of R equals to PS_{ω}. In particular, PS is a bijection for $m=k n+1$.

Cases $m=k n \pm 1$

In the case $m=k n+1$ on gets

Theorem

If $\omega\left(\mathrm{A}_{0}\right)$ is the minimal alcove of a k-Shi region R, then the Pak-Stanley label of R equals to PS_{ω}. In particular, PS is a bijection for $m=k n+1$.

The case $m=k n-1$ can be covered by a small modification of the above.

Bijection A : $\widehat{S}_{n}^{m} \rightarrow \mathrm{PF}_{m / n}$

Example

Let $n=4$. Consider the affine permutation ω given by

$$
\begin{array}{ccccccccccccccc}
x & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\omega(x) & \cdots & -4 & 2 & -1 & -3 & 0 & 6 & 3 & 1 & 4 & 10 & 7 & 5 & \ldots
\end{array}
$$

Bijection A : $\hat{S}_{n}^{m} \rightarrow \mathrm{PF}_{m / n}$

Example

Let $n=4$. Consider the affine permutation ω given by

$$
\begin{array}{ccccccccccccccc}
x & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\omega(x) & \ldots & -4 & 2 & -1 & -3 & 0 & 6 & 3 & 1 & 4 & 10 & 7 & 5 & \ldots
\end{array}
$$

Note that there are no inversions of height 7, so ω is 7-stable. Consider the set $\Delta_{\omega}:=\{i \in \mathbb{Z}: \omega(i)>0\}=\{-2,2,3,4, \ldots\}$. Note that it is invariant under addition of 4 and 7 . The parking function A_{ω} is constructed as follows:

Bijection A : $\widehat{S}_{n}^{m} \rightarrow \mathrm{PF}_{m / n}$

Example

Let $n=4$. Consider the affine permutation ω given by

$$
\begin{array}{ccccccccccccccc}
x & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\omega(x) & \cdots & -4 & 2 & -1 & -3 & 0 & 6 & 3 & 1 & 4 & 10 & 7 & 5 & \ldots
\end{array}
$$

Note that there are no inversions of height 7, so ω is 7 -stable. Consider the set $\Delta_{\omega}:=\{i \in \mathbb{Z}: \omega(i)>0\}=\{-2,2,3,4, \ldots\}$. Note that it is invariant under addition of 4 and 7 . The parking function A_{ω} is constructed as follows:

Bijection A : $\widehat{S}_{n}^{m} \rightarrow \mathrm{PF}_{m / n}$

Example

Let $n=4$. Consider the affine permutation ω given by

$$
\begin{array}{ccccccccccccccc}
x & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\omega(x) & \cdots & -4 & 2 & -1 & -3 & 0 & 6 & 3 & 1 & 4 & 10 & 7 & 5 & \ldots
\end{array}
$$

Note that there are no inversions of height 7, so ω is 7 -stable. Consider the set $\Delta_{\omega}:=\{i \in \mathbb{Z}: \omega(i)>0\}=\{-2,2,3,4, \ldots\}$. Note that it is invariant under addition of 4 and 7 . The parking function A_{ω} is constructed as follows:

Bijection A : $\hat{S}_{n}^{m} \rightarrow \mathrm{PF}_{m / n}$

Example

Let $n=4$. Consider the affine permutation ω given by

$$
\begin{array}{ccccccccccccccc}
x & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\omega(x) & \cdots & -4 & 2 & -1 & -3 & 0 & 6 & 3 & 1 & 4 & 10 & 7 & 5 & \ldots
\end{array}
$$

Note that there are no inversions of height 7, so ω is 7 -stable. Consider the set $\Delta_{\omega}:=\{i \in \mathbb{Z}: \omega(i)>0\}=\{-2,2,3,4, \ldots\}$. Note that it is invariant under addition of 4 and 7 . The parking function A_{ω} is constructed as follows:

	-6						
5	1	-3	-7				
12	8	4	0	-4	-8		
19	15	11	7	3	-1	-5	

Bijection A : $\hat{S}_{n}^{m} \rightarrow \mathrm{PF}_{m / n}$

Example

Let $n=4$. Consider the affine permutation ω given by

$$
\begin{array}{ccccccccccccccc}
x & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\omega(x) & \cdots & -4 & 2 & -1 & -3 & 0 & 6 & 3 & 1 & 4 & 10 & 7 & 5 & \ldots
\end{array}
$$

Note that there are no inversions of height 7, so ω is 7 -stable. Consider the set $\Delta_{\omega}:=\{i \in \mathbb{Z}: \omega(i)>0\}=\{-2,2,3,4, \ldots\}$. Note that it is invariant under addition of 4 and 7 . The parking function A_{ω} is constructed as follows:

	-6						
5	1	-3	-7				
12	8	4	0	-4	-8		
19	15	11	7	3	-1	-5	-9

Bijection A : $\hat{S}_{n}^{m} \rightarrow \mathrm{PF}_{m / n}$

Example

Let $n=4$. Consider the affine permutation ω given by

$$
\begin{array}{ccccccccccccccc}
x & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\omega(x) & \cdots & -4 & 2 & -1 & -3 & 0 & 6 & 3 & 1 & 4 & 10 & 7 & 5 & \ldots
\end{array}
$$

Note that there are no inversions of height 7, so ω is 7 -stable. Consider the set $\Delta_{\omega}:=\{i \in \mathbb{Z}: \omega(i)>0\}=\{-2,2,3,4, \ldots\}$. Note that it is invariant under addition of 4 and 7 . The parking function A_{ω} is constructed as follows:

2	-2	-6								
4	5	1		3	-7					
1	12	8	4	4	0			8		
3	19	15	1	1	7	3				-9

Bijection A : $\hat{S}_{n}^{m} \rightarrow \mathrm{PF}_{m / n}$

Example

Let $n=4$. Consider the affine permutation ω given by

$$
\begin{array}{ccccccccccccccc}
x & \ldots & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots \\
\omega(x) & \cdots & -4 & 2 & -1 & -3 & 0 & 6 & 3 & 1 & 4 & 10 & 7 & 5 & \ldots
\end{array}
$$

Note that there are no inversions of height 7, so ω is 7 -stable. Consider the set $\Delta_{\omega}:=\{i \in \mathbb{Z}: \omega(i)>0\}=\{-2,2,3,4, \ldots\}$. Note that it is invariant under addition of 4 and 7 . The parking function A_{ω} is constructed as follows:

2	-2	-6						
4	5	1	-3	-7				
1	12	8	4	0	-4	-8		
3	19	15	11	7	3	-1	-5	-9

$$
\begin{aligned}
& \mathrm{A}_{\omega}(1)=2 \\
& \mathrm{~A}_{\omega}(2)=0 \\
& \mathrm{~A}_{\omega}(3)=4 \\
& \mathrm{~A}_{\omega}(4)=0
\end{aligned}
$$

Hilbert Polynomials

Let $\delta=\frac{(m-1)(n-1)}{2}$. Set

Hilbert Polynomials

Let $\delta=\frac{(m-1)(n-1)}{2}$. Set

$$
\operatorname{area}(\omega):=\delta-\sum \mathrm{A}_{\omega}(i), \operatorname{dinv}(\omega):=\delta-\sum \mathrm{PS}_{\omega}(i)
$$

Hilbert Polynomials

Let $\delta=\frac{(m-1)(n-1)}{2}$. Set

$$
\operatorname{area}(\omega):=\delta-\sum \mathrm{A}_{\omega}(i), \operatorname{dinv}(\omega):=\delta-\sum \mathrm{PS}_{\omega}(i)
$$

Define the combinatorial Hilbert series by the formula

$$
H_{m / n}(q, t):=\sum_{\omega} q^{\operatorname{area}(\omega)} t^{\operatorname{dinv}(\omega)}
$$

Hilbert Polynomials

Let $\delta=\frac{(m-1)(n-1)}{2}$. Set

$$
\operatorname{area}(\omega):=\delta-\sum \mathrm{A}_{\omega}(i), \operatorname{dinv}(\omega):=\delta-\sum \mathrm{PS}_{\omega}(i)
$$

Define the combinatorial Hilbert series by the formula

$$
H_{m / n}(q, t):=\sum_{\omega} q^{\operatorname{area}(\omega)} t^{\operatorname{dinv}(\omega)}
$$

Conjecture

It is symmetric: $H_{m / n}(q, t)=H_{m / n}(t, q)$.

Hilbert Polynomials

Let $\delta=\frac{(m-1)(n-1)}{2}$. Set

$$
\operatorname{area}(\omega):=\delta-\sum \mathrm{A}_{\omega}(i), \operatorname{dinv}(\omega):=\delta-\sum \mathrm{PS}_{\omega}(i)
$$

Define the combinatorial Hilbert series by the formula

$$
H_{m / n}(q, t):=\sum_{\omega} q^{\operatorname{area}(\omega)} t^{\operatorname{dinv}(\omega)}
$$

Conjecture

It is symmetric: $H_{m / n}(q, t)=H_{m / n}(t, q)$.
"Weak symmetry" $H_{m / n}(q, 1)=H_{m / n}(1, q)$ would follow from the bijectivity of the map PS.

Hilbert Polynomials

Let $\delta=\frac{(m-1)(n-1)}{2}$. Set

$$
\operatorname{area}(\omega):=\delta-\sum \mathrm{A}_{\omega}(i), \operatorname{dinv}(\omega):=\delta-\sum \mathrm{PS}_{\omega}(i)
$$

Define the combinatorial Hilbert series by the formula

$$
H_{m / n}(q, t):=\sum_{\omega} q^{\operatorname{area}(\omega)} t^{\operatorname{dinv}(\omega)}
$$

Conjecture

It is symmetric: $H_{m / n}(q, t)=H_{m / n}(t, q)$.
"Weak symmetry" $H_{m / n}(q, 1)=H_{m / n}(1, q)$ would follow from the bijectivity of the map PS.
In particular, the "weak symmetry" holds for $m=k n \pm 1$.

Further Results and Connections

Further Results and Connections

(1) The map $\mathrm{PS} \circ \mathrm{A}^{-1}: \mathrm{PF}_{m / n} \rightarrow \mathrm{PF}_{m / n}$ generalizes Haglund's bijection ζ on Dyck paths. To recover (the rational slope of) the $\operatorname{map} \zeta$ on should restrict the construction to the minimal length S_{n}-cosets representatives.

Further Results and Connections

(1) The map $\mathrm{PS} \circ \mathrm{A}^{-1}: \mathrm{PF}_{m / n} \rightarrow \mathrm{PF}_{m / n}$ generalizes Haglund's bijection ζ on Dyck paths. To recover (the rational slope of) the $\operatorname{map} \zeta$ on should restrict the construction to the minimal length S_{n}-cosets representatives.
(2) An important algebraic variety $F_{m / n}$, called homogeneous affine Springer fiber, can be decomposed into affine cells enumerated by m-stable affine permutations.

Further Results and Connections

(1) The map $\mathrm{PS} \circ \mathrm{A}^{-1}: \mathrm{PF}_{m / n} \rightarrow \mathrm{PF}_{m / n}$ generalizes Haglund's bijection ζ on Dyck paths. To recover (the rational slope of) the $\operatorname{map} \zeta$ on should restrict the construction to the minimal length S_{n}-cosets representatives.
(2) An important algebraic variety $F_{m / n}$, called homogeneous affine Springer fiber, can be decomposed into affine cells enumerated by m-stable affine permutations.
Moreover, if $\omega \in \widehat{S}_{n}^{m}$, then the dimension of the corresponding cell is equal to $\delta-\operatorname{dinv}(\omega)$.

Further Results and Connections

(1) The map $\mathrm{PS} \circ \mathrm{A}^{-1}: \mathrm{PF}_{m / n} \rightarrow \mathrm{PF}_{m / n}$ generalizes Haglund's bijection ζ on Dyck paths. To recover (the rational slope of) the $\operatorname{map} \zeta$ on should restrict the construction to the minimal length S_{n}-cosets representatives.
(2) An important algebraic variety $F_{m / n}$, called homogeneous affine Springer fiber, can be decomposed into affine cells enumerated by m-stable affine permutations.
Moreover, if $\omega \in \widehat{S}_{n}^{m}$, then the dimension of the corresponding cell is equal to $\delta-\operatorname{dinv}(\omega)$.
(3) \ldots

Thank you!

