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Overview

Connect and generalize two different combinatorial constructions:

1 Pak-Stanley labeling of the regions of the Shi arrangements by
parking functions.

2 Haglund’s bijection ζ from the set of Dyck paths to itself, turning
the pair of statistics (area,dinv) into (bounce,area).

Relations to several topics in different areas:

1 Topology of homogeneous affine Springer fibers (enumeration of
cells).

2 Finite dimensional representations of DAHA and non-symmetric
Macdonald polynomials.

3 Shuffle conjecture and its generalizations.
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Shi Arrangements

Let V := {x1 + . . .+ xn = 0} ⊂ Rn.

Definition

Affine braid arrangement: B̃n :=
{
{xi − xj = l} : 0 < j < i ≤ n, l ∈ Z

}
Connected components of the complement are called alcoves.
Fundamental alcove: A0 := {x ∈ V | x1 > x2 > . . . > xn > x1 − 1}

Definition
k-Shi arrangement: Shk

n :=
{
{xi − xj = l} : 0 < j < i ≤ n, −k < l ≤ k

}
Regk

n denote the set of connected components (regions) of the
complement to Shk

n .
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Example
n = 3, k = 1,2.
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Rational Slope Parking Functions

Example
Consider the function f : {1,2,3,4} → Z given by f (1) = 2, f (2) = 0,
f (3) = 4, and f (4) = 0. The corresponding Young diagram fits under
diagonal in a 4× 7 rectangle:

f ∈ PF7/4

f /∈ PF5/4

2
4
1
3

Remark
Note that for m = n + 1 the set PFm/n is exactly the set of classical
parking functions PF, and for m = kn + 1 it is the set of k-parking
functions PFk .
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Pak-Stanley Labeling
x2 − x1 = 0

x2 − x1 = 1

x3 − x2 = 0

x3 − x2 = 1

x3 − x1 = 0
x3 − x1 = 1

000
001100

010

011200

101 002

020110

012
102

120

021210

201

Crossing xi − xj = l with l > 0→ i th number increase by 1.
Crossing xi − xj = l with l ≤ 0→ j th number increase by 1.

Theorem (Pak-Stanley)

The map λ : Regk
n → PFk = PF(kn+1)/n is a bijection.
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Affine Symmetric Group

Definition

The affine symmetric group Ŝn is generated by s1, . . . , sn−1, s0 subject
to

1 s2
i = 1,

2 sisj = sjsi for i − j 6≡ ±1 mod n,
3 sisjsi = sjsisj for i − j ≡ ±1 mod n.

Ŝn acts on V with generators si acting by reflections in hypersurfaces
xi+1 − xi = 0 for i > 0, and s0 acting by reflection in the hypersurface
xn − x1 = 1.
The induced action on the set alcoves is free and transitive, so that the
map ω 7→ ω(A0) provides a bijection from Ŝn to the set of alcoves.
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Affine Permutations

Definition
A bijection ω : Z→ Z is called an affine Sn-permutation, if
ω(x + n) = ω(x) + n for all x , and

∑n
i=1 ω(i) = n(n+1)

2 .

In this presentation the operation is composition and the generators
s1, . . . , sn−1, s0 are given by

1 si(x) = x + 1 for x ≡ i mod n,
2 si(x) = x − 1 for x ≡ i + 1 mod n,
3 si(x) = x otherwise.
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Stable Affine Permutations

Our main object:

Definition

An affine permutation ω ∈ Ŝn is called m-stable, if for all x the
inequality ω(x + m) > ω(x) holds, i.e. there are no inversions of height
m. The set of all m-stable affine permutations is denoted by Ŝm

n .
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Stable Permutations

Lemma
Every k-Shi region contains a unique minimal alcove.

Alcove ω(A0) is the minimal alcove of a k-Shi region if and only if
ω ∈ Ŝm

n , where m = kn + 1.

Lemma
Let m = kn + r , where 0 < r < n. The set of alcoves
{ω−1(A0) : ω ∈ Ŝm

n } coincides with the set of alcoves that fit inside the
region Dm

n ⊂ V defined by the inequalities:
1 xi − xi+r ≥ −k for 1 ≤ i ≤ n − r ,
2 xi+r−n − xi ≤ k + 1 for n − r + 1 ≤ i ≤ n.
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Example
n = 3, k = 1, and m = kn + 1 = 4.

[123]
[024][213]

[132]

[042][231]

[015] [204]

[−134][312]

[420]

[105]

[1 −16]

[−143][321]

[−253]

x3 − x1 = 2x2 − x1 = −1

x3 − x2 = −1

[123]
[024][213]

[132]

[042][231]

[015] [204]

[−134][312]

[150]

[105]

[4 −13]

[−143][321]

[−226]
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Map PS

Definition

Let ω ∈ Ŝm
n . Then the map PSω : {1, . . . ,n} → Z is given by:

PSω(α) := ]
{
β | β > α,0 < ω−1(α)− ω−1(β) < m

}
.

In other words, PSω(α) is equal to the number of inversions (i , j) of ω
of height less than m and such that ω(j) = α.

Theorem

If ω ∈ Ŝm
n , then PSω ∈ PFm/n .

Conjecture

The map PS : ω 7→ PSω is a bijection between Ŝm
n and PFm/n .
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n , then PSω ∈ PFm/n .

Conjecture

The map PS : ω 7→ PSω is a bijection between Ŝm
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Cases m = kn ± 1

In the case m = kn + 1 on gets

Theorem
If ω(A0) is the minimal alcove of a k-Shi region R, then the Pak-Stanley
label of R equals to PSω . In particular, PS is a bijection for m = kn + 1.

The case m = kn − 1 can be covered by a small modification of the
above.
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Bijection A : Ŝm
n → PFm/n

Example
Let n = 4. Consider the affine permutation ω given by

x . . . −3 −2 −1 0 1 2 3 4 5 6 7 8 . . .
ω(x) . . . −4 2 −1 −3 0 6 3 1 4 10 7 5 . . .

Note that there are no inversions of height 7, so ω is 7-stable. Consider
the set ∆ω := {i ∈ Z : ω(i) > 0} = {−2,2,3,4, . . .}. Note that it is
invariant under addition of 4 and 7. The parking function Aω is
constructed as follows:
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Aω(1) = 2
Aω(2) = 0
Aω(3) = 4
Aω(4) = 0
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Hilbert Polynomials

Let δ = (m−1)(n−1)
2 . Set

area(ω) := δ −
∑

Aω(i), dinv(ω) := δ −
∑

PSω(i).

Define the combinatorial Hilbert series by the formula

Hm/n(q, t) :=
∑
ω

qarea(ω)tdinv(ω).

Conjecture
It is symmetric: Hm/n(q, t) = Hm/n(t ,q).

“Weak symmetry” Hm/n(q,1) = Hm/n(1,q) would follow from the
bijectivity of the map PS .
In particular, the “weak symmetry” holds for m = kn ± 1.
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Further Results and Connections

1 The map PS ◦A−1 : PFm/n → PFm/n generalizes Haglund’s
bijection ζ on Dyck paths. To recover (the rational slope of) the
map ζ on should restrict the construction to the minimal length
Sn-cosets representatives.

2 An important algebraic variety Fm/n, called homogeneous affine
Springer fiber, can be decomposed into affine cells enumerated
by m-stable affine permutations.
Moreover, if ω ∈ Ŝm

n , then the dimension of the corresponding cell
is equal to δ − dinv(ω).

3 . . .
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n , then the dimension of the corresponding cell
is equal to δ − dinv(ω).

3 . . .

Gorsky, Mazin, Vazirani Affine permutations and parking functions June 29, 2014 16 / 17



Further Results and Connections

1 The map PS ◦A−1 : PFm/n → PFm/n generalizes Haglund’s
bijection ζ on Dyck paths. To recover (the rational slope of) the
map ζ on should restrict the construction to the minimal length
Sn-cosets representatives.

2 An important algebraic variety Fm/n, called homogeneous affine
Springer fiber, can be decomposed into affine cells enumerated
by m-stable affine permutations.
Moreover, if ω ∈ Ŝm
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Thank you!
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