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Abstract

Affine Processes in Finance; Numerical Approximation, Simulation

and Model Properties
Kyoung-Kuk Kim

This thesis deals with theoretical and numerical questions related to affine jump-
diffusion models used in finance. In more detail, we look at three different classes within
the affine jump-diffusion class.

The first is the Heston stochastic volatility model which has been used extensively since
its first introduction by Heston (1993). To price financial derivatives with complex payoff
structures, we have to resort to the Monte Carlo simulation. We propose new simulation
schemes for the Heston model based on the squared Bessel bridge decomposition. These
new methods perform well in different parameter settings and they are compared with two
other existing methods, first, the exact scheme of Broadie and Kaya (2006) and, second, the
QE method of Andersen (2005).

The second question is about the tail behavior of the canonical affine diffusion processes
which were introduced by Dai and Singleton (2000) in the context of financial econometrics
to study the term structure of interest rates. We show that the canonical models have light
tails or exponential bounded tails, and the explicit conditions that guarantee light tails are
given. Moreover, we prove that there exists a unique limiting stationary distribution for
each canonical model and the regions of finite exponential moments of such stationary
distributions are determined by the stability region of the dynamical system associated

with a given model.



We further go into the detailed analysis of the dynamical system of a canonical affine
diffusion process. We prove that the stability region of such a dynamical system can
be represented by the union of stable sub-manifolds under some mild conditions, and
also derive some partial differential equation of which solution is blow-up times of the
dynamical system. Through an asymptotic analysis of those blow-up times, we calculate
the implied volatility asymptotics for options with short maturities and extreme strikes
based on Lee (2004).

The third and final question involves the general affine jump-diffusion models. It is
computationally too expensive to apply numerical integration schemes to compute vanilla
option prices in an affine jump-diffusion model which does not have an explicit Fourier
transform formula. To extend the category of models that can be tested in financial econo-
metrics, we apply the well known saddlepoint technique to affine jump-diffusion models.
After we develop the basic idea and review some known saddlepoint techniques, we test
them for the Heston model, the model of stochastic volatility with jumps (SV]) and the
Scott model. Implementation details and some modifications of existing methods are also

given.
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Chapter 1

Introduction

The theory of asset pricing, particularly that of financial derivatives, has been developed
for the last three decades since Black and Scholes (1973), and Merton (1973). As there are
many good sources that account for detailed theories (see, e.g., Duffie 2001 or Musiela and
Rutkowski 2005), we just briefly recall the fundamental pricing equation; for a contingent

claim V which matures at T, its price at time 0 < t < T is given by
1%
V,=BE [_T|ﬁ] (1.1)
By

where B is the numeraire asset and [ is the expectation under a measure in which the
process V/B is a martingale. We call this measure a martingale measure associated with B.
Here 7 stands for the filtration to which V and B are adapted.

This “relative pricing” approach to derivative pricing is very popular in financial en-
gineering. For example, we can choose the nemeraire to be a bank account which returns
risk free interest with continuous compounding or to be the price of abond. In these cases,
the associated martingale measures are called the risk-neutral measure and the forward
measure, respectively. However, if markets are incomplete, then there could be many other
equivalent martingale measures that make V/B a martingale. In this thesis, however, we
always assume that we start with the risk-neutral measure and thus avoid any complication
related to market incompleteness.

To apply (1.1) to a derivative of interest, we need a model that describes the price



CHAPTER 1. INTRODUCTION 2

movement of the underlying asset (or assets) S of the contingent claim V. There is a
universe of stochastic models for this purpose and it is conventional to set S as some
specific semimartingale. For example, S could be a Lévy process or it could be a solution

to a stochastic differential equation (SDE)
as; = u(Sy, t)dt + o(S¢, AW (1.2)

with W being a multi-dimensional Brownian motion. Proceeding one more step, we could
add jumps J(S;,t) to (1.2). In such a case, by imposing specific parametric forms on u(S;,t),
o(5;, t) and J(S;, t) we obtain some nice properties that are very useful in derivative pricing
as in, for example, Black and Scholes (1973), Cox (1975), Heston (1993) or Kou (2002). In this
regard, there is one important class of stochastic processes called affine jump-diffusions.
The variety of models that fall into this class is explained in Section 5.1. In these models,

the log of asset prices X; = log S; is given by a solution to the following SDE:
N()
AXy = p(Xp)dt + o(Xe)dWe + d (Z ViJ (1.3)
i=1

where

p(x) = Ko+ Kix, Ko e R", K; e R®", x e R"

(6()0()")yj = Hoij + Huj-x, Hogj € R, Hiyjj € R

and N(t) is a Poisson random variable with intensity process A(Xy) = lp + I - X; for | =
(lo,l1) € RxR", Vs are independent and identically distributed (iid) random variable that

stand for jump sizes. Moreover, the numeraire, a bank account B, is also modeled as

¢
By =exp (fo (po + p1 -Xs)ds).

The usefulness of affine jump-diffusion models lies in the fact that there exists an explicit

Fourier transform formula by which we can compute the cumulative distribution function
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of X
O(0) =Eexp (i0- X;) = exp(a(T —t) + (T = ) - X;) (1.4)

where a, f§ are solutions of some ordinary differential equations. We refer to Duffie et al.
(2000) and Duffie et al. (2003) for the detailed analysis of affine jump-diffusion processes.
We investigate theoretical and numerical questions related to affine jump-diffusion
processes in the subsequent chapters. More specifically, we study affine jump-diffusions at
three levels. At the simplest level, there is the Heston stochastic volatility model (Heston
1993) which is a two-dimensional model consisting of the stock price process S; and the

variance process V;:

dSt = pStdt + 5 \/thW,l,
AV, = 16 - V)it + o \VdW?

with (W!, W?) being a two-dimensional Brownian motion with correlation p. It is still a
very popular model in financial engineering and has been widely applied to various kinds
of markets such as bonds, equities and indices. Considering the complexity of derivatives
that exist today, e.g., barrier options, bermudan options etc., Monte Carlo simulation is
a widely used pricing method with great popularity. In Chapter 2, we study an efficient
simulation method of the Heston model, which builds on the exact simulation scheme of
Broadie and Kaya (2006). This method is based on a series expansion of the integral of the
variance process conditional on the endpoints, ( fot Veds|Vy, Vt).

At somewhat intermediate level, we study canonical affine diffusion processes intro-
duced by Dai and Singleton (2000). These were used for the study of term structure of

interest rates and have the following coefficients: in (1.3),

pXy) = —AT©O©-Xp), oX)o(Xp)' =
D,

where A is a matrix with some special conditions and D;’s are some diagonal matrices

of which entries are affine functions of X;. See Section 3.2 for details on the parametric
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restrictions on the models. The main question we look at regarding canonical affine
diffusion processes is when the exponential moments of X are finite. The finiteness of
exponential moments of a random variable U is closely related to the tail behavior of the
distribution of U. For example, if a non-negative random variable U has EefY < oo for
any 0 € R, then U is light tailed and if Ee%Y = oo for any 6 > 0, then U is heavy tailed.
In between, U has an exponentially bounded tail. In Chapter 3, we prove that X admits a
unique limiting stationary distribution, say X, and the set of vectors 0 such that 0 - X, has
finite exponential moments coincide with the stability region of the dynamical system that
a, B satisfy. Moreover, we show the necessary and sufficient conditions on 8 for 8- X; to be
Gaussian. More background on the concepts like stability region or dynamical system can
be found in Section 3.4.1.

In the following chapter, more detailed study of the dynamical system of @ and § is
carried out. Especially, the stability region of the system and associated partial differential
equations are discussed. These questions are important because it has an implication in
the context of option pricing. For example, Lee (2004) showed how the critical exponents
p" or g* such that Ee# +D0 X or Ee~9 9%t become infinite are related to the slopes of implied
volatility curves at extreme strikes, while the asset price process is given by &; - X; for a
deterministic function of time ;. In Section 4.5, we compute these slopes explicitly for
options with extreme strikes and small maturities through an asymptotic analysis of the
stability region of the dynamical system of & and g.

At the most general level, we deal with affine jump-diffusions (1.3). Even though the
transform formula (1.4) is available, only simple models that have closed form «,  have
been studied particularly in financial econometrics. This is mainly because it becomes too
time consuming otherwise. In more detail, a probability P(0 - X; > y) is calculated via the

Fourier inversion formula

T+io0

o1 2y 2
PO-Xi>y) = 5 PO =, >0 (1.5)

T—i00

and we use a numerical integration scheme to calculate this integral. However, if ¢(-)

is not available in closed form, i.e., @ and f are not solvable analytically, then we have
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to solve differential equations associated with @ and B numerically at each evaluation
point of the above integral. This certainly causes a big problem if one wants to use a
more general affine jump-diffusion model than simple ones. In this regard, an efficient
numerical approximation of option prices is attractive and we apply the well known
statistical method called the saddlepoint technique to affine jump-diffusions. Introduced
in statistics by Daniels (1954) and applied to derivative pricing by Rogers and Zane (1999),
this technique is essentially asymptotic expansions of contour integrals such as (1.5) in
the complex plane and has been in use, for example, in option pricing, risk management
and credit derivatives. We will see in Chapter 5 how much computational efficiency is
obtained by applying saddlepoint approximations in the affine jump-diffusion setting and

this opens a possibility of testing more complex models in financial econometrics.



Chapter 2

Gamma Expansion of the Heston

Stochastic Volatility Model

Approximate simulation methods for the Heston stochastic volatility model are proposed. Based on the
squared Bessel bridge decomposition in Pitman and Yor (1982), the integral of the variance process fol V.ds
conditional on the endpoints can be simulated by generating three independent random variables. Compu-
tational gain is due to, first, that we avoid the inverse transform method and, second, that we reduce the

computation of Bessel functions as much as possible.
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2.1 Introduction

Among many stochastic models used in quantitative finance, Heston’s stochastic volatility
model is still one of the most popular models among practitioners. By introducing stochas-
ticity to the volatility process of the asset price of interest, the model made it possble to
explain the implied volatility skews to some extent. Now it is applied to many different
kinds of financial intstruments including bonds, equities and indices. On the other hand,
we observed the very fast growth of financial markets in terms of the size and the complex-
ity of derivatives people trade. So risk management as well as derivative pricing is ever
more important. This means that efficient calculation of prices and greeks is a vital factor
in quantitative finance.

Regarding the Heston model, Monte Carlo simulation as a method of pricing and
hedging is still very important despite the availability of the closed form solutions of vanilla
option prices because we do not and cannot expect to have such closed form solutions for
many exotic path dependent derivatives. Until recently, discretization methods have been
the default approaches in Monte Carlo simulation of the Heston model. This class of
methods includes the Euler scheme, the Milstein scheme and other schemes with higher
order of convergence. Kloeden and Platen (1999) explain various methods in their textbook
and concrete numerical investigation was conducted by Kahl and Jackel (2006). However,
as noted in literature (see, e.g., Andersen 2005 or Broadie and Kaya 2006), these methods
lose their appeal when it comes to the Heston model with not-benign model parameters,
causing problems with negative variance, which might generate significant biases. The
recent discretization method proposed by Andersen (2005) attracted attention as his method
avoids such problems and works reasonably well in different market situations, i.e. in a
wide range of model parameter values while maintaining computational efficiency.

A totally different approach was pioneered by Broadie and Kaya (2006). Without
any discretization, their method is an exact scheme and produces no bias. Based on the
inverse transform method, the key step is the computation of the characteristic function
of ( fs ! V., dulVs, V,), the integral of the variance process V conditional on the endpoints V;

and V;. Even though this exact scheme recovers the usual convergence rate of Monte Carlo
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simulation (so outperforms the Euler scheme), people find it hard to implement in practice
because of the computational time that it requires. This computational burden is due to,
first, that we need to implement a root finding algorithm to apply the inverse transform
method, which in turn requires many computations of the characteristic function and,
second, that the characteristic function involves two evaluations of the modified Bessel
function of the first kind, which is a solution of second order ordinary differential equation
and represented by an infinite series.

In this chapter, we propose yet another approximate simulation method of the Heston
model along the line of Broadie and Kaya (2006). The bottom line is to use mathematical
properties of the squared Bessel bridge investigated by Pitman and Yor (1982, 2000). Based
on their decomposition of the squared Bessel bridge, we prove that the conditional path
integral ( fot Vds|Vy, Vt) is decomposed into the sum of three independent random vari-
ables. Moreover, each of these random variables admit series expansions using Poisson,
exponential, gamma and Bessel random variables. We also test a simulation approach that
uses a single Beta random variables.

The chapter is constructed as follows. In Section 2.2, we present our main result. In the
following two sections, we review the exact scheme of Broadie and Kaya (2006) and detail
our approximate simulation scheme. Numerical results are given in Section 2.5. Section 2.6

deals with the case when we are given a non-equidistant time grid. Section 2.7 concludes.

2.2 Main Result

The Heston model is a two-dimensional stochastic process (S;, V;) which satisfies the fol-

lowing SDE:
ds, . )
S = pdt+ Y, (det +1- pZth) @.1)
t
AV = k(0 — Vy)dt + o[V, dW] (2.2)

where (W!, W?) is two-dimensional standard Brownian motion. The variance V process is

called the Cox-Ingersoll-Ross (CIR) process and has been studied extensively and used for
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term structure modeling since its first introduction by Cox et al. (1985). It is known that the
distribution of V, for a given initial value Vj and time f follows the noncentral chi-square

distribution,

4x0
Vol, t>0, 06=—.
0?1 — ™) 0) o?

2.3)

2 ~xt —xt
d 0°(1—e¢ , dxe™*
Vi = ( )X()Z(

4x

However, from the viewpoint of the Monte Carlo simulation of the Heston model, it is
important to simulate the path integral of V, fot Vsds, not just V. In more detail, a simple

application of It¢’s formula to log S; shows

1 t t ) : t )
S[—Soexp(yt—ijc;vsds+pj(; \/Vdeer./l—pio \/Vdes)

and thus, given fot V.ds and fot VVdWl,
S, 4 1 ¢ L , t
log 3= Niut— 5 Vsds+ p VVdW, (1 —-p%) | Vids (2.4)
0 0 0 0

as W? is independent of the V process. From (2.2) we also have

. t
f\/ﬁdwgzi{vt—vo—xemxf Vsds}.
0 o 0

Hence, if the joint distribution of (V[, fot Vsds) is known and can be simulated efficiently,
then the simulation of S; given (Sg, V) is an easy task. This is the approach taken by
Broadie and Kaya (2006) and their novel method will be explained more in Section 2.3. As
the distribution of V; is explicitly known, our focus is on ( fot VedsiVy, V,). Therefore, in
this section, we investigate some properties of this conditional path integral, and they are
based on the squared Bessel bridge decomposition studied by Pitman and Yor (1982) and

on a close look at the characteristic function of the integral.

Remark If we define a process B(t) by

i xt _ 1
V, = e‘”B(e ) 2.5)

4xfo?
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then B becomes a 6-dimensional squared Bessel process which satisfies

e¥t — 1 t o
dB(t) = 6dt + 2/BOAW(), Wl—|= f —e* 24w
4K/ JO 2

It is well known that the above SDE has the unique strong solution for each § > 0 and
By = Vg > 0. Moreover, if 6 = 0, then 0 is an absorbing state. If 5 € (0,2), then 0 is reached

almost surely, but instantaneously reflecting. See p.439 of Revuz and Yor (1999) for details.

Remark From (2.5), we observe that the conditional law (Vs,0 < s < #}Vy, V;) can be defined
using the conditional law (Bs,0 < s < t|Bp, By). A reader can consult p.446 of Pitman and
Yor (1982) for more information about the definition of the conditional law of the squared

Bessel bridge.

Before proceed, recall the definition of a Bessel random variable which we denote by
BES(v,z) with v > —1 and z > 0 (see Yuan and Kalbfleisch 2000). It is a random variable X
taking non-negative integer values with probabilities

(2/2)2n+v

pulv,2) = BX =n) = 1 v T 1)

where I, (z) is the modified Bessel function of the first kind. We will drop v and z when there
is no source of confusion. Now we state our main result. The conditional path integral of
the CIR process can be decomposed into three independent random variables, all of which

admit series representations.

Theorem 2.2.1 The distribution of fot Vsds conditional on endpoints Vo, Vi admits a decomposi-
tion:

t n
(f Vids | Vo = vg, Vt:vt)in+X2+X35X1+X2+ZZ]-

0 -
j=1

where X;’s are independent random variables, Z;'s are i.i.d. copies of Z and 1 is an independent

Bessel random variable with parameters v = 6/2 — 1 and

2k /0?

zZ= glnh—(KTZ) YO0U.
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Moreover, X1, X, and Z have the following representations:

00 Ny =] oo

X; =Y yi Y Expi(1), Xo=) -;:rn(a/z,l), z=Y yirn(z,l)

n=1 j=1 n=1 n=1""

where
B 167212 P+ A
"SGR drn?y T T 2022

and Ny's are independent Poisson random variables with mean (vo + v1)A,, Expj(1)’s i.id. Ex-
ponential random variables with rate 1 and T'y(k, 0)’s independent gamma random variables with

shape parameter k and scale parameter 6.

Proof We prove the result in two steps. First, we show that ( fot Vds|Vy, V) can be decom-
posed into the sum of three random variables and second, each of those random variables
has the series representation above based on its Laplace transform.

The first step is a simple application of a result in Pitman and Yor (1982), p.456. Fix

t > 0 and define a process {As}o<s<1 by
As = —Vi. (2.6)
o
Then, it is easy to see that A solves a stochastic differential equation
dAs = (5 + 2aAs)ds + 2 AAW,

with a = —«t/2 and a standard Brownian motion W. This is called a 6-dimensional squared

Ornstein-Ulhenbeck (OU) process with parameter a. Let us denote the conditional law
(A,0<5<1|Ag=x,A1=y) 2.7)

by {Ag:ly(s)}()Sssl or simply Ag'}/. Pitman and Yor (1982) showed that this squared OU bridge

has the following decomposition:

47,1

51 4 401 01 51
Ayy = Ax,0 + AO,y + AOI0 + Ao,o
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where the four squared OU bridges on the right hand side are independent processes and
n is an independent Bessel random variable with v = 6/2 — 1 and z = +/xya/sinh(a). Here,
Ag:}j should be understood as the law of the time-reversed process of Ag::) because 0 is an
absorbing state for a 0-dimensional squared OU process.

From the above decomposition of the squared OU bridge, we get

1 1 1 1
f A (s)ds & f AV (s)ds + f Ag:;(s)der f Agy(s)ds + f 4n15)ds
0 0 0 0

But, the second term on the right hand side is same in distribution as fo Agé(s)ds by

the definition of Ag';- On the other hand, a family of the conditional laws {AxO}XZOr 120

parameterized by x, f has an additivity property

A£1 AV E A

x,0 x+x',0

which is a direct consequence of a similar additivity property of the squared Bessel bridges

and the transformation (6.b) in Pitman and Yor (1982). Therefore, we have

1 1
f Al (s)ds & f ALl o(s)ds+ f AbL(s)ds + f A (s)ds.
0 ’ 0

Finally, we also observe that the last term on the right side can be expressed as

f 4”1(s)ds—z f A“ ) (5)ds

thanks to the above additivity property. Here, (A 4’(1))(f)’s are i.i.d. copies of Aé:(l).
Now, the remaining step is to convert the decomposition of fo Abl (s)ds into that of

( fo Vids|Vy, V;). It is obvious from (2.6) and (2.7) that

t 02t2 1 1
(f VdsiVo = vy, Vi = vt) = —f Ag’y(s)ds
0 4 Jo

where x = 4vg/(0%t) and y = 4v;/(0°t). Then, the first part of the proof is complete by
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defining

242 1
ot 0,1
X] = T jo‘ Ax+y’0(5)d5,

242 1
ot
Xy, = T ; Ag'})(S)dS,
242 1
ot
Z== Agy(s)ds.

Since a = —xt/2, x = 4vp/(c*t) and y = 4v;/(0*t), we have

_a _ 2x/o?
2= Sinn@ V¥ = Sinhge) VOO

Let us turn to the second statement of the theorem which turns out to be useful in Monte
Carlo simulation of the Heston model in later sections. As essential tools, we record the

Laplace transforms of X, X5 and Z in the next lemma.

Lemma 2.2.1 The Laplace transforms ®!, &, &% of X, X, and Z are given as follows: for b > 0,

p) = M( Kt _ E)

o) = exp( e KCOth2 Lcoth2 , (2.8)
L sinhxt/2\%?

2 = —_— —

> = (K sinth/2) ’ 29)
L sinhxt/2\?

Z - — ————

>y = (K sinth/2) (2.10)

where L = V202b + 2.

Proof The proof is a straightforward calculation based on the Laplace transforms of
squared Bessel bridges in Revuz and Yor (1999) and the change of measure formula (6.d)
in Pitman and Yor (1982).

Recall that a 0-dimensional squared Bessel process B defined by dB; = 2 VB dW; with

W being standard Brownian motion under Q has the Laplace transform

. B (!
E[exp (—E-f Bsds)
0

for b € R and x > 0 where E means expectation under Q. Using the change of measure

Bo=x, By = O} = exp (%(1 — bcoth b))
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formula (6.d) in Pitman and Yor (1982), for b > 0 we have (with a = —«xt/2)

Al Y
E [exp —b~4— fo Ax;ylo(s)ds
. bo?t?  g? 1 - a? [
]E[exp(—( 1 +7) J; Ag’iylo(s))]HE[exp(—? J; Ag'jyro(s)ds)}

+ t L
Xp ((ULG;L) (K coth % — L coth Et))

D' (b)

I

it

where L = V202b + 2. This is exactly how the Laplace transform of ( fot VsdslVo, Vt) is
produced in Broadie and Kaya (2006).

As for X, and Z, recall the Laplace transform

. © o[ b\
IE[exp(—E\f0 Bsds) B0=B1:O} = (sinhb)

of the f-dimensional squared Bessel bridge such that dB; = fdt + 2 VB;dW;, W being a

standard Brownian motion under Q. By proceeding similarly as above, we obtain the

desired results. | ]

Another very useful tool is the following infinite product in p.22 of Pitman and Yor

(2000):

= 2\ x
H(1+n2n2) s (2.11)

n=1
by which they presented the squared Bessel bridge with zero endpoints as an infinite sum
of gamma random variables. This observation will be revisited in Section 2.6.
It is well known that [[(1+4a,) with a, # —1 converges simultaneously with }_ log(1 +a,,)
(using the principal branch in C if necessary) and that this product absolutely converges
if and only if )’ [a,| does. See Ahlfors (1979), p.192, Theorems 5, 6. These facts and (2.11)

imply that

Z‘log 1+i2~ = —log =
~ n’n2 sinh x

Since the left hand side is uniformly convergent on compact intervals, we can take term-
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wise derivatives to deduce

o 232
Z'Z—EZXCOthX——l.
b= X% + 10

Now, for two real values x > y > 0, we get

2 S 22 d 2m2nt(x% — y?)
xcothx — yCOth Y= Z m Z{ m = Zl‘ (xz + 7_[2112)(y2 + nznz)-
n=

Plugging x = Lt/2, y = xt/2 in this formula (with L = V20?b + x?) and rearranging terms,

[e0]

1 Kt Lt = 167212
o2 (K coth 2 Leoth —2—) T Z o222 + AmPn?) p 4 2f2+4”2”2 - Z

n=1 ZUZfZ n=1

We turn to the infinite sum in the statement. Define

N,

X = i )/i Exp;(1)

n=1 7" j=1

—.

This random variable is well defined because the sum of variances Y., ; 2(vg + v)An /v is
obviously finite and, thus, the infinite sum converges almost surely. Therefore, for b > 0,

by the Dominated Convergence Theorem, we have

log Ee ?%

logIEexp[ bZ ZExp](l)]
n= 1

Z log E exp [—-—b— Z”‘ Exp]-(l)}

n=1 Yn =1

_ - (wo +v)Ab
b+yn

n=1

. d
Hence, by the uniqueness of the Laplace transform, X; = X| and we can set X; to be the

series representation in the statement without any loss of generality.
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As for X5, from (2.9) and (2.11) we have

-bX,

log Ee Lt/2 Kt/2 )

5
- -~
2 ( B SnhLt2 8 ginh«t/2
ol ©w 1242 = x242
= E {——Z log(l + 4712712) + ; IOg(l + W)
5 v b
= —EZlog(l + ;;)

= Z log Eexp (_Yirn(a/z, 1))

n=1

- 1ogEexp[—bZ%rn(5/z,1)J
n=1 /"

where the random variable in the last expression is well defined by the same reason as

above. The expansion of Z is a special case with 6 = 4. The proof is complete.  J]

Remark We note that X, X» and Z belong to certain classes of infinitely divisible distribu-
tions. As noted in Bondesson (1982), the class 77 is described as the set of distributions of
weak limits of finite convolutions of Poisson mixtures of exponential distributions and the
class of generalized gamma convolutions (g.g.c.) is the set of distributions of weak limits
of finite convolutions of exponential distributions. The class of g.g.c. is again a subset of
7>. Therefore, Xy, X5, Z are in 7 and, in particular, X;, Z in g.g.c. So, X3 is the mixture of
g.g.c. distributions with the Bessel law as the mixing distribution. See also Steutel and van
Harn (2004) for an extensive study of infinitely divisible distributions.

In contrast, the distribution V, is that of the Poisson mixture of gamma random variables

as easily deduced from its Laplace transform.

2.3 Monte Carlo Simulation of the Heston Model

The exact simulation scheme of the Heston model developed by Broadie and Kaya (2006)
exploits the explicit characteristic function formula of the squared Bessel bridge and the

facts observed in Section 2.2. Briefly reviewing its procedure,

¢ Simulate V; given V; using a noncentral chi-square distribution as in (2.3).
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e Simulate fot Vids given Vi and V; using the inverse transform method, i.e., for
U ~ unif[0,1] we find x such that ]P( i Veds < x1Vo, Vt) = U using a root-finding
algorithm. This cumulative distribution function (CDF) is computed by the Fourier
inversion integrals since there is a closed form expression for the Fourier transform

of fy VadsiVo, V2.
e Simulate 5; given 5S¢ using (2.4).

This exact simulation method recovers O(s71/2) convergence of an unbiased Monte Carlo
estimator unlike other discretization methods. Here s means a user’s computational bud-
get. However, as noted in Andersen (2005), this method is computationally expensive and
so loses some practical appeal.

We focus on the second step of the Broadie-Kaya scheme and aims to improve the
computational efficiency of the simulation of ( fot Vsds| Vo, Vt) by applying our main result,
Theorem 2.2.1. In applying the series expansions of X;’s, we have to truncate them at
some level n = K. Proposition 2.3.1 is useful in this regard. For notational simplicity, we

introduce three random variables

00 N, 0o i
1 it 1 1
xi= Y Y Ew), Xf= Y, ey, 2= ) Snen
n=K+1 Vn j=1 n=K+1 In n=K+1 In

and we also denote gamma random variables that match the mean and the variance of each
of the above three random variables by T’ for i = 1,2,3. The next result shows asymptotic
decay rates of these means and variances and they are useful in the proof of Proposition

23.1.

Lemma 2.3.1 As K increases,

2(vo + vg)t 2(vg + vp)o?t3
EXK ~ 22T yarxK) ~
! n?K ! 3mik®
50212 Sodtt
B~ ke VD i
2t2 O_4t4
EZK ~ 2 var(zK) ~ .
72K’ "z 614K3
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Proof Observe that

24, S n’
Var(xXy = + (128(vg + 23 —_—
(X7) (vo vt)ngjrl 2 (00 + )7°’F) Z (122 + 412n?)>

_ 2o+ v;)02 3

’%
~ (128(vg + ve)n’o t)f (4 yz)s 374K3

All other asymptotics are similarly obtained. |}

Proposition 2.3.1 For a random variable V = XX, XX, ZX and the corresponding I, the following

asymptotic normality holds:

V-E(V) N(O,1) I~ E(V)

Var(V) - " WVar(V) -

Moreover, the distance between V and T decreases faster than the convergence of V to the normal

N(@©,1) asK 7T co.

distribution N := N(E(V), Var(V)) in the following sense: for all b in a neighborhood of the origin,
0 < logEe"” — log Eelt" < logEellV — log Eel?N'

for all sufficiently large K values.

Proof We will prove the statements for V = X{( because other cases can be proven in a
similar fashion.

From Theorem 2.2.1, it is easy to derive that for all b in a small neighborhood of the

g = ) St 5 Yo, (L)
n

n=K+1 n=K+1m=1

origin,

and one can readily show that the double sequence is absolutely convergent for each fixed

b and K. This yields

m
XK - EXE 2 O o« b
log Eexp|b——X| = s + Z Z (Vo + v1)An

\JVar(X5) 2 S Yn A/ Var(X5)

and the asymptotic normality for Xf follows if the double sequence in the above expression
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converges to zero as a consequence of Lemma 15.15 of Kallenberg (2002). To see this

convergence, first we observe that for fixed s > 0,

& i g™ 4 e e g 4 e e (20_2t25)m
An—s = = T T Aty
mZ:;;nzg:-l Vn Gth:(‘%n;:—ly" O—th:;;n:ZK-‘l-l (1542 + dmen)m
4 & (™ 2g2§2g)" 4 g2ty
s TZf 2(2 ,)'ZZmdyS_ZZ ( 22)mdy
0%t A= Jk (x°t2 + 4mcy?) ottt &= g (4m2y?)
04 2.2 \M
< fl_ Z o°t°s 1 ‘
o2t 22 | (2m — 1)K2m-1

Then, we get

mn m

lb| 4 a2£|b| 1
Z Z An ST Z (2m — 1)K2m-1
m=3n=K+1 | yn fVar(XK) m=3| 212 \|Var(XK)

m

(&3]

L 4K i a2#2|b|
13| 2m2ke \fVar(xK)
3
4K a22)p)

2
T 2m2K2 \JVar(XK)

a2t2|b|
2m2K? |\ [Var(XK)

where the last equality holds for all sufficiently large K’s and it is easy to see that the last

=11-

formula goes to zero as K increases, utilizing Lemma 2.3.1.
By matching the mean and the variance, one can get the shape parameter k and the

scale parameter C of I,

]EXK 2 K
(Ex}) 6w rudK o VarXy) o o?f
! ]Exf 3m2K?’

 Var(xX) o2t

From

o]

rt _ _ E m
log Be™ = —klog(1 Cb)—Zm(Cb) ,

m=1
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we get
m

' —-ExX 2 &
log Eexp | b——r1|= b—+ K b

\JVar(x¥) 2 7;% f Var(XK)

and the asymptotic normality for I'! follows because

m 3

k| % < O P

mg;ﬁ | Var(XK) : \JVar(XK) ‘ \Var(xX)

Moreover, we have

log e — log Bell" = (vwv»Z[Z ]!bl’"—Z(kC )'bl"’

oo

- 0.

m=3\n K+1 m=3
= (v + w)Z Z ~<1 Ry m)IEI"
m=3 n= K+l
with
kC" [(m(vo + vi))
Rn,m = v 3 om
Zn:K+1 /\n/)/n
But, we observe that
i &n_. _ 1671 Z 2(202t2)m N i i (zoztz)m
neK+1 144 (Kztz + 47m2n2ym+l - o2t et (4r2n2ym

i

4 2t2 Tllf 1 d B _—4— O'_th— m 1
o2t \ 272 Kk Y Y= i\ 22 (2m — 1)K2m-1

and kL™ /(m(vo + v1)) ~ 6/(mo?tK?"1) (0242 /(3n2))"’. These imply

Rn,m ~

6m-—3 (2)’”

2m \3
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as K increases. Thus,

log Ee"X! — log B = <vo+vf)z Z (L= Rum)lo”
m=3n= K+1
< <vo+vt>z Z ~—lbi’"
m=3 n= K+1
= logIEerIXI —logIEe""N

for all large K’s. |

From the simulation point of view, Theorem 2.2.1 and Proposition 2.3.1 suggest three
different approaches. We can simply truncate series expansions of X;’s at some fixed level K,
adjust the remaining terms by a normal random variable or by a gamma random variable.
But, we take on the last idea as our main approach, namely the gamma approximation.
After truncating at level K, we approximate the remaining summation by a single gamma

random variable:
K

X, ~ Z:{ -yl— Z Exp(1) +T*

and similarly for X; and Z. The gamma approximation has an advantage over a normal
approximation because it never generates a negative value in addition to the faster con-
vergence in the sense of Proposition 2.3.1. In the next section, we describe more detailed

simulation procedure of each random variable.

Remark It is easy to see from (2.8), (2.9) that X; and X, are non-negative Lévy processes
with time parameters 7o + v; and §, i.e. subordinators. From the series expansions of X;

and X3, we get their Lévy densities

oo

1
p1(x) = Zw eI, pax)= ) e

n=1

There are a few simulation methods for Lévy processes or infinitely divisible distribu-
tions. Especially for subordinators, a method of Rosiniski (see Cont and Tankov 2003) is
to construct a series represetation of a subordinator using a function U(x) := fx * pi(y)dy.

However, the computation of U™} (y), which is essential in his method, is cumbersome
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Table 2.1: Model parameters.

casel casell caselll caselV

x 05 03 1 6.2
0 004 004 009 002
o 1 09 1 0.6
p 09 05 03 07

Table 2.2: Time for 100 samples when we use @4 (b) and when we insert a dummy [,(z).

vo+v; nol(z) onel,(2)

2 0.57 2.08
0.2 6.67 35.08
0.02 76.59 381.77

because a closed form of U(x) using elementary functions is not available.

On the other hand, Bondesson (1982) proposed a general simulation approach to in-
finitely divisible distributions using shot noise distributions. This method also derives
an infinite series representation of the distribution of interest. But, again, since p;(x)’s are
infinite sums, we need to truncate the Lévy densities first, and compute the corresponding
shot noise representations and truncate them again.

Letting those approaches be open possibilities, we focus on our series expansions of X3,

X, and Z, and take a simple approach just by truncating those series at some fixed K.

Throughout the rest of the chapter, four different parameter settings are used given in
Table 2.1. The first three cases are taken from Andersen (2005) and case IV is set close to
estimated parameters in Duffie et al. (2000). According to those papers, case I is related
to long-dated FX options, case II to long-dated interest rate options, case III to equity
options and case IV to S&P 500 index options. Andersen (2005) explains the reason for the

particular choices as because they are challenging and practically relevant.
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2.4 Simulation Procedure

2.4.1 Simulation of X;

Exact Simulation. As the Laplace transform of X; is available in closed form, one can try
the exact simulation scheme using the inverse transform method as in Broadie and Kaya
(2006). The algorithm consists of two steps; first, generate U ~ unif[0, 1] and, second, find
x > 0 such that P(X; < x) = U. In the second step, there are two iterations involved. One is
the root-finding procedure to find x and the other is the calculation of the CDF of X;. One
can use, for example, the algorithm described in Abate and Whitt (1992) to calculate the
CDF. In our implementation of this exact method, we use the Abate-Whitt algorithm and

fzero function in MATLAB for a root-finding procedure. The CDF is calculated by

2n
X+ U

N
PG <x)~ X 2y Sn hkae O (~ihk)), h = (2.12)
T k=1

where 1, = ux, + mox, with uy,, ox, the mean and the standard deviation of X;, and this
controls the discretization error and m is set to be not less than 5. Also, the truncation error
is handled by stopping the iteration at k = N such that |®(—ihN)|/N < e’ /2 with e’ = 1075
in this chapter. This discussion followed the implementation of the Abate-Whitt algorithm
in Broadie and Kaya (2006).

On the other hand, the main computational load of the Broadie-Kaya scheme is the
inclusion of the modified Bessel function of the first kind I, (z) in the Fourier transform of
( fot V.ds| Vg, Vt). To see the effect of the inclusion of this Bessel function, we include one
dummy calculation of I,,(z), which does not affect ®!(b), and compare the results. We record

the mean and the variance of Xj,

* * 2
px, = (o + oy, 0% = (Vo + 0o,
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where ”;Q and 03(12 are the mean and the variance of X; with (vg = 1,7, = 0):

. 1 xt t 2 (xt
Hx, = ¢ coth( > ) 2Csch (2 ),
2 2 2,2
. 2 o kty  o°t 5 (xty  o°t Kt 9 (Kt
" = eo(F )+ gaesdd () T oo (et (3 )

Note that these can be computed and stored in the initialization of the Monte Carlo simu-
lation if we work with an equidistant time grid and fixed parameters x, 0.

The initial guess xq for fzero is set as
— FAI U ja — 4 2
0= F{(U), Fue)=PN <2, NEN(ux, of)

and xp = 0.01 X py, if FI‘\,l(U) is negative. The tolerance level is set equal to 10~°. This is
same as in Broadie and Kaya (2006).

The results are shown in Table 2.2. Parameters x, ¢ from case I in Table 2.1 and time
step t = 1 are used. The value of vy + v; vary along each simulated path because on each
path and at each time grid point a new V; is generated given Vy. Thus, we choose to take
three different levels 0.02, 0.2, 2 for vy + v;. The results show that the simulation time is
quite sensitive to vg + vy and also to the inclusion of [,,(z). This at least gives us a hint about

a drawback of the Broadie-Kaya scheme.

Gamma Approximation. We assume that the relevant parameters x, 8 and o are fixed and
that we work with an equidistant time grid. Here we set t = 1. Then, {A,,} and {y,} can be
tabulated in the initialization of the Monte Carlo simulation as well as yg(l, G;Q’ IEX{( and
Var(X{() for each K. The last two values then determine the shape and the scale parameters
of T''. We choose to calculate those numbers for all K < 100 because the simulation time of
the gamma approximation of X; would be too big if K > 100.

It turns out that the simulation times are very sensitive to the level of K. Table 2.3 shows
the results of gamma approximations with K = 1, K = 20 with vp+7; = 0.02 using MATLAB.
The case K = 20 takes more than ten times as much time as K = 1 case. However, gamma
approximations seem to work reasonable well even for small K. Figure 2.1 demonstrates

the CDFs of gamma approximations of X; for K = 1 and K = 20, and they are fairly close
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Table 2.3: Time for 10,000 samples with vy + ; = 0.02 in Gamma approximation

case K=1 K=20

I 1.66 2223
I 1.88 23.14
I 1.93 23.18
IV 186 2427

Table 2.4: Time for 10,000 samples with K = 1 in Gamma approximation

vy +v; casel

2 373
02 224
002 186

to each other. On the other hand, Table 2.4 report the simulation times for K = 1 with
different vy + v; values. The gamma approximation is not as sensitive to vy + vy as to K.
Even though we do not report, smaller time steps give better results. Also, we do not report

the computation time for {A,}, {y,} and others as they can be done very fast.

Beta Approximation. We also test a simple idea that has been applied to the simulation
of a random variable with state space [0, 1].

Let us define a random variable Xf““ by the Laplace transform: for b > 0,

b - Upase Kt Lt
E exp('bXIaSF) = exp (_0'_2—_ (K coth ‘2— — L coth ?))

where L = V202b + 2 and Uy, is some fixed positive number. Then, it follows that

o+, K
-t h
Eexp(-bX;) = [IE) exp (—bX;’“SE)] e — [IE) exp (—bX?““)] H Eexp (—lel’“se)
=1
where K := | (vg + 1) /Upsse] and b := (09 + 04)/0pgse — K. The first component is the Laplace

transform of X; with vy, - h instead of vy + vy, say X3, and thus we can write

K
d &~
Xi=X3+ Z X’ia;e
=1
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Table 2.5: Time for 10,000 samples in Beta approximation

vg+v; casel casell caselll caselV

0.02 0.7 0.69 0.7 0.88
0.05 0.7 0.7 0.72 0.7
023 071 0.71 0.96 0.74
202 091 0.92 0.86 1.13

Table 2.6: Time for tabulation with v},,, = 0 in Beta approximation

case tabulation

I 6.08
I 4.85
111 2.63
v 2.51

and here Xll’”]f""’s are i.i.d. copies of X?““.
The idea of the beta approximation is that we simulate Xﬁ““ from a pre-calculated table

and use a beta random variable to approximate X;. More explicitly, we set

~ (]
Xy~ Blhk, (1= h)k) - X§*, k= ————
Var(X3%¢)
where B(hik, (1 — h)k) is an independent beta random variable. This choice of kK makes the
first two moments of both sides of the approximation coincide. This approach is based on
the classical result that the above approximation becomes exact if X; (and Xi’”“, X)) isa
gamma random variable, and on the proximity between X; and a gamma random variable
as observed above. It has been noted in literature that beta distributions can approximate
distributions with values in [0, 1] with sometimes great accuracy, e.g. see Springer (1979).
It is clear that the smaller vy, is, the better the results as X; becomes negligible.
However, smaller vy, increases computation time because K increases. In this chapter,
Unase 1S Set equal to O as the simulated v; values would move around the long run mean 6.
Tables 2.5, 2.6 show the simulation times of beta approximations for each case in Table 2.1
and the time for tabulation of X% distribution using MATLAB. Beta approximations are

faster than gamma approximations, but the tabulation takes much time. However, we note
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Table 2.7: Time for tabulation of X,

case tabulation

I 1.41
II 1.87
11 0.36
v 0.13

that this tabulation is done once in the initialization of the Monte Carlo simulation and so
this computational burden becomes negligible as the number of simulated paths increases
or the time grid becomes more dense. The proximity of the CDFs of beta approximations
and the true CDFs is shown in Figure 2.2 for case I. Other three cases reveal a similar level

of performance.

2.4.2 Simulation of X, and X3

Simulation of X,. We can employ all the approaches for the simulation of X, as done for X;.
However, there is a simpler method using the tabulation idea. If we fix parameters x, 6, ¢
(so fixed ) and time step ¢, then the simulation of X, does not depend on any intermediate
simulated V; values. Therefore, once we make a distribution table in the initialization of
the Monte Carlo simulation, we simply generate a uniform random variable U and get X,
from the table by the inverse transform method and linear interpolation. For example, we
first compute Fx, (i) = P(X> < x;) with

-1
—(Ue - wpx,), i=1,..., M+1

i
Xi = wux, + M

with ue = px, + moy, and w is some small positive number (we set M = 200 and w = 0.01).

Then, second, compute a vector C such that
i1 , .
¢j = inf zz—T—stz(z) , J=1.0]

This vector helps to identify the index i such that Fx, (i —1) < U < Fx, (i) with U drawn from

a uniform distribution. After finding this i, the linear interpolation part is straightforward.
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Table 2.8: Time for the sequential search method

z 06=01 06=2 6=6

1 1.555 1.429 1.303
1.461 1.415 1.522

10 1.644 1553 1432
50 2.035 1967 1.878
100 2425 2324 2.355
200 3.323 3194 3.232
300 4312 4299 4.238

We set | = 100.

However, there is one complication in the computation of the CDF of X;. In computing
(2.9) with b € iR, MATLAB (and other numerical packages) uses the complex logarithm
with the principal branch (-7, 1]. This eventually leads to a discontinuity of ®%(—ib) as b
moves along the real line and thus to a discontinuous CDF of X5. This kind of discontinuity

is also observed in Broadie and Kaya (2006). Therefore, we need to keep track of how many

L, sinh xt/2
x  sinhlLt/2

by adding 27t whenever ®?(~ihk) (with h as in the Abate-Whitt algorithm and k= 1,...,N

times rotates around the origin as b varies. In our implementation, we do this

for a truncation level N) crosses the negative real axis, moving from the second quadrant
to the third quadrant. Table 2.7 shows the times for tabulation for case I to case IV using
MATLAB.

We compute the mean and the variance for a reader’s convenience:
_ * 2 _ + 2
Hx, = Oy, 0, =00y,

where iy and 0%22 are given by

2

* o xt
Hxa = 32 (_2 +teoth (?))
4 £ !
03(22 - é‘zz (~8 + 2xt coth (1‘(2‘) + 1 tesch? (1;—)) ’

To compute a precise distribution table, we set u. = ux, + 120%,. Time step is set to be 1.

Simulation of X3. By the same reason above, we simulate Z from a pre-computed
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distribution table. We note that there is no complication of the complex logarithm for Z

because (2.10) has the exponent 2. Clearly, we have
= 4" 2 =4 + 2
tz =4&lx, 0z =20, -

To simulate X3, we need to generate the Bessel random variable 1 = BES(v, z) with

2k /o2

5
= - — 1 = —— .
YE2TY 2T G j2) YOO

Since vy, s vary on each simulated path, we generate n ateach time grid point on each path.
Several authors studied the simulation of Bessel random variables. Devroye (2002) sug-
gested three algorithms using the acceptance-rejection approach by facilitating an upper
bound of the probability distribution of a Bessel random variable. Iliopoulos and Karlis
(2003) also suggested some acceptance-rejection algorithms, which use properties of Bessel
law studied in Yuan and Kalbfleisch (2000). But, we employ a simple sequential search
method (lliopoulos and Karlis 2003 dealt this approach as well), which is based on the
following recursive relation:

3 z? =z
Prd= gmr D+ 10 P Lere+ 1)

and we return a value n(U) such that

Z pn<U < Z Pn-

n<n(U) n<n(l)

It turns out that the computing time is not sensitive to 0, but to z-value. As z increases, the
computing time increases as well. See Table 2.8. However, the typical z-values that arise
in cases I-1V stay small. Indeed, if we set vy = v; = 0, then z-values are 0.16, 0.2, 0.35 and

0.06, respectively.
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2.5 Numerical Tests

We apply the beta and the gamma approximations to European call options and compare
the results with those of other two methods. The first one is the exact scheme of Broadie
and Kaya (2006) and the second one is the QF method of Andersen (2005). Parameters are

from Table 2.1. Other parameters are as follows:

Sp | 100
strike | 100
maturity | 1(yr)

o e

We set vy,5, = O for beta approximations and the truncation level K = 1 and 10 for gamma
approximations.!

So far we demonstrated numerical results using MATLAB. However, it becomes too
time consuming when it comes to simulation with a large number of trials. From now on,
all numerical results are obtained using programs coded in the C programming language
and compiled by Microsoft Visual C++ 6.0 in the release mode. Execution files are run on
a personal desktop computer with Intel Pentium 4 CPU 3.20 GHz and 1.0GB of RAM. The
numbers of sample payoffs are 10K, 40K, 160K, 640K, 2560K and 10240K.

The first comparison In Broadie and Kaya (2006), they compared the exact method with

the Euler scheme and found that the exact method exhibits better performance. The Euler
scheme, in some cases, is very slow in decreasing the simulation bias. See p.222 of their
paper.

The simulation biases of the beta and the gamma approximations are shown in Table
2.10. They are obtained using 1 billion number of simulation trials. The numbers in the
parentheses are the standard errors. The starred biases mean they are not statistically
significant at the level of two standard deviations.

Figure 2.3 shows the performance of each method. Apparently, as the number of

1 As for the Broadie-Kaya scheme, Ozgur Kaya provided us with the code. We are grateful for his help.
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simulation trials increases the bias dominates the RMSE (root mean square error) in the
case of beta approximation and gamma approximation with K = 1. However, gamma
approximation with K = 10 achieves the same level of convergence rate of the exact method
while shortening the computation time by the factor of 10% to 10°.

The tabulation times for gamma and beta approximations are reported in Table 2.9. As
the number of simulation trials increases, the computational burden for tabulation becomes

relatively negligible.

The second comparison Andersen (2005) compared his QE method with various dis-

cretization methods and showed that the QE method outperforms others. In our numerical
tests, we set y1 = y, = 0.5, which are parameters used in the QE method, not the first two
of {y,}, and ¢ = 1.5 (same as in Andersen 2005). We do not implement the martingale
correction scheme as we are dealing with the at-the-money options. See Andersen (2005)
for the details of the QE method and other variants.

Even though any theoretical convergence rate of the QF method is not given in Andersen
(2005), Figure 2.4 shows approximate decay rates of biases. Corresponding numbers are
given in Table 2.11 and 1 billion simulation trials are used. Convergence rates are different

in different cases; the next table presents the average difference of log biases in each case.

I |-128
IT | -1.88
III | -1.63
v -127

Following optimal allocation rule discussed in Duffie and Glynn (1995), this means the
convergence rate of the RMSE (when optimally allocated) would be approximately O(s™")
with r = 0.36, 0.39, 0.38 and 0.36, respectively. Figure 2.5 demonstrates these observations.
The dotted lines are the simulation results with time step size 1/8 and 1/32. Asone can see, in
cases Il & II1 the QE method does better up to 160,000 simulation trials. However, in most of

other cases the gamma approximation with K = 10 shows a better performance. The gamma
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Table 2.9: Computation times for tabulation in Beta and Gamma approximations.

case 1 11 111 v

Beta 1.06 116 0.7 0.64
Gamma 0.69 0.81 044 0.36

approximation also has a faster convergence rate. Table 2.12 summarizes simulation results
and the numbers in the column for the QE method are the best performing cases.

Additional numerical tests are reported at the end of this chapter. We look at in-
the-money (ITM) and out-of-the-money (OTM) European calls with strike 80 and 120,
respectively. Figures 2.6 — 2.8 show how much effective the Gamma and Beta approxima-
tions are compared to the exact method and the QE method, including the biases of the QE
method with different time steps. Corresponding numbers are given in Tables 2.16 - 2.18.
Similar figures and tables for OTM calls are also provided.

However, we note that in some cases the Gamma approximation with K = 10 performs
not as well as at-the-money calls. Those cases are ITM case I, OTM case I, and OTM case IL
Especially, the simulation biases reported in Tables 2.13, 2.16 are much bigger than those
of the QE method. More numerical tests imply that increasing K does not help to reduce
the simulation biases. It turns out that these large biases come from tabulation. In our
implementation of the Abate-Whittalgorithm (2.12), we used ue = py+120yv, V = X5, Zand
set the truncation error ¢’ = 107°. Instead, we increase ¢ to py+1ldoy and sete’ = 1077. This
yields much less simulation biases of the Gamma approximation with K = 10 as reported
in Table 2.19, which are similar to the biases of the QE method with the time step size 1/32.

Figure 2.12 shows the performance of the approximation for those three cases.



CHAPTER 2. GAMMA EXPANSION OF THE HESTON MODEL 33

Figure 2.1: Convergence of Gamma approximations: vy + v, = 0.02.
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Figure 2.2: Beta approximations (dotted) and true CDFs (solid) : case I
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Figure 2.3: Convergence of Simulation Methods for European Call.
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Figure 2.4: Convergence of biases of the QE method.
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Figure 2.5: Comparison of Gamma approximation with K = 10 and the QE method.
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2.6 Extension to Non-Equidistant Time Grids

So far, we have described approximate methods for a fixed time step size. This becomes
problematic when one needs to simulate stock prices on non-equidistant time grids. To
resolve this problem, we introduce a method that is similar to the previous one, but
independent of the time step size.

Suppose we need to compute the expectation under a risk neutral measure Q

E9 [p(So,---, Sm)]

where p is a discounted payoff function depending on stock prices S;’s at times 0 = tp <
- <ty = T for a given maturity T. From now on, we assume that (2.1)-(2.2) are given
under Q with u = 7 — d risk free interest rate minus dividend rate. We introduce a new

process A; := Vy;/,2, which satisfies
— (5= 2%, )t + 2y AW
dA,~(5—8—2-At) t+2AdW,

where Wi is also a standard Brownian motion under Q. Similarly, define S = S4/,2. Next,

we define a new probability measure P by

dﬁ—ex ft \/del—fftAds
d(@_ P (]q s t 2 0 s

with g = 2x/0?. Then, by the Girsanov Theorem, dW” := dW! -4 VAdt becomes a Brownian
motion under [P and thus
dA; = 8dt + 2 /A dWF
a squared Bessel process with dimension é. In summary,
dQ]

E9[p(So,...,Sm)] = EF [p(sg],...,s;,,)ﬁ
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where

i

ds; a2 A
= (—‘2‘- + gAt)dt + % \/Z;(def + A J1- pZdwf),
i1

dA; = odt+2JAdW?,
= - - AdWF - = | A
P exp( fo q ‘/—~de 5 fo sds

and S} = Sy, If we apply the procedure of the Broadie-Kaya scheme, it becomes clear

Il

!

. £ .
that we need to simulate ( fs AudulAs,At) and all other parts remain same as before except
some trivial changes in coefficients.
If we define A}, = As;qu/a for some a > 0, then A’ is still a 6-dimensional squared Bessel

process and

f (t-5)/a
(f Aydu|As = mq, Ar = az) = (a2f Aldu
s 0

Therefore, by setting & = t — s we just need to simulate

A=A ”2).

o De Ty

1
(f AydulA) = ar/(t —s), A] = a2/ (t — s)).
0

This can be done by decomposing this conditional distribution into the sum of three
independent random variables as done in Theorem 2.2.1 as a straightforward application
of the squared Bessel bridge decomposition of Pitman and Yor (1982). The proof of the

following theorem is omitted.

Theorem 2.6.1 The distribution of fol Al du conditional on endpoints A}, A| admits a decomposi-
tion:

1 i
(f A;du|A'0:a'0,A'1:a;)iyl+y2+y3zyl+y2+22;

4} -
j=1

where Yi's are independent random variables, Z;.’s are i.id. copies of Z' and n’ is an independent

Bessel random variable with parameters v = 6/2 —1and z = 1/a(’)ai. Moreover, Y1, Yo and Z’ have
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the following representations:

oo Ny 0 oo

2 ) 2
E E xp] Yz = E WT,, ((3/2, 1) , Z' = E n2n2 Tn (2, 1)
n:l j=1 n=1 n=1

where Ny 's are independent Poisson random variables with mean aj+a}, Exp;(1)'si.i.d. Exponential
random variables with rate 1 and Ty(k, 0)’s independent gamma random variables with shape

parameter k and scale parameter 6.

The series expansion of Y> is taken from p.21 of Pitman and Yor (2000), which is a direct
consequence of (2.11). We can also derive Lévy densities of Y1 and Y7 as done for X; and
X3. Now we can apply gamma and beta approximations to fol Ajdu and tabulation is free
of the time step size. In other words, we make distribution tables once all parameters «, 6,

o are fixed and use them for any time grid.

Remark Note that 6 = 41c6/0” is the only value used in tabulation which is associated with
model parameters. Suppose we use the above series expansion to simulate Y; instead of
tabulation. In other words, we apply the beta or gamma approximation to Y7 as well. This
means that we are free of any model parameter and the beta or gamma approximation
requires once-in-a-lifetime tabulation. This extends the possibility of the proposed ap-
proximate schemes to efficient calibration of model parameters to market prices. Detailed

investigation in this direction remains as a future research.

Remark One can extend gamma and beta approximations to variants of the Heston model
such as the SVJ or SVC] models. The extensions are straightforward and explained well in

Broadie and Kaya (2006), so we do not deal with this issue in this chapter.

2.7 Conclusion

We showed a series expansion of the conditional path integral of the variance process
( fot Vids|Vo, V,) in the Heston stochastic volatility model. This path integral is decomposed
into the sum of three independent random variables and each of them expands as an infinite

sum of the Poisson mixture of exponential random variables or an infinite sum of gamma
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random variables. Based on this result, we proposed a new Monte Carlo simulation scheme
of the Heston model. The basic procedure is same as that of the exact scheme of Broadie and
Kaya. However, we simulate ( fot Vds|Vy, Vt) by simulating Poisson, exponential, gamma
and Bessel random variables which appear in the series expansions. We also tested the
beta approximation which uses a single beta random variable and tabulation of the CDF
of some base random variable.

In our implementation, we used the gamma and the beta approximations for Xj, but
the tabulation idea is used for the other two random variables X, and X3 as long as the
model parameters and the time step size are fixed. This pre-caching needs to be done in
the initialization of Monte Carlo simulation. In this pre-caching procedure, one can avoid
using a given time step size by facilitating the Girsanov theorem. After some change of
measure, it turns out that we only need parameters x, § and ¢ to be fixed. One can apply
this approach to the derivatives of which payoffs depend on the time grid with different
step sizes.

The numerical results show that the beta and the gamma approximations work better
than the exact method, while they exhibit similar performance as Andersen’s QE scheme
in some cases. However, in all cases considered here, the gamma approximation shows a

larger convergence rate.
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Figure 2.7: Convergence of biases of the QE method for In-the-money Call.
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Figure 2.8: Comparison of Gamma approximation with K = 10 and the QE method for
In-the-money Call.
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Figure 2.9: Convergence of Simulation Methods for Out-of-the-money European Call.
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Figure 2.10: Convergence of biases of the QE method for Out-of-the-money Call.
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Figure 2.11: Comparison of Gamma approximation with K = 10 and the QE method for
Out-of-the-money Call.
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Table 2.19: Biases of the Gamima approximations with K = 10 and more accurate
tabulation.

| Tabulation Time Bias

ITM, CASE ] 1.500 0.00105 (0.00029)
OTM, CASE 1 1.484  -0.00014 (0.00003)
OTM, CASE 11 2.031  -0.00178 (0.00021)

Figure 2.12: Comparison of Gamma approximation with K = 10 and the QE method with
more accurate tabulation.
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Chapter 3

Moment Explosions and Stationary

Distributions in Affine Diffusion

Models

Many of the most widely used models in finance fall within the affine family of diffusion processes. The affine
family combines modeling flexibility with substantial tractability, particularly through transform analysis;
these models are used both for econometric modeling and for pricing and hedging of derivative securities.
We analyze the tail behavior, the range of finite exponential moments, and the convergence to stationarity
in affine models, focusing on the class of canonical models defined by Dai and Singleton (2000). We show
that these models have limiting stationary distributions and characterize these limits. We show that the tails
of both the transient and stationary distributions of these models are necessarily exponential or Gaussian; in
the non-Gaussian case, we characterize the tail decay rate for any linear combination of factors. We also give
necessary and sufficient conditions for a linear combination of factors to be Gaussian. Our results follow from
an investigation into the stability properties of the systems of ordinary differential equations associated with

affine diffusions.

55
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3.1 Introduction

The affine family of diffusion models includes many of the most widely used models in
finance. The affine framework offers substantial modeling flexibility and a high degree of
tractability, particularly through Laplace or Fourier transforms. Examples of affine diffu-
sions inctude the Ornstein-Uhlenbeck (OU) process, the square-root diffusion associated
with the Cox-Ingersoll-Ross (CIR) interest rate model (Cox et al. 1985), the Heston (1993)
stochastic volatility model, the interest rate models of Brown and Schaefer (1994) and
Longstaff and Schwartz (1992), and the Duffie and Kan (1996) family of term structure
models. Affine models are used both for econometric modeling of time series data and for
pricing and hedging of derivative securities.

Duffie et al. (2000) develop a transform analysis for affine jump-diffusions in a very
general setting. They derive generalized characteristic functions associated with these
models and show that these are exponentials of affine functions of the state variables; the
coefficients of these affine functions are characterized as solutions to ordinary differential
equations (ODEs). Duffie et al. (2003) characterize regular affine processes and their asso-
ciated differential equations. Dai and Singleton (2000) define equivalence classes of affine
models that are invariant under certain affine transformations, and they define a canonical
model within each class. See Singleton (2006) for an extensive discussion of the estimation
of these models.

In this paper, we study the tail behavior of affine diffusions and their stationary dis-
tributions. We focus on canonical models and show that these models do indeed have
limiting stationary distributions. We characterize the tail behavior of the transient and
stationary distributions of these models, and we show that the tails are always exponential
or Gaussian. This in turn allows us to characterize the range of finite moments for asset
price processes constructed from affine diffusions.

We obtain our results through an analysis of the stability of the ODEs that determine
the transforms associated with an affine model. To illustrate the connection between
tail behavior and transforms, let X be a positive-valued random variable and let ¢(9) =

E[exp(0X)} denote its moment generating function (the mapping 6 — ¢(—0) is its Laplace
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transform). We can distinguish various types of tail behavior for X based on properties
of ¢(0) for 0 = 0: If $(6) = oo for all @ > 0, then X is heavy-tailed; if ¢(6) is finite all for
0 € [0, 8g), for some Gy > 0, then the tail of X is exponentially bounded; if, in addition,
P(0) = oo for all 0 > Oy, then the tail is exponentially bounded both above and below, so
X has an exponential tail; and if ¢p(8) < oo for all 6 > 0, then X is light-tailed. Similar
statements apply to a two-sided random variable through consideration of both positive
and negative values of . When we refer to the tails of a random vector X € R", we mean
the tails of random variables of the form u- X, u € R", with u - X denoting the scalar product
of uand X.

Consider, now, an OU process

dY; = a(b - Y)) dt + o dW,, (3.1)

witha,0 > 0and b > 0, or a CIR process

dY; = a(b - Y\ dt + o /Y dW, (3.2)

with, in addition, 2ab > 0% and Yy > 0. In either case, take Yj fixed, for simplicity. Then, in
the case of (3.1), Y; has a Gaussian distribution for all { > 0 and a stationary Gaussian limit
distribution as t — oo; in particular, Y; has light tails for all . In the case of (3.2), Y, has a
scaled noncentral chi-square distribution for all t > 0 and a stationary limit with a gamma
distribution; thus, Y, has an exponential tail for all ¢.

Our results extend this simple illustration to the full range of canonical affine models.
We establish the existence of limiting stationary distributions, and we show that any linear
combination of the state variables has either an exponential tail or a Gaussian distribution.
The dynamics of a canonical affine model cannot produce heavy-tailed distributions, nor
can they produce non-Gaussian light-tailed distributions; the same holds for any affine
model obtained from a canonical model through an affine transformation. As a point of
contrast, we note that GARCH models typically generate heavy-tailed marginal distribu-

tions, even when driven by light-tailed innovations; see Basrak et al. (2002).
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The tail behavior of an affine process determines the maximal moments in an asset-price
model constructed from the affine process. More explicitly, suppose the process Y takes
values in R", and construct a price process P; = exp(a; + u; - Y;), where a; is a scalar function

of time, and u; is an R"-valued function of time. The points
0, =infl0 e R:E[Pf] < oo} and 6; = sup{0 € R : E[PY] < co}

coincide with the endpoints of the interval of convergence of the moment generating
function of u; - Y;. We use the structure of the transform of Y; to characterize these points.
It follows from our investigation that the interval (8, 6y) shrinks (or, more precisely, does
not expand) as ¢ increases. Inverting the dependence on ¢ leads to the smallest ¢ at which
E[P?] becomes infinite, for fixed 0. This is the problem of finding the moment explosion time
studied by Andersen and Piterbarg (2007) in the Heston model. Through results of Lee
(2004), the extremal values 0,, 0; determine the asymptotic slope of the implied volatility
curve for options on P;.

We derive our results through an analysis of the ODEs that arise in the transform
analysis of affine models. We show that the moment generating function of u - Y;, u € R",
is infinite at § precisely if the solution to the ODE for Y explodes by time t from initial
condition Ou. It follows that Y; has exponential tails if the solution remains finite on [0, {]
from all initial conditions in a neighborhood of the origin, and Y; has light tails if this holds
for all initial condition in R”. The limiting behavior of the distribution of Y; is determined
by the behavior of the ODEs as t — 0. By characterizing the stability of the ODEs, we
show that {Y;,t > 0} has a limiting distribution that does not depend on Yy, and that this
limiting distribution is, in fact, stationary for Y. The tails of this stationary distribution are
determined by the stability region of the ODE for Y; properties of the stability region are
themselves of some interest, as we illustrate through examples. Our final result shows that
a linear combination of the components of Y, is light-tailed only if it is Gaussian, and we
characterize which linear combinations have this property through the model parameters
defining Y.

The rest of this chapter is organized as follows. Section 3.2 reviews the dynamics and
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parametric restrictions for canonical affine models and states our main results. Section
3 illustrates these results with examples. Sections 3.4 to 3.6, develop the analysis and
proofs underlying our results. Section 3.4 includes relevant background on the theory of

dynamical systems. We conclude in Section 3.7.

3.2 Main Results

The canonical affine models introduced byDai and Singleton (2000) follow equations of the

form

dY; = —AT(® - Y,)dt + /diag(Fr)dW,, 3.3)

evolving on R” and driven by an n-dimensional standard Brownian motion W. Here, F; is
an affine function of Y}, also taking values in R", and diag(F;) denotes the n X n diagonal
matrix whose diagonal entries are the components of F;. The interpretation of the process Y
depends on the application. For example, in some models, one defines a short rate process
¢ by setting ry = up + 1y - Yy, for some 4y € R and some u; € R"; other models define an
asset price process P; by setting log(P;) = a; + b; - Y}, for some deterministic functions 4 and
b.

The canonical specification of Dai and Singleton (2000) imposes additional restrictions
on (3.3). To state these, we introduce some notational conventions to be used throughout
the paper. For vectors or matricesa and b, we writea > bif every entry of ais at least as large
as the corresponding entry of b; we writea > bifa > band a # b; and we writea > bif every
entry of a is strictly larger than the corresponding entry of b. We set R = {x € R™ : x > 0}
and RY, = {x € R” : x » 0], with the dimension of the zero vector determined by context.
We write |x| for the Euclidean norm of the vector x.

In the Dai and Singleton (2000) classification, the canonical model A, (n) partitions the
state vector Y as (Y7, Yd), with Y? evolving on R” and Y? on R"™™, as a consequence of
restrictions imposed on (3.3). The components of Y are called volatility factors, and the
components of Y? are called dependent factors. We use the superscripts v and d more

generally to indicate partitions of vectors and matrices associated with the partioning of
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Y. Thus, we often write a vector u € R" as (u?,u?), with u¥ having m components and
u? having n — m components. The parameters of a canonical model A,,(1) are required to
satisfy conditions (C1)-(C4), below. Dai and Singleton (2000) and Singleton (2006) explain

the econometric identification issues that motivate these conditions.
(C1) The matrix A has the block form

AV AC
A= ,
0 A4

and it has real and strictly negative eigenvalues.
(C2) The off-diagonal entries of A are nonnegative.
(C3) The vector © = (7, @) has ® = 0, @ > 0, and (-A"®)” > 0.

(C4) The vector F; = (F?, F?) satisfies
F/=Y’, Fl=e+(B)TY],

. . o mx(n—m
where e is a vector of 1s and B¢ is a matrix in R (n=m),

The eigenvalue condition in (C1) ensures mean reversion in Y. It implies (through, e.g.,
p-62 of Horn and Johnson 1990) that A” and A“ also have strictly negative eigenvalues,
in view of the block triangular form of A. Together, (C1) and (C2) imply that —A” is an
M-matrix (as defined, e.g., in Berman and Plemmons 1994). The vector © represents the

long-run mean of Y. We could rewrite (3.3) in terms of
A=-A"O. (3.4)

Indeed, if we specify A” rather than ®, with A” > 0, then the fact that —~A? is an M-matrix
guarantees (see p.137 of Berman and Plemmons 1994: inverse-positivity of M-matrix) that
we can find a ® > 0 for which ~A?"©? = A?; in fact, we can take ®” = —(AY")"1AY. If we

then set ® = 0 and A? = (~ATO) = (AT)(AYT)IA?, we complete the specification of A in
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a manner consistent with (C3) and (3.4). Thus, we can choose either ® or A in specifying
the model.

Condition (C4) requires that only the volatility factors Y appear inside the square root
in (3.3), which is natural, given that the components of Y? will be allowed to become
negative. The form of F} implies that the volatility factors are correlated only through the
matrix A in the drift of Y. Cheridito et al. (2006) show that the diffusion matrix of any affine
diffusion on R} x R"™™ can be diagonalized through an affine transformation if m < 1
or m > n — 1 (in particular, if n < 3); but they also provide examples for which no such
transformation exists.

To illustrate this modeling framework, we formulate a stochastic volatility model in the
class A1(2) — that is, a two-factor model with a single volatility factor. We write the state

vector as Y = (Y7, Yd), with dynamics

fl

dyy (my +pY{)dt + \[YPdW} (3.5)

dy? (2 +qY? + rYDdt + J1+sYPdW?, (3.6)

i

for some constants m1, 1y, p, 4, r and s. The restrictions of the general model A, (1) require
m >0,p<0,9g>0,r<0,5>0, and gm; = pmy. We can then construct an asset-price
process P; by setting

log(Py) = a; +2b,Y? + 2¢,YY, (3.7)

for some deterministic functions a;, b; and ¢;. We will apply our general results to the mo-
ments of P; in the next section and illustrate the qualitatively different behavior produced
by different ranges of parameter values in the model.

The model (3.3) has associated with it a system of ODEs on R” specified by

x1(f) x1(t) x3(t)
A? A€ I B°
o= I N (3-8)
[ 0 Ad] [o 0 ]

() Xn(t) x5 (1)
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We will write this system more compactly as
X =fo(x) = Ax+B(x2,...,x2), x(0)=u, (3.9)

with B the corresponding block matrix in (3.8), and the initial condition u € R” included
here for future reference. We will see that, for any initial condition u, the system (3.9)
admits a unique solution on a time interval [0, ), for some ¢t > 0. But, the solution may
blow up in finite time and fail to exist beyond some finite time 7. We discuss this point in
greater detail in Section 3.4.1.

The analysis in Duffie et al. (2000) leads to the representation

t t
E[exp(2u- Y1)} = exp (Zfo A - x(s)ds + Zfo ¥ (s)[Pds + 2x(t) - Yo), (3.10)

with x solving (3.9) and A as in (3.4), at least under some regularity conditions. Our
first result asserts the validity of this formula (even in the infinite case) without further

conditions and adds a stronger conclusion:

Theorem 3.2.1 The transform formula (3.10) holds in the sense that if either side is well-defined
and finite, then the other is also finite and equality holds. Moreover, the right side of (3.10) is
well-defined and finite if and only if the solution of (3.9) exists at time t. Consequently, for any
t > O, the right side of (3.10) is finite for any vector u in a neighborhood of the origin.

This result connects the stability of the ODE (3.9) with the tail behavior of Y}:

Corollary 3.2.1 Consider the system in (3.9) with initial condition x(0) = 6u/2, 6 > 0. If the
solution x exists at t, then

lim sup é logP(u-Y; > y) < -0.

Y00

If the solution explodes before t, then

lim sup ; logP(u-Y; > y) 2 -6.

1/4)00

For any t > 0, the solution x exists at t for all sufficiently small |0] > 0.
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Corollary 3.2.1 describes the tail behavior of Y;: the last statement of the corollary and

the first limsup together imply that for any u and any € > 0, we have
Pu-Yi>y) < e—(B—E)y,

for some 0 > 0 and all sufficiently large y. Thus, u - Y; has an exponentially bounded right
tail and, with an obvious modification to the argument, an exponentially bounded left tail
as well.

A further consequence of Theorem 3.2.1 is a comparison of the tails of the volatility
factors of two models. For processes Y! and Y2 on R”, if Eexp(u - Y}) > Eexp(u - Y?) for
all u € R”, then Y] has heavier tails than Y?. We give conditions for such a comparison for

processes in Ay, (m).

Corollary 3.2.2 Let Y' be a process in Ay, (m) with parameters A' and A1, i =1,2.

1. Suppose A' = A% and Y§ = Y}; then Eexp2u - Y1) > Eexp(2u - Y7) for all u € R and
t > 0ifand only if A1 > A2,

2. Suppose A' = A and Y} = Y = Yo; then EexpQu - Y!) > EexpQu - Y?) for all
(u,Yo) € R X R™ and t > 0 if and only if A' > A°.

Our next result considers the limit as t — oo. Define the stability region S of the ODE
(3.9) to be the set of initial conditions u for which the solution x(t) exists for all t > 0 and

limy e x(¢) = 0 if x(0) = u.

Theorem 3.2.2 The process Y has a unique stationary distribution, which is also the limiting
distribution of Yy, as t — oo, for any Yo. Moreover, if Y, has the stationary distribution of Y and
we define

S={ueR":EexpRu-Ye) < o0},

then S coincides with S, the stability region of the system (3.9). This set contains a neighborhood of

the origin.
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By arguing as in Corollary 3.2.1, we conclude that u - Yo has exponentially bounded
tails for all ¥ € R". As a consequence of our analysis, we will identify the distribution of
Yo through its moment generating function.

Theorems 3.2.1 and 3.2.2 preclude the possibility of heavy tails for Y; and Y. — any
linear combination of the components of Y or Yo has tails that are bounded by some
exponential decay. We turn next to the possibility of light tails — tails that decay faster than
any exponential. The Gaussian subfamily of canonical affine models (which corresponds
to taking m = 0 and thus removing all volatility factors) demonstrates that such light-tailed
models are indeed possible within the canonical affine framework. Qur next result shows
that the Gaussian case is the only light-tailed case among canonical models. More precisely,
we show that if the moment generating function of u - Y; is finite for all & € R, then the
distribution of u - Y} is Gaussian.

Before stating the theorem, we review some facts from linear algebra. By choosing an
appropriate basis, we can transform A% into a Jordan canonical form; in other words, there
exists an invertible matrix P such that P~ AP = J, and J is a block diagonal Jordan matrix.
(The columns of P are eigenvectors or generalized eigenvectors of A?) Let Ay, ..., Ay denote
the distinct eigenvalues of A7, and let a,, denote the algebraic multiplicity of A;, which is
the multiplicity of (x — A;) in the characteristic polynomial of A7, The matrix ] can then be
chosen to have k diagonal blocks of the form A;I; + N;, i = 1,..., k, with I; the identity matrix
and Nj a nilpotent matrix, both of dimension a,, X 2,,. The entries of N; immediately above
its main diagonal take the values 0 or 1, and all other entries of N; are equal to 0.

We introduce a special matrix W to state our last theorem. For this, we select the g-th

row of P if there exists some p with B;q #0,9=1,...,n—m. Denoting the row vectors thus
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extracted from P by wy, ..., w;, we define

W=l @ = wi | w )

AP

In the block decomposition on the right, W; consists of the first a;, columns of W, W;

consists of the next a,, columns, and so on. Similarly, we define

=

a=PY= 1| @ eR™.

=

Theorem 3.2.3 Assume that a Jordan canonical form | of A% is given as above. Then for any given

t > 0and u € R", the following holds: E exp(20u - Y;) < oo for all 8 € R if and only if u” = 0 and
WNli' =0, 1=0,...,a5,-1, i=1,...,k (3.11)

Morveover, u - Y; has a Gaussian distribution if and only if these conditions hold.

Since the multiplicities of the roots of the characteristic polynomial of A4 are sensi-
tive to the coefficients of the polynomial, small changes in the entries of A? can make it

diagonalizable. For diagonalizable A%, (3.11) reduces to
Wil =0, i=1,...,k (3.12)

Conditions (3.11) and (3.12) may seem surprisingly complicated, but we will illustrate
their significance and application through examples in the next section. A more intuitive
approach to checking whether a linear combination of factors has a Gaussian distribution

would be to check if each of the factors is Gaussian; individual factors might then be
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checked recursively, as follows: no volatility factor is Gaussian, no dependent factor that
has a volatility factor in its drift or diffusion coefficient is Gaussian, no dependent factor
that has a non-Gaussian dependent factor in its drift is Gaussian, and so on. Our examples
will show that this approach cannot cover all cases because of special cancellations that
can occur; nevertheless, Theorem 3.2.3 does support sufficient conditions of this type,
as we will show in the next corollary. These conditions become necessary when each
eigenvalue of A? has a geometric multiplicty of 1, a restriction that effectively rules out
certain cancellations. The geometric multiplicity g4, of an eigenvalue A; is the dimension
of the eigenspace associated with A;.

We make precise the recursive procedure sketched above through a directed graph G
on the coordinates of the dependent factors. Introduce an edge (i,i +7) in G if [; ;1 = 1. Call
anode j of the graph restricted with respect to a matrix M if M;; # 0 for some i. Extend this
property to other nodes by saying that j is restricted if it is reachable from a restricted node
through a directed path in G. For any matrix D, let 1p denote the matrix with (1p);; = 1 if

D;; # 0 and 0 otherwise.

Corollary 3.2.3 A sufficient condition for (3.11) is that ii; = O for all j restricted with respect to

1acp + 1pcdp. This condition becomes necessary if g, = 1 foralli=1,...,k

3.3 Examples and Applications

3.3.1 Stochastic Volatility: A Simple Case

To illustrate our results, we begin by considering the stochastic volatility model (3.5)-(3.7),

based on the A;(2) dynamics in (3.5)~(3.6). Through (3.10), moments of Py are given by

T

T
E[PY] = exp (aTQ +2 f (myx1(t) + maxa()) dt + 2 f xo(t)2dt + 20 (T)YF + xz(T)Yg)),
0 0
(3.13)

where (x1, x2) solves the ODE

X1 =pxy+qxa + X5 +5x3, Xy =g, (3.14)
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with initial condition (x1(0), x2(0)) = (0b7, Oc7).

We begin with the simple case g = s = 0, in which the ODE for x; reduces to a scalar
quadratic differential equation. We digress briefly to record properties of this scalar system
because it will be an important tool at several points in our analysis.

Consider, then, the scalar quadratic ODE % = ax? + fx+y, with a > 0. Let D = 2 —4ay,
and denote by 77 and 7, the two solutions of ax? + fx +y = 0. The following properties
of the solution x, which are easily derived from its closed form, are also used in Andersen

and Piterbarg (2007). If D > 0 with ; < 13, then

x(t) = m ast — oo, if x(0) < 2,
x(t) = m or 1, if x(0) = 11 or 12, respectively;

x(f) = ccast — 7, if x(0) > my,

with
1 x(0)—m
= . 3.15
! a(n —m) °5 x(0) — 72 (3.15)
If D =0, then
x(t) — *ﬁ ast — oo, if x(0) < ~p/2a;
2“ I 7’
= _ﬁ_ ] —_ — .
x(t) = “on if x(0) = —f/2a;
x(t) » wast — 1, if x(0) > ~f/2¢,
with
_ 1
"7 X0) - B2a
If D <0, then
" t ( a1 250 + ﬁ)
x(f) > c0ast —» 1= n—2tan ——|.
VD VD

These cases are illustrated in Figure 3.1. Consider, in particular, the first case, D > 0.
The two roots are equilibrium points — points at which = 0. The root n; is a stable

equilibrium for the ODE; x(t) moves toward m; from any initial condition less than n; or
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R _),,,.,.
n,. M, complex

>

Figure 3.1: Qualitative behavior of ¥ = ax? + fx + y with equilibria n1, 2

between the two roots, so the stability region for the system is
S={x:x <l

In contrast, i is an unstable equilibrium, and x blows up in finite time 7 if x(0) > 1,. The
set St consists of all initial conditions from which x continues to exist throughout [0, T).

From the expression for the explosion time 7 in (3.15), we find that

St = (x: x < (T — ) (@ T 1)),

We can now apply this to (3.13). In the case g = s = 0, the solution x; in (3.14) becomes
infinite at T = (log(Obr + p) — log(8b1))/p, if Ob > —p; otherwise, x1(t) is finite for all ¢ and
converges exponentially to zero. In other words, if 6br < —p/(1 — ¢?T), then the right side
of (3.13) is finite; the second coordinate x; is always finite and integrable. We therefore

conclude that

br(1-erT)’

Il

—Lo if by > 0;
sup{6: ]E[P_?] < o) {

00, ifbr <0;

i

—00, if by > 0;
infl6 : E[P] < oo} {

m, lbe<0
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We can illustrate these properties through the following sets:

S = {(xy): tlim Eexp(2xY? + 2yY?) < oo}
St = {(xy): Eexp(2xY] + 2thd) < oo, Vte[0,T)).

Theorems 3.2.1, 3.2.2 imply that these sets coincide, respectively, with the set S of initial
conditions for which the solution to (3.14) exists for all time and converges to zero, and the
set St for which the solution exists throughout [0, T). Rewriting S and St above in terms

of pand T, we get

S

I

(o0, —p) xR

St

i

(—o0, —p/(1 — M x R.

If (0br, Oc) € S5 (the interior of St), then (3.13) is finite; if (Obr, Oct) € S, then (3.13) is
finite for all T. The left panel of Figure 3.2 illustrates the boundaries of these sets. The
parabola shows the values of %1 = px; + x3 in (3.14) as a function of x;. The larger of the
two solutions to the equation %; = 0 determines the upper limit of the stability region for
x1 (as in Figure 3.1), so dS passes through this point. As T decreases, dSt shifts to left.

We can also see from the figure that (6br, 6¢t) lies outside St for some (and then all)
sufficiently large 8 > 0 or 8 < 0, unless (br, cr) lies on the vertical axis. Thus, P? has infinite
expectation for some 8 unless by = 0. When br = 0, log(P1) = ar + 2CTY‘7{ has a Gaussian
distribution, and thus does indeed have finite moments of all orders. This is a simple

graphical description of the conditions in Theorem 3.2.3 for this example.

3.3.2 Stochastic Volatility: Further Cases

We continue to work with the basic model (3.5)-(3.7), but now take s > (0, g = 0, and
p = r < 0. In this case, the function &(¢) := e 7'x1(t)/ v/sx2(0)? solves £/(£2 +1) = +/sx(0)2e.

Then, we have

tan™ (£(8) — tan™! (£(0)) = /2(0) (¢ - 1) /p.
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Figure 3.2: Boundaries of S and St for A;(2) models. The left panel has parameters p = -2,
g =s=0; theright panelhasp=r=-2,4=0,s=1

Therefore,
x(t) = ,/sx%(O)e’" tan ( ,/sx%(O) (e’” - 1) /p+ tan~! (xl(O)/ sx%(O))), xo(t) = x0(0)e?.
Then,
S={(x,y): x < y/sy?tan(r/2 + \/sy?/p)}
and

St={{x,y):x< \/s—y;tan(n/Z + +fsy?(1 — e”T)/p)}.

These sets are illustrated in the right panel of Figure 3.2. For any nonzero point (br, c7),
the line defined by the points (0br, Oct) as O ranges over R crosses the boundary of St
twice, once with 6 positive and once with 0 negative. If (br, cT) is in the interior of St, then
these values of 6 are the extremal moments 91 and O as a consequence of Theorem 3.2.1.
In particular, lE[P?] becomes infinite for all sufficiently large positive or negative 8. The
log price log(Pr) is never Gaussian.

We next consider the effect of varying r < 0, which is the coefficient on Y? in the
expression for de in (3.6), while fixing s > 0, g = 0 and p < 0. We can represent x1(t) in

terms a function (I) by setting

, \/7(_6” B 1 % \/7(_6”
LT b b E)
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with k = sx2(0)2. The function (/) solves a second order ODE,

2.0 ’ 2 ﬁz -
2y 1y + 1/ () + (1 (2) w(l) = 0. (3.17)

r

[t follows that /(]) is a linear combination of Bessel functions of the first and second kinds,
respectively; see, e.g., p.748 of Polyanin and Zaitsev (2003) for properties of the solution.
Since any multiple of (!) satisfies (3.16), we can set (/) as the solution to (3.17) for
I € (0,— Vk/r] with (- Vk/r) = Vk, which then satisfies 1/ (— Vk/r) = x,(0) + p/2. Since
S = {x(0) : lim,_, x(#) = 0}, from (3.16) we get

W _p

o0 = —2_7'} = [x(O) : = Vk/r < the first zero of ¢(l)}

S=4x(0): Li
po:

A similar analysis can be carried out for s = 0, 4 > 0 and p < 0 case. Figure 3.3 shows
the boundary of S for different values of r. The left panel has g = 0 and s = 1; the right panel
has ¢ = 1 and 5 = 0. In both cases, the stability region becomes smaller as r approaches
zero, indicating that Yo = (Y7, Y4 ) has heavier (though still exponentially bounded) tails
at smaller values of |r|. This is to be expected from the role of r in the dynamics (3.5)—(3.6)
of the model.

The two panels of Figure 3.3 show an interesting contrast. In the right panel, we see
that a line of the form {6u : 0 € R}, u € SNRZ, crosses the boundary of S just once, at some
0 > 0; in the left panel, such a line would cross the boundary of S at both a positive and
negative value of 8, as noted in our discussion of Figure 3.2. This reflects an interesting
distinction between two ways the volatility factor Y” can influence the dependent factor
Y?. When Y? appears in the diffusion coefficient of Y? (the left panel, with g = 0, s # 0), it
makes both the right and left tails of u - Y, exponential, u € R2,; when Y° appears only
in the drift of Y? (the right panel, with g # 0, s = 0), one tail of u - Y, is exponential, but
the other is light. The figure has g > 0, so the right tail is the exponential one; taking g < 0

would reflect the figure about the horizontal axis, corresponding to an exponential left tail.
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|
8

r=

|

Figure 3.3: Stability boundaries for A;(2) models. The left panel has parameters p = -2,
g=0,5=1;theright panelhasp =-2,4=1,5=0.

3.3.3 Two Volatility Factors

Our next example is a model in A;(2):

dY] = (my+pY| +rYDdt+ Y dW}
dY; = (my+qY} +sY7)dt + Y2 AW,

This can be viewed as a two-factor CIR model; it also belongs to the family of continuous-

state branching processes, as explained in Duffie et al. (2003). The associated system of

ODEs is
X1 = px1 +4gx; + x% (318)
X = rxp+sxy+ x%. (3.19)

To satisfy the restrictions on the A matrix in (3.3), we requirep,s < 0,4,7 > 0, and ps—qr > 0.

The ODEs (3.18)~(3.19) do not admit a closed-form solution, but we can investigate
the qualitative behavior of the system and illustrate this behavior graphically. (We review
relevant background on dynamical systems in Section 3.4.1.) Figure 3.4 shows the vector
field defined by (3.18)-(3.19) withp = -3, g =1, r = 1/2, and s = —1. The two parabolic
curves are the points in the plane satisfying %1 = 0 in (3.18) and %> = 0 in (3.19). At the

intersections of the two parabolic curves we have (iq,17) = 0, making these equilibrium
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Figure 3.4: Vector field of an A>(2) model and dS with ,p=-3,g=1,r=05and s = -1.

points; there are two equilibrium points in the example of Figure 3.4, one of which is the
origin. The origin is a stable equilibrium: the system approaches the origin from all initial
conditions in a neighborhood of the origin. Indeed, the system approaches the origin from
all initial conditions in the stability region S, whose boundary dS is indicated by a dashed
line in the figure. If x(0) lies outside of S, the system explodes, in the sense that |x(t)] — oo.

The other point of intersection of the two parabolas is an unstable equilibrium: there
are initial conditions arbitrarily close to this point from which the system will approach
either the origin or infinity. (In the language of dynamical systems, this is a hyperbolic
equilibrium of type 1, and therefore unstable; see, Section 3.4.1 and, e.g., Chiang et al.
1988 for background.) Associated with the unstable equilibrium is a stable manifold — a
curve in the plane of initial conditions from which the system moves toward the unstable
equilibrium. This curve is contained within d5.

From Theorem 3.2.2, we know that the points u in S are precisely the points for which

Efexp(2u - Y)] is finite. Because S contains a neighborhood of the origin, any linear

2

combination of the components of Y has exponentially bounded tails. Foru € SNR7,,

the line {0u : B € R} crosses dS just once, at some 8 > 0, so E[exp(6u - Y)] becomes infinite
at for all sufficiently large 6 > 0 but remains finite for all © < 0. In other words, # - Y has
an exponential right tail and a light left tail (in fact, u - Y is nonnegative).

Figure 3.5 illustrates the behavior of this system for other parameter values. The

left panel of the figure shows an example with three equilibrium points, and the right
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Figure 3.5: The stability boundary for A,(2) models. The left panel has parameters p = -3,
g =1,r=0.089, s = —1; the right panel has the same parameters, except with r = 0.07.

Figure 3.6: The stability boundary for Ay(2) withp = -3,4=r=0,s = -1.

panel shows one with four equilibrium points. In both cases, the origin is the only stable
equilibrium. Figure 3.6 shows a degenerate case with ¢ = r = 0. Here, equations (3.18)
and (3.19) decouple, and the stability of each reduces to the analysis of the scalar quadratic

differential equation in Section 3.3.1.

3.3.4 Gaussian Conditions

In Theorem 3.2.3, we gave conditions under which # - Yy and u - Y have finite moments
of all orders, and we noted that these conditions also determine when Y; and Y, are
Gaussian. From the perspective of the associated ODEs, u - Y has finite moments of all

orders precisely if the ODE solution exists for all £ > 0, from all initial conditions Ou, 0 € R;
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in other words, the stability region S includes all multiples u. We now illustrate these
properties with examples.

Consider the following family of models in A;(3):

dY! = (A—-Yhdt+ ,/Y} dW} (3.20)
dY? = (Ax+aY] —Y?)dt +dW? (3.21)
dY? = (As+bY| +cY?—Y)dt +dW;. (3.22)

The model has Y! as volatility factor and Y2 and Y® as dependent factors. The matrix A has

the form
AY A€ -1 a b
A= = 0({-1 ¢ |,
d
A 0l 0 -1

and B¢ = 0 because the volatility factor Y! does not appear in the diffusion coefficient of
either Y2 or Y°.

Since A? is already block diagonal, it is easy to check that

1 0
P=
0 1/c
ifc #0,and P = I, if ¢ = 0. Condition (3.11) becomes

aus+bus3 =0, acuz=0. (3.23)

The case ¢ = 0 reduces to (3.12). Theorem 3.2.3 requires #” = 0, so we must have 13 = 0.

We consider several cases for the parameters 4, b, and c.

a = 0: We can satisfy (3.23) with any u that is a multiple of (0,1,0); i.e., withu - Y; =
Uz Yf. This is also evident from the fact that Y2 is an Ornstein-Uhlenbeck (OU) process
when g = 0. If we also have b = 0, then u; and uj are both free in (3.23) and, indeed,

(Y?,Y%) is a Gaussian process.
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c=0,a%0,b+# 0: Condition (3.12) is satistied by taking u = (0,1/a,—1/b), or any
multiple thereof. From (3.20)-(3.22), we see that neither Y2 nor Y® is Gaussian — each
has the volatility factor Y! in its drift. Nevertheless, the linear combination 14 - Y? is

Gaussian. We can also see this by noting that

1

1 1
(m ~ Eyf + EYf)dt + Edwf 1

dw® - v 7

dW?

= —u? YTdt+ %dwf - %dwf’,

with m = (Ay/a)— (A3/b) = 0, in light of (3.4); thus u?- Y? is an OU process constructed
from non-Gaussian processes. This example illustrates why Corollary 3.2.3 cannot

cover all cases.

c #0,a # 0: (3.23) requires up = uz = 0; thus, no u - Y is Gaussian, except the
degenerate case u = 0. If b = 0, then the equation for Y? in (3.22) has no direct
dependence on a volatility factor, but it fails to be Gaussian because it depends on
Y? which depends on Y. This is also a consequence of Corollary 3.2.3; the first
coordinate of # = P"Yu? = (up cus) is restricted with respect to 1acp and the second

coordinate has a directed path from the first coordinate.

In this example, the conclusion of the first case (2 = 0) and that of the third case (¢ # 0,
a # 0) coincide with what one would expect based on the intuitive approach to checking for
Gaussian distributions outlined after (3.12) and formalized in Corollary 3.2.3. However,
the second case (c = 0, 2 # 0, b # 0) shows that the intuitive approach cannot cover all
cases. The necessary and sufficient conditions in Theorem 3.2.3 capture the possibility of a

Gaussian distribution resulting from a cancellation of factors, as in this example.

3.4 Analysis of Quadratic Dynamical Systems

3.4.1 Definitions and Terminology

In this section, we establish some properties of the ODE system (3.9), in particular viewing

it as defining a mapping from the initial condition u to the solution x(t) at time t. We begin
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by reviewing some definitions and basic properties from the theory of dynamical systems;
additional background can be found in Hirsch and Smale (1974) and Chiang et al. (1988).
Consider, then, an equation

%= f(x) (3.24)

defined by a C” function f : W — E, with W ¢ E open and E a normed vector space.
For each 1 € W, there is a unique solution to (3.24), with x(0) = u, defined on a maximal
open time interval I(u) C R. For t € I(u), we denote this solution either by x(t) or ©(u);
the notation &;(11) makes explicit the dependence on the initial condition u. Also, the

uniqueness of the solution allows us to write, for example,

Dss1(1) = Ds(Pr(w)),

for t and s + ¢ in I(u). In particular, @_; is the inverse of ®;.
Define

Q={tu)eRxW:telu);

then @ is a mapping from Q to W. Standard properties of dynamical systems imply that O
isopenin Rx Wand ®@is C"if fis (7, for 0 < r < co. In fact, @ is analytic in t and # as long
as @ (u) stays in the domain of analyticity of f.

Let 7 denote the (possibly infinite) right endpoint of the interval I(u). If T < oo, then
for any compact set K C W, there is a ¢ € (1) with ®(u) # K; in other words, the solution
escapes the domain of definition in finite time, and 7 is the “blow-up time” from u.

An equilibrium point of (3.24) is a point € W at which f(n) = 0. An equilibrium point
n is called hyperbolic if every eigenvalue of the Jacobian of f at n has a nonzero real part.
The type of an equilibrium point is the number of eigenvalues (counted according to their
multiplicity) with positive real parts. The stable manifold of a hyperbolic equilibrium is
the set of points u € W for which ®,(1#) — n as ¢ — oo; the unstable manifold is the set
of u € W for which ©_;(#) — nast — co. A hyperbolic equilibrium 7y of type zero is a
stable equilibrium; this means that its stable manifold contains a neighborhood of 7y or,

equivalently, that its unstable manifold consists solely of 1jo. It is also a standard fact that
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this stable manifold of 1 is an open set.

For the system (3.9) associated with a canonical affine model, the origin is a hyperbolic
equilibrium of type zero and thus a stable equilibrium. The origin is, in fact, a unique
stable equilibrium (see Lemma 4.3.1). We denote its stable manifold by S and call this
the stability region of the dynamical system. Part of the content of Theorem 3.2.2 is that
the stable manifold of the origin determines the range of finite moments of the limiting
stationary distribution of the model.

As an aside, we note that the unstable equilibrium in Figure 3.4 is of type 1; the
equilibrium at the point of tangency of the two parabolic curves in the left panel of Figure 3.5
fails to be hyperbolic; and, in the right panel of Figure 3.5, the four equilibrium points
defined by the four points of intersection of the two curves have types 0, 1, 2, and 1 when
taken in clockwise order, starting from the origin. The type-2 equilibrium is a source: its

stable manifold consists solely of the point itself.

3.4.2 Solution Properties

Our analysis of the dynamical system (3.9) makes extensive use of comparison theorems,
and these in turn prove to be very useful in establishing some distributional properties of Y.
The comparison results rely on a concept of quasi-monotonicity. Under the componentwise
ordering of vectors introduced in Section 3.2, we call a function f : R" — R" quasi-monotone
increasing if, whenever x < y and x; = yx for some k, then f;(x) < fi(y). A mapping x — Ax
defined by a matrix A is thus quasi-monotone increasing if and only if A;; > 0 whenever
i # j. Suppose that f defined on R" is quasi-monotone increasing and locally Lipschitz

continuous. Let x(#), y(t) : [4,b] — R" be differentiable functions such that

() - fx(®) < y(O) - fy@), Vielab];

then it follows from Volkmann (1972) that

x(a) < y(a) = x(t) < y(t) Vi e€[a, bl (3.25)
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When n = 1, this reduces to a standard comparison result for scalar differential equations.

The relevance of this result to our setting comes from property (C2), which makes A”
quasi-monotone, and the fact that the mapping (xi,...,x,) = (x2,...,x2) is also quasi-
monotone. Through (3.25), we arrive at the following comparison property for the solution

O to (3.9):

Lemma 3.4.1 Forany u € R" and 0 > 1, we have
Q(D[(u) < CDt(Qu),

for all t > 0 at which both sides are well-defined.

The proofs of this result and the next two lemmas are deferred to the appendix.

For later reference, we also record the following results on the decay of solutions. See,
e.g., Chapter 7 of Verhulst (1996). For the system (3.9), there exist positive constants C, 6,
and u such that

|Py(u)] < Clule ! (3.26)

for all [u| < 6, and

()] < Clule™, (3.27)

for all u € R". The constant —u can be chosen to be the eigenvalue of A of smallest

magnitude.
Lemma 3.4.2 For each u € R", the trajectory {Ox(u) : t € [0, 1)} of (3.9) is bounded below.

Lemma 3.4.3 Suppose |Py(u)] — oo as t — v, for some v < oo. Then fOtA - ®g(u)ds — oo as

t— 1.

3.4.3 Proof of Theorem 3.2.1 and its Corollaries

In light of the expression that appears in the exponent of (3.10), it is natural to introduce

the notation

! f
W (u) = f A - Dg(u)ds + f |4 (u)2ds + Dy(u) - Yo.
0 0
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For (t,u) € O, ®,(u) is bounded for s € [0, t], so W¢(u) is well-defined and finite. As part of

the proof of Theorem 3.2.1, we will show that W¢(u) blows up at 7 precisely if ®,(u) does.

Proof of Theorem 3.2.1 We first show that the finiteness of ®{(u) is equivalent to that of
W(u). One direction is trivial: if (t,u) € Q, then ®,(u) is bounded for s € [0,t] and thus
Wy(u) is finite. To show the converse, observe that ICD’f(u)} is bounded on t € R, (by (3.27))
and ®,(u1) is bounded below for its entire life span t € [0, 7) (by Lemma 3.4.2). It follows
that Oy (u)- Yo = Of(u) - Y7 + @‘f(u) . Yg is also bounded below because Y§ > 0. It thus follows

from Lemma 3.4.3 and the continuity of ®;(u) (as a function of t) that
@, (u) blows up at time 7 & W{(u) blows up at 7. (3.28)

Next, we show that if W;(u) is finite, then Eexp(2u - Y}) is also finite and equality
holds in (3.10). Duffie et al. (2003) define regular affine Markov processes and show that
there are necessary and sufficient conditions for parameters of an affine model to ensure
regularity, namely, admissibility. They also show that the transform formula holds true for
all (t, u)_ € Ry x C" x iR"™ for affine models with admissible parameters. It is not hard to
check that canonical affine models satisfy the admissibility condition. And the processes
generated by them are conservative, as defined in Dulffie et al. (2003). This follows easily
from Proposition 9.1 in Dulffie et al. (2003); we note that the generalized Riccati equation
(2.14) with (2.15) in Dulffie et al. (2003) is (3.9) in the canonical case.

Now suppose W (u) is finite. Since the process Y is conservative regular affine, by
Lemma A.1.2 we can invoke Theorem 2.16 in Duffie et al. (2003) and conclude thatE exp(2u-
Y;) is finite and the transform formula holds.

We now prove the converse of the main statement of the theorem. Suppose, then, that
Eexp(2u-Y;) < co for some t > 0 and u € R". Because the origin is a stable equilibrium and
its stability region S is open (see Section 3.4.1), there is a 8y € (0, 1) such that Ggu € S. But
if Bgu € S, then lim;_, o, ©;(Opu) = 0, and it follows that sup, |Ds(Bgu)| < co. We may then

define a positive 8* by setting

0" =sup{6 > 0:

-

t
f A - Dy(Bu)ds < oo}, (3.29)
0
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the supremum taken over those § > 0 for which ®,(6u) is well-defined — i.e., those for
which t € I(6u). (If ®4(0u) blows up before ¢, then the integral in (3.29) is infinite.)

If 6 > 1, then ®;(u) is finite, and we have already shown that this implies that W;(u) is
finite, and we have also shown that (3.10) holds in this case. To complete the proof, we will
show that 68* < 1 leads to a contradiction.

Suppose, then, that 0* < 1. Because A? > 0 and ®?(u) is linear in the initial condition

u, Lemma 3.4.1 implies that the function
1
0 Ef N-D(Bu)ds, O €[0p,0)
0
is increasing. This implies that
t
limf A - Oy (Bu)ds = oo.
016" Jg
Also by Lemma 3.4.1, we have
1 1
—9—0(135(9014) < 5(135(914)

forall (8,s) € R = [0y, 0") X [0, t]. Since ®4(Bpu) is bounded below (by Lemma 3.4.2), ®(6u)
is bounded below uniformly on R. Moreover, the solution ®¥(0u) to the linear part of (3.9)

is uniformly bounded above as well on R, as is easily deduced from (3.27). Thus,
¢
W(Bu) > f A - O (Bu)ds + K,
0

for some constant K and all 0 € {0, 6"). It follows that limgge W(Ou) = 0.
However, for any 0 € (0, 0*), we have W;(0u) < co, which we already know implies that

(3.10) holds at 0u, so
exp(2W,(0u)) = Eexp(20u - Y;) < (]E exp(2u - Yt))e < oo,

by Jensen’s inequality. This implies that lim SUPg;er W,(Bu) < oo. But this is a contradiction,
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so we must in fact have 6" > 1.
The last assertion of the theorem now follows directly from the fact that the stability

region S of the origin is open. ||

Proof of Corollary 3.2.1 The indicated tail properties are standard consequences of finite
moment generating functions, but we include a brief proof for completeness. From the
inequality 1{z > y} < exp(8(z — y)), 6 = 0, we get P(u - Y, > y) < exp(—0y)Eexp(6u - Y3),
from which the first limsup follows. Suppose now that

lim sup i loglP(u-Y,>y)< -0 —¢,

],/*)OO

for some € > 0. Then P(11 - Y; > y) < exp(—(0 + €)y) for all sufficiently large v, and so

Gf VP - Y, > y)dy < oo.

oo

With the change of variables x = exp(0y), this becomes
f Plexp(Bu - Yy) > x)dx = Eexp(Ou - Yy).
0

The last statement in the corollary is an easy consequence of the fact that the stability region

of (3.9) contains a neighborhood of the origin. i

Proof of Corollary 3.2.2 Inthe case of A,,(m), the vector field f,(x) of (3.9) is quasi-monotone
increasing. We may therefore apply the comparison result in (3.25) with the trivial solution
x = 0 to conclude that §,(1) > 0, for all t > 0, for any u > 0.

Fixa u = 0. If ®4(u) blows up at or before ¢, then there is nothing to prove because both
expectations are infinite. If ®;(u) is finite, then the transform formula (3.10) holds due to
Theorem 3.2.1. It follows from (3.10) and the nonnegativity of ®,(u) that the ordering of Al
and A? implies the ordering of the Eexp(2u - Y!), i = 1,2. Conversely, if Eexp(2u - Y}) >

Eexp(2u - Y?) forall u € R” and t > 0, then we get

1 d 1 g
Al-u:hm—Al-f CDS(u)dszAz-u:Iim~A2~f @, (u)ds.
to 0 tl0 t 0
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Since this holds for any u > 0, Al > A2,
For the second statement of the corollary, we write x(¢) for a solution to (3.9) with A for
A, and y(t) for a solution with A%. Suppose 1 > 0 and Yy > 0 are given. Then, if A' > A?,

we have
F— (A + (15, ) = (A= Ax 2 0= 95— (A%y + (y],...,v2)),

the inequality following from the fact that x(t) > 0 for x(0) = u > 0. Thus, x(t) > y(f) and
so the inequality for exponential moments follows from (3.10), because x, y, A and Yy are

nonnegative. Conversely, if the inequality holds for all nonnegative u and Yj, then
liml(llo EexpQu-Y)—u-Y, )>liml(llo EexpQu-Y) —u-Y )
Ho £\2 BEeP ! 0)= 0 F\2 RSP ! 0

ields ((A! — A%)u) - Yy > 0. Since Yj is an arbitrary vector in R, (A' — A%)u > 0, and this
y y Y

in turn implies A! > A%2. |}

3.5 Convergence to Stationarity

In this section, we use the transform formula (3.10) and our analysis of the ODE (3.9)
to prove that a canonical affine model has a unique limiting distribution, that this limit-
ing distribution is stationary, and that the domain of the moment generating function of
this limiting stationary distribution coincides with the stability region of the associated
dynamical system.

As a first step in our analysis, we show that the moment generating function of Y;

converges, as  — oo, precisely on the stability region.

Lemma 3.5.1 Let S be the stability region of the system (3.9). Then,
S={ueR": tlim Eexp(2u - Y;) < oo},

Proof Suppose u € S. Then, as in (3.26), ®;(u) converges to the origin exponentially as



CHAPTER 3. MOMENT EXPLOSIONS 84

t — oo; we may therefore define
ts = inf{t : |@,(u)] < 6} < oo.

Let it and C be as in (3.26). Then, for ¢ > ¢,

t
f 1A Dy()lds
0

IA

t
f IAL - 1D (u)lds
0
ts

t
f IAL- 1@5(1)lds + CO|A| f pH=ts) g
0 ts

IA

The last integral converges to a finite value as t — co. The integrability of I(I)‘Z W as
a function of t follows similarly from (3.27). Therefore, lim; o [W;(u)| < o0, and thus

Theorem 3.2.1 implies
tlim EexpRu-Y;) = tlim exp(Wi(u)) = expRW (1)) < co. (3.30)

Forthe converse, supposeu ¢ S. If ®,(1) blows up in finite time 7, then lim;_,; exp2W(u)) =
o, as shown in (3.28), so no further argument is required in this case. Assume that ®,(u)
exists for all t > 0. Since S open and it contains the origin, we can choose k > 1 sufficiently
large that u/k € S. Then Lemma 3.4.1 implies k®;(u/k) < ®y(u) for all t. This implies that

'3 o0
lim inf f D, ()ds > ¢; == f kd, (u/k)ds,
0 0

t—o0

for some real number c;, for each i € {1,...,m}. We also have
lign inf @;(1) > li?l infkdy(u/ky = 0.

But this liminf cannot be the zero vector; if it were, (1) would reach S in finite time and
then converge to 0, which would contradict the fact that # ¢ S. Thus some component i of

@4(u) has a positive liminf, and i must be in {1,...,m} because CDf(u) converges to zero. As
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a consequence,
¢ ¢
li{n inff AV DY (u)ds > ZA/'C]‘ + lim inff AjDs j(u)ds = co.
—00 0 j;&i f—00 0
It follows that lim inf; . Wi(1) = oo and thus lim inf;_, . Eexp(2u - Y;) = oo. B

Proof of Theorem 3.2.2 We start by showing that the sequence {Y}} is tight (as defined, for
example, in Chung 2001, p.90). For this, we need to show lim,_, o sup, P(|Y;] > r) = 0. But

we have

A

BV > 1) < (Ve > v/ Vi) < B0 > 7/ Vi

B(Yei > 1/ Vi) + B(-Yy; > 1/ V)]

PEXYei > 2/ \/ﬁ) + (e > (20 ﬁ)}

r|
rl

Ee2dYui  [Re=20Y4
Z { 25t/ N * o201/ }’
1
where 6 is a positive constant such that Bs(0) C S. From Lemma 3.5.1, we get sup, E exp(+26Y;;) <

M; < oo, for some M;, for each i. Therefore,
sup (Y| > r) <2 Z M; exp(—267/ V)
! i

which converges to zero as r — oo.

Because the sequence {Y}} is tight, it is relatively compact (Chung 2001, p.90), so each
subsequence {Yy} contains a further subsequence {Y} converging weakly to some lim-
iting random vector Y*. Since we have sup,, Eexp(2u - Y;») < oo, for any u € Bs(0) (by

[Lemma 3.5.1) and since Yy» = Y*?, Theorem 4.5.2 in Chung (2001) implies that
t,l,im Eexp0u-Yy)=Eexp0u-Y?), VO€(O1). (3.31)

Equality continues to hold if we replace 6u by u because B,(0) is open: we can find u” € Bs(0)

such that u = 6u’ for some 0 € (0, 1) and then apply (3.31) at »’. From (3.30) we know that
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the original sequence {Y;} satisfies lim;_,.. E exp(2u - Y;) = exp(2W o (1)) for u € Bs(0), so the
same limit applies to {Y;}. Applying the same argument to any other weakly convergent

subsequence of {Y}}, say with limit Y?, we find that
Eexp(2u - Y*) = exp(2W oo (1)) = Eexp(2u - Y?), Vu € Bs(0).

But the distribution of a random vector is uniquely determined by its moment generating
function in a neighborhood of the origin, so Y* ~ Y?. Since every convergent subsequence
has the same limiting distribution, the original sequence {Y;} also converges to Y? in
distribution, so we now denote Y* by Yo,. We have shown thatE exp(2u-Y;) —» Eexp(2u-Yo)
for all u € Bs(0). Our next step will be to show that this holds for all u € S, and to show
that Eexp(2u - Yoo) = 0 if u ¢ S.

For any u € S, we can find ' € S and 0 € (0, 1) with u = Ou’, because S is an open set
containing the origin. We know that Y; = Y, and, by Lemma 3.5.1, that sup, E exp(2u’ - YY)
is finite. It follows from Theorem 4.5.2 of Chung (2001) that E exp(2u - Y¢) = Eexp(2u - Yw),
so we conclude that S C {u : Eexp(2u - Yo) < oo}.

We prove the opposite inclusion by contradiction. For this, suppose thatu ¢ S and that

Eexp(2u - Yo) < 00. Define
6" =sup{f €[0,1] : Bu e S};

then 8" > 0 and 0*u is on dS, the topological boundary of S, because S is open and u ¢ S.
Fix a 6g € (0,9%), so that Opu € S, and set g(t) = ®(Opu)/0;. Lemma 3.4.1 implies that
D;(0u) = 0g(t), for all t > 0 and all O € [0y, 07). Consider the trajectory of ®,(0*u). We claim

that T = oo. To see this, choose a 8 € (8, 8"). Then, foreachi € {1,...,m},

2 s 2
x;+ ZA”x] + Z Bljx].
j j

I\

xiz + Ajx; + 0 ZAi]'gj(t)
j#i
x? + Ajix; + OM

\%

where x(t) = ®¢(Au) and M is a lower bound of the summation. Next, we define a new
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function y starting at ¢y by
y= y2 + Ay + M, y(to) = xi(to).

If y(to) is sufficiently large, then y(t) blows up in finite time (see Section 3.3.1) and so does
x;(t). Suppose T < co. Then, it is possible to choose 0 close to 0" and ¢y < 7 such that some
xi{tp) becomes large enough to make y(t) blow up in finite time. This is a contradiction to
Ou €S.

Therefore, we have lim;_, o W;(0"1) = o as shown in the proof of Lemma 3.5.1. On the

other hand, we have

f A? - (DUO ) — O'g (t))dt = f (laiTréxA”-(tbf(Bu)—ng(t))dt (3.32)
0 0 *
< limmffmA”-®f(6u)dt~9‘f A” - QU(hdt
16" o 0

where the equality comes from the continuity of the flow ® and the inequality is from
Fatou’s lemma. Since A”- g%(#) and CIDf(B*u) are integrable, lim;_,o, W (0"u) = oo implies
that the left side of (3.32) is infinite. Therefore, lim infgrp- foT A? - @QF(Ou)dt = oo. But for

6 € (0, 07), Bu € S and utilizing Jensen’s inequality,
9
exp(2V¥ (1)) = Eexp(20u - Yoo) < (]E exp(2u - Yco)) < 00,

Therefore, lim supg, . Weo(6u) < o0 and this is a contradiction.
To conclude the proof, we need to show that the limiting distribution is a stationary

distribution. Suppose, therefore, that Yy ~ Y. Then for any u € S, by taking a conditional
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expectation,

Eexp(2u - Yy)

Eexp (2 fo tA - Dy(u)ds +2 fo t |2 (1) Pds + 24 () - Yo)

= exp(2 fo tA-CDS(u)ds+2 fo t |4 (14) Pels )E exp (2 () - Yo)
= exp(2 fo tA-CDS(u)ds+2 fo t |4 (1) ks

X exp (2 fo A Do(D(11))ds + 2 fo ) | (Dy(u))ds)

= exp (2[ A - @(u)dt + 2[ ICDf(u)Izdt) (3.33)
0 0
= EexpRu-Yo).

Because the distribution of a random vector is determined by the values of its moment
generating functionin a neighborhood of the origin, we conclude that Y} has the distribution

of Yo, whenever Yy does. |}

Observe that (3.33) gives the moment generating function of Y, and thus characterizes
the stationary distribution of Y;.

From the preceding proof, we see that the distribution of Y., is determined by the
behavior of the dynamical system (3.9) on the stable manifold S of the stable equilibrium
at the origin: the fact that ®;(#) — 0 for u € S is crucial to the convergence of W;(u) and
thus the moment generating function of u - Y;. This raises the question of whether other,
unstable equilibria play any role in the stochastic behavior of the basic model (3.3). Our

next result illustrates a setting in which they do.

Proposition 3.5.1 Suppose that 1 is a hyperbolic equilibrium of system (3.9) of type less than n.

Then for any u in the stable manifold of n, we have
.1
thm n log Eexp(Ru - Y;) =2A - 1. (3.34)

Proof If u lies on the stable manifold of 1, then limy;,c ©4(1) = 1, so W;(u) is well defined

for all t > 0. The limit on the left side of (3.34) is given by the limit of 2W(u) as t — oo; i.e.,
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by

2 ! 2 !
lim n A D (u)ds + tlim n f [(I)f(u)lzds + tlim %(I)t(u) - Y.
0 — 00 0 —0

t— oo

The last term is clearly zero, and the second term also vanishes because

t t 1— exp(—2ut
: f @) < - f i exp(—2us)ds = Lcudp LT XREZD o

in light of (3.27). The first limitis 2A-n. |}

The condition in the proposition on the equilibrium’s type ensures the existence of a
stable manifold. An equilibrium of type n is a source, an example of which appears in the
right panel of Figure 3.5, at the upper right intersection of the two curves. The limit in
(3.34) arises in the definition of the rate function used in the Girtner-Ellis Theorem (see,
e.g., Dembo and Zeitouni 1998). The behavior in (3.34) is somewhat pathological because
the limit, viewed as a function of u, fails to be a closed convex function. As a consequence,
the Gartner-Ellis Theorem does not apply to the sequence {Y;/t}.

Theorem 3.2.2 characterizes the set of u for which Eexp(2u - Yo ) is finite and identifies
this set with the stability region S of (3.9). The problem of describing the boundary of S has
attracted considerable attention. Genesio et al. (1985) survey methods using a Lyapunov
approach; Chiang et al. (1988) characterize JS in terms of stable submanifolds of unstable
equilibria. Chapter 4 establishes a similar result for the quadratic system (3.9).

Theorem 3.2.2 raises the question of characterizing the region in which Y; has finite

exponential moments, for finite t; that is, characterizing
Si={ueR":Eexp(2u-Y;) < oo, ¥se€[0,1).

This set coincides with the set of initial conditions u for which the solution ®,(u) exists
throughout [0, t). Directly from the definition of S;, we see that S; shrinks as t increases;
that S; is convex follows from Holder’s inequality. Beyond these basic properties, it is
generally more difficult to characterize S; than S, at least from the perspective of the
dynamical system (3.9). Theorem 3.2.3 and the analysis in the next section give some

results in this direction.
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3.6 Gaussian Conditions

Lemma 3.6.1 Foranyt > 0andu € R", Eexp(26u -Y;) < oo forall 6 € R ifand only i
Y P Y
v _ c..d _ C(a2 2 —
u’=0, A%N(s)=0, B(x,,1(5),.-.,x;(5)) =0

forall s > 0, where x4 is the solution to x = A%x with x(0) = u?. Moreover, in this case, u - Y, has a

Gaussian distribution.
Proof See the appendix. |}

Proof of Theorem 3.2.3 In writing P"!A?P = ], we may assume P is chosen to give ] the
specific form described before the statement of the theorem. We further assume that the k
distinct eigenvalues of A7 are numbered in decreasing order, A < --- < A; <0.

Define y(t) = P~!x(t), where x is the solution to ¥ = A?x with x(0) = u?. Then y satisfies
¥ = Jy with y(0) = @i and @ = P"u. Let i denote the block of y corresponding to the i-th
block J; = Ajl; + N; of J. We use this notation similarly for other vectors. In other words, if
the 2y, X a4, matrix J; runs through coordinates (p +1,p +1),...,(p + a1, p +a,,) of ], then v
of v € R™ i (Ups1, - -, Upsay ). Since we have ¥ = iy, y'(0) = it', the solution is expressed as

follows:

a)\i‘*l t
yi(t) = exp(/\it) [Ii + ﬂNﬁ i
=1

Suppose that w'y = 0 for some w € R". Then Zle wiTyi = 0. If we divide this by
exp(A1t), which has the smallest magnitude among eigenvalues, and send t — oo, then
exp(—)\lt)wlT y! = 0; otherwise, we equate one exponentially decreasing function with a
polynomial, which is absurd. By applying the same procedure with other A;’s, we conclude

that wiTyi = 0 for each i. Consequently, w™y = 0 is equivalent to
w N =0, i=1,...,k 1=0,..,4,-1 (3.35)

This observation implies that the first two conditions in Lemma 3.6.1 are equivalent to

requiring that 1% = 0 and that (3.35) holds for all w'" that are rows of A°P. As for the third
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condition in Lemma 3.6.1, we note that x; = ¥, Pyy; = 0 if there exists some p such that

B;q # 0. Therefore, (3.11) follows. |

Proof of Corollary 3.2.3 Choose any block J; of ] and #'. By construction, J; is itself a block
diagonal matrix consisting of Jordan blocks associated with A;; each Jordan block has a 1
in every entry immediately above the main diagonal. Let Q be any Jordan block of J; and
79 the corresponding block of #' with dimension d, say. Then, the following condition

becomes a sufficient condition that induces (3.35):

W 'NgR =0, 1=0,...,d-1, VQ

where N is Q less the diagonal part. But, then, this is just

0 Q 0
Uy U, Ui
+ 1 10
w 0 =0, w¥ o =0, ...,w% | |=0
Uiq Uy :
e 0 0

Therefore, an equivalent statement is that if j is a coordinate with w? #0, then#” =47, =
= ~;3 -0

The directed graph G in this case consists of pathssuchasn - n+1 — --- > n+d-1if
Q starts at the coordinate (n, n). If j is restricted With respect to 1acp +1p:1p, then (A°P);; # 0
or ququ # 0 for some i, 4. This in turn means that w; # 0 where w is the i-th row of A°P or
the g-th row of P, and thus #; = 0. In this case, the observation in the previous paragraph
requires that any other components of i that have a directed path from i; in G are also
Zero.

If ga, = 1 for all i, then there is only one Jordan block for each A; and thus () coincides

with [;. Therefore, the condition above becomes necessary, too. |

Corollary 3.2.3 essentially means that we achieve a non-Gaussian distribution for u - Y;
as long as it has some dependence on one or some of volatility driving factors by including

them in the dynamics or by including a factor that depends on volatility factors. Of course,
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u has to be outside the closed set specified by (3.11). The vectors in this set cancel out the
effects of the volatility factors in u - Y;. The next examples illustrate this feature in more

detail.

Example Ay (n) with diagonal A%, In this case, we have

14 ZAC Y7+ A;l]Y;i(t)]dt + /1 + Z B Y2dW(1)

d(u - Y() = [ud-Ad+Z[ A | v Z jA‘j]Y'j(t)]
c 7

d d
+) [+ Zk: BE YEdW!(1) (3.36)
J

For u - Y not to have any dependence on Y?, we must have u” = 0,

ZudA” = k=1,...,m

dY‘j(t) =

and

and u;? = 0 whenever there exists k such that B]C(]. # 0. However, these conditions are not

enough to remove all the dependence on Y?. For example, suppose A” is given by

AL 00
A=l 0 A 0
0 0 A

Then, (3.36) becomes

d(w - Y'0) = (ut AT+ A (- YB) + (Ao = AudYE(D) dt + Z wldWi(e)
jeJ
where 7 is a set of coordinates that are restricted with respect to 1pc. Therefore, if Yg has
a volatility factor in its drift or diffusion, then u - Y is not free of Y effects. This kind of

additional dependency is captured by (3.11).
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Example A, (m +2). This class of models has two dependent factors. We consider the case
in which A has only one eigenvalue A with g3 = 1. The other possible case is diagonal
and is similar to the example above but with a lower dimension. Let P = (v; ) be the
non-singular matrix of an eigenvector and a generalized eigenvector in a Jordan canonical
form of A? and let P~1u = (a, b). We write
p Al ro
AP =P , L=
0 A 0 PT
Next we apply an invariant affine transformation as defined in Dai and Singleton (2000),

Y + LY. Then the dynamics of Y? are the same as the original and that of ¥ = PTY?

becomes
Yy = (PTAT + (AP)TY? + [TV, )dt + PT \[diag(F)dW.
Denoting Y by (Y1, Y2),
Yi(t AYq(t)
f( " Z pradars @prya+| 00 ar
Ya(t) Yi(t) + AYa(t)

| o [1+ Y B YIAW, () + (01)2 ([1 + X B, YedWs(t)

(W) 1+ X BE YUdWo(t) + (92)2 /1 + X, BS, YedWs(t)

Note that u - Y; = @i - Y; = aY1(t) + bYa(t) (we assume u” = 0). Now suppose a # 0. Then,
u - Yt has a dependence on Y? unless (AP); = 0 and B, = 0 for all k whenever (v1); # 0.
This is the same as asking whether coordinate 1 is restricted with respect to 14cp + 15:1p. A
similar argument applies to the case b # 0 regarding the second coordinate.

If 2 = 0 but b # 0, then we still have to consider the dependence of Y; on Y? because Y
is correlated with Y; through the drift term. This means that u - Y; has dependence on Y? if
coordinate 1 is restricted. It is clear from the dynamics of Y that the final dynamics induce

a Gaussian distribution after we remove the dependence on Y?.
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3.7 Conclusion

We have established three general results for affine models. Our first result confirms the
validity of the transform representation without further conditions and shows that the
range of exponents for which the transform is finite at time ¢ coincides with the set of
initial conditions from which the ODE solution exists on [0, {]. Based on this result, we are
able to investigate the properties of affine models by analyzing the associated differential
equations. As an example, we gave two comparison criteria for processes in A, ().

Our second result establishes the existence of a limiting stationary distribution and
characterizes this limit through its transform; the tail behavior of the limiting distribution
is determined by the stability region of the associated dynamical system.

Our last result gives necessary and sufficient conditions for a linear combination of fac-
tors to have a Gaussian distribution and shows that any non-Gaussian linear combination
has exponential tails. Essentially, a Gaussian distribution is obtained by removing from a
linear combination all the dependence on the volatility factors, but the precise conditions

that achieve this turn out to be subtle.



Chapter 4

Stability Analysis of Riccati

Differential Equations related to

Affine Diffusion Models

We study a class of generalized Riccati differential equations associated with canonical affine diffusion pro-
cesses. As seen in Chapter 3, the generalized Riccati equations determine the Fourier transform of the
diffusion’s transition law. We investigate stable regions of the dynamical systems and analyze their blow-up
times. We discuss the implication of applying these results to affine diffusions and, in particular, to option

pricing theory.

95
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4.1 Introduction

In this chapter, we study the stability properties of the quadratic differential equations (3.9)

associated with canonical affine diffusion processes. For convenience, we recall that

X}
W =folx)=Ax+B} : |, x(0)=ucR" 4.1)
x;
where A and B are given as
AY AC I B¢
A = P B =
0 A 0 0

with AY, I € R™ (m < n) and other matrices belonging to Euclidean spaces with appro-
priate dimensions and parametric conditions on them as in Section 3.2. Our objectives are
first, to study the stable regions of (4.1) and second, to investigate the blow-up phenomena
of solutions.

The determination of stable regions of stable equilibria in non-linear dynamical systems
holds significance in various contexts and there have been many theoretical and numerical
solution approaches to this question (see, e.g., Chiang and Fekih-Ahmed 1996, Chiang
et al. 1988, Genesio et al. 1985, Vannelli and Vidyasagar 1985 and references therein). The
techniques used in this area vary according to a specific problem of interest: for example,
Levin (1994), Tibken {2000) for polynomial systems and Cheng et al. (2004), Saha et al.
(1997) for power systems to name a few. On the other hand, the escape of a solution to
infinity, or the blow-up of a solution in finite time has also been widely studied and Baris
et al. (2006), Crouch and Pavon (1987), Getz and Jacobson (1977), Martin (1981), Sasagawa
(1982) address this issue for certain classes of quadratic differential equations.

The link between the diffusions (3.3) and the ordinary differential equations (ODEs)
(4.1) is the Fourier transform formula as formulated and generalized in Duffie et al. (2000)
and Duffie et al. (2003) for a larger class of stochastic processes. We note that (4.1) is a

special case of generalized Riccati equations as defined in Duffie et al. (2003). Relevant



CHAPTER 4. STABILITY ANALYSIS OF RDE 97

backgrounds are provided in the next section.

This chapter begins by reviewing some notation and concepts from the theory of dy-
namical systems in Section 4.2. The following three sections characterize the boundaries
of stability regions and the regions in which solutions exist at time ¢. Then, the results are

applied in the option pricing context. Section 4.6 concludes.

4.2 Model Description and Background

Throughout this chapter, we will use the notational conventions introduced in Section 3.2
including the orderings on R"” and R™"; n denotes the dimension of the system (4.1), m <n

such that A” € R™™ and we have for any vectors or matrices a and b,

a2b e a2 by
a>b&e=a>b,a+b
a>b <= aj; > bjj.

And fora € R", we define a° = (a1, ... ,4y) and a¢ = (a‘li, ...l

’ n—m) = (am+1/ ees ,ﬂn). Similarly,

if a is an 7 by n matrix, then a? is the upper-left m by m block and 4 is the lower-right
n — m by n — m block so that the notation for A and A% in (4.1) matches. Also, we write
RY = {x e R" : x > 0}, RY, = {x € R : x >» 0} (similarly for matrices), and |x| is the
usual Euclidean norm of a vector x and 0 is the zero vector (or the zero matrix) with an
appropriate dimension which should be clear from the context. Parametric restrictions on
(4.1) are also given in Section 3.2.

As in Section 3.4.1, we define I(u) as the maximal open interval of existence of a solution

to (4.1) with x(0) = u and define
T:R" — (0,00], (1) =supl(u).

To specify the initial condition, we write ®(u) for x(f). If I(u) = (a,b), then |x(t)] becomes

infinite as t — b. Recall that when 77 is an equilibrium and its Jacobian J() has eigenvalues
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(counting multiplicity) with k positive real part, 77 is said to be of type k. If 1 is hyperbolic
and type 0, then 7 is a stable equilibrium. If 7 is hyperbolic but its type is positive, then it
is unstable and denoted by UEP for short .

As shown in Theorem 3.2.1, (3.10) holds true unconditionally as long as either side is
well-defined and finite. Therefore, studying the blow-up phenomena of the dynamical
system (4.1) is equivalent to studying the finiteness of the exponential moments of the
process {u - Yy}. In Section 4.4, we characterize S in terms of the stable sub-manifolds of
hyperbolic equilibria on the stability boundary dS (see Chiang et al. 1988 for a general

approach in this direction). Similarly as in Chapter 3, we define
Si={ueR":Eexpu-Y;) <o, Vse[0,1)),

and this coincides with a set in which a solution to (4.1) with x(0) = u exists in [0,{). In

other words, §; = {u € R" : ©(u) > t}.

4.3 Properties of the System and Blow-up Times

A great deal of work has been performed on the analytical or numerical computation of
stability regions, e.g., see Genesio et al. (1985) for a compact survey. In particular, Chiang
et al. (1988) showed that the boundary of a stability region can be represented as the union
of the stable sub-manifolds of hyperbolic equilibria on the stability boundary JS under
certain conditions. Inspired by this, we demonstrate that a similar result can be pursued
under a slightly altered assumption in our case.

Before we proceed, observe that the assumptions on A and A” make —A” a nonsingular
M-matrix (see Berman and Plemmons 1994). This induces two nice properties that are used
in the proofs of our results: first, —(A?)"! > 0 and second, —A%x > 0 implies x > 0.

Another immediate consequence of the assumptions on A is some qualitative behavior
of the system (4.1). Observe that the origin is an equilibrium, because f,(0) = 0. And since
the Jacobian of f, at 0 is A and A has negative eigenvalues, 0 is a stable equilibrium. On

the other hand, the system (4.1) has a linear part, i = A%x?. Since A is block triangular, A
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also has negative eigenvalues. Therefore, there are positive constants C and y such that
(D] < Clx (0)le™H. 4.2)

This implies that the stability region S of the origin, which is invariant and open, contains

{0} x R™™. Lemma 4.3.1 provides information about equilibria of (4.1).
Lemma 4.3.1 For the system (4.1), the following statements hold:

1. The number of equilibria is finite.

2. If nyis an equilibrium, then ' = 0 and n° € T17,[0, —Aq).

3. The origin is the only stable equilibrium.

Proof Part 1: We show that the set
X={xeC": Ax+B(d,...,x2) =0}

is compact in the usual Euclidean topology. Since elements of an affine algebraic set in C*
are finitely many, the number of equilibria which are elements of X is finite. See Lemma
12.4.3 of Sommese and Wampler (2005).

By the definitions of A and B,

X= {(x”,xd) eC": A% + A% + (x%,.. K2 )+ B”(x2 ,xfl) =0, A% = 0},

" Am m+1se e

Since A9 is invertible, ¥ = 0. Thus, X = {(x”,O) DAY+ (32, 0E) = O}. Therefore, X
is compact in C" if and only if X’ = {x €C™: A%+ (x3,...,x3) = 0} is compact in C™.

Rewriting the equation via x = a + i, herei = V-1, we get

2 2
al - ‘Bl al,Bl

Ao+ : =0, AB+2{ : |=0.

2
arzn - B am,Bm
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Suppose {la| : @ + if € X'} is unbounded. Then we can choose @ with maxy |ay| being
arbitrarily large. Let us assume that i = i(a) is the index that Ja;| achieve the maximum

magnitude among lay), .. ., lay|. We then observe
2 2 2 . 2 2
2= ale Y Ahaweza? - ) A 2 a? - Y 1A ad] 2 of ~ mM
k k k
where M = max;x IAZ]?k]. Also, for any index j,
2 2 v 2 v 2 v . 2 U2 a2
Bo= ) Aaesal+ ) 1A%l <o+ ) lAGlal <ol + ) 1A% a? = Cjal
k k k k

where C; = } [A}’kl + 1. Since we have 2a;8; = — Y AY By, using above two inequalities,

Qlfl < Y IAGHBI <MY 80 <MY Celar]
k k k

and from the first inequality, 4a?8? > 4a?(a? — mMia;|). Therefore,
402(0? — mMlail) < (M Z N
1 1 - i
k

And this implies |o;} cannot be arbitrarily large, which is a contradiction.

On the other hand, we showed above that ﬁ? <C ja? for any index j if |a;] = maxy |agl.
Thus {|] : a + i € X’} is also bounded. Consequently, X’ is compact because X’ is clearly
closed as a zero set of finitely many polynomials, in addition to being bounded.

Part 2: An equilibrium 7 is a solution of An + B(r3, ..., n%,) = 0. This implies n = 0
and 1° = —(A%)"'(n},...,1%). Recall that —~A” (or equivalently, the transpose of it) is an
M-matrix. Then as mentioned at the beginning of this section, —(A?)! > 0 and thus n° > 0.
Foreachi =1,...,m, r)? + Aiifi = — Ykai ATk Since the off-diagonal entries of A” are

non-negative and 7 > 0, the right side is not positive. Therefore, 0 < n; < —A;;.

Part 3: Assume that a non-zero equilibrium 7 is a stable equilibrium (thus hyperbolic)
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and consider its Jacobian J() = A + 2Bdiag(n). Then

Jen = (g, m5,0,...,0) > 0.
And J(n) looks like

AV + 245 7y Af
o) — [ + 2diag(°) ]
0 A

The eigenvalues of J(n) are those of J(1)° and A%, Since n is a stable equilibrium, j(r)
is nonsingular and every eigenvalue of J()” has negative real part. Note also that the
off-diagonal entries of ()" are non-negative. This implies that —](n)” is a nonsingular
M-matrix (see p.135 of Berman and Plemmons 1994). However, this cannot happen as the
following argument shows.

Suppose —J(1)? is an M-matrix. We showed above that [(7)°n” > 0. Thus —J(7)°(—1") = 0
and this, in turn, implies —n” > 0. However, this together with part 2 leads to 7 = 0, which

is a contradiction to our assumption that 1 is non-zero.  |j

Recall that we introduced the blow-up regions S; in Section 4.2. We prove some

topological properties of S;’s that are related to the characterization of S and dS.

Lemma 4.3.2 Suppose that two real numbers M, c are given satisfying il <M, c < minj=q,_m ;.
If u; for fixed i € {1,...,m}, fixing everything else, is sufficiently large, then (4.1) blows up in finite
time. Moreover, t(u) can be bounded above by a function of M, ¢ and u;, and this bound can be

made arbitrarily small by increasing u;.

Proof It is shown in Lemma A.2.1 that minj=y,__», xj(t) is well defined and it is bounded
below by some function v(t). And this dynamics of v(t) depends on the bound of [u], here
M, and v(0) = ¢ which can be set as any value less than min;-;,  ,, #;. Then the trajectory of

v(t) is bounded below, say by L = L(M, c). By (4.2), Ix4(t)| is bounded by Clu?). Then for any
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i€{l,...,m}, we have

n
2 2
X+ Apxi + ZAikxk + Z Bl-kxk

X =
ki k=m+1
m n
> Xlg + Ajxi + Z Apl + Z Agxy
k=1,#i k=m+1
> xf+Agxi+ GL-K

where C; = /1| ;Agand K= Clulmax; Y7, .1 JAul.

Then we define a new function y by an ODE
Y=y + Ay +CL-K,  y(0) = u;. 4.3)

With D; := Afl. —4(C;L — K), the function y blows up in finite time 7 if y(0) is large. If D; = 0,
then y blows up at 7 = (y(0) —A,~,~/2)7l if y(0) > —A;/2. And if D; < 0, then it does so at

time
2y(0) + A;
T= 1 nw2tan_1——yw).
-D; V-D;
Finally, if D; > 0, then
- 1 log y(0)—m
vD; y(0) =12

where 7); are two equilibria of (4.3). We see that in any case the blow-up time goes to zero
as y(0) = u; increases. Since we have x;(f) > y(t), T is an upper bound of the blow-up time

of x;, and consequently an upper bound of t(u). |}
Lemma 4.3.3 (1) : R" — (0, oo] is continuous.

Proof Suppose that {14} is a sequence of vectors converging to u but limy 7(ux) = v > 7(u).
Since limyy(,) max; @ j(1) = oo and since @ is continuous in €, we can find ¢’ = t'(N) < t(u)
and k = k(N) for any given large N such that N < max; @y ;(ug) < co.

Note that some component x;(t) of a solution x(t) to (4.1) never decreases if the initial

condition x;(0) is sufficiently large wherei € {1,...,m}. To see this, find a function v(t) as in
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Lemma A.2.1 that is bounded below and x;(t) > v(t). Observe that

n :
X = xl.2 + ZAikxk + Z B,»kx,% > xi2 + Ajxi + i ApL - K
k k=m+1 k#i,=1
where L = L(M, c) is alowerbound of vand K = Y, _, ., ClAul - Ix?(0)} and C is a constant in
(4.2). Therefore, it is enough to have a large x;(0) that makes the right side positive.

This observation implies that for any given large N, we can choose some ' < t(u), k
and i such that @, ;(#) > N and this does not decrease from time t’. Thus, ®y,) (1) > N.
Since this is true for any large N, we conclude limsup, @, (4x) = o0. Now consider
D¢ (1) starting from 7(u). Then, by Lemma 4.3.2, the blow up time of {®{u)};z(s) can be
arbitrarily close to T(u) by selecting a large k. This is a contradiction to * > 7(u).

To prove the converse, suppose that limy 7(ux) = T° < t(u). We take f € (7°,7(u)). Then
®y(u) is finite. Since Q) is open and (¢, u) € Q, (t, ux) belongs to Q for all large k’s. Thus

@, (ug) is finite and this is a contradiction to T(uy) < t(u) for large k’s. |
Lemma 4.3.4 Suppose t(u) < co. Then 1(Gu) < t(u) for & > 1.

Proof Let y(t) = &(6u)/0 and x(t) = ®;(u). Then (3.4.1) implies that we always have y(t) >
x(t). We note that y(t) satisfies y = Ay + 6B(y3,...,y2), ¥(0) = u. One implication of this
is that y*(t) = x4(t). Let %(t) = maxg x(t), which is a well-defined piecewise differentiable
function in a similar way as in the proof of Lemma A.2.1. Then by assumption, ¥ blows up
in finite time, say 7. Therefore, in the following argument we can assume that the initial
value of %(t) starting from time fo, ¥(fg), is a sufficiently large positive real number and
x4 (0)l/%(t) is sufficiently small, say less than € whenever f > . And we note that if we start
from this sufficiently large initial value, then X never decreases during its entire life span
[to, 7). Finally, note that we can find a number M such that lx4(t)| < M for any t.

On this footing, we claim ft;(u) X(t)dt = . Let £ = x; in some interval I C [¢, T(1)).

Then,

n n n x2
Xy Xk . k ~ ~
= Aik?*‘ ZAikT+x+ ZB,’kTS Ap+X+C<xi+C
X X
k=1 k=m+1 k=m+1 k=1

=] e
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for some constant C, Cy independent of i. This implies that

t
log %(t) < log %(to) + f T(s)ds + Cq(t — to),

ty
which proves the claim.
Now we define y(t) = #(t)/%(t) > 1, which is also piecewise C', and #(t) means y;(t)

whenever X(t) = x;(f). We observe in the interval which ¥ = x;(t) withi € {1,...,m}, y

satisfies
y = Yix; “Zyixi
X;
B Xi(0y? + L At + 0 Lisyen Biy?) — vile? + L Aix + Ly Bix?)
= 22
Xk

= 9sz —Yi+ Z ik }— - _V Z Azk_(l —)/)+ Z sz—(e )/)
k=1 ! k=m+1 k=m+1

> Oxyt -+ Z #(y - ) Z Awle(1 - y) + Z BiMe(1 - )
k#i,=1 k=m+1 k=m+1

n n

= Oxy - xyp+ Z tk —)/)+ Z Agle(1 —y) + Z ByxMe(1 ~y)

k#i,=1 k=m+1 k=m+1
n n

> Oyt —xy + Z A(1=7)+ Y A=)+ Y BaMe(1-7)

k#i,=1 k=m+1 k=m+1

and this can be written as

y 2> 0x;y* —x;y + C(1—) (4.4)

where C is an appropriate non-negative constant. In the first inequality, we used that
Ag=20forke{l,.... m\li),y>x,y>1, yd =x9, x/% < €, x| < M, By > 0 and x; is very
large. In the second inequality, we utilized the fact that in the interval we are considering,
x; < x; for all k and y = 1. Here we note that if y(tp) = 1 with #(tp) being a large positive

number, then y(tg) > (6 — 1)x;(tg) > 0, so y(tp + €) > 1 for small €. Therefore, we can assume
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y(to) > 1 from the beginning. Then we see

y o2 xtexy+C(1-y)= (- Day -0 2 (y-Dx-0) = -1E-O).

Recall that X(#)) is assumed to be sufficiently large and thus ¥ never decreases in [fg, 7).

Now the above inequality with y(fg) > 1 implies

%In(y—l)ZJ?—C.

Thus y(t) =1 > (y(to) - 1) exp(ft: (%(s) — C)ds). Therefore, y — oo as t approaches 7. Hence,
we can assume y(tp) > 2 by shifting the starting point, i.e.,, by taking even larger t; as a
starting point.

Inequality (4.4) also yields
y > B -xy+C(1-y)28° - %y -Cy2x)* - 2%y,

This and y(tg) > 2 imply

And this leads to
_ ylto) =2
y(to)

t
y1(1 aﬂ{[i@%»zz

Therefore, y blows up strictly before ¢ reaches 7. In other words, y(t) blows up strictly

before x(t) does. |

Proposition 4.3.1 The blow-up region S; is a closed convex proper subset of R". The topological

boundary of S is given by dS; = {u € Sy : ©(u) = thand Sy C S§ for t’ > t.

Proof Recall that S; is a set in which a solution to (4.1) with x(0) = u exists in [0, ¢). In other
words,

Si={u:EexpRu-Y;) <oo, Vse[0,)={u:1(u) =t}
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Foru,v € R"and A € (0,1), by Holder’s inequality,
Eexp (2(Au + (1 - A)v) - Ys) < [EexpQu - Ys)]* [Eexp2u - Yo)] .

Therefore, Au + (1 — A)v € S; whenever u, v € S;. Since 7(u) is continuous in # by Lemma
4.3.3, 5 is closed and it is also proper by Lemma 4.3.2; if S; = R", then we simply choose
u=(0,...,0,u;,0,...,0) and let u; go to infinity.

To prove the second statement, let T = {u € S; : ©(u) = t}. Since 7(u) is continuous in u,
T is closed. For each ug € T and in any small open ball U centered at 1, we can choose two

positive real numbers 61 > 1 and 6, < 1 such that 8;up € U. By Lemma 4.3.4,
T7(01up) < t(ug) =t < 1(Oaup).

Thus, 6hup € S\T = {u € S; : (u) > t}, which is open, and 6119 € S, the complement of
St which is also open. Since $;\T is an open subset of S;, it is included in S}. Conversely,
any u € §) is in 5;\T because we can find some 0 > 1 such that Ou € S; and consequently

T(u) > 1(0u) > t. Therefore, we conclude that S\\T = S} and T = dS;. Hence, for t’ > ¢,

Sp={u:tw) =t} clu:t(u)>t)=5].

4.4 Characterization of the Stability Boundary

From Proposition 4.3.1, we conclude that Se, := [, S; is closed and convex. Since § C S; for

all t, we have S C So. The next theorem is our first main result.

Theorem 4.4.1 Suppose that every bounded trajectory of (4.1) converges to an equilibrium. Then

for a hyperbolic equilibrium n, we have 1 € 9S if and only if W C 9S. Moreover, S = Se.

Proof One direction is trivial. For the other direction, suppose n € dS. Choose a point
ue Wf’. If it is on JS, then there is nothing to prove. If it is in S, then it converges to 0. So

this case cannot happen. Thus we assume u ¢ S.
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Let 2’ be a point on the intersection of d5 and a line segment connecting 1 and the origin.
Then there is 8 € (0, 1) such that 4’ = Ou. Then ©,(u’) < 0@;(u) by (3.4.1) (they exist at any
time ¢ because lim;_,oc (1) = 7 and ®;(1’) cannot escape R" in finite time: it is bounded
above by ®(u) and bounded below by Lemma A.2.1). This implies lim; ®;(1’) < On. By
assumption, lim; ®,(1”) is a non-zero equilibrium on dS (JS is an invariant set). Let us call
this 7. By this and Lemma 4.3.1, we have 0 < ' < 0, n = ¥ = 0 and n)?, if’¥ are solutions

of A%x + (x3,...,x%) = 0. Then,
VU ,2 ;2 v
—02A' = O%(3, ... 2 = (), ) = —An

This means —A¥(6%7° — n’?) > 0. Therefore, 62177 > 1" thanks to the fact that —A” is a
nonsingular M-matrix. Repeated application of this procedure yields 6% > 1 for any
integer k. Since @ <1 and 1" > 0, ” = 0. But, this is a contradiction to the assumption that
1 is on dS because dS does not contain the origin.

Let us prove the second statement. Suppose u € So,\S. We claim that {®y(u) : ¢ > 0)
is bounded in R". We know that each component of ®,(u) is bounded below by some
number, say ¢, and [(Df(u)l is bounded by some number M. Suppose it is not bounded
above. Since CDfl(u) converges to zero, there is some i € {1,...,m] such that {®; {(u)}s»0 is
not bounded above. Then, Lemma 4.3.2 implies that @, ;(1) blows up in finite time. This
is a contradiction because 1 € S. and thus ®(u) exists at all times t. Since the trajectory
is bounded, it converges to an equilibrium point by assumption and the equilibrium must

be non-zero. However, this cannot happen by the same argument as above. Therefore,

$5=S«. 1
Corollary 4.4.1 Suppose that every bounded trajectory of (4.1) converges to an equilibrium and

that the system has hyperbolic equilibria only. Then,

as:%w:thﬂ
n#Q

Proof Since a non-zero equilibrium 7 is in S \S, it is on dS by the previous proposition.

Then, the result is immediate. |}
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The corollary above implies that the stable manifolds of the UEPs of type 1 determine
dS = dS. except for a set of measure zero (recall dim W5 = n —k for an UEP 7 of type k).
There are many numerical methods addressing how to compute the stable manifolds of
equilibria. But, we will not discuss this problem in this paper. An interested reader can
consult Cheng et al. (2004) or Saha et al. (1997), for example.

It is a “generic” property (in the sense that a property holds true in the countable
intersection of open dense subsets) to admit hyperbolic equilibria only for C” (r > 1) vector
tields (see Chiang et al. 1988 or Smale 1967 and references therein). The next examples
show that the models which satisfy the first assumption of Corollary 4.4.1 are not empty,

but rather ample.

a b
Example A;(n). Let A” = . After simple calculations, we find that the following
c d

conditions are necessary and sufficient for —A” to be a non-singular M-matrix.
a<0,b>0,¢>0,d<0,ad—bc>0.

From these conditions, it is straightforward to determine conditions for the system to have
two, three or four equilibria. And one can check that three equilibria case happens only
when the two parabolas x? + ax + by = 0 and ¥ + cx + dy = 0 are tangent in the (x, y)-plane.

Berlinskii’s Theorem (see Chicone and Shafer 1983) has an implication about the hy-
perbolicity of an equilibrium of our system. It states that if X is a quadratic vector field in
the plane with two relatively prime quadratic polynomials, which is, by the way, satisfied
by our system, and if X has four equilibria, then the Jacobian determinant at each one is
nonzero and every saddle point is hyperbolic. Moreover, if the quadrilateral with vertices
at the critical points is convex, then two opposite vertices are saddles and the other two are

anti-saddles (nodes, foci or centers).

Lemma 4.4.1 In Ax(n), every bounded trajectory is an equilibrium point or converges to an

equilibrium.

Proof First we observe that ®y(u;) < @;(u2) whenever u] < u and u‘li = ug. To see this, we
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define
x(ty = DY), y() = D), z(t) = D(ur) = D).
Then, they satisfy
7
¥—fx)=A2Z+B| ... =y~ fly)
Z;Zl—m

where f(x) = A% + (xf, ..., x%), which is quasi-monotone increasing and locally Lipschitz.
Since x(0) = u] < uj = y(0), the result follows from (3.25).

For the discussion that follows next, we refer to Chapter 4 of Verhulst (1996) for the
results that are related. Suppose we have a bounded trajectory which is not an equilibrium,
neither does it converge to an equilibrium. Then, the set of the limit points of the trajectory,
the w-limit set I is invariant, compact, connected and not empty. Moreover, there is a
minimal (i.e., closed, invariantand nonempty with no smaller subsets with these properties)
subset K C T'. Since CI)'[i(u) — 0 ast — oo, Kis decomposed as Ko X {0} with Kg C R2. This

means that Kj itself is a minimal set of the system

a b
+ X.

2
1
2
x5 c d

Then by the Poincaré-Bendixon theorem, Kj is a periodic orbit. Note that this orbit is not
self-intersecting because this curve cannot have two different derivatives at an intersection.

Now the Jordan Curve Theorem implies that
R?\Kp = KS UK,

where K{ is the inside of the orbit and Kj is the outside of the orbit and they are open.

Choose one point, say p € Kg and define

Ki={p+x:xeR3nNKy, Ko={p+x:xeR2)NK,.
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Clearly K;’s are compact and non-empty. Let us now choose the maximizer of maxyex, [#—pl,
say 1z. Then there is no u € Ky such that # < up. Also we choose any 17 € Ky. Then we
have u, < uy. Since Ky is a closed orbit, there is some £y such that q)fo(ul) = up. By the

observation made at the beginning of the proof,
D (u2) < D} (1) = up.

By the choice of u5, the left hand side (which is in K by invariant property) is not strictly
less than u,. Therefore, (Dfo(uz) = up. However, this implies that #; is a multiple of the

period of Ky but CD;’O(ul) =1y # u1. This is a contradiction. |

Proposition 4.4.1 In Ay(n), every equilibrium is hyperbolic unless there are three equilibria.
Moreover, if we have two equilibria, then one is the origin as a focus and the other is on the stability
boundary of the origin as an UEP of type 1. And if we have four equilibria, then we have one focus
at the origin, an UEP of type 1, an UEP of type 2 and an UEP of type 1 in the clockwise order in
R? x {0}.

Proof We consider bc # 0 case only. Other cases can be analyzed similarly. An equilibrium

point is determined by

% +ax + by=0 (4.5)

v +cox+dy =0 4.6)

Suppose 11 = (m1,1m2,0,...,0) is an equilibrium point. Then the Jacobian of the system at
this point is

m 0
AU AC

J) = +2 0 m
0 A4
0

Since the eigenvalues of ](n) are those of ](7)” and A4, and since A? has negative eigenvalues,
it is enough for us to study the eigenvalues of J(1)”. The characteristic polynomial of J(n)”

is P(A) = det(J(n)” — AI) = A2 — (p + 9)A +pq — bc where p = a+2m; and g = d + 21)2. Then the
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determinant of this quadratic polynomial is D = (p —g)* + bc > 0. Therefore, 1} is hyperbolic
if and only if 0 is not an eigenvalue of J(n)’, i.e., pg = bc.

Consider the two parabolas (4.5), (4.6). From each, we get

dy P dy _ <
£(U)——b, a(’])~ q'

Therefore, two parabolas become tangent at 17 if and only if pg = bc. Then we have exactly
three equilibria. Hence, all critical points are hyperbolic except three equilibria case.

Now suppose we have two equilibria. Recall that dS is a closed invariant subset of R"
of dimension n — 1 (see Chiang et al. 1988). The trajectory {®(u) : ¢ > 0} is bounded for
u € dS and it is contained in dS. This is because first, dS C S, so O;(¢) does not blow
up in finite time and second, any |®, ;(1)| cannot be arbitrarily large due to Lemma 4.3.2.
Therefore, by Lemma 4.4.1, it converges to an equilibrium. Since dS does not contain the

origin, it is the other equilibrium point, say 7. In other words,
tlim Q1) = 1

whenever u € dS. But dS is of dimension n — 1 and this means dim W’(n) > n — 1.
However, 1 cannot be a focus because the origin is the only stable equilibrium as implied
by Lemma 4.3.1. Thus dim W*(n) = n — 1 and so 7 is an UEP of type 1.

To prove the last statement, suppose that there are four equilibria. Then, two parabolas
(4.5) and (4.6) have four solutions and since they form a convex quadrilateral, Berlinskii’s
Theorem applies and we conclude that two opposite vertices are saddles and the other two
are antisaddles. Since the origin is the only stable equilibrium by Lemma 4.3.1, we have
one focus at the origin, a saddle, a source and a saddle clockwise. This implies that the
number of negative eigenvalues (we know that they have real eigenvalues) of the Jacobian
J(n)? are 2,1, 0 and 1, respectively. Therefore, the Jacobian J(n) of the original system has

n,n—1,n—2and n — 1 number of negative eigenvalues, respectively. |

Example A;;(n) with symmetric A”. Suppose that a given trajectory is bounded. Then

we know that the limit set lies in R x {0}. However, when A” is symmetric, the system
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Figure 4.1: A general picture of JS with two hypothetical UEPs of type 1.

X = A" + (x2,...,x%) becomes a gradient system. In other words, ¥ = VV/(x) with
1 . 1
V(x) = ExTA“x +3 Zl: .

Let I be the w-limit set of the trajectory. Then, I' is invariant, compact, connected, and not
empty. Since itis in R} x{0}, we can decompose it as 'y X {0}, where Iy is a compact invariant
and connected set of the above gradient system. However, it is well known that a point
in a limit set of a gradient system is an equilibrium. See p.203 of Hirsch and Smale (1974).
Therefore, T’y consists of equilibria. Since (4.1) has only a finite number of equilibria, I'y
and soI' is a single equilibrium and we conclude that every bounded trajectory converges

to an equilibrium.

Based on these results, we can draw a simple picture of the stability region of (4.1). Fig-
ure 4.1 shows dS consisting of two stable sub-manifolds of UEPs of type 1. The intersection
of two sub-manifolds can be thought of as a source or a sub-manifold with dimension less

thann —1.

4.5 Asymptotic Behavior of Blow-up Times and Application

In this section, we describe the blow-up times of (4.1) as a solution of a partial differential
equation (PDE). Recall that dS; = {u : T(u) = t). In other words, JS;’s are the level sets of

the function 7(u) : R" — (0, o). Since S; = {u : ©(u) > t}) and S, is convex, we conclude that
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(1) is quasi-concave. (This is a standard result in convex analysis.) However, 7(u) is not

necessarily differentiable as we see in the next example:
Xy =ax, + xf, X2 = bxy + x% 4.7)

with x(0) = u and a4, b are negative. In this case, S; = (~c0, —a/(1 — )] x (~o0, —b/(1 — e?)]

and 0S; is not smooth at the vertex.

Proposition 4.5.1 The continuous function tlsc : S, — (0, ) is quasi-concave, and is differen-

tiable almost everywhere satisfying
Vr(u) - fou) = -1 (4.8)

for u € S5, with a boundary condition T(u) = oo on dS«. Conversely, a function 7 satisfying (4.8)

and a condition that limy ©(D(u)) = 0 for all u € S5, is unigue.

Proof Differentiability is a direct application of the result by Crouziex (1982). For a fixed
u € 5., we can choose a small positive / such that @y (u) is finite because I(u) is an open set

containing 0. Then we have

T(u) — h = (P (u)).

By differentiating this with respect to & at h = 0, we get (4.8). The boundary condition is
obvious.

To prove the last statement, suppose 71(1) and 12(u) are two solutions of (4.8). Then, we
can construct T(u) = 71(u) — 72(1) on S5, and this satisfies Vz(u) - fo(u) = 0. For any u € 55,

and a positive h € I(u),

h
(D) - T() = fo VE(Ds(0)) - fo(s(u))ds = 0.

Therefore, 7(u) is constant on each trajectory {®y(u) : t > 0} for u € 55,. Since 1(Py(u))
converges to zero as ¢ approaches the blow-up time of @(1) by the assumption, 7(u) must

be identically zero. |
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Figure 4.2: Inverse of 1(u) for (4.7).

We are also interested in determining the critical multiplier 6 such that sup I(6u) = t for
given u and ¢. This is the inverse function of t(6u) = t, but this function 6(u, t) may not be
single-valued. For example, consider (4.7). If u belongs to the second quadrant, then there
are positive and negative 8 such that Gu € d5;. If u is in the first quadrant, then there is
only one such §. And there is no 0 for any ¢ if u = 0. See Figure 4.2. Nevertheless, the next
theorem says 0(u, t) is well-defined at least locally under some regularity conditions and it

becomes a solution of some PDEs.

Proposition 4.5.2 Assume that t(u) is continuously differentiable on some neighborhood of ug €
dSy, and Vt(ug) - ug # 0. Then, there is some open neighborhood U X I of (ug, to) such that
0 : U xI — (0, c0) is well-defined and it satisfies

VO-u=-0, 9,0= éve. fo(6u),  Oug, to) = 1.

Proof Suppose that 1(u) is C! on some neighborhood of uy € dS,,. Consider a function
P(u, t, 0) := 1(6u) — t defined on some neighborhood of (1, t, 1). Since (8(15/ 89) (uo, to, 1) =
V1(up) - up and this is nonzero by assumption, we conclude that there exists a C! function

O(u, t) defined on some neighborhood U x I of (ug, tp) such that
T(O(u, Hhu) =t 4.9)

by the Implicit Function Theorem. Clearly, 6(uo, to) = 1.
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If we take a derivative with respect to f in (4.9), then we get J,0V1(Ou) - u = 1. This
implies V1(8u) - u = 1/d;u # 0 on U X I. And if we do the differentiation with respect to u,

then

(VT (0u) - 1) VO + OVT(Ou) = 0. (4.10)

Multiplying (4.10) by u, we have (V1(6u) - u)(VO - u + 8) = 0. Since V1(6u)-u # 0, we
conclude that VO - u = —0 on U X I. On the other hand, if we multiply (4.10) by f,(0u), then
from (4.8), (VT(6u) - u) VO - fo(6u) = 0 and the result follows because d;0 = (Vt(Ou) - u)!.

Equation (4.8) and the first equation in Theorem 4.5.2 look similar to the Zubov equation
for the stability region of an equilibrium (see, e.g., Genesio et al. 1985). Concisely, if C!
functions &(u) € [0,1] and ¢(u) > 0 satisty VEW) - fo(u) = —p(u)(1 ~ &E(u)), then S = {u :

&(u) = 1}. Or equivalently,

VEW) - fou) = —p(w), & :=—log(1-¢&)

and thus S = {u : £(u) = o). There have been many results concerning approximation
methods for the Zubov equation. However, we do not pursue this direction in this article.
Instead, we prove a limiting behavior of 7(u/t) and 0(u,t) near t = 0 under some mild

conditions.

Theorem 4.5.1 Let {u;} be a sequence of vectors in R” that converges tou as t | 0. Suppose that

u’>0ora:=B@2 ..., u;) #0. Then,
limlT(ut) lim £ 6, £) = &
— — | = Iim , =
tio t t tl0 !

where & = min; 1;. And each t; fori=1,...,m is given by

1 T 1 Ui . 1 .
= = =t >0 ;= — >0, a =
T (2 an @) if a;>0, 7 ” if ui>0,a;,=0

or T; = oo otherwise.
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Proof Consider the following system of ODEs:

X1 (5)2

x(s)=B : , x(0)=u.

xn(s)2

It is straightforward to see that the above system explodes at time & given in the statement.
And the assumptions imposed on u make ¢ finite. Next, we consider a perturbed system
with a parameter f:

yi(s)”

Y(s) = tAy(s) + B

Yu(s)?
A solution of this system is continuous in ¢, s and (0) as noted in p.44 of Lefschetz (1957). Let
us denote the solution with y(0) = u; by y(s; t). Since u; converges to u, limy y(s; ) = x(s)
if x(s) exists.

Let&; be theblow-up timeof y(-; f). Weclaim &y — £ast | 0. Suppose & = limy_, 0 &1, >

¢ for some convergent sequence {&y, ) with limy_,, f; = 0. Observe that we have

2 2
y] ym+l
PotA = | [+ B |+ tAY 2 A = 1A = 27 - 1AV
2 2
yﬂl yn

where 2 = tAz with z(0) = u;. Invoking (3.25), we conclude that y(s; t) > z(s; t) = exp(tAs)u;
for any s and ¢.

Since A has negative eigenvalues, (4.2) implies |z(s; #)} < Cluy| < C(jul + 1) for some
positive constant C and all sufficiently small #’s. Since x(s) blows up at &, limgg x;(s) = oo
for some i € {1,...,m}. By the assumption & > &, y(&; t) is finite and well-defined for all
sufficiently large k and we get

]}im yi(&; t) = o0
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as y(s; t) converges to x(s). But we have, as in the proof of Lemma 4.3.2,

H
Vi = y?‘*‘tAiiyi‘*‘tZAikyk‘*' Z Bix

ki k=m+1
= ]/12 +tA;y; + i’z Apzy

k#i
> ]/12 + tAii]/,‘ —tK

where K = C(ju| + 1) Y 1.; A. Assume that a new function w(s) starting at & satisfies
w(s) = w? + hAzw(s) — HK -1, w(&) = yi(&; ).

Then, y(s; t;) > w(s) on [, &4,) and we deduce &;, < 14, the blow-up time of the function w.
Let us denote the two equilibria for w(s) by & > f and choose t; so small that y;(; t;) > a.

Then w(s) starting at & blows up in finite time

Tw =&+ ! logzgg:i.

2 A2
tkAii + 4tkK +4

Since limy_, o Y(&; tx) = o0, &, < T — & as t decreases. This is a contradiction and as a
consequence, a limit of every convergent subsequence of {&;} is less than or equal to &.
Now we suppose &* < £, Since x(s) = limyj y(s; t) and x(s) is well-defined for any
s €10, &), y(s; t) is also finite for sufficiently small t;’s for each s in that interval. However,
this is clearly a contradiction to the assumption that &, ~ £ < £ for small #;’s. Therefore,
& = &. Since this is true for every convergent subsequence of {£;}, we conclude limy g & = £.

To prove the main statement, we define {(s) by
1 s
= 1(3:1).

Then, ( satisfies (4.1) with C(0) = u,/t and, by definition, 7(1;/t) = t&;. By the previous

argument,
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If we denote t(14;/t) by 7;, then 8(uy, ;) = 1/t. Since 7, — 0, we can re-parameterize u; as a

function of v := %, say #, = u;, thus

vO(il,, v) = 5,0 (uy, &) = % 3

Since this holds for any sequence 1, converging to u, we can replace it by the original
sequence u,. Therefore,

tQ(M;, t) — 5

In modern financial economics and econometrics, one important subject is the study
of financial instruments called derivatives. To explain complex phenomena observed in
the markets, there are a large number of stochastic models developed by researchers and
affine diffusion processes have been applied successfully in this regard. Especially in the
option pricing theory, it is typical to model the log value of the underlying asset price P; of

a contingent claim as
log Ps = as + 2bs - Y

where 4, and b; are deterministic functions of time and Y is an affine diffusion process (see,
e.g., Duffie et al. 2003). One of the most popular derivatives is a call option and its price
is the value of the right to buy a stock (or.any underlying asset) at pre-determined time T,

maturity, and at fixed price K, strike. The call price is given by
C(K,T) = BoE(Pr — K)"

where By is the price of a bond maturing at T (see Lee 2004). It is standard to analyze this

price in terms of Black-Scholes implied volatility o(x, T) which is defined implicitly by

—X N o(x, T) VT
o(x, T)VT - 2

C(e*EPr,T) = (BoEP) {®(dy) —e* P(d-)}, ds =
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where O(y) := f_ yoo \/%e‘“z/ 2du. The complexity of o(x, T) makes its explicit analysis hard.
Rather, there is a stream of literature dealing with asymptotic behavior of o(x, T) as x — +oo
or T — 0 or co under some specific models of P;. For example, see Benaim and Friz (2006) or

Lee (2004). In particular, Lee (2004) proved a nice asymptotic relationship between o(x, T)

and the critical exponents p*, 4* in any modeling setting:

2x, T . 2x, T .
liglﬂsgp ObE‘x/T) =Y, h,fﬂfip O‘JET/T) =yY(’) (4.11)

where
p'=suplp: EPY7 <o), q"=suplg:EP" < oo}, ih(x) =24 Va2 +x—x)

In our setting, p* + 1 and 4" are merely the critical multipliers 6(br, T) and 6(-br, T),
respectively. Therefore, a solution to the PDEs in Proposition 4.5.2 has a direct implication
on o(x, T) for large K’s.
Now suppose that limy o by = b and b satisfies the assumptions in Theorem 4.5.1:
>0 or B(b,,...b2)#0.
Since () is open, we can choose an open ball U centered at (0, b) so that (t,b;) € U for all

small . This implies O(b;,t) > 1 and so p” is well-defined and positive. Let £(b) be the value

corresponding to £ in Theorem 4.5.1. Then, we get

y X5, T)  Y(Or,T)=1) _ 6br, T (O@br,T) - 1)
p T I T - TO(br, T) 2£(b)

asT | O

where the first equality comes from (4.11) and the approximation is from Theorem 4.5.1
and the fact that lim,_,o (x)x = 1/2. A similar conclusion can be drawn for 4* as long
as —b satisfies the assumptions in Theorem 4.5.1. Empirically, the tail slopes of implied
volatility o(x, T) are bigger for shorter maturity options (e.g., see Duffie et al. 2000). The
above observation means that this tail slope, however, cannot be arbitrarily large even for

extremely small maturities under the canonical affine diffusion models.
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4.6 Conclusion

We have shown that the stability boundaries of Riccati differential equations which arise
in financial econometrics can be expressed as unions of stable sub-manifolds of equilibria
on the stability boundaries under the assumption that every bounded trajectory converges
to an equilibrium. Since we have only one stable equilibrium while all other equilibria,
which are finitely many, are contained in some compact set in R”’ x {0}, a general picture of
stability regions is obtained.

The blow-up regions of our system are defined via the blow-up times 7(u) and the
boundaries of blow-up regions are level sets of 7(u). The function 7(u) turns out to be
continuous and quasi-concave, and it solves a PDE similar to the Zubov equation. The
critical multipliers 8(u, t) such that 7(6u) = t satisfy another PDE, and both functions
possess an asymptotic property that has an implication on implied volatilities for options

with extreme strikes and small maturities in the option pricing theory.



Chapter 5

Saddlepoint Approximations for

Affine Jump-Diffusion Models

Affine jump-diffusion (AJD) processes constitute a large and widely used class of continuous-time asset pricing
models that balance tractability and flexibility in matching market data. The prices of e.g., bonds, options,
and other assets in AJD models are given by extended pricing transforms that have an exponential-affine
form; these transforms have been characterized in great generality by Duffie et al. (2000). Calculating model
prices requires inversion of these transforms, and this has limited the application of AJD models to the
comparatively small subclass for which the transforms are available in closed form. This article seeks to
widen the scope of AJD models amenable to practical application through approximate transform inversion
techniques. More specifically, we develop the use of saddlepoint approximations for AJD models. These
approximations facilitate the calculation of prices in AJD models whose transforms are not available explicitly.
We derive and test several alternative saddlepoint approximations and find that they produce accurate prices

over a wide range of parameters.

121
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5.1 Introduction

Affine jump-diffusion (AJD) processes constitute a large class of continuous-time asset
pricing models that balance tractability and flexibility in matching market data. In an
AJD model, the drift vector, the diffusion matrix and the jump intensity all have affine
dependence on the state vector. As shown by Duffie et al. (2000), this restriction leads
to considerable tractability in term structure modeling and option pricing, while at the
same time allowing model features like state-dependent conditional variances and flexible
correlations between state variables that are absent from simpler models. The objective
of this article is to further expand the scope of tractable AJD models through the use of
approximate transform inversion techniques.

The AJD family of models includes many widely used special cases, such as the Gaus-
sian model of Vasicek (1977), the square-root diffusion of Cox et al. (1985), the Heston
(1993) stochastic volatility model, and extensions of these models to include jumps. AJD
processes have been used extensively in empirical work, including, for example, Bakshi
et al. (1997), Bates (1996, 2000), Broadie et al. (2007), Chernov (2003), Duffie et al. (1997),
Dutffie and Singleton (1997), Eraker (2004), Eraker et al. (2003) and Pan (2002). The yield
factor models of Dai and Singleton (2000) and Dutffie and Kan (1996) fall within the AJD
family. Duffie et al. (2003) develop the theoretical foundations of A]D processes. A detailed
account of the econometric aspects of AJD models is given in Singleton (2006).

As demonstrated in Duffie et al. (2000) (henceforth DPS), the tractability of AJD models
lies in the special form taken by a wide class of transforms, including various Fourier and
Laplace transforms as special cases. These transforms have an exponential-affine form,
meaning that they are exponentials of affine functions of the state vector; the coefficients
of these affine functions are in some cases available explicitly and, more generally, can be
characterized through solutions of ordinary differential equations. Through their trans-
form analysis, DPS derive what could be viewed as a far-reaching generalization of the
Black-Scholes formula for option prices. This makes the AJD family of models particu-
larly attractive for empirical studies that combine option prices with time series data on

underlying prices or rates. Studies of this type include Andersen et al. (2002), Bakshi et al.
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(1997), Bates (1996, 2000, 2003), Broadie et al. (2007), Chen and Scott (2002), Chernov (2003),
Chernov and Ghysels (2000), Eraker (2004), Eraker et al. (2003) and Pan (2002).

Despite the many examples of studies using AJD models, the models used in empirical
work have remained limited to a relatively small subclass for which the pricing transforms
are available in closed form. This restriction appears to be driven more by convenience of
implementation than by considerations of empirical validity. In the general framework of
DPS, the pricing transforms are characterized in terms of solutions of ordinary differential
equations (ODEs). The AJD models used in practice (such as those of Cox et al. 1985
and Heston 1993) are those for which these ODEs can be solved explicitly, thus providing
explicit expressions for the pricing transforms. In this setting, each model-price calculation
requires the numerical inversion of a closed-form transform, which can be accomplished
with relatively modest computational effort.

For more general A]JD models — those for which the pricing transforms are not available
in closed form — each price calculation requires, in principle, embedding the numerical
solution of a system of ODEs within a numerical inversion routine. Numerical transform
inversion is a numerical integration problem that typically uses hundreds or thousands of
evaluations of the transform, and each such function evaluation requires the solution of a
system of ODEs. It is the impracticality of this combination that has limited the application
of AJD models to the most tractable cases.

In this article, we develop the use of saddlepoint approximations as alternatives to
numerical transform inversion in order to widen the scope of practical AJD models. The
saddlepoint method is rooted in asymptotic expansions for evaluating contour integrals
in the complex plane. It was introduced in statistics by Daniels (1954) to approximate the
probability density function of the sum of independent random variables. Lugannani and
Rice (1980) derive a saddlepoint approximation for the distribution function. See Daniels
(1987) and Jensen (1995) for overviews of applications in statistics. Rogers and Zane (1999)
apply saddlepoint approximations to option pricing; applications in credit risk include
Dembo et al. (2004), Gordy (2002), Martin et al. (2001), and Yang et al. (2006). Ait-Sahalia
and Yu (2006) derive saddlepoint approximations for transition densities of continuous-

time Markov processes with applications to statistical inference. In the affine framework,
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Collin-Dufresne and Goldstein (2002) use Edgeworth expansions for swaption pricing.
Saddlepoint approximations also have potential applicability to risk management in the
setting of Duffie and Pan (2001).

Saddlepoint approximations rely on the solution to an equation defined by the deriva-
tive of the transform to be inverted; this solution is the saddlepoint. We investigate various
ways of computing or approximating the saddlepoint in the setting of AJD models. We
also compare alternative versions of saddlepoint approximations for price calculations.
We find that saddlepoint approximations do indeed provide an effective way to calculate
prices in AJD models whose ODEs do not admit explicit solutions.

This chapter consists of six sections. After this introductory section, in Section 2 we
present the extended transforms of AJD models that are necessary in calculating the deriva-
tives used in the approximations. In Section 3, we review the saddlepoint method and
associated approximations, and we explain how the saddlepoint method applies to AJD
models. In Section 4, we propose an alternative saddlepoint method that relies on as-
sociated partial differential equations (PDEs) derived using convex duality. We test the
approximations numerically in Section 5, and find that saddlepoint techniques yield sur-
prisingly small relative errors over a wide range of parameters. We conclude the paper in

Section 6.

5.2 Affine Jump-diffusion Model and Extended Transforms

We start by reviewing basic facts about AJD processes. Following the notation in DPS, an

AJD process X € R” is defined as a solution of the stochastic differential equation (SDE)
dX; = ‘U(Xt)dt + o(X,)th +dZ;

where W is an (¥;)-adapted Brownian motion in R”, ¥, stands for the o-field of information
sets available up totimet, and Z is a pure jump process whose jumps have a fixed probability
distribution v on R” and arrive with intensity A(X;). The asset price of interest, 54, at time ¢

is assumed to be (a; + Et - Xy) exp(a; + by - X;) for deterministic 4;, Et, a; and by; for simplicity
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we assume S; = ¢%t. The more general case can be reduced to this case at the expense of
introducing time-dependency in the characteristics of X defined below. The dynamics of
other assets, stochastic interest rates or stochastic volatility can be included as coordinates
of the vector-valued process X. The functional forms of u(X;), 6(X:), A(X) and the interest

rate r(X;) are specified as follows:

ux) = Kg+ Kix, Kp€eR", Ky e R, x e R"
(0(x)o(x)")ij = Hoij + Hyj-x, Hoij €R, Hyj €R"
A)=Ilg+hL-x, 1=(yhh) e RxR"
rx)=po+pi-x p=(pop1) € RXR"

0(c) = f exp(c - z)dv(z) forc € C", “jump transform”.
R”

The process X is said to have the characteristic (K, H, I, 0, p).

The state variable X; at time f takes values in a domain D C R" on which the process
is defined. For instance, (o(X;)o(X:)" )i should be non-negative for each i. A discussion
of the state space D and constraints on the charateristic of X can be found in Chapter 5 of
Singleton (2006), and Duffie et al. (2003) deal with this issue in a more general framework.
The definition above implies that the process X is Markovian and that when a jump occurs,
its jump size is independent of the jump arrival rate or the past history of X.

In DPS, the authors prove that certain Fourier-type transforms of an AJD process can

be found by solving the following set of ODEs:

Py = —pr+K{pO+ %ﬁ(t)THlﬁ(t) +L(6(B(1) - 1) (5.1)
alt) = ~po+ Ko+ BO) + 5B HoB() + I(OB(H) ~ 1) (5.2)
Bty = K]B(t)+B(t)T HiB(t) + i VO(B(H)B(t) (5.3)
A(t) = Ko- B()+ B()THyB(t) + lhVO(B(t)B() (5.4)

with B(0) = u, a(0) = 0, B(0) = v, A(0) = O for some u € C", v € R", with V6(c) a

row vector. These transforms facilitate the pricing of many financial derivatives such as
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European calls or puts, quanto options, Asian options and others using Fourier inversion.
To apply saddepoint techniques, we will need ODEs that characterize cumulant generating

functions (CGFs) and their derivatives. See DPS for the proof of the next theorem.

Theorem 5.2.1 (DPS) Suppose the system of ODEs (5.1)—(5.4) has a unique solution and the other
technical conditions in Duffie et al. (2000), p.1351, hold. Then

T
Yo(u, Xy, t,T) = E [exp (~ f r(Xs)ds) et X 7—7]
t
= pT=p(T-1)X,
T
lpl(vl u, Xt/ t, T) = £ [exp (— f r(Xs)ds) (U . XT)eu'XT T{l
t

olu, X, t, AT - t) + B(T - 1) - X,)

where w € C", v € R", t < T and the process X has the characteristic (K, H,1, 0, p).

The integral that we shall consider in later sections is E[exp(— ftT r(Xo)ds)(b-Xr)kel@tzb)-Xr |
¥:] for some a,b € R” and z € R. When k = 0 and ¢ = 0, it becomes {p{a + zb, X0, 0,T) =
exp(a(T, z) + B(T,z) - Xo). Note that here we include z to express the dependence of a,
on z through the initial conditions a(0,z) = 0, §(0,z) =a+zb. Itk = 1, ¢t = 0, then by
Theorem 5.2.1 we get (b, a +2b,Xy,0,T) = (A(T, z) + B(T, z) - Xo) exp(a(T, z) + B(T, z) - Xo)
with initial conditions A(0,z) = 0, B(0,z) = b. Provided we can interchange differentiation

and expectation in

dpola +zb,X;,£,T) _d T (a+zb)- Xt
= = EEE exp —ft r(Xs)ds | e

viewing 1 as a function of two variables z and ¢, we get

.

da(T — t,2) N IB(T —t,2)
oz Jz

X = A(T-t,2)+ B(T-t,2)- X;

for all t and X;, so we conclude da(t, z)/dz = Alt, z), dB(t, z)/dz = B(t, z). One condition that
justifies the interchange of differentiation and integration is the finiteness of 1y for some
interval z € (—/,]) containing 0 as an interior point. This can be proved by the Dominated

Convergence Theorem and the Mean Value Theorem; see, e.g., page 43 of Shreve (2004). By
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repeating the same argument, one can calculate the k-th partial derivative of v, /92",
by interchanging the order of differentiation and integration without changing the interval
in which J*y/dzF becomes finite.

Through this line of reasoning, we arrive at Theorem 5.2.2, below, and the following

new set of ODEs:

D(t) = K]D(t)+p(t)THiD(t) + LVO(B()D(t) (5.5)
+B(t)THB(t) + 1 B(t) T VZO(B(1))B(t)
C(t) = Ko-D(t) +B(t)"HoD(t) + [oVOB(E)D() (5.6)

+B(t)THoB(t) + IoB(t) " V2O(B(t))B(t)

with a(t), f(t), A(t), B(t), V(6(c)) as before, C(0) = 0, D(0) = 0, and (Vzﬁ(c)i,]-) = (f e“%z;z;dv(z))
the Hessian of 0(c). We also need the following technical conditions, which extend condi-
tions in DPS. The proof of Theorem 5.2.2 is based on showing that a certain process is a

martingale; these conditions are useful in verifying the martingale property.

Definition 5.2.1 (K, H, I, 8, p) is well-behaved at (v, u, T) if ODEs (5.1)—(5.6) are solved uniquely

L if 0 is twice differentiable at p(t) for all t < T, and if the following conditions are satisfied:

T
O B[ [ pOACOM] < oo where y) = (@/(0(8) - 1)+ 20,V0(@)B
0
+\I’tBtTV26(ﬁt)Bt + \p; (Q(ﬁt) — 1) + \I’tVQ(ﬁt)Dt)
T
@) E[( fo () - n(t)dt)” 2] < oo, where n(t) = ({7 +20,B] + Wi + WD )o(X,)

@) E[|or+ W] < oo

Here @;, @}, W;, W] are processes defined in the appendix and f; = (T ~ t), By = B(T — t),
D; = D(T - t) for notational convenience. The next theorem is a natural extension of

Theorem 5.2.1 and will play a key role in later sections.

!Conditions that ensure this are presented in Duffie et al. (2003) in a more general framework.
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Theorem 5.2.2 Suppose (K, H, 1, 0, p) is well-behaved at (v,u, T). Then

Yo(v,u, Xy, t, T)

1l

T
E [exp (— f r(Xs)ds) (v- X7)2e" T | 7—‘,}
t
lpo(ur X:‘/ £ ’T)

X((A(T = )+ BT =) X)) + (C(T =) + D(T 1) X))

il

wherev € R*, u € C", t < T, the process X has the characteristic (K, H,1, 6, p).
Proof See the appendix. ||

Again assuming that we can interchange the order of differentiation and expectation
(for example, supposing | g |< co for all z € (-1, ]) for some I and treating 1 as a function

of z and t), we have

P b, Xi,t, T !
LD fexp(- [ o))
t
= ynba+zbX,t,T)
and from this we conclude
d*a(t, z) PB(t, z)
P = C(t,2), 572 = D(,z).

These transforms can be continued as long as we are working with a sufficiently well
behaved AJD process. Indeed, it is easy to find a pattern in the related ODEs. From the
relationships above between «, , A, B, C and D and the corresponding ODEs (5.1)—(5.6),
we observe that if we have a set of ODEs for the k-th derivative of {, then we get a new set
of ODEs for the (k + 1)-th derivative just by differentiating the previous ODEs with respect

to the variable z.2 For a rigorous proof we would need to define suitable processes as in

2This leads us to conjecture the functional form of E[exp(— ftT r(Xs)ds)(b - X7)Nel+# X7 | 7] should be

N! d ? i
(@ + 25, X, t,T) [ | (7"‘,.0 b Tt Xt)
1,y k=N Mg - N Jimj#0 oz Jioz

from the Faa di Bruno’s formula and the ODEs satisfied by d/a/dz/, d/8/dz/ can be derived by applying the
same formula to the ODEs (5.1), (5.2).



CHAPTER 5. SADDLEPOINT APPROXIMATIONS 129

Theorem 5.2.2 and give some extended conditions to make the Brownian part and the jump

part martingales. We write the next set of ODEs for later use.

Theorem 5.2.3 Under the conditions in the appendix we have

1#3(‘01 u, Xtr tr T)

il

T
]E[exp(— f r(Xs)ds) (v - Xr)Pe T
t

= 1#0(”1 Xl/ t/ T)

7)

X((A(T = t) + B(T = t) - Xi)* + 3(A(T — 1) + B(T — ) - X))

X(C(T = t) + D(T = t) - X;) + (E(T = ) + F(T — ) - Xy))

wherev € R", u € C", t < T, the process X has the characteristic (K, H,1,0, p) and

F(t) = K{F(t)+ B(t) HiF(t) + L VO(B())F(t)
+3B(t)TH1D(t) + 3L B(t) T V*B(B(1)D(t) + Iy f PO BH)) dv(z)  (5.7)
Rn
E(t) = Ko-F(t)+ ()T HoF(t) + IgVO(B(H)E(E)

+3B(t)T HoD(t) + 31B(t) TV20(B(£))D(t) + Iy f POz B(1))’dv(z)  (5.8)
]RII

with a(t), B(t), A(t), B(t), C(t), D(t), V(6(c)), VX(O(c)) as before, and E(0) = 0, F(0) = 0.

Proof See the appendix. |}

5.3 Saddlepoint Approximation and Option Pricing

5.3.1 Option Pricing
When we price options with the log of underlying asset following an AJD process, S; = et X

the basic building block is

T
Gap(y; Xo, T) =E [GXP (— f r(Xs)dS) ¢ 'XT1:b~szyl]
0
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so that, as shown in DPS, a European call option price, for example, can be calculated as

follows:

T
C(T,c) = E[exp (—f r(Xs)ds) (e —c)*]
0

T
E [exp (~ f r(Xs)ds) (ed'XT = O)1{g.x;>In c)]
0

= Gg-a(=Inc;Xo, T) — ¢ Go4(~Inc; X, T).

Il

To facilitate the application of saddlepoint approximations, we will express this as a
difference of two probabilities, after some possible scaling and change of measure. This will
reduce the calculation of the option price to the task of calculating those probabilities. To
this end, first suppose the characteristic (K, H, 1, 6, p) of the AJD process X is well-behaved
at (b,a, T). Then there exist &(t), f(t) solving the ODEs (5.1), (5.2) in Theorem 5.2.1 with the
boundary conditions @(0) = 0, f(0) = a. On the other hand, it is easy to show, as noted in

DPS, that
t ~
Er=exp (— f T’(Xs)ds) AT-DHBT-D-X,
0

is a positive martingale, using It6’s formula and (5.1), (5.2). So an equivalent probability
measure Q given by dQ/dP = £r/&p is well defined. Also note that from the definition of
g in Section 2, Yo(a, Xo,0,T) = Elexp(— jE)T r(X,)ds)e**7] = &. Thus the random variable

Y := b - X; has a moment generating function under Q given by

T
e = EQ [eZY] = lIE [exp (— f r(Xs)dS) e(uﬂb)'XT]
&o 0
Po(a +zb, Xo,0,T)
Yo(a, Xo,0,T)

= exp (a(T, z)—a(T,0) + (B(T,2z) - B(T,0)) - XO)

where a(t, z), B(t, z) denote the solutions of (5.1), (5.2) with a(0,z) = 0, (0, z) = a + zb so that
a(t) = a(t,0), () = B(t,0).
The CGF of Y is K(z) under Q. Unless Y is a constant almost surely, Y has a positive

variance and so K(z) is strictly convex in z. Proposition 5 in DPS implies that X is again an
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AJD process under @ with the characteristic (K<, H, 14, 69) where

KS(t) = Ko + Ho(T — 1),  K2(t) = Ky + Hif(T — 1),
19(t) = bOBT - 1), 12() = LOBT - 1)),

0%c, ) = B(c + B(T - 1))/ OB(T — 1)).

Finally we note that G, ,(y; Xo, T) = Elexp(- fOT r(Xs)ds)e‘"XTl{b.XTgy;] = £QY < y). So the
option-pricing problem is reduced to the calculation of the cumulative distribution function
(CDF) Q(Y < y) or its complement Q(Y > y).

In the AJD setting, this tail probability can be represented through the Fourier inversion
formula, ‘

QY >y)= Ej'c_z f;:o e(mz)‘zy)i—z, 7>03

Numerical calculation of this integral requires evaluation of the integrand at hundreds or
thousands of points. Unless K(z) is available in closed form, we would need to solve the
ODEs (5.1), (5.2) numerically at each evaluation point. This computational burden limits
the scope of AJD models amenable to practical application and motivates our investigation

of approximations. In the next subsection, we review the saddlepoint method and explain

how we apply this method to option pricing in AJD models.

Remark For European call options, a simpler calculation is possible. To simplify the
measure transform, suppose the short rate is a constant . Then the option price is given

by

C(T, ¢)

Il

E [e“’T(ST - c)*]

I

e‘rT{]EeXT —-E [eXT A c]}

= e"T{eml) —cPXr+Y> h1c)}

where St = €£7, Y is exponentially distributed with unit mean, independent of X7, and

3This can be shown using the Plancherel Theorem and the Dominated Convergence Theorem (see the
appendix of Rogers and Zane (1999)).
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eX@ = E[e?XT]. So

E[ez(xT+Y)] _ Ko 1 xmmas g
1-z ’ ’

This means we need to calculate only one tail probability. If we want to use the Fourier
inversion formula, this reduces the workload by almost a half. A similar but different use
of exponential density functions was made in Butler and Wood (2004) to approximate the

moment generating functions of truncated random variables.

5.3.2 Saddlepoint Approximation

Daniels (1954) introduced the saddlepoint method to statistics in order to approximate the
probability density function (PDF) of the mean of i.i.d. random variables X;’s. Assuming

we know the CGF K(z) where ¢X®@ = E[¢?*1], the PDF f,(x) of X = ¥} X;/n is given by

T+i00
falx) = _n._f MK@-2)g,  for any 7 € {x € R : [K{(x)] < oo}.

2711 T—ico

Daniels (1954) used the method of steepest descent to expand this contour integral. The
saddlepoint Z is defined by the saddlepoint equation K”’(2) = x; the modulus of the inte-
grand is minimized along the real axis at Z and maximized at Z along the contour parallel
to the imaginary axis passing through Z. So, the region outside a neighborhood of the
saddlepoint contributes little to the integration, and we get Daniels” formula through a
Taylor expansion of the exponent K(z) — zx around 2. (The method of steepest descent is
explained in Chapter 7 of Bleistein and Handelsman (1975).)

Lugannani and Rice (1980) approximated tail probabilities rather than densities. The

following form of the Lugannani-Rice (LR) formula can be found in Daniels (1987):
- _ . | b b _
PX > %) = 1 — D(Vnd) + p( Vib) {F?_Z + n—3j—2 +o(n 3/2)} (5.9)

where by = 1/4-1/, by = (Aa/8-512/24)/01~A3/(20%)-1/0°+1/0° and b = sgn(2) 22y — K(2)),
0= 2~K"(Z), A3 = KOE) K22, A = KBO(2)/K” (2)*2. When X = E[X;] = K’(0), the
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formula reduces to
A3(0)
6V2n

P(X > K'(0)) = + O %/?). (5.10)

N =
=

Here @, ¢ are the CDF and the PDF of the standard normal distribution, respectively. We
will use this formula with # = 1 and by in test cases. The accuracy of the approximation
(5.9) for small n depends on the proximity of the underlying distribution to the normal
distribution. Wood et al. (1993) study the saddlepoint approximation with a non-normal
distribution replacing @ and ¢ for a better approximation. We will test such a variant
with a stochastic volatility jump-diffusion model using a gamma distribution as the base
distribution in the approximation.

To apply the LR formula (5.9), we need to find the solution 2 of the saddlepoint equation
K'(z) = y for some given real number y and compute K(2) and its derivatives. In an AJD

setting, from Section 2 we have

K(z) = a(T,z) — (T, 0) + (B(T, z) = B(T, 0)) - Xo
K'(z) = A(T,z) + B(T, z) - Xo

K'(zy = C(T,z) + D(T,z) - Xo, etc.,

and these functions can be evaluated by solving a set of ODEs, the size of which depends
on the order of derivatives one wants to compute. Once £ is found, each system of ODEs
need only be solved once. The total number of ODE solutions required depends on
the approximation chosen through the number of derivatives of K(£) used. In contrast,
numerical inversion of the characteristic function requires the solution of ODEs (5.1), (5.2)
for each evaluation point in the numerical integration. Finding 2 is therefore critical to the
method.

Under rather mild conditions, the saddlepoint equation K”’(z) = y has a unique root.

We will, in particular, impose the following two conditions on the AJD process X, option
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maturity T and real vectors a, b.
Assumption 1 There exists an | > 0 such that ipg(a + zb, Xo, 0, T)| < oo for all z € (-1, 1).

Assumption 2 The CGF K(z) of b - Xy is strictly convex and steep at the boundary of
D={zeR:|K(2)} < oo}.

Unless b - X7 is constant almost surely, K(z) is strictly convex and the convexity of K(z)
implies that D is an interval. Steepness means lim,_,; K’(z) = —c0 and lim;_,, K’ (z) = oo
where v = infD and u = sup D (see Barndorff-Nielsen (1978) for more details). These
assumptions are conditions on the tails of the random variable b- X7. Assumption 1 allows
us to interchange the order of differentiation and integration as discussed in Section 2.
Assumption 2 ensures the existence of a unique solution of the saddlepoint equation for

any given y € R and is not restrictive in practice.

Remark Although we focus on AJD models, the same approximations can be applied to
quadratic term structure models (see, e.g., Leippold and Wu (2002) or Cheng and Scaillet
(2002)) where extended transforms are again given by systems of ODEs. We also note that
such systems of equations can be derived by re-writing quadratic term structure models as

AJD models as observed in Cheng and Scaillet (2002), Proposition 3.

5.3.3 Approximating the Saddlepoint

As already noted, solving the saddlepoint equation is a key step in applying the saddlepoint
method. Numerical solution of the equation might require many iterations, each iteration
requiring evaluation of the derivative of the CGFE. This could be problematic in high-
dimensional models without a closed-form CGF. The approximations to the saddlepoint Z
discussed in this section address this difficulty.

Several authors have addressed the problem of analytically intractable CGFs. Easton

and Ronchetti (1986) approximate K (z) by

- 1 1 1
K(z) = uz + —2-0222 + €K3z3 + —ZZK4Z4
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using the first four cumulants, and use z for which K'(z) = y instead of the true saddlepoint
2. This approximate saddlepoint equation for % might have multiple roots, so Wang (1992)
modifies this method and uses

- 1 1 1
K(zb) = uz + 50222 + (6K323 + 5410124)81:(2)

where g,(z) = exp(—kb?z?/2) with a properly chosen constant b > 0.
Starting from a Taylor expansion of K”(z) around z = 0, Lieberman (1994) presents a
series reversion of the saddlepoint equation K”(2) = y as a power series in (y — 1) /o%. When

expanded to third order, this yields

o2 202\ o2 20% 602 o2

23:y—u_£(y—u)2+(’<§_ﬂ)(y‘“f (5.11)

as an approximation to the exact saddlepoint 2. Here, (y ~ u)/0? is the first iteration
of a Newton-Raphson algorithm starting from zp = 0. Lieberman (1994) then derives a
saddlepoint approximation based on 23. With 613 = 23 4/nK"(23), Az = KO (23)/ K" (23)°/2,

Ag = KB(23)/ K" (23)*? and H(x) = 1j350} + 510}, Lieberman’s approximation is

1Y)
P(X >y) = H(-03)+exp (n(v((zg,) — y2a) + 323)

. A Aty 1(Ad0)  A305
X[(H(U'g,) — O(03)) (1 - 6V + e + > (5.12)
A3(@2—1) 1 (Aa(@3—03) 05— 03+ 303
A _ = AZ 3 3 -3/2 .
+¢(v3)[ ovr ” T =5 ](1 +O(n ))

We will test this idea of an approximate saddlepoint. We will see that Lieberman’s
method is not uniformly accurate over a large range of strikes because the error in Lieber-
man’s approximate saddlepoint, 23 which is an expansion in terms of (y — u)/0?, becomes
large as v increases.

We propose an improvement that proceeds one more step. We expand K”(z) around
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z = £3 (rather than z = 0) to third order to get

L YK ) K () (y - 7<'<23>)2 . ( KOE)  K(z) ) (y — K (%)

3
K@) 2K7Ga)\ K@) ) \2K7@e | K7 )\ K )‘(5‘13’

Note that (5.13) reduces to (5.11) if Z3 is replaced by zero. Evaluation of Z3 uses the same
set of ODEs which are used to get 23; we do not need higher order derivatives of K (z) or
any extra set of ODEs for (5.13). To evaluate (5.13), we solve one set of ODEs associated
with K (z) through KD(z) twice to get 23, and then solve the same set of ODEs to get Z3.
In our numerical tests, we will test the effectiveness of using the approximate saddle-
points 23 and Z3 in the LR formula (5.9) in place of the exact value 2. The approximations 23
and Z3 can also be used to initialize the root-finding procedure to solve for £, and we will

test this idea with 23.

5.4 A Dual PDE and Approximate Saddlepoint Method

In this section, we show that the problem of solving the saddlepoint equation can be
transformed from a root-finding problem into a matter of a function evaluation through a

duality relation.
Recall K(z) = (T, z) — a(T,0) + (B(T, z) — B(T, 0)) - Xo with a(0,z) = 0, $(0,z) = a + zb. Let
us express the ODEs (5.1)-(5.4) as

J J
=y (t/ Z) = L‘B(ﬁ)/ %(X(t, Z) = La(,B)/ 'a_tB(t/ Z) = LB(B/ ,B)/ ng(t/ Z) = LA(B/ ,B)

where L. is the operator corresponding to each function; for example, Lg(x) = —p1 + K{ x +

x"Hqx/2 + 1;(6(x) — 1). Now define
Ht,x,2) = alt, 2) + B¢, z) - x
so that ]E[e_ ftT rsdse(ﬂ+zb)'XT | Fr, Xy =x] = ea(T—t,z)+ﬁ(T~t,z)‘x — pH(T—1x,2) implies

H(T, Xo,z) = K(z) + a(T,0) + (T, 0) - X.
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The function H(t, x, z) is convex in z, and strictly convex as long as b - X; is not constant
almost surely. This allows us to apply a technique developed by Jonsson and Sircar (2002)

in their analysis of a partial hedging strategy. We define the convex dual
H*(t,x,y) == suplyz — H(t, x,z)}.
z

The supremum should be understood to be taken over the set D(t) = {z € R : |H(t,x,2)] <
oo}. (Indeed, a(t,z) and fS(t,z) can take infinite values, as illustrated by Andersen and
Piterbarg 2007.) Note that D(t) is defined analogously to D in Assumption 2. We similarly
define v(t) = inf D(t) and u(t) = sup D(t). The next proposition tells us that under this
assumption the solution of the saddlepoint equation 2 is actually a partial derivative of

H*(t,x, y) and that H", 2 jointly satisfy some PDEs.

Proposition 5.4.1 Suppose Assumption 1 holds, and suppose that Assumption 2 holds for all
t €(0,T). Then H*(t, x, y) for (t, x, y) € (0, TIXR"XR can be expressed as H*(t, x, y) = yz(t, x, y)—
H(t, x, 2(t, x, y)) where 2(t, x, y) is the unique solution of (0Hdz)(t,x,z) = y for each (t,x, y). In
addition, 2(t, x, y) is a continuously differentiable function with (9H" [dy)(t, x, y) = 2(t, x, y) and

%{‘ = ~La(-~VxH") = Ly(~VH") - %, (.14)
%% = ~La(=Vi2, Vi H") — Lg(=Vi2, -V H*) - x. (5.15)

Proof Consider a function I'(t, x, y,z) := (dH /9z)(t, x, z) — y. By the steepness of K(z) and
the relation H(T, Xo,z) = K(z) + a(T,0) + B(T, 0)- Xp, I'(to, X0, yo,2z) = 0 has a unique solution
2 for each (ty, xo, yo) € (0, T] x R" x R. If (dT'/dz)(to, x0, Yo, 2) # O, then the Implicit Function
Theorem implies that we can find a small neighborhood B of (tg, x9, o) and a unique con-
tinuously differentiable function 2(f, x, y) such that Z(tg, x0, yo) = Zand I'(t,x, v, 2(t, x, y)) = 0
for all (t,x,y) € B. By patching these neighborhoods together throughout the domain of
(t, x, y), we confirm the smoothness of 2(t, x, y).

To see why dT'/dz = 9?H [dz* does not vanish, we observe that eHtx2) = B [A] where
A = &b Xz X and the subscript x on the expectation indicates the initial condition

Xo = x. Similarly, (9H /dz)e" = E,[(b- X;)A] and ((8?{/82)2 + 92‘}{/822) e = B [(b- X, )P Al
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Suppose (9?H [9z?)(t, x,z) = 0 for some (¢, x,z). Then by the Cauchy-Schwarz inequality,

2
(E%t—{) 82(/'{ = ]Ex [(b . Xt)A]Z — ]Ex [(b . Xt)Al/zAl/z]z
2
< B [(b . Xt)zA] E, [A] = (%) o2H

Therefore, (b - Xt)Al/ 2 and AY? should be linearly dependent. However, this implies b - X,
is constant almost surely, which contradicts the assumptions.

From the existence of a unique solution 2 of the saddlepoint equation, we have
W*(tl X, ]/) = yﬁ(t; X, ]/) - (I—{(t/ X, 2(t/ X, }/))

The differentiability of 2(t, x, y) enables us to take its partial derivatives to derive

oH” Yoz dH . OH N
Tt(t/ X, ]/) - ya(t/ X, y) - E—(t/ x/Z) - E_(t/ X, Z)gt_(t/ X, ]/)

Il

oH
— 5 X AL X, Y)) (5.16)

Taking partial derivatives with respect to x and y yields

VoiH (tx,y) = ~VyH(,x, 2 x,y) = —B(t,2), (5.17)
oH* R
E» = Z(t,x,y).

By definition, we have H(t,x,z) = a(t,z) + p(t,z) - x and thus dH /dt = La(B) + Lg(B) - x.
Plugging this into (5.16) and using (5.17), we get (5.14).

Now to derive (5.15) we first recall that da/dz = A, df/dz = B, dA/dz = C, dB/dz = D,
and so (dH /dz)(t, x,2) = A(t, 2) + B(t,2) - x = y. Taking partial derivatives with respect to y,

x and t for both sides of this equation gives

C(t,i)% +(D(t,2) - x)j—j =1, (5.18)
C(t,2)V2 + (D(t,2) - x)Vs2 + B(t,2) = 0, (5.19)
La(B, B) + La(B, B) - x + (C(t,2) + (D(t, ) - N2 =0, (5.20)

ot
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The first equation (5.18) implies d2/dy # 0 and thus C(t,2) + D(t,2) - x = 1/(02/dy). We
combine this with (5.19) and (5.20) to get

Vo2
0z2/0y’

% 2
ﬁiiﬁeiM&m—LmRﬁ%@-

B(t,2) = —

Since L4 and Lp are linear in their first arguments, the last equation is equivalent to (5.15).

The PDEs (5.14), (5.15) help identify 2 (or K(z)) when they are easy to calculate numer-
ically. However, the boundary behavior of H* as t — 0 can be tricky because there is a
possible discontinuity at f = 0. For example, suppose that X is a one-dimensional Lévy
process (within the AJD class) with continuously differentiable characteristic exponent (z)
such that 1(z) = oo outside of (g, b) for some real values a < 0 < b. This particular example
was suggested by one referee to Glasserman and Kim (2008). We further assume that the

risk free interest rate is zero. Then,
E[eXXo = x] = exp (tY(z) +xz), H(t, x,z) = t(z) + xz

and thus D(t) = (a,b), but D(0) = (—0, o). However, this leads to

y—x)

Hitxy) = -0-1e), 2=9 (5

and H*(0,x,y) = oo - 1,4, By sending t to zero, we can see that if y > x, then £ — b. Since

{(z*) becomes positive for 2 sufficiently close to b, we get
limsup H'(t,x,y) < (y - x)b.
tl0
Similarly, if ¥ < x, then Z — a and

Hmsup H (¢, x,y) < (y — x)a.
10
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This discontinuity complicates numerical solution of the PDEs (5.14), (5.15). We can get
around this by advancing time a little bit, say until € > 0. In other words, since F*(e, x, y)
is a finite function, we initiate a numerical scheme from this function to get 2(T, x, ). In the
case of a diffusion process, we approximate H*(e, x, y) by using an Euler approximation
for the diffusion from time 0 to time €. This leads to a quadratic approximation for H and
then a quadratic approximation for #*. We illustrate this in the next example, which deals

with the Heston model.

Example Suppose the dynamics of the underlying process (X, v) € R? are given as follows:

dX; = (r + uvy))dt + o dW}, (5.21)
dvy = (a — bv)dt + o o dW?, (5.22)

where the correlation of the two Brownian motions W}, W2 is p. The characteristics of this

affine diffusion model are

r 0 u
Ko = , Ky = , Hp =0,
a 0 -b
0 0 0
Hin = , Hipp = Hipr = , Hipo =
1 ap o’

As shown in the next section, the SDEs (5.21) and (5.22) include the Heston model as a
special case. With an asset price S; = X and e/t*?2 = E[e200- (X} = exp(a(t,z) +

Bi1(t, z)x + Ba(t, z)v), Proposition 5.4.1 implies

a(]_{* * *
W(t,X,v,y) = Ko VixoyH + (K] VxoyH) - (X,0)
1 AT .
-3 ((V(X,U)W ) HVixnH ) (X,v)
oH* oH* OH* oH*
= r&X +a 3 +(u 3% -b o )v (5.23)

Af(aHY L, FH A (Y’
2\ ox PIX v o ) |”

As discussed above, we use an € approximation to implement a numerical method for
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this PDE. First, we freeze the drift and volatility coefficient during a small time interval
[0, €] (this is the Euler approximation), to get X = Xo + (r + uvg)e + \/ioW.. This then leads

us to

exp (H(e,x,v,2) = E[e™ | (Xo,v0) = (x,9)]

Q

E [exp (zx +z(r+uv)e +z %W&)]

i

1,
exp (zx + z(r + uv)e + 52 Ue).

Finally, we get H(e, x, v, y) = 2y — 2 (x + (r + uv)e) — %22‘06 where Z = (y — x — (r + uv)e)/(ev).
Since we have $1(t,z) = z for this model, we either compute (dH*/dyXT, Xo,vo,y) or
(OH*/dX)(T, Xo, vo, y) where T is the option maturity. We then use this as an approximate
saddlepoint.

Figure 5.1 shows the graphs of this quadratic approximation for H and H" for the
following parameter values: r = 3%, u = =1/2,a = 0.08, b = 2, 0 = 0.2, Xp = log(100),
vp = 0.04 and ¢ = 0.01. The strike K varies from 60 to 140 and Sy = 100. Note that
H(0,Xo,v0,2) = Xo -z and H*(0, Xo,v0,y) = o0 - 1jyzx,). The log-moneyness is defined
by log(K/Sp) = y — log(Sp). The approximation Hy of H captures the true curve well in
the middle, but fails to do so where H explodes. Likewise, the approximation H; of H*
performs well when the strike K is close to Sy, but produces larger errors as it moves away

from Sg.

5.5 Test Cases

In this section we test the performance of saddlepoint approximation technique, for the
Heston model, a stochastic volatility jump-diffusion (SV]) model and the Scott model.

Particularly, we look at the following methods:

LR method equation (5.9) with numerical calculation of the saddlepoint Z
Lieberman method | equation (5.12)
L-LR method equation (5.9) with Z approximated using Z3 in (5.11)

App-LR method equation (5.9) with 2 approximated using 23 in (5.13)

PDE method equation (5.9) with 2 approximated using PDEs (5.14), (5.15)
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Figure 5.1: Graphs of H (e, Xo, v0,2), H*(€, Xo, vo, y) and their quadratic approximations.
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In applying equation (5.9), we exclude b; and higher order terms as their inclusion does
not consistently improve the results. The motivation for testing the last four methods lies
in avoiding potentially time-consuming calculation of Z. All tables can be found at the end

of this chapter.

5.5.1 Heston Model

In the Heston model (Heston 1993), the pricing transforms are available in closed form, so
no approximations are necessary. We use this as a test case for the approximations precisely
because the tractability of the model allows us to compare the approximations with values
computed through transform inversion.

The stock price and the volatility in the Heston model under a risk-neutral measure are

assumed to follow

dS, = rStdt + \/'v_tStthl,

dv; = x(0 — vy)dt + o Vo dW?

where 7 is the constant interest rate and (4 th,d Wtz) is a 2-dimensional Brownian motion
with < dW},dW? >= pdt. We define X; = log S; and apply 1to’s formula to X; to get an AJD
process (X, v) with

dX, = (r - %vt)dt T VoW

and v is as above. See the appendix for the characteristic of this process. The price of a

European call option is then given by

C(T,0)=E[e""(Sr—0)'| = $oQ(Xr > Inc) - c e""P(Xr > Inc),

—rT XT

where Q is defined by the measure transform dQ/dP = ¢~"Te*r~%o_ which corresponds to

taking St as numeraire asset. The dynamics of (X, v) can be written as

dX; = (r + v:/2)dt + oW,

dv; = (k0 — (x — pa)or)dt + o oAW>S,
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where W€ and W2 are standard Brownian motions under @ with correlation parameter
p. The CGF of Xy under P is defined by eX® = E[¢**T] = exp(a(T) + B(T) - (X0, v)) where
B(0) = (z,0), (0) = 0. Through Heston (1993), we have an explicit solution for the CGF of

Xt given by

K(z) = C + Dvy + zXy

x0 1-gel’
C:TZT+§{(K—pO'Z+d)T—21n[ 1 ]}

Do k—poz+d[1—el
02 1— gedl
K —poz-+d
g—.————_.__

~1<—poz—d

d= \/(paz - k)2 — 02(~z + 22).

Again the idea is that when this kind of analytic solution is not available, we use the
associated ODEs to find the saddlepoint and apply the saddlepoint method. How many
calculations does this require? Let us suppose, for simplicity, that the computation times
in solving ODEs for (a, ), (A, B) or (C, D) are approximately the same, say 7. Although
the dimensions of the ODEs will grow exponentially as we differentiate repeatedly, we
are interested in ODEs associated with K) for j = 4 at most. Also some special structure
of the models helps to simplify the equations. For example, Bi(t) = 1, Dy(t) = Fi(t) =
Hi(t) = 0 in the Heston model. With the assumption of constant 7, we can compare
the computational loads of different saddlepoint approximations. The computing time
to approximate G,(y; Xo, T) = £oQ(Y < y) using the LR method is about 7 + 2k7 + 37,
where k is the number of iterations to solve the saddlepoint equation numerically. Here
the first term is for eX© = &; and the last term is for K(2), K”(2). On the other hand,
the time needed to apply the Lieberman method is then about 57 + 57 because we have to
find K(0), ..., K®(0) and evaluate K(2), . .., K®(23), while the L-LR method would require
approximately 57 + 37 because we evaluate only up to ‘K”’(23). The time for the App-LR
method is 101 + 37. In each case, the most time-consuming step is getting an accurate or
approximate saddlepoint, and the computational load of this step determines the efficiency

of the approximation. It will become clear in our examples that the cost of this step depends
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60 70 80 90 100 110 120 130 140

48 45 42 36 20 35 39 43 45
3 9 7 7 5 6 8 12 15

Table 5.1: Average number of function evaluations in the numerical solution of the
saddlepoint equation in the Heston model, by strike price. The first row corresponds to
initializing the root-finding procedure at zero; the second row corresponds to starting at

Lieberman’s approximate saddlepoint.

on option moneyness and maturity.

Numerical Results

The LR method. The initial asset price Sy is set equal to 100, the strike c varies from 60 to
140 and the option maturity T is in the range df 0.1 to 2 years. Other parameters are given
by Sg =100, vg = 4%, k =2, 0 = 4%, 0 = 0.2, p = 20%, v = 3%. We solve the saddlepoint
equation numerically by using the fzero function in MATLAB (which uses a bisection
and interpolation algorithm) and solving the ODEs (5.1)-(5.4) at each iteration. Table 5.1
shows the average number of iterations in this step for each strike. Initializing fzero at the
approximate saddlepoint 23 in (5.11) reduces the number of iterations by 66%-84%. Table
5.5 shows the relative errors of the LR method with respect to the accurate prices shown in
the upper half.* The relative errors are less than 0.1% over the whole range considered.
The Lieberman Method and the L-LR method. Tables 5.6 and 5.7 show the relative errors
of the Lieberman method and the L-LR method, respectively. As mentioned earlier, the
approximate saddlepoint 23 incurs large errors as y (log of strike) moves away from the
mean y. So the Lieberman method works best for at-the-money (ATM) options while the -
LR method yields the smallest errors for deep in-the-money (ITM) calls. Also, we find that
relative errors are enormous in the upper right part of the tables, but the out-of-the-money
(OTM) call prices in that section are very small, so even small absolute errors become very

large relative errors.

The App-LR method. In Table 5.8, we use the App-LR method. This method solves the

4The analytic prices in Table 5.4 for the Heston model and the SVJ model are produced using the program
SecPrcV2.7 by Mark Broadie, Ozgur Kaya and Guy Shahar. They employed a modified trapezoidal-type
routine for transform inversion. We thank Mark Broadie for providing us with a copy of this program.
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ODEs for da/ /97, aﬁj )97, j=0,...,4 one more time, but it reduces the relative errors a
lot compared to the Lieberman method and the L-LR method. An important advantage of
this method is that, while keeping the errors small, we solve the ODEs a fixed number of
times. Using a root-finding iteration like fzero requires solving ODEs an unpredictable
number of times.

In light of the greater accuracy of the App-LR method compared with the Lieberman
method and the L-LR method, in the subsequent examples we restrict attention to the LR
method and the App-LR method.

Dependence of Approximation on Saddlepoint. The results above have the implication that
the accuracy of saddlepoint approximations largely depends on how well we approximate
the saddlepoint itself. To illustrate this more clearly, we display the shapes of the curves
K (z) and K’(z) in Figure 5.2.° The shape of K”(z) looks approximately cubic. This suggests
the following approach: solve ODEs (5.1)-(5.4) for some fixed values of z and for a fixed
maturity, and apply a cubic spline interpolation to get an approximation for K(z).° The
results are reported in Table 5.9. In most cases, the relative errors are close to the values
from the LR method in Table 5.5 except in the upper right section of the table where we
have small option prices. However, this approximation has an exceptionally large relative
error at T = 1.9, ¢ = 110. This again shows the importance of accurate evaluation of the
saddlepoint. Any user who wants to adopt this approach should be very careful regarding
this matter. One advantage of this spline approach is, first, the time for computation is
relatively small (in the example, it resolves ODEs (5.1)~(5.4) 30 times for each maturity)
and, second, a single approximation can be used for options with the same maturity but
different strikes.

The PDE method. We also test the idea of an approximate saddlepoint in Section 5.4.
Because of the non-linearity of the PDE (5.23), we use an explicit finite difference method
to solve it numerically. Table 5.10 reports results for this PDE method. Relative errors are
small for ITM calls (c = 60, 70, 80) with values less than 2%. But they become close to 8%

for ¢ = 90 and 100% for ¢ = 100. This poor performance arises in part because we set the

5The graph of K (z) shows the moment generating function explodes around 20 + € and —25 — €.
binterpl in MATLAB
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Figure 5.2: Graphs of K(z) and K’(z) with T = 1 in the Heston model

14 -

200

1501

100f

Kiz)
K@)
»

s0-

~50f

JRY | U H— ST G S L L -6 ST S N TUTUN VRS USIU! UV UPRURON WOV SN WO
-0 -25  -20  -15  -10 -5 [ 5 10 15 20 25 -3 -25 -20 -15  -10 -5 a 5 10 5 20 25

number of time steps 1 equal to 20 and € to be T — 0.02 only. However, if one tries to make
further refinements, increasing » or decreasing €, then function values tend to explode
easily. It was this instability that led us to restrict the range of strikes and maturities tested
as shown in the table. This method is fast in finding an approximate saddlepoint, but better

numerical methods are necessary to reduce huge relative errors for non-ITM options.

5.5.2 SVJ Model

As in Bates (1996), the asset price and volatility processes in the SV] model under a risk-

neutral measure P are as follows:

ds
5;5 = (r — Akt + o dW} + (En,. = 1)dN},

dv; = (0 — v})dt + 0 odW?

where N is a Poisson process with rate A and the &;’s are i.i.d. lognormal random variables
with mean y; and variance a?. Since {¢7"'S;} is a martingale under the risk-neutral measure,
this condition gives the relation k = et oj/2 _ 1. Also, W! and W2 are standard Brownian
motions with correlation parameter p as in the Heston model. We define X; = log5; as

usual and then It6’s formula yields

dX; = (r — Ak — 0/2)dt + o, dW} + n,_dNy,
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60 70 80 90 100 110 120 130 140

47 43 41 35 18 35 40 43 44
27 16 9 7 6 6 6 7 8

Table 5.2: Average number of function evaluations used in the numerical solution of the
saddlepoint equation for each strike in the SVJ model. The first row initiates the
root-finding at zero and the second row initiates it at Lieberman’s approximate

saddlepoint.

where n; ~ N(uj, 0%). The characteristic of this AJD process (X, v) is given in the appendix.
Its CGF K(z) under P is defined by XK@ = E[e#X7].

A European call option price is, with a new probability measure Q defined by dQ/dP =
Xr=K()

CT,0) = e X0y > Inc)— c P(Xr > Inc)}.

And e%o@ = ER[pxXr] = K1+2)=K1) Ko(z) denoting the CGF of X7 under Q. From this

relation between Kp(z) and K(z), the solution Z of 7((’2(2) = yisgivenbyZ—-1with K'(2) = v.

Numerical Results

The LR method. As in Section 5.1.1, we test the LR method and compare the results with
analytical option prices. Table 5.2 shows the effectiveness of using the approximate saddle-
point 23 in (5.11) as a starting point for the root-finding routine for the saddlepoint equation.
The average number of function evaluations for each strike is reduced considerably, as we
noted in the Heston model. We use the parameters r = 3%, x = 2, 0 = 4% (long run mean
volatility = 20%), vy = 4% (initial volatility = 20%), 0 = 20%, p = —20%, uj = —3%, 0; = 2%,
A = 100%, Sp = 100. Table 5.11 present the true option prices. Table 5.12 shows that the
relative errors of the LR method are less than 0.4% in the whole region.

The App-LR method. With the same parameters, the App-LR method produces small
relative errors close to those of Table 5.12, as reported in Table 5.13, except the one fairly
extreme case of T = 0.1 and ¢ = 60. The reason that the method fails for this case is that
the approximate saddlepoint, 23 = 23.9788, from (5.11) is too far from the true saddlepoint,

2 = —64.4843, resulting in the huge error of the modified approximate saddlepoint, Z3 =
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Figure 5.3: Graphs of yz — K(z), y — K’(z) where y = Inc, T = 0.1, ¢ = 60 in the SV] model
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63.4224, from (5.13). In fact, this error makes @ in the LR formula (5.9) imaginary. More
precisely, Zy — K{(2) becomes negative, as illustrated in Figure 5.3. (One could address this
problem by checking if 2y — K (Z) is positive and reverting to a root-finding iteration if it is
not.) This indicates the potential limitation of the application of the App-LR method when
a call option is deep ITM with a short maturity. We will see a similar pattern in the Scott
model.

Sensitivity of Approximation. With the option strike 100, T = 0.1 and ¢ = 100, the effects
of A, u;, and oy are shown in Figures 5.4, 5.5 and 5.6. As the jump arrival rate A increases
from 0 to 200%, relative errors increase linearly up to 0.085%. As the mean of the jump size
Y decreases from 0 to ~20%, relative errors make a smooth curve with a peak of 1.4% at
gy = —16%. The volatility of the jump size has the biggest effect, making the relative error
more than 10% as o) grows.” However, empirical values found in the literature stay small
enough for the LR method to produce small relative errors. More specifically, as Broadie
et al. (2007) summarize in their paper, Eraker et al. (2003), Andersen et al. (2002), Chernov
et al. (2003) and Eraker (2004) report 4.07%, 1.95%, 0.7% and 6.63% for o}, respectively.
Broadie et al. (2007) report g between 9% and 10% when a risk premium for oy is assumed

to exist.

“Figure 5.6 shows the relative errors grow as o; becomes larger. Numerical values are obtained from (5.9)
with n = 1 and by only or (5.10) if 2 is close to zero (in our case, (5.10) is used if Z < 107%). Indeed, when
07 = 14%, we have 2 = 4.38 x 107° and (5.9) yields a 184.86% relative error while (5.10) gives a relative error of
6.97%.
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Figure 5.4: Effect of the jump arrival rate in the SV] Model

Figure 5.5:
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Nonnormal-based Approximation. The added skewness due to the jump component in
the SVJ model makes the saddlepoint approximation using a gamma distribution for the
base distribution attractive. We test this method for two strikes in Table 5.14.8 The gamma-
based approximation is better for ¢ = 90, but not for ¢ = 100. This result reasserts the
conclusion of Wood et al. (1993), “...any gains are likely to be small when the normal-

based approximation does well.”

5.5.3 Scott Model

As the last test case, we apply the methods to the jump-diffusion model with stochastic
volatility and stochastic interest rates in Scott (1997). Under a risk-neutral measure P, the

dynamics of the state variables are given by

dX; = (r — Ak —o%y; [2)dt + 0 \/y_}dwt + 1, ANy,
dy} = 1(1(91 - y})dt + 0q \/-]/?dwl,

dytz = 12(07 — y%)dt + 09 Jy?dW?

where W;, W}, W2 are Brownian motions with < dWy,dW] >= pdt, < dW;, dW? >= 0,
o=yl 2,0 Ny, 07) and k = ¢"I*?1/2 _ 1. The stock price S; is exp(X}).

The characteristics for this model are given in the appendix. A function K(z) is defined
by eX@ = E[e” f s ¢?X7]. Note that K(z) is not the CGF of X7 under P. The European call
option price is

(T, ¢) = eXVQy (X7 > Inc) — ¢ eXOQ, (X7 > Inc),

T
where the probability measures Q;, i = 1,2, are defined by dQ; /dP = e~ b sgXr=K(1) and
T ds—
AQ,/dP = e b s=KO) 5o that

Ko, @ _ g [eZXT] = KO=K(W) Ko, — gQ2 [eZXT] = K@-K©O

8The PDF of a gamma distribution Gamma(k, 6) is expressed as f(x, k, 6) = x*"1e~®/9 /(T (k)6*) for x > 0, the
shape parameter k and the scale parameter 6. We use a chi-square distribution x*(v) of which PDF is that of
Gamma(v/2,2) where v is the degree of freedom. In Table 5.14, v is set equal to 4. Other values for v have
similar results.
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60 70 80 90 100 110 120 130 140

47 45 43 38 29 34 42 43 46
21 17 10 7 7 5 7 8 10

Table 5.3: Average number of function evaluations used in the numerical solution of the
saddlepoint equation for each strike in the Scott model. The first row initiates the
root-finding at zero and the second row initiates it at Lieberman’s approximate
saddlepoint.

and Ko, is the CGF of Xt under Q;. The saddlepoint equation is given by 7((’2l ) =
K'(1+Z2) =y for Q; and Wéz(i) = K'(2) = y for . So implementing the LR method
requires solving K’(z) = y only.

There are two ways to use the App-LR method. One is to use this method for each of
Qi(Xr > In¢), i = 1,2, trying to approximate the corresponding saddlepoints separately.
The other is to set the approximation of Z equal to the approximation of Z minus one, based
on the relation Z = 2 - 1. Using this consistent approximation requires solving half as many
ODEs. In more detail, the first method solves the ODEs for da//dz/, 8,Bj /7], i=0,...,4,
four times to get two approximate saddlepoints Z and Z, while the latter one solves the same
ODE:s just twice. In our tests, the second method produces smaller errors, particularly at

short maturities.

Numerical Results

The LR method. We use the same range of parameters for maturity and strike. Additional
parameters are set as follows: Sg = 100, y(l) =061 =3%, yg =0,=2%,xk1=5,x=04,06=1,
01=023,00=01,p = —26%, yj = —4%, 07 = 1%, A = 100%. The analytical values in Table
5.15 were computed using Fourier inversion, using the quad function in MATLAB with a
large interval for the numerical integration. Different integration intervals give different
values, but we find the errors to be very small. Again in Table 5.3, we find that initiating
fzero at the approximate saddlepoint 23 in (5.11) helps to reduce the computation time for
solving the saddlepoint equation, and in Table 5.16 we observe small relative errors (less
than 0.1% in most cases) for the LR method with respect to the analytical valuation.

The App-LR method. Table 5.17 shows results of the App-LR method. As noted in
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Section 5.2.1, we see that the method is not applicable to some deep ITM calls with short
maturities. There are also two big errors in the upper right part of the table that do not
have counterparts in the SVJ model. These errors, however, disappear when we use the
second implementation, setting the approximation of Z equal to the approximation of 2
minus one. We find that this method dominates the first method throughout the whole
region considered. See Table 5.18. Even though this second method still cannot be applied

to some deep ITM calls with short maturities, it produces relative errors very close to those

of the LR method.

5.6 Conclusion

When a closed-form solution for the characteristic function in an affine jump-diffusion
model is not available, transform inversion combining numerical integration with hun-
dreds or thousands of ODE solutions can be very time consuming. We have seen that
saddlepoint approximations can be an effective alternative computational tool for calculat-
ing prices in affine jump-diffusion models.

In saddlepoint approximations, we find that accurate calculation of the saddlepoint is
the most critical and often the most challenging task. We can address this issue either by
solving the saddlepoint equation numerically or by obtaining an approximate saddlepoint.

Results in this paper can be summarized as follows:

e The LR method (the Lugannani-Rice formula with a numerical solution of the sad-
dlepoint equation) yields the smallest relative errors, ranging from 0.0% — 0.3% in

most cases for the models considered here.

e Initiating a root-finding iteration at the approximate saddlepoint 23 of Lieberman

substantially reduces the number of iterations.

e The App-LR method (the LR formula with an improved series approximation to the
saddlepoint) gives small relative errors close to those of the LR method. However, it

gives poor results for some deep ITM options with short maturities.
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e For ATM options, the LR method dominates. For OTM or ITM options, the App-LR

method is better, considering speed and accuracy together.

o If speed is of greater concemn than accuracy, then it is best to use the Lieberman

method for ATM options and to use the L-I.R method for ITM options.

In our numerical tests, we have considered a wide range of strikes and maturities.
Empirical work with AJD models generally focuses on a much more limited range, and

this further supports the use of saddlepoint approximations.
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Appendix A

A1 Proofs for Chapter 3

Proof of Lemma 3.4.1 Define x(t) = ®,(u) and y(t) = $;(6u)/9; then

X = Ax+B(x,...,x0),

Ay+6B(y3, ..., v3)

o
i

with x(0) = y(0) = u. It is immediate that ¢ = y? because they satisfy the same linear
ODE with the same initial condition. So, we concentrate on x¥ and y°, for which the

corresponding ODEs are

= AU (x,. ., x0) () +d(t),
7= A+ 0y, ..., ye) + () + 0d(t)
where ¢(t) = A%(t) and d(t) = B°(x2 , ..., x2). Now define

f(x¥) = A%" + (x%, xR

By condition {C2) (see the discussion preceding Lemma 3.4.1), the mapping x” +— AYX" is

quasi-monotone increasing, as is the mapping x” — (x%, ...,x%), and thus also f. Recalling

170
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that B has nonnegative entries and 0 > 1, we get

&~ f(¥) = ct) +d(t)
< O-1)(Y5, ..., y5) +c(t) + Od(t)
= ¥ = f(y")

It now follows from the comparison result (3.25) that x(f) < y{f). |

For the proof of Lemma 3.4.2, we need a preliminary result that limits the crossing of

coordinates of the solution to (3.9).

Lemma A.1.1 For the system (3.9), suppose (¢, u) € Q and let x{t) = ®y(u). Fori, j€{l,...,n},

the set {5 €[0,t] : xi(s) = xj(s)} has only finitely many isolated points.

Proof Asnoted in Section 3.4.1, ®;(u) is analytic in (¢, u) so long as it lies within the domain
of analyticity of f, in (3.9); but this function is analytic in the entire domain. It follows that
xi(s) — x;(s) is analytic in 5. An analytic function can have only a finite number of isolated

zeros on a compact interval. ]

Proof of Lemma 3.4.2 Fix u € R” and let us denote ®:(11) by x(t) to simplify notation. We

,,,,,

zero as (implied by (3.27)), we can find M > 0 such that sup, lx4(t)} < M. The value of M
depends on x%(0). Lemma A.1.1 implies that in any bounded interval [0, {] with x(t) finite,
the set of s at which x;(s) = x(s) is either finite or an interval. Therefore, we can define a

sequence of closed intervals of Ry, {I;}, such that I(u) "R, = U}x’:l I; and
)/(t) = Xj(j), Yt € I?,

for some i(j) € {1,...,m}, where I;? denotes the interior of ;.
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In an interval I° throughout which y(t) = x;(t), we have

" "
y(¢) = )’2+ZAikxk+ Z Bjx: (A1)

k=1 k=m+1
n n

> )/2 + ZA,’k)/ + Z Ajxy
k=1 k=m+1
n n

2 . J— .

2y +ZA1W M;inlf’..,"m Z 1A jel.

k=1 k=m+1

In the first inequality, we used the assumption that A” has non-negative off-diagonal entries

and B¢ > 0. Next, we define a continuous, piecewise differentiable function v by
11
o=Lw), L@):=0*+ ZA,W —K
k=1

whenever y(t) = x;(t), with K = M max; ):Z:nm |Ajl and y(0) = v(0). Then, since y and v
satisfy

y-L) 20~ L),

we get y > v by applying the standard comparison result repeatedly on each interval I;. If
we show that v is bounded below, then y is also bounded below and the statement follows.

To see that v is indeed bounded below, we observe that M can be set large enough to
make L(x) = 0 have two real solutions, ni < né, for each i; in this case 0(t) > 0 or v(t) > n’i

(as is evident in Figure 3.1) when y(t) = x;(t). |

Proof of Lemma 3.4.3 We write x(t) for (1) to simplity notation. Define a piecewise

differentiable function y = max;-1,__ x;, similarly as in the proof of Lemma 3.4.2. We saw

there that we can define a sequence of intervals {I;} until T with y(t) = x;(t) in I‘]?. In an
interval I on which y = x;, y satisfies (A.1). Since the trajectory of x(t) is bounded below
(by Lemma 3.4.2), ¥ — oo. So, at some time ¢y < 1, y(fo) is sufficiently large that the right

side of (A.1) becomes positive for alli = 1,...,m, and then y never decreases. We can then
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divide both sides of (A.1) by y to get

. m n n
b4 X, 1 1
- = ZA,'](—-IS-F‘)/-F —/ Z Al-kxk+— Z Bikx,%
Y k=1 14 ) k=m+1 14 k=m+1
n
< Y Ag+y+M

k=1

on (tg, 7), for some sufficiently large M. Here we have used the factthatx; <y, k€ {1,...,m},
and the nonnegativity of the off-diagonal entries of A”. The existence of M is guaranteed

by the fact that |x| is bounded and y never decreases after ¢y. Then,

T A T m

14 f

—dt < dt + {max Yy Ay +M)(t — o).
jt; y o Y ( ; kZ:{ ik ) 0

However, the left side is infinite, so ft; ydt = oo as well. We can pick a constant C such that

IA?x4(#)] < C for all t > 0; then, since A? 3> 0, we have

T T
f A - x(t)dt > (min Af)f ydt — Ct = o0.
0 ! 0

The system (3.9) can be thought of a system of equations defined in C" by setting
x(t) = Rex(t) + ilmx(t). Based on the analyticity of f,, the solution x(t) also has a nice

analytic property which is used in the proof of Theorem 3.2.1.

Lemma A.1.2 For the system (3.9), suppose (t,u) € . Then we can find an open convex subset

of C", containing the line segment L = {Au € R" : A € [0, 1]}, in which Oy(-) is analytic.

Proof Since ®,(u) is finite, ®;(Au) is finite for all A € [0,1]. This is because, first, ©;(Au) <
A®;(u) by Lemma 3.4.1 (take 6 = 1/A, for A € (0,1]) and, second, it is bounded below by
Lemma 3.4.2.

For each Au € L, there is an open ball By in C" centered at Au in which ®,(-) is analytic,
because of the analyticity of f,. Since L is compact, we can cover L by a finite number of

such balls. We can then find an open convex set LI that contains L and is contained within
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the cover; for example, we can U to be the set of points less than a distance ¢ from L, for

sufficiently small € > 0. Then @,(-) is analyticin U. ||

Proof of Lemma 3.6.1 The proof uses an approach of Getz and Jacobson (1977). We write
the ODE for x” in (3.9) as

m+1
= 0 AT AY B |, xP(0) = u”
2 2
xm xn

Choose any w € R, and let p = min; w;. Multiplying both sides of the ODE by w', we get
W' = x° " diag(w)x® + (wT AV’ + w" A% + x*diag(w” B)xE.

Define b = A’ w/2 and % = x° + diag(w)~'b. Then,

w'x = % diag(w)x — b diag(w) b+ w’ A% + x*diag(w™ B )x*
> px % - b diagw) b + w' A% + x*diag(w” B%)x?
> ﬁ(w%)z BT diag(w) b+ w A + xdiag(w” B, (A2)

Let g(w) = b diag(w)™'b, y = w" % and y(0) = w" %(0).
We want to determine whether there is a real number 0 such that x(s) blowsup ass — ¢t
for the scaled initial condition x(0) = Gu. We divide the rest of the proof into four cases.

Case (i): Suppose u” # 0. From(A.2) we get

y o> l_ufjliyz — g(w) + W' A (A3)
E]pl—zyz — g(w) ~ ClO] - lw" A% - Ju)

with y(0) = Ow™u’ + e'h, using (3.27) in the second inequality. Now choose w so that

w'u? # 0. Define a new function z by setting

2= ﬁf — g(w) - |6IM, (A4)
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with z(0) = y(0) and M = Clw" A| - |u¥]; then y = z on their common interval of existence.

Letn, = \/(g(w) + IQIM)IwIZ/p and 1y = —12, the two equilibria of the ODE (A.4). Because
w € Ry, gw) > 0so 1y # 0. By increasing 6 (if w'u? > 0) or increasing —0 (if w'u? < 0),

we can make z(0) > 12. Then, as in (3.15), z has a finite blow-up time

_ fw)? o z(0) - m
P —m) Bz -

Since we always have y > z, 7 is an upper bound on the blow-up time of y. Moreover, this
upper bound can be made arbitrarily small because 7 | 0 as @ — co or 8 — —oo, depending
on the sign of w' u”. Thus, by taking 0 of sufficiently large magnitude and with the sign of
w' u’, we ensure that x blows up by time ¢.

Case (ii): Next, suppose 1u° = 0 but A°x%(s) is not identically zero, x? having initial
condition ¥(0) = u¥. The solution x*(t) is given by exp(Adt)ud . So, there is some fy < t
for which foto Acexp(Atutds # 0; otherwise, A°x(s) = 0 for all s € [0,t) and this implies
Acx? = 0 because A°x? is analytic. Now consider the scaled initial condition x(0) = Ou,
and let y be the function defined above by y = w'%. Then, the initial condition becomes

y(0) = e"b. Fors < ty, (A.3) yields
y> |_p|_2y2 - gw) + w A% > —g(w) + w  AX,
w

and so

o
y(to) > e'b — g(w)tg + Ow’ f AC exp(A%syuids.
0

The integral in this expression is nonzero, so the last term is nonzero for some w € R7,. On

the other hand, for t > ty, we use

y> I—fgyf’- — ¢(w) - |6IM,

with M as before. We can make y(tp) greater than 1, by increasing 6 or —0. Applying the
same argument we applied to z following (A.4), we conclude that y blows up in time ¢, and

then x does too.
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Case (iii): Suppose that u” = 0 and A°x? = 0, but B°(x2 | /(s),. .., x%(s)) is not identically

zero. We can pick tg < t such that
to
N = f (exp(Afs)u®)T diag(w” BS) exp(As)yu'ds # 0.
0

Now consider x with x(0) = 6u and take y = w'%. Then (A.2) yields

v [—uf?yz — o(w) + wT AX? + ¥ diag(w” B)x?
> —g(w) + xX'diag(w” B)x"

and so y(to) > e"b— g(w)ty + 02N. And we use the following inequality for t > t; (by (A.2)):

P
y> [;U?yz — g(w).

By the argument in Cases (i)—(ii), we conclude that x blows up by time t for sufficiently

large |0).
Case (iv): Suppose u® = 0, Ax? = 0 and Bc(xfnﬂ, ...,x%) = 0. This means that x” is a
solution of
1
=] ¢ [+A%, x%0)=0.
2

This makes x? = 0 and thus

t t
Eexp(20u-Y;) = exp (292 f x(s)Pds + 26 ( f Al -xd(s)ds+xd(t)-yg))
0 0

where x4 is the solution from the original (unscaled) initial condition, x4 (0) = u?. Because
the moment generating function of u - Y; is the exponential of a quadratic function of 0, we

conclude that u - Yy is Gaussian. |}
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A.2 Useful Result for Chapter 4

Lemma A.2.1 Suppose that two real numbers M, c are given satisfying lu?| < M, ¢ < minj_1,_y ;.
Then, there exists a function v(t) such that its dynamics only depends on A, M and v(0) = ¢, and

o(t) is bounded below while Oy j(u) > v(t) for all t € {0, T(u)) and any j€{1,...,m}.

Proof The proof is similar to that of Lemma 3.4.2. Since ®;(u) is analytic in ¢ (also in x;

see p.44 of Lefschetz 1957), a set {s € [0, t] : @ ;(u) = D, j(u)) for fixed i, j has finitely many

define a sequence of closed intervals {I;} such that [0, T(u)) = U]'I jand y(t) = x5 in I‘]?,
interior of I;, for some index 1(j).

If y(t) = x;(f) in I°, we have
n n m n
=y + ) Awit ) Buxg >yt + ) Ay - Cliil max ) |Au
k=1 k=m+1 k=1 =ty S

where we use (4.2) and the assumptions that A” has non-negative off-diagonal entries and

that B > 0. Now define a function v in I° by

m n

S 2

v=0v"+) Apv—-K K=CM max |A il (A.5)
) A max ), 14,

1,..m
k=1 k=m+1

Starting from v(0) = ¢ < y(0), v(t) becomes a well-defined piecewise continuous and
differentiable function such that v(f) < y(t). Let us write I;,’ = (aj, bj). A simple stability

analysis of (A.5) reveals that
— if (A.5) has one or no equilibria, then v(t) increases in I},
— if (A.5) has two equilibria, say ; and 12 but v(a;) ¢ [11, 2], then v(f) does not decrease,
— o(t) decreases only if v(a;) € (11, 772), but then it is bounded below by 7;.

Therefore, v(t) is bounded below and this bound is a function of A, M and c. |
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A.3 Appendix for Chapter 5

Proof of Theorem 5.2.2. We follow the approach used in Theorem 1 in DPS. Throughout the
proof, let us denote a(T — t), (T — t), A(T — t), B(T — t), C(T — t) and D(T — t) by a4, B, Ay,
By, C;, Dy, respectively, for notational convenience. We also write r(X;), u(Xy), o(Xy), A(Xy)

as ry, g, 0y and A;. We use a dot, as in f, to denote a time derivative d f/dt. Next we define

t
W; = exp (—f r(XS)ds) eTrtbirXe
0

and (Dt = \I][(At + Bt . X[) In addition, we set (D; = \yt(At + B[ . Xf)Z and \y; = ‘I’t(Ct + Dt . Xt)
If we show that @} + V] is a martingale, then @] + W} = E[®7. + W7 | ¥] leads to the desired
result.

It6’s formula for jump-diffusion processes (as in Cont and Tankov 2003) yields

. 1
4] = (o &+ iy Xt + (B gt + W) + 5B o) Bt
+2(D[ ((At + Bt . X[)dt + (B[ . tht + B;rO'tdW[) + ﬁ;r(()’tO‘tT)B[dt)
+\IltB;r(O‘[O';r)Btdt + d}t

= TLdt+ Y dW, + d}t

for appropriate drift and volatility coefficients I;, Y; and J; = ):Oq(i)gt(il);(i) - d);(l)_) with
7(i) = inf{t : N; = i}. Here N; is the counting process with intensity A;. Letting E; be the
Fi-conditional expectation under P for 0 < t < s < T, and writing AX; for the increment in

X at 7(f), we have

B ), (@- )]

t<t(i)<s

= ]Et[ Z ]E[CD;(I-) - CD;(I.)_ | Xegiy- 7(1)]]
t<T()<s

= ]Et[ Z {CD'T(I»)_ (Begy-ef 2% = 1) + 200 By [eP0 XiBygy - X))
t<z{i)<s

W)y [6750 2% By - X))

= E| ft j (@],_(0(Bx) — 1) + 20, VO(B)By + W, B V26(B,)B, JdN, |
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Proceeding similarly,

d\y; = I:[tdt + Ytdwt + dft

for suitable coefficients IT;, T (they are straightforward to compute, but omitted to save

some space) and J; = Yo« (V) @~ v (-)- The last term satisfies

B Y (¥, - W) =B ft {#1,(0(B) = 1) + W, VOB,)D, JdN, .

S
F<T(f)<s +
Now, we observe that if the condition (i) of Definition 5.2.1 is satisfied, then

5

EilJs + T~ Ji = Ji] :Et[f

H

y(u-)aN, ] = & ft S y()Aydu]

and J; + ], — fot y(u)A,du becomes a martingale thanks to the Integration theorem in p.27 of
Brémaud (1981).

From these observations, by adding and subtracting y(t)A;dt we get

d@ +W) = d(J;+ 1) — y(OAdt + (Y + T)dW,
L (—rt T Xt B+ %ﬁT(oto?)ﬁt +(6(B) - 1)/\t)dt
+20; (A + By - X; + B - iy + Bl (010 By + VO(B)BiAr ) dt
+®, (B (0107 )Bs + B V20(Br) i) dt
+W) (—rt oyt P Xe+ B+ %ﬁT(OtO;—)ﬁt +(6(B1) — 1)/\t) dt
+W, (Cr + Dy - Xy + Dy - iy + B (0007 )Dy + V@(ﬁt)Dt/\,)dt

= d(Ji + 1) = y(OAdt + (Y + T)dW, (A.6)

as ay, B, As, Bi, Cy and Dy are solutions to (5.1)—(5.6). The condition (ii) of Definition 5.2.1
ensures that fot(Yu +Y,)dw, is a martingale. Therefore, ®; + W} is a martingale and the
proof is complete. |}

Theorem 5.2.2 can also be established as a consequence of Proposition 2 in Cheng and
Scaillet (2002); for higher-order derivatives we need to consider higher powers of b - X7,

and these require separate treatment.
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Conditions for Theorem 5.2.3. The characteristics (K, H, 1, 8, p) are well-behaved at (v, 1, T),
ifall ODEs in Theorems 5.2.1,5.2.2, 5.2.3 are solved uniquely, if 0 is three times differentiable

at f(t) for all t < T, and if the following conditions are satisfied:

0 E fo ' POAXDIAL] < oo,
where y(t) = i(t) + f2()) + f5(1),
filt) := DOPB) — 1) + 3W(A; + By - X)2VO(B1)By
+(Ay + By - X)B] V20(B)Bi} + W, fR ” e“Pi(z - B dv(z)
folt) := DFOB) — 1) + 3| (A + By - X)VOB)D
+(Ci + Dy - X)VO(B) By} + WB] V26(B)Dy
f3(t) = DFO(B:) — 1) + WV, VO(B)F;
@ | fo 0 n0dt)™] < oo, where 1) = (5108 + 2200 + ) o)
g1(t) := @B + 3Wi(A; + By - X;)?Bf
g2(t) 1= DI +3W,{(Cy + Dy - X)B) + (A, + By - X)D]' }
ga(t) = OB} + WiF/

i) E[jor+ 02+ @3] < o

where W, CDi fori=1,2,3 are defined in the proof of Theorem 5.2.3 and &, ..., F; stand for
a(T —#),..., F(T — t) which are the solutions to (5.1)-(5.8). |}
Proof of Theorem 5.2.3. This can be proved by defining appropriate functions, as in the

previous theorems. We set W; = exp(— fot (X,)ds)eXT-H+HT-H-X: a5 before and

O = (A(T - 1) + B(T - t) - X;)*¥,
D = 3(A(T — t) + B(T — t) - X, (C(T = t) + D(T — t) - X)W,

@ = (E(T ~ t) + F(T - t) - X)W,

and apply It6’s formula. Under the assumed conditions, ®; +®?+®? becomes a martingale.
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Characteristic of the model dynamics in the Heston model:

x0 0 —x

0 0 0
Hyq1 = , Hipp =Hypp = , Hipo =
1 op o2

Characteristic of the model dynamics in the SV] model:

r— Ak 0 -4
KO = ’ Kl = ’ HO = O/
x0 0 —x
0 0 0
Hyp = , Hipp = Hyp1 = , Hypo = ,
1 op o?

0(c) = f exp(c - 2)dv(z) = exp(cipy + €107/2), lo = A, 1 =0
RZ

Characteristic of the model dynamics in the Scott model:

—Ak 0 1-30 1
Ko=| i50; L Ki=l 0 -1 0 |, Ho=0,
K265 0 0 —~K2
/ 0 0 0 0
Hyn=| o |, Huz=Hiz1 =| pooy |, Hie=| o |, Hizz=| 0 |,
0 0 0 05

Hyj3=Hy3 = Hips=Hj32=0,

B(c) = f exp(c - z)dv(z) = exp(cypj + c%a?/?_), lh=A, 1L=0
R2
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