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Abstract 

Affine Processes in Finance; Numerical Approximation, Simulation 

and Model Properties 

Kyoung-Kuk Kim 

This thesis deals with theoretical and numerical questions related to affine jump-

diffusion models used in finance. In more detail, we look at three different classes within 

the affine jump-diffusion class. 

The first is the Heston stochastic volatility model which has been used extensively since 

its first introduction by Heston (1993). To price financial derivatives with complex payoff 

structures, we have to resort to the Monte Carlo simulation. We propose new simulation 

schemes for the Heston model based on the squared Bessel bridge decomposition. These 

new methods perform well in different parameter settings and they are compared with two 

other existing methods, first, the exact scheme of Broadie and Kaya (2006) and, second, the 

QE method of Andersen (2005). 

The second question is about the tail behavior of the canonical affine diffusion processes 

which were introduced by Dai and Singleton (2000) in the context of financial econometrics 

to study the term structure of interest rates. We show that the canonical models have light 

tails or exponential bounded tails, and the explicit conditions that guarantee light tails are 

given. Moreover, we prove that there exists a uniq^te limiting stationary distribution for 

each canonical model and the regions of finite exponential moments of such stationary 

distributions are determined by the stability region of the dynamical system associated 

with a given model. 



We further go into the detailed analysis of the dynamical system of a canonical affine 

diffusion process. We prove that the stability region of such a dynamical system can 

be represented by the union of stable sub-manifolds under some mild conditions, and 

also derive some partial differential equation of which solution is blow-up times of the 

dynamical system. Through an asymptotic analysis of those blow-up times, we calculate 

the implied volatility asymptotics for options with short maturities and extreme strikes 

based on Lee (2004). 

The third and final question involves the general affine jump-diffusion models. It is 

computationally too expensive to apply numerical integration schemes to compute vanilla 

option prices in an affine jump-diffusion model which does not have an explicit Fourier 

transform formula. To extend the category of models that can be tested in financial econo-

metrics, we apply the well known saddlepoint technique to affine jump-diffusion models. 

After we develop the basic idea and review some known saddlepoint techniques, we test 

them for the Heston model, the model of stochastic volatility with jumps (SVJ) and the 

Scott model. Implementation details and some modifications of existing methods are also 

given. 
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Chapter 1 

Introduction 

The theory of asset pricing, particularly that of financial derivatives, has been developed 

for the last three decades since Black and Scholes (1973), and Merton (1973). As there are 

many good sources that account for detailed theories (see, e.g., Duffie 2001 or Musiela and 

Rutkowski 2005), we just briefly recall the fundamental pricing equation; for a contingent 

claim V which matures at T, its price at time 0 < t < T is given by 

Vt = BtE 
Vr\r (1.1) 

where B is the numeraire asset and E is the expectation under a measure in which the 

process V/B is a martingale. We call this measure a martingale measure associated with B. 

Here f stands for the filtration to which V and B are adapted. 

This "relative pricing" approach to derivative pricing is very popular in financial en-

gineering. For example, we can choose the nemeraire to be a bank account which returns 

risk free interest with continuous compounding or to be the price of a bond. In these cases, 

the associated martingale measures are called the risk-neutral measure and the forward 

measure, respectively. However, if markets are incomplete, then there could be many other 

equivalent martingale measures that make V/B a martingale. In this thesis, however, we 

always assume that we start with the risk-neutral measure and thus avoid any complication 

related to market incompleteness. 

To apply (1.1) to a derivative of interest, we need a model that describes the price 

1 



CHAPTER 1. INTRODUCTION 2 

movement of the underlying asset (or assets) S of the contingent claim V. There is a 

universe of stochastic models for this purpose and it is conventional to set S as some 

specific semimartingale. For example, S could be a Levy process or it could be a solution 

to a stochastic differential equation (SDE) 

dSt = ii{St, t)dt + a{St, t)dWt (1.2) 

with W being a multi-dimensional Brownian motion. Proceeding one more step, we could 

add jumps ](St, t) to (1.2). In such a case, by imposing specific parametric forms on p(St, t), 

a(St, t) and J(St, t) we obtain some nice properties that are very useful in derivative pricing 

as in, for example, Black and Scholes (1973), Cox (1975), Heston (1993) or Kou (2002). In this 

regard, there is one important class of stochastic processes called affine jump-diffusions. 

The variety of models that fall into this class is explained in Section 5.1. In these models, 

the log of asset prices Xt = log St is given by a solution to the following SDE: 

dXt = p(Xt)dt + o(Xt)dWt + d\YJVi (1.3) 

where 

p(x) = K0 + Kix, K0 e Mn, Kx e Rnxn, xeW 

(c7(x)a(x)T);i = Hoij + HUj • x, Hoij 6 M, HUj e R" 

and N(t) is a Poisson random variable with intensity process A(Xf) = 1Q + l\ • Xt for / -

(Zo, l ] ) e R x R", Vi's are independent and identically distributed (iid) random variable that 

stand for jump sizes. Moreover, the numeraire, a bank account B, is also modeled as 

Bt = exp I I (po + pi- Xs)ds\. 

The usefulness of affine jump-diffusion models lies in the fact that there exists an explicit 

Fourier transform formula by which we can compute the cumulative distribution function 
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ofX t: 

(j)(6) = Eexp (id • Xt) = exp(a(T -t) + yS(T - t) • Xt) (1.4) 

where a, f> are solutions of some ordinary differential equations. We refer to Duffie et al. 

(2000) and Duffie et al. (2003) for the detailed analysis of affine jump-diffusion processes. 

We investigate theoretical and numerical questions related to affine jump-diffusion 

processes in the subsequent chapters. More specifically, we study affine jump-diffusions at 

three levels. At the simplest level, there is the Heston stochastic volatility model (Heston 

1993) which is a two-dimensional model consisting of the stock price process St and the 

variance process Vt: 

dSt = uStdt + St-JVtdW], 

dVt = K(d-Vt)dt + a^JVtdWJ 

with (W^fW2) being a two-dimensional Brownian motion with correlation p. It is still a 

very popular model in financial engineering and has been widely applied to various kinds 

of markets such as bonds, equities and indices. Considering the complexity of derivatives 

that exist today, e.g., barrier options, bermudan options etc., Monte Carlo simulation is 

a widely used pricing method with great popularity. In Chapter 2, we study an efficient 

simulation method of the Heston model, which builds on the exact simulation scheme of 

Broadie and Kaya (2006). This method is based on a series expansion of the integral of the 

variance process conditional on the endpoints, J Vsds\VQ, Vt )• 

At somewhat intermediate level, we study canonical affine diffusion processes intro-

duced by Dai and Singleton (2000). These were used for the study of term structure of 

interest rates and have the following coefficients: in (1.3), 

/i(X,) = -AT(&-Xt), a(Xt)o{Xt)
T Di 

D2 

where A is a matrix with some special conditions and D,'s are some diagonal matrices 

of which entries are affine functions of Xt. See Section 3.2 for details on the parametric 
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restrictions on the models. The main question we look at regarding canonical affine 

diffusion processes is when the exponential moments of X are finite. The finiteness of 

exponential moments of a random variable IT is closely related to the tail behavior of the 

distribution of U. For example, if a non-negative random variable U has Eeeu < <x> for 

any O e l , then U is light tailed and if Eeeu — oo for any 8 > 0, then U is heavy tailed. 

In between, U has an exponentially bounded tail. In Chapter 3, we prove that X admits a 

unique limiting stationary distribution, say X^, and the set of vectors 6 such that 6 • X<x, has 

finite exponential moments coincide with the stability region of the dynamical system that 

a, jS satisfy. Moreover, we show the necessary and sufficient conditions on 0 for 6 • Xf to be 

Gaussian. More background on the concepts like stability region or dynamical system can 

be found in Section 3.4.1. 

In the following chapter, more detailed study of the dynamical system of a and j3 is 

carried out. Especially, the stability region of the system and associated partial differential 

equations are discussed. These questions are important because it has an implication in 

the context of option pricing. For example, Lee (2004) showed how the critical exponents 

p* or q* such that Ee(P*+1)e,'x' or Ee^'e''x' become infinite are related to the slopes of implied 

volatility curves at extreme strikes, while the asset price process is given by 0< • X; for a 

deterministic function of time 6t. In Section 4.5, we compute these slopes explicitly for 

options with extreme strikes and small maturities through an asymptotic analysis of the 

stability region of the dynamical system of a and fl. 

At the most general level, we deal with affine jump-diffusions (1.3). Even though the 

transform formula (1.4) is available, only simple models that have closed form a, f> have 

been studied particularly in financial econometrics. This is mainly because it becomes too 

time consuming otherwise. In more detail, a probability F(G • Xt > y) is calculated via the 

Fourier inversion formula 

i rT+'00 dz 
P(0 • X, > y) = — MzB)e-zl—, T > 0 (1.5) 

2ra JT_ioo z 

and we use a numerical integration scheme to calculate this integral. However, if </>(•) 

is not available in closed form, i.e., a and fi are not solvable analytically, then we have 
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to solve differential equations associated with a and fi numerically at each evaluation 

point of the above integral. This certainly causes a big problem if one wants to use a 

more general affine jump-diffusion model than simple ones. In this regard, an efficient 

numerical approximation of option prices is attractive and we apply the well known 

statistical method called the saddlepoint technique to affine jump-diffusions. Introduced 

in statistics by Daniels (1954) and applied to derivative pricing by Rogers and Zane (1999), 

this technique is essentially asymptotic expansions of contour integrals such as (1.5) in 

the complex plane and has been in use, for example, in option pricing, risk management 

and credit derivatives. We will see in Chapter 5 how much computational efficiency is 

obtained by applying saddlepoint approximations in the affine jump-diffusion setting and 

this opens a possibility of testing more complex models in financial econometrics. 



Chapter 2 

Gamma Expansion of the Heston 

Stochastic Volatility Model 

Approximate simulation methods for the Heston stochastic volatility model are proposed. Based on the 

squared Bessel bridge decomposition in Pitman and Yor (1982), the integral of the variance process J Vsds 

conditional on the endpoints can be simulated by generating three independent random variables. Compu-

tational gain is due to, first, that we avoid the inverse transform method and, second, that we reduce the 

computation of Bessel functions as much as possible. 

6 



CHAPTER 2. GAMMA EXPANSION OF THE HESTON MODEL 7 

2.1 Introduction 

Among many stochastic models used in quantitative finance, Heston's stochastic volatility 

model is still one of the most popular models among practitioners. By introducing stochas-

ticity to the volatility process of the asset price of interest, the model made it possble to 

explain the implied volatility skews to some extent. Now it is applied to many different 

kinds of financial intstruments including bonds, equities and indices. On the other hand, 

we observed the very fast growth of financial markets in terms of the size and the complex-

ity of derivatives people trade. So risk management as well as derivative pricing is ever 

more important. This means that efficient calculation of prices and greeks is a vital factor 

in quantitative finance. 

Regarding the Heston model, Monte Carlo simulation as a method of pricing and 

hedging is still very important despite the availability of the closed form solutions of vanilla 

option prices because we do not and cannot expect to have such closed form solutions for 

many exotic path dependent derivatives. Until recently, discretization methods have been 

the default approaches in Monte Carlo simulation of the Heston model. This class of 

methods includes the Euler scheme, the Milstein scheme and other schemes with higher 

order of convergence. Kloeden and Platen (1999) explain various methods in their textbook 

and concrete numerical investigation was conducted by Kahl and Jackel (2006). However, 

as noted in literature (see, e.g., Andersen 2005 or Broadie and Kaya 2006), these methods 

lose their appeal when it comes to the Heston model with not-benign model parameters, 

causing problems with negative variance, which might generate significant biases. The 

recent discretization method proposed by Andersen (2005) attracted attention as his method 

avoids such problems and works reasonably well in different market situations, i.e. in a 

wide range of model parameter values while maintaining computational efficiency. 

A totally different approach was pioneered by Broadie and Kaya (2006). Without 

any discretization, their method is an exact scheme and produces no bias. Based on the 

inverse transform method, the key step is the computation of the characteristic function 

of if Vudu\Vs, Vt ], the integral of the variance process V conditional on the endpoints Vs 

and Vt • Even though this exact scheme recovers the usual convergence rate of Monte Carlo 
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simulation (so outperforms the Euler scheme), people find it hard to implement in practice 

because of the computational time that it requires. This computational burden is due to, 

first, that we need to implement a root finding algorithm to apply the inverse transform 

method, which in turn requires many computations of the characteristic function and, 

second, that the characteristic function involves two evaluations of the modified Bessel 

function of the first kind, which is a solution of second order ordinary differential equation 

and represented by an infinite series. 

In this chapter, we propose yet another approximate simulation method of the Heston 

model along the line of Broadie and Kaya (2006). The bottom line is to use mathematical 

properties of the squared Bessel bridge investigated by Pitman and Yor (1982,2000). Based 

on their decomposition of the squared Bessel bridge, we prove that the conditional path 

integral IJ Vsds\Vo, Vt I is decomposed into the sum of three independent random vari-

ables. Moreover, each of these random variables admit series expansions using Poisson, 

exponential, gamma and Bessel random variables. We also test a simulation approach that 

uses a single Beta random variables. 

The chapter is constructed as follows. In Section 2.2, we present our main result. In the 

following two sections, we review the exact scheme of Broadie and Kaya (2006) and detail 

our approximate simulation scheme. Numerical results are given in Section 2.5. Section 2.6 

deals with the case when we are given a non-equidistant time grid. Section 2.7 concludes. 

2.2 Main Result 

The Heston model is a two-dimensional stochastic process (St, Vt) which satisfies the fol-

lowing SDE: 

^ = fidt+ yfVt^dWJ + yjl - p2dWf ) (2.1) 

dVt = K(6 - Vt)dt + a y/VtdWJ (2.2) 

where (W1, W2) is two-dimensional standard Brownian motion. The variance V process is 

called the Cox-Ingersoll-Ross (CIR) process and has been studied extensively and used for 
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term structure modeling since its first introduction by Cox et al. (1985). It is known that the 

distribution of Vt for a given initial value VQ and time t follows the noncentral chi-square 

distribution, 

However, from the viewpoint of the Monte Carlo simulation of the Heston model, it is 

important to simulate the path integral of V, J Vsds, not just Vt- In more detail, a simple 

application of Ito's formula to log St shows 

S, = Soexp(\*-\[ vsds + p f yjvlcm] + yjl-p2 f JV~sdW2
s 

and thus, given L Vsds and f y/V^dWj, 

log | - = N Lt - \ j Vsds + pj ^sdWl (1 - p2) J Vsds\ (2.4) 

as W2 is independent of the V process. From (2.2) we also have 

J y/VsdWJ = - | Vt - V0 - K6t + K I Vsds 

Hence, if the joint distribution of I Vt, JC Vsds J is known and can be simulated efficiently, 

then the simulation of St given (So, Vo) is an easy task. This is the approach taken by 

Broadie and Kaya (2006) and their novel method will be explained more in Section 2.3. As 

the distribution of Vt is explicitly known, our focus is on IJ Vsds\Vo,vA. Therefore, in 

this section, we investigate some properties of this conditional path integral, and they are 

based on the squared Bessel bridge decomposition studied by Pitman and Yor (1982) and 

on a close look at the characteristic function of the integral. 

Remark If we define a process B(t) by 

v - r B *^l ' (23) 
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then B becomes a 6-dimensional squared Bessel process which satisfies 

dB(t) = bdt + 2 *jB{fjdW(t), m^-^4\ = f ^eKS/2dWl 
\ 4 K / ( J 2 / J U 2 

It is well known that the above SDE has the unique strong solution for each 5 > 0 and 

Bo = Vo> 0. Moreover, if 6 - 0, then 0 is an absorbing state. If 5 e (0,2), then 0 is reached 

almost surely, but instantaneously reflecting. See p.439 of Revuz and Yor (1999) for details. 

Remark From (2.5), we observe that the conditional law (Vs, 0 < s < t\Vo, Vt) can be defined 

using the conditional law (Bs,0 < s < t\Bo,Bt). A reader can consult p.446 of Pitman and 

Yor (1982) for more information about the definition of the conditional law of the squared 

Bessel bridge. 

Before proceed, recall the definition of a Bessel random variable which we denote by 

BES(v,z) with v > - 1 and z > 0 (see Yuan and Kalbfleisch 2000). It is a random variable X 

taking non-negative integer values with probabilities 

pn(y,z) := F(X = n)= , , . v ' / - , n > 0 
K Iv(z)nlT(n + v + 1) 

where Iv(z) is the modified Bessel function of the first kind. We will drop v and z when there 

is no source of confusion. Now we state our main result. The conditional path integral of 

the CIR process can be decomposed into three independent random variables, all of which 

admit series representations. 

Theorem 2.2.1 The distribution of J Vsds conditional on endpoints Vo, Vt admits a decomposi-

tion: 

I f Vsds | V0 = v0, Vt = vt\ = X1+X2 + X3 = Xi+X2 + Yj Zj 

where X,'s are independent random variables, Zfs are i.i.d. copies of Z and r\ is an independent 

Bessel random variable with parameters v = 6/2 - 1 and 

2K/O2 . 

jv0vt. sinh()d/2) 
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Moreover, X\, X2 and Z have the following representations: 

00 JV„ co co 

X^Y—TExpjil), X2 = Y—Tn(5/2,1), Z = Y—Tn(2,l) 

where 

16n2n2 x2t2 + An2n2 

a2KK2f2 + 47i2«2)' / n 2a2f2 

and N„'s are independent Poisson random variables with mean (vo + vt)An, Expj(l)'s i.i.d. Ex-

ponential random variables with rate 1 and Tn(k, d)'s independent gamma random variables with 

shape parameter k and scale parameter 6. 

Proof We prove the result in two steps. First, we show that (J Vsds\Vo, Vt) can be decom-

posed into the sum of three random variables and second, each of those random variables 

has the series representation above based on its Laplace transform. 

The first step is a simple application of a result in Pitman and Yor (1982), p.456. Fix 

t > 0 and define a process L4s}o<s<i by 

As = \-Vsl. (2.6) 
olt 

Then, it is easy to see that A solves a stochastic differential equation 

dAs = (6 + 2aAs)ds + 2 ^sdWs 

with a = -xt/2 and a standard Brownian motion W. This is called a 6-dimensional squared 

Ornstein-Ulhenbeck (OU) process with parameter a. Let us denote the conditional law 

(As,0<s<l\A0 = x,A1=y) (2.7) 

Dy {-̂ x,y(s)}o<s<i or simply Ax'y. Pitman and Yor (1982) showed that this squared OU bridge 

has the following decomposition: 

46,1 I 40-1 , 40,1 , A6,i A4nA 
Ax,y ~ A

X/0 + AQty + ^ 0 / 0
 + ^0,0 
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where the four squared OU bridges on the right hand side are independent processes and 

rj is an independent Bessel random variable with v — 6/2 — 1 and z - ^Jxyaj sinh(fl). Here, 

A0' should be understood as the law of the time-reversed process of A '0 because 0 is an 

absorbing state for a O-dimensional squared OU process. 

From the above decomposition of the squared OU bridge, we get 

A%{s)ds d= j A0^(S)ds + J A^y{s)ds + J Affi(s)ds + J A$(s)ds. 

But, the second term on the right hand side is same in distribution as L A ' (s)ds by 

the definition of AQ' . On the other hand, a family of the conditional laws {^'0)x>o,/>o 

parameterized by x, f has an additivity property 

Afl , Af'A I AM't 
Ax,0+Ax',0 ~Ax+x',0 

which is a direct conseqvience of a similar additivity property of the squared Bessel bridges 

and the transformation (6.b) in Pitman and Yor (1982). Therefore, we have 

J Ab
x'l(s)dsi j A°x'ly0(S)ds + J A&

0l(s)ds + j A4
0f(s)ds. 

Finally, we also observe that the last term on the right side can be expressed as 

fAlfwsi^fwfm 
JO yTj JO 

thanks to the above additivity property. Here, (Ap'J)(^'s are i.i.d. copies of A0'Q. 

Now, the remaining step is to convert the decomposition of t A'(s)ds into that of 

(JT* Vsds\V0, Vt). It is obvious from (2.6) and (2.7) that 

IJ Vsds\V0 = vQ, Vt=v\=^-j A%(s)ds 

where x = 4v0/(a
2t) and y = Avt/(o

2t). Then, the first part of the proof is complete by 
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defining 

Xi 

x2 

z 

4 J Q ^ + y , 0 (s)ds, 

.2.2 r 1 

4 Jo A°'° 
(s)ds, 

Since a = —xt/2, x = 4vo/(o2t) and y = 4vt/(o
2t), we have 

2K/CT2 

sinh(fl) xy sinh(Kf/2) M)Uf-

Let us turn to the second statement of the theorem which turns out to be useful in Monte 

Carlo simulation of the Heston model in later sections. As essential tools, we record the 

Laplace transforms of X\, X2 and Z in the next lemma. 

Lemma 2.2.1 The Laplace transforms O1, <t>2, O2 ofX\, X2 and Z are given as follows: for b>0, 

&{b) = 

®2(b) 

<Pz(b) = -

(VQ + Vt) ( ..Kt Lt 

exp K coth L cotn — 
F \ d1 \ 2 2 

L smhKt/2\6/1 

K sinh Lt/2 ) 

L sinhKf/2\2 

K sinh Lt/21 

(2.8) 

(2.9) 

(2.10) 

where L = V2a2fr + 7c2. 

Proof The proof is a straightforward calculation based on the Laplace transforms of 

squared Bessel bridges in Revuz and Yor (1999) and the change of measure formula (6.d) 

in Pitman and Yor (1982). 

Recall that a 0-dimensional squared Bessel process B defined by dBt = 2 ^IWtdWt with 

W being standard Brownian motion under <Q> has the Laplace transform 

E exp 
b2 

f 
Jo 

Beds Bo = x, B1 = 0 e x p l - ( l - bcothb)} 

for 6 e l and x > 0 where E means expectation under Q. Using the change of measure 
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formula (6.d) in Pitman and Yor (1982), for b > 0 we have (with a — —xt/2) 

J-a r 1 

&(b) = E 

E 

exp 

exp f A0'1 

J o X+V'° 

ba2t2 a2 

— + Y (s) exp 
a- (V 
2 J 0 *+y> 

,(s)ds 

= exp | — K coth — - L coth — 

where L = V2CT2£> + ?c2. This is exactly how the Laplace transform of I L Vsds\Vo, VA is 

produced in Broadie and Kaya (2006). 

As for X2 and Z, recall the Laplace transform 

E 
b2 Cl

nJ e x p | - — I Bsds y0 - DI B, = 0 
sinh& 

/ / 2 

of the /-dimensional squared Bessel bridge such that dBt = fdt + 2 ylWtdWt, W being a 

standard Brownian motion under Q. By proceeding similarly as above, we obtain the 

desired results. | 

Another very useful tool is the following infinite product in p.22 of Pitman and Yor 

(2000): 

n 
n=\ 

1 + 
sinhx 

(2.11) 

by which they presented the squared Bessel bridge with zero endpoints as an infinite sum 

of gamma random variables. This observation will be revisited in Section 2.6. 

It is well known that \\{l+an) with an + - 1 converges simultaneously with £ log(l +an) 

(using the principal branch in C if necessary) and that this product absolutely converges 

if and only if £ \an\ does. See Ahlfors (1979), p.192, Theorems 5, 6. These facts and (2.11) 

imply that 

n=\ 
sinhx 

Since the left hand side is uniformly convergent on compact intervals, we can take term-
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wise derivatives to deduce 

I 2x2 

x2 + n2n2 x c o t h x - 1. 

Now, for two real values x > y > 0, we get 

x coth x - y coth y 
2x2 

2y2 

*—* x2 + n2n2 £-> y2 + n2n2 *—* 
«=1 

2n2n2(x2 - y2) 

l—> (x2 + n2n2)(y2 + n2n2)' 

Plugging x = Lt/2, y = xt/2 in this formula (with L = V2u2fr + K2) and rearranging terms, 

16n2n2 1 / , Kt T , I i \ T-i 16nz; 
-^ K coth — - L coth — = - > — 
a2 \ 2 1) Lu a2t(K2t2 + t-i o2t(x2t2 + 4n2n2) }, + M+Mri-

n=l K J V+ 2 2 

, b + y„' 

We turn to the infinite sum in the statement. Define 

^=Lz-nLExp'{1)-

This random variable is well defined because the sum of variances Y^=\ 2(^0 + ^t)^nlj\ is 

obviously finite and, thus, the infinite sum converges almost surely. Therefore, for b > 0, 

by the Dominated Convergence Theorem, we have 

-bX\ _ logEe~0Ai = logEexp 

l «=1 ' " 7=1 

f b N" 
^ l o g E e x p -—YjExpjil) 
n=l y-pi 

(v0 + vt)Anb 

Hence, by the uniqueness of the Laplace transform, X\ = X^ and we can set X\ to be the 

series representation in the statement without any loss of generality. 
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As for X2, from (2.9) and (2.11) we have 

5 / Lt/2 Kt/2 i ^ -fcx, o / Lr/2 , jcf/2 \ 
loeEe M ! = - l o g . , ' ,„ - l o g . , , 1 

6 21 5sinhLf/2 &sinhKt/2/ 
5 f < , / L2f2 \ ^ i , / K2r2 

1 + • E * ( ^ * E M 
M = l V ' tt=l V 

2 Z-i & \ 4n2n2 / ^ b\ in2n2 

ili^r* n=l 

V l o g E e x p r„ (6/2,1) 
n=i ^ 7n I 

log E exp ^ - r „ ( 6 / 2 , i ) 
1 y« 

where the random variable in the last expression is well defined by the same reason as 

above. The expansion of Z is a special case with b = 4. The proof is complete. | 

Remark We note that X\, X2 and Z belong to certain classes of infinitely divisible distribu-

tions. As noted in Bondesson (1982), the class 7~2 is described as the set of distributions of 

weak limits of finite convolutions of Poisson mixtures of exponential distributions and the 

class of generalized gamma convolutions (g.g.c.) is the set of distributions of weak limits 

of finite convolutions of exponential distributions. The class of g-g.c. is again a subset of 

T2. Therefore, X\, X2, Z are in 7~2 and, in particular, X2, Z in g.g.c. So, X3 is the mixture of 

g.g.c. distributions with the Bessel law as the mixing distribution. See also Steutel and van 

Ham (2004) for an extensive study of infinitely divisible distributions. 

In contrast, the distribution Vt is that of the Poisson mixture of gamma random variables 

as easily deduced from its Laplace transform. 

2.3 Monte Carlo Simulation of the Heston Model 

The exact simulation scheme of the Heston model developed by Broadie and Kaya (2006) 

exploits the explicit characteristic function formula of the squared Bessel bridge and the 

facts observed in Section 2.2. Briefly reviewing its procedure, 

• Simulate Vt given VQ using a noncentral chi-square distribution as in (2.3). 
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• Simulate J Vsds given Vo and Vt using the inverse transform method, i.e., for 

U ~ unif[0,l] we find x such that PlJ^ Vsds < X\VQ,VA = U using a root-finding 

algorithm. This cumulative distribution function (CDF) is computed by the Fourier 

inversion integrals since there is a closed form expression for the Fourier transform 

of(j£vsds|V0,V/)-

• Simulate St given So using (2.4). 

This exact simulation method recovers Ois^^2) convergence of an unbiased Monte Carlo 

estimator unlike other discretization methods. Here s means a user's computational bud-

get. However, as noted in Andersen (2005), this method is computationally expensive and 

so loses some practical appeal. 

We focus on the second step of the Broadie-Kaya scheme and aims to improve the 

computational efficiency of the simulation of IJ Vsds\Vo, Vt j by applying our main result, 

Theorem 2.2.1. In applying the series expansions of X,'s, we have to truncate them at 

some level n = K. Proposition 2.3.1 is useful in this regard. For notational simplicity, we 

introduce three random variables 

OO N„ DO OO 

x*= E T " E E X P ^ '
 x2= E -^imM zx= E vTn{2'1} 

n=K+l '" ;=1 n=K+\ '" n=K+l ' n 

and we also denote gamma random variables that match the mean and the variance of each 

of the above three random variables by P for i = 1,2,3. The next result shows asymptotic 

decay rates of these means and variances and they are useful in the proof of Proposition 

2.3.1. 

Lemma 2.3.1 As K increases, 

n2K ' v l' 3n4K3 

K uu2t2 , KN ba2t2 „ ,„„ , 5a4t4 

EX* ~ ——, Var(X!>) — , 

EZK ~ a-L, Var(ZK) a t 

n2K' v ' 6rc4K3" 



CHAPTER 2. GAMMA EXPANSION OF THE HESTON MODEL 18 

Proof Observe that 

2An 
Var(Xf) = (v0 + vt) £ -%- = (128(»0 + vt)n

2o2t3) £ 
„=K+1 Yn 

(128(»0 + vt)n
zoztA) 

T 

All other asymptotics are similarly obtained. | 

dy-

n=K+l 

2(v0 + vt)o
2t3 

3n4K3 

(K2t2 + 4TZ2M2)3 

Proposition 2.3.1 For a random variable V = X*, X^, ZK and the corresponding P , the following 

asymptotic normality holds: 

V - E(V) P - E(V) 
K ' —' N(0,1), K ' => N(0,1) flsKT oo. 

VVar(V) ^Var(V) 

Moreover, the distance between V and P decreases faster than the convergence ofV to the normal 

distribution N' := N(E(V), Var(V)) in the following sense: for all b in a neighborhood of the origin, 

0 < logEe|fc|V - logEe |b|r' < logEe|fc|V - logEe |b|Ar 

for all sufficiently large K values. 

Proof We will prove the statements for V = X^ because other cases can be proven in a 

similar fashion. 

From Theorem 2.2.1, it is easy to derive that for all b in a small neighborhood of the 

origin, 

(VQ + vt)Anb 
CO CO 

logEe
fcXf= £ 

y„~b Y Yj°Q+vi^n 
Yn 

n=K+l '" n=K+lm=l 

and one can readily show that the double sequence is absolutely convergent for each fixed 

b and K. This yields 

log E exp 

i \ 

X* - EXf 
b -

yjVariXp^ 

b2 

Y Y (vo + vt)A„ 
m=3 n=K+l [yn^]var{Xf) 

and the asymptotic normality for X^ follows if the double sequence in the above expression 
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converges to zero as a consequence of Lemma 15.15 of Kallenberg (2002). To see this 

convergence, first we observe that for fixed s > 0, 

o o o o CO CO 

4 \ - i \-> s" 
CO CO 

2—1 I—i n
v
m ~ n2f2-l2—l v

m a2f 2-J Z J (x2t2 + 

2i2c\m 

m=3n=K+l m=3n=K+l 

4 ^ f°° (2o2t2s)m 

4 ^ i ^ (2oztzs) 

m=3n=K+l 
A-n.2n2f 

A . ra 

c^tiJK (x2t2 + 4n2y2) 

02tL\2n2) (2m-i ; 

0 0 /o^r2+2„\m 

-dy< tzsf 
2y2)m 

dy 

m=3 
l)K2 m-\ 

Then, we get 

00 00 

m=3n=K+l 

l&l 

(y„^Wr(Xf)j 

4 w 

< —y 
m—3 

4K \-> 

o2t2\i 

{2n2^Var(Xf)j 

a2f2|b| 

(2m - 1)X: 2 m - l 

4K 

a2t 

2n2K2 Jvar{Xf)j 

^3 

a2£2|fc| 

\2n2K2 ^Var{X*)} 

o2t2\b\ 

2n2K2 ^Var{Xf) 

where the last equality holds for all sufficiently large K's and it is easy to see that the last 

formula goes to zero as K increases, utilizing Lemma 2.3.1. 

By matching the mean and the variance, one can get the shape parameter k and the 

scale parameter C of T1, 

, ( E X f ) 2 6(v0+ vt)K r Var(Xf) a
2t2 

, C = 
EXf 3n2K2' 

From 

Var(Xf) a2t 

CO j 

logEe"1" = -Hog(l - # ) = £ -(Q>)m, 
TO=1 
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we get 

log E exp 
r1 - Exf = -+y -

2 + 2-i m 
m=3 ^Var(Xf)j 

and the asymptotic normality for F1 follows because 

Q> 

{ ^jVar(Xf) 

m=3 

Qb\ 
< k 

( v» 

7^(Xf)J ( ^Var{X\)j [ ^MXf)J 
Cl&l 

Moreover, we have 

logE^-logE^' = (*„ + *,)£ £ £ i r - £ ^ - 161 
m=3Vn=X+l Yn ) m=3V ' 

CO CO 

A„ 

with 

But, we observe that 

Rr, 

(Vo + Vd^ E ^l-^n,m)\W 
m=3 n=K+l ' " 

*C7(m(i>o + 0t)) 

£n=K+l ^n/Yn' 

L 
n=K+\ 

An 

An 

1671 

^ „5cJl ^ 

n 2 (2a 2 f 2 )m 4 v i {2a2t2T_ 
2\m t 4r" (K2t2 + 4n2n2)m+1 ~ a2t 4r" (4TT2M: 

H=K+1 
(4TT 2 M 2 ) 

4 / g
2 ( 2 r r ° i 

o2t\2n2) JK y2™ y 

v 2 , 2 \ m 
4 / g 2 f 2 \ 

a2t\2n2} (2m-l)K2> m-\ 

and kCm/(m{v0 + vt)) ~ 6/(ma2tK2m^) (a2t2/{3n2))m. These imply 

6 7 M - 3 / 2 N " ' 
-*VV 

2m o 
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m=3n=K+l r n 

CO CO 

as K increases. Thus, 

oo oo ^ 

logEe '^- logE^ 1 " 1 = (so + t> ()£ £ ^(1-R„,m)l&r 

/ n 

Vm 

= l o g E e ^ - l o g E e 1 ^ 1 

for all large K's. | 

From the simulation point of view, Theorem 2.2.1 and Proposition 2.3.1 suggest three 

different approaches. We can simply truncate series expansions of X,'s at some fixed level K, 

adjust the remaining terms by a normal random variable or by a gamma random variable. 

But, we take on the last idea as our main approach, namely the gamma approximation. 

After truncating at level K, we approximate the remaining summation by a single gamma 

random variable: 

Xi"E^-I>p/(1)+rl 

„=1 ' " ;=1 

and similarly for X2 and Z. The gamma approximation has an advantage over a normal 

approximation because it never generates a negative value in addition to the faster con-

vergence in the sense of Proposition 2.3.1. In the next section, we describe more detailed 

simulation procedure of each random variable. 

Remark It is easy to see from (2.8), (2.9) that X\ and X2 are non-negative Levy processes 

with time parameters VQ + vt and 5, i.e. subordinators. From the series expansions of Xj 

and X2, we get their Levy densities 

00 00 

P1(X) = YJ ^nYne~ynX, P2{X) = Y, Yx
e'ln 

n-\ n=\ 

There are a few simulation methods for Levy processes or infinitely divisible distribu-

tions. Especially for subordinators, a method of Rosihski (see Cont and Tankov 2003) is 

XCO 

Pi(y)dy. 

However, the computation of U~^(y), which is essential in his method, is cumbersome 
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Table 2.1: Model parameters. 

K 

e 
a 

P 

case I 

0.5 

0.04 

1 

-0.9 

case II 

0.3 

0.04 

0.9 

-0.5 

case III 

1 

0.09 

1 

-0.3 

case IV 

6.2 

0.02 

0.6 

-0.7 

Table 2.2: Time for 100 samples when we use Oi(fr) and when we insert a dummy Iv(z). 

v0 + vt 

2 

0.2 
0.02 

no lv(z) 

0.57 
6.67 

76.59 

one Jv(z) 

2.08 
35.08 

381.77 

because a closed form of U(x) using elementary functions is not available. 

On the other hand, Bondesson (1982) proposed a general simulation approach to in-

finitely divisible distributions using shot noise distributions. This method also derives 

an infinite series representation of the distribution of interest. But, again, since pi(x)'s are 

infinite sums, we need to truncate the Levy densities first, and compute the corresponding 

shot noise representations and truncate them again. 

Letting those approaches be open possibilities, we focus on our series expansions of X\, 

X2 and Z, and take a simple approach just by truncating those series at some fixed K. 

Throughout the rest of the chapter, four different parameter settings are used given in 

Table 2.1. The first three cases are taken from Andersen (2005) and case IV is set close to 

estimated parameters in Duffie et al. (2000). According to those papers, case I is related 

to long-dated FX options, case II to long-dated interest rate options, case III to equity 

options and case IV to S&P 500 index options. Andersen (2005) explains the reason for the 

particular choices as because they are challenging and practically relevant. 



CHAPTER 2. GAMMA EXPANSION OF THE HESTON MODEL 23 

2.4 Simulation Procedure 

2.4.1 Simulation of Xx 

Exact Simulation. As the Laplace transform of X] is available in closed form, one can try 

the exact simulation scheme using the inverse transform method as in Broadie and Kaya 

(2006). The algorithm consists of two steps; first, generate Lf ~ unif[0,1] and, second, find 

x > 0 such that P(Xi < x) — U. In the second step, there are two iterations involved. One is 

the root-finding procedure to find x and the other is the calculation of the CDF of Xi. One 

can use, for example, the algorithm described in Abate and Whitt (1992) to calculate the 

CDF. In our implementation of this exact method, we use the Abate-Whitt algorithm and 

f zero function in MATLAB for a root-finding procedure. The CDF is calculated by 

m , s hx 2 v-> sinWcx , , , ., ,_ 2rc , 
P(Xi < x) « — + - ) — ; — R e (D1 (-thk), h = 2.12) 

71 71 *—I K X + U£ 

where u£ = ^ + TnaXl with fiXj, oXi the mean and the standard deviation of Xi, and this 

controls the discretization error and m is set to be not less than 5. Also, the truncation error 

is handled by stopping the iteration at k = N such that |01(-f/iN)|/N < 7ie'/2 with e' - 10 - 5 

in this chapter. This discussion followed the implementation of the Abate-Whitt algorithm 

in Broadie and Kaya (2006). 

On the other hand, the main computational load of the Broadie-Kaya scheme is the 

inclusion of the modified Bessel function of the first kind Iv(z) in the Fourier transform of 

IJ Vsds\Vo, Vt). To see the effect of the inclusion of this Bessel function, we include one 

dummy calculation of Iv(z), which does not affect O1 (b), and compare the results. We record 

the mean and the variance of X\, 

y-x1 = (vo + Vt)n*Xl, o2
Xi = (v0 + vt)aXi

2 
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where px and a*x are the mean and the variance of Xi with (vo = \,Vi = 0): 

^ = ^C° t h(f)- |C S C h 2(f) ' 
» 2 °2 (Kt\ a2t ,2(Kt\ o2t2 , (xt\ ,2(Kt\ 

< = ^cothlY)+2^csch (y)--27coth(y)csch (T)-

Note that these can be computed and stored in the initialization of the Monte Carlo simu-

lation if we work with an equidistant time grid and fixed parameters K, a. 

The initial guess xo for fzero is set as 

xo=FN\U), FN(x) = P(N < x), N = N(LIXI,O
2

XI) 

and xo = 0.01 x px, if F^(U) is negative. The tolerance level is set equal to 10~5. This is 

same as in Broadie and Kaya (2006). 

The results are shown in Table 2.2. Parameters K, a from case I in Table 2.1 and time 

step t — 1 are used. The value of VQ + vi vary along each simulated path because on each 

path and at each time grid point a new Vt is generated given VQ. Thus, we choose to take 

three different levels 0.02, 0.2, 2 for VQ + vt. The results show that the simulation time is 

quite sensitive to VQ + vt and also to the inclusion of 7v(z). This at least gives us a hint about 

a drawback of the Broadie-Kaya scheme. 

Gamma Approximation. We assume that the relevant parameters K, 0 and a are fixed and 

that we work with an equidistant time grid. Here we set t = 1. Then, {An} and {yn\ can be 

tabulated in the initialization of the Monte Carlo simulation as well as p*x , o*x , EX^ and 

Var(X^) for each K. The last two values then determine the shape and the scale parameters 

of T1. We choose to calculate those numbers for all K < 100 because the simulation time of 

the gamma approximation of X\ would be too big if K > 100. 

It turns out that the simulation times are very sensitive to the level of K. Table 2.3 shows 

the results of gamma approximations with K = 1,K = 20with»o+^f — 0.02 using MATLAB. 

The case K = 20 takes more than ten times as much time as K = 1 case. However, gamma 

approximations seem to work reasonable well even for small K. Figure 2.1 demonstrates 

the CDFs of gamma approximations of Xj for K = 1 and K = 20, and they are fairly close 
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Table 2.3: Time for 10,000 samples with VQ + vt = 0.02 in Gamma approximation 

case 

I 

II 

III 
IV 

K=l 

1.66 

1.88 

1.93 
1.86 

K=20 

22.23 

23.14 

23.18 
24.27 

Table 2.4: Time for 10,000 samples with K - 1 in Gamma approximation 

VQ + vt case I 

2 3.73 

0.2 2.24 

0.02 1.86 

to each other. On the other hand, Table 2.4 report the simulation times for K = 1 with 

different VQ + Vt values. The gamma approximation is not as sensitive to Vo + vt as to K. 

Even though we do not report, smaller time steps give better results. Also, we do not report 

the computation time for {An}, [yn\ and others as they can be done very fast. 

Beta Approximation. We also test a simple idea that has been applied to the simulation 

of a random variable with state space [0,1]. 

Let us define a random variable Xh^se by the Laplace transform: for b > 0, 

E ex?{-bX\ase) = exp ( ^ f (TC coth | - L coth y ) ) 

where L = V2a2b + K2 and V\,ase is some fixed positive number. Then, it follows that 

. "0+"t 
! f t X 

E exp(-bXi) = [Eexp (-bX\ase)] ""<« = [fi exp (-bX\ase)\ J j E exp (~bX\ase) 
7=1 

where K := [(vo + vt)/vi,asi,] and h := (VQ + v,)/vbase - K. The first component is the Laplace 

transform of Xi with Vj,ase • h instead of VQ + vt, say X\, and thus we can write 

K 

base 
Xj = Xj + Y, Aa"j 

/=1 
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Table 2.5: Time for 10,000 samples in Beta approximation 

VQ + Vt case I case II case III case IV 

0.02 

0.05 
0.23 
2.02 

0.7 

0.7 
0.71 
0.91 

0.69 

0.7 
0.71 
0.92 

0.7 

0.72 

0.96 
0.86 

0.88 

0.7 
0.74 
1.13 

Table 2.6: Time for tabulation with v\,ase = 9 in Beta approximation 

case tabulation 

I 6.08 

II 4.85 

III 2.63 

IV 2.51 

and here Xjflse's are i.i.d. copies of X^'. 

The idea of the beta approximation is that we simulate Xh*se from a pre-calculated table 

and use a beta random variable to approximate Xi. More explicitly, we set 

(EX****) 2 

Xi*B(hk,{\-h)k)-~x!fse, k= v ' 
Var(X\ase) 

where B(hk, (1 - h)k) is an independent beta random variable. This choice of k makes the 

first two moments of both sides of the approximation coincide. This approach is based on 

the classical result that the above approximation becomes exact if Xi (and X^ase, X\) is a 

gamma random variable, and on the proximity between Xj and a gamma random variable 

as observed above. It has been noted in literature that beta distributions can approximate 

distributions with values in [0,1] with sometimes great accuracy, e.g. see Springer (1979). 

It is clear that the smaller v\,ase is, the better the results as Xi becomes negligible. 

However, smaller v\mse increases computation time because K increases. In this chapter, 

Vj,ase is set equal to 0 as the simulated Vt values would move around the long run mean 6. 

Tables 2.5, 2.6 show the simulation times of beta approximations for each case in Table 2.1 

and the time for tabulation of X^asc distribution using MATLAB. Beta approximations are 

faster than gamma approximations, but the tabulation takes much time. However, we note 
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Table 2.7: Time for tabulation of X2 

case 

I 
II 
HI 
IV 

tabulation 

1.41 
1.87 
0.36 
0.13 

that this tabulation is done once in the initialization of the Monte Carlo simulation and so 

this computational burden becomes negligible as the number of simulated paths increases 

or the time grid becomes more dense. The proximity of the CDFs of beta approximations 

and the true CDFs is shown in Figure 2.2 for case I. Other three cases reveal a similar level 

of performance. 

2.4.2 Simulation of X2 and X3 

Simulation 0/X2. We can employ all the approaches for the simulation of X2 as done for Xj. 

However, there is a simpler method using the tabulation idea. If we fix parameters x, 6, a 

(so fixed b) and time step t, then the simulation of X2 does not depend on any intermediate 

simulated Vf values. Therefore, once we make a distribution table in the initialization of 

the Monte Carlo simulation, we simply generate a uniform random variable U and get X2 

from the table by the inverse transform method and linear interpolation. For example, we 

first compute Fx2(0 = P(X2 < Xj) with 

%i = WHx2 + - 7 f («e - WjUx2), i = 1, • • • ,M + 1 

with u£ = nx2 + wax2 and w is some small positive number (we set M = 200 and w = 0.01). 

Then, second, compute a vector C such that 

q = inf (i: t-± < FX2(i)\, 7 = 1 , . . . , / . 

This vector helps to identify the index i such that Fx20 ~~ 1) < ^ — ^x2(0 with U drawn from 

a uniform distribution. After finding this i, the linear interpolation part is straightforward. 
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Table 2.8: Time for the sequential search method 

z 

1 
5 
10 
50 
100 
200 
300 

6 = 0.1 

1.555 
1.461 
1.644 
2.035 
2.425 
3.323 
4.312 

5 = 2 

1.429 
1.415 
1.553 
1.967 
2.324 
3.194 
4.299 

6 = 6 

1.303 
1.522 
1.432 
1.878 
2.355 
3.232 
4.238 

We set / = 100. 

However, there is one complication in the computation of the CDF of X2. In computing 

(2.9) with b e z'R, MATLAB (and other numerical packages) uses the complex logarithm 

with the principal branch (-71,71]. This eventually leads to a discontinuity of <P2(-ib) as b 

moves along the real line and thus to a discontinuous CDF of X2. This kind of discontinuity 

is also observed in Broadie and Kaya (2006). Therefore, we need to keep track of how many 

times £ • s^^ /2 r o t a t e s around the origin as b varies. In our implementation, we do this 

by adding 2TT whenever <t>2(-zM) (with h as in the Abate-Whitt algorithm and k = 1 , . . . , N 

for a truncation level N) crosses the negative real axis, moving from the second quadrant 

to the third quadrant. Table 2.7 shows the times for tabulation for case I to case IV using 

MATLAB. 

We compute the mean and the variance for a reader's convenience: 

f x2 = Sf42, 4 2 = 6ox2
2 

where p*x and a*x
 2 are given by 

^ = iS(-2 + K f C° t h(f)) 
4 / = ^(-8 + 2K*colh(f) + ^ c s c h 2 ( f ) ) . 

To compute a precise distribution table, we set u£ — jUx2 + 12ax2- Time step is set to be 1. 

Simulation of X3. By the same reason above, we simulate Z from a pre-computed 
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distribution table. We note that there is no complication of the complex logarithm for Z 

because (2.10) has the exponent 2. Clearly, we have 

Hz = 4/42 , of = 4 4 2
2 . 

To simulate X3, we need to generate the Bessel random variable r\ = BES(v, z) with 

o , 2K/O2 . 

v = r - 1, z = . V 0̂»f-
2 sinh(Kf/2) 

Since VQ, vt vary on each simulated path, we generate r\ at each time grid point on each path. 

Several authors studied the simulation of Bessel random variables. Devroye (2002) sug-

gested three algorithms using the acceptance-rejection approach by facilitating an upper 

bound of the probability distribution of a Bessel random variable. Iliopoulos and Karlis 

(2003) also suggested some acceptance-rejection algorithms, which use properties of Bessel 

law studied in Yuan and Kalbfleisch (2000). But, we employ a simple sequential search 

method (Iliopoulos and Karlis 2003 dealt this approach as well), which is based on the 

following recursive relation: 

z2 {z/iy 

Vn+l ~ 4(« + l)(w + 1 + v)Vn/ n ~ Jv(z)r(v + 1) 

and we return a value n(U) such that 

Y, Pn < U < Y^Vn-
n<n(U) n<n(U) 

It turns out that the computing time is not sensitive to 5, but to z-value. As z increases, the 

computing time increases as well. See Table 2.8. However, the typical z-values that arise 

in cases I-IV stay small. Indeed, if we set VQ — vt = 6, then z-values are 0.16, 0.2, 0.35 and 

0.06, respectively. 
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2.5 Numerical Tests 

We apply the beta and the gamma approximations to European call options and compare 

the results with those of other two methods. The first one is the exact scheme of Broadie 

and Kaya (2006) and the second one is the QE method of Andersen (2005). Parameters are 

from Table 2.1. Other parameters are as follows: 

So 

strike 

maturity 

VQ 

100 

100 

l(yr) 

e 

We set vbase = 6 for beta approximations and the truncation level K - 1 and 10 for gamma 

approximations.1 

So far we demonstrated numerical results using MATLAB. However, it becomes too 

time consuming when it comes to simulation with a large number of trials. From now on, 

all numerical results are obtained using programs coded in the C programming language 

and compiled by Microsoft Visual C++ 6.0 in the release mode. Execution files are run on 

a personal desktop computer with Intel Pentium 4 CPU 3.20 GHz and 1.0GB of RAM. The 

numbers of sample payoffs are 10K, 40K, 160K, 640K, 2560K and 10240K. 

The first comparison In Broadie and Kaya (2006), they compared the exact method with 

the Euler scheme and found that the exact method exhibits better performance. The Euler 

scheme, in some cases, is very slow in decreasing the simulation bias. See p.222 of their 

paper. 

The simulation biases of the beta and the gamma approximations are shown in Table 

2.10. They are obtained using 1 billion number of simulation trials. The numbers in the 

parentheses are the standard errors. The starred biases mean they are not statistically 

significant at the level of two standard deviations. 

Figure 2.3 shows the performance of each method. Apparently, as the number of 

'As for the Broadie-Kaya scheme, Ozgur Kaya provided us with the code. We are grateful for his help. 
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simulation trials increases the bias dominates the RMSE (root mean square error) in the 

case of beta approximation and gamma approximation with K = 1. However, gamma 

approximation with K = 10 achieves the same level of convergence rate of the exact method 

while shortening the computation time by the factor of 102 to 103. 

The tabulation times for gamma and beta approximations are reported in Table 2.9. As 

the number of simulation trials increases, the computational burden for tabulation becomes 

relatively negligible. 

The second comparison Andersen (2005) compared his QE method with various dis-

cretization methods and showed that the QE method outperforms others. In our numerical 

tests, we set y\ = yi = 0.5, which are parameters used in the QE method, not the first two 

of {yn\, and i/'c = 1-5 (same as in Andersen 2005). We do not implement the martingale 

correction scheme as we are dealing with the at-the-money options. See Andersen (2005) 

for the details of the QE method and other variants. 

Even though any theoretical convergence rate of the QE method is not given in Andersen 

(2005), Figure 2.4 shows approximate decay rates of biases. Corresponding numbers are 

given in Table 2.11 and 1 billion simulation trials are used. Convergence rates are different 

in different cases; the next table presents the average difference of log biases in each case. 

I 

II 

III 

IV 

-1.28 

-1.88 

-1.63 

-1.27 

Following optimal allocation rule discussed in Duffie and Glynn (1995), this means the 

convergence rate of the RMSE (when optimally allocated) would be approximately 0(s~r) 

with r = 0.36,0.39, 0.38 and 0.36, respectively. Figure 2.5 demonstrates these observations. 

The dotted lines are the simulation results with time step size 1/8 and 1/32. As one can see, in 

cases II & III the QE method does better up to 160,000 simulation trials. However, in most of 

other cases the gamma approximation with K = 10 shows a better performance. The gamma 
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Table 2.9: Computation times for tabulation in Beta and Gamma approximations. 

case I II III IV 

Beta 1.06 1.16 0.7 0.64 

Gamma 0.69 0.81 0.44 0.36 

approximation also has a faster convergence rate. Table 2.12 summarizes simulation results 

and the numbers in the column for the QE method are the best performing cases. 

Additional numerical tests are reported at the end of this chapter. We look at in-

the-money (ITM) and out-of-the-money (OTM) European calls with strike 80 and 120, 

respectively. Figures 2.6 - 2.8 show how much effective the Gamma and Beta approxima-

tions are compared to the exact method and the QE method, including the biases of the QE 

method with different time steps. Corresponding numbers are given in Tables 2.16 - 2.18. 

Similar figures and tables for OTM calls are also provided. 

However, we note that in some cases the Gamma approximation with K = 10 performs 

not as well as at-the-money calls. Those cases are ITM case I, OTM case I, and OTM case II. 

Especially, the simulation biases reported in Tables 2.13, 2.16 are much bigger than those 

of the QE method. More numerical tests imply that increasing K does not help to reduce 

the simulation biases. It turns out that these large biases come from tabulation. In our 

implementation of the Abate-Whitt algorithm (2.12), we used ue = \iy+12cry, V = X2, Z and 

set the truncation error e' = 10 5. Instead, we increaseMe to f/y+14ay andsete ' = 10~7. This 

yields much less simulation biases of the Gamma approximation with K = 10 as reported 

in Table 2.19, which are similar to the biases of the QE method with the time step size 1/32. 

Figure 2.12 shows the performance of the approximation for those three cases. 
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Figure 2.1: Convergence of Gamma approximations: VQ + vt = 0.02. 
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Figure 2.2: Beta approximations (dotted) and true CDFs (solid): case I 
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Figure 2.3: Convergence of Simulation Methods for European Call. 
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Figure 2.4: Convergence of biases of the QE method. 
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Figure 2.5: Comparison of Gamma approximation with K - 10 and the QE method. 
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2.6 Extension to Non-Equidistant Time Grids 

So far, we have described approximate methods for a fixed time step size. This becomes 

problematic when one needs to simulate stock prices on non-equidistant time grids. To 

resolve this problem, we introduce a method that is similar to the previous one, but 

independent of the time step size. 

Suppose we need to compute the expectation under a risk neutral measure Q 

EQ[p(S0 / . . . ,Sm)] 

where p is a discounted payoff function depending on stock prices S,'s at times 0 = to < 

• • • < tm — T for a given maturity T. From now on, we assume that (2.1)-(2.2) are given 

under Q with \i - r - d risk free interest rate minus dividend rate. We introduce a new 

process At := Vif/a2, which satisfies 

dAt = (<5 - ^At\dt + 2 V^rfW,1 

where Wt is also a standard Brownian motion under Q. Similarly, define S't = Sit/a2. Next, 

we define a new probability measure P by 

with*? = 2K/O2. Then, by the Girsanov Theorem, dWp := dYJ]-q yJXtdt becomes a Brownian 

motion under P and thus 

dAt = 5dt + 2 y/AtdWf 

a squared Bessel process with dimension 5. In summary, 

EQ[p(S 0 , . . . ,S m ) ]=E p 
P \JQ, ... , Smj • 
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where 

' - ' ^ + —At\dt + - yfXt(pdWf + yJl-p2dwA, 
s; \o2 a 

dAt = 5dt + 2yfA,dWf, 

2 = exp(-j\v^Wf-f J V 

and S'. = S4t./ai. If we apply the procedure of the Broadie-Kaya scheme, it becomes clear 

that we need to simulate IJ Audu\As,At I and all other parts remain same as before except 

some trivial changes in coefficients. 

If we define A'u = As+au la for some a > 0, then A' is still a 6-dimensional squared Bessel 

process and 

A ' -a± A> -U-l 

°~ a' C-s)/« " a 
\ Audu As = «!, At = a2\ = a2 I A'Ju 

Therefore, by setting a — t — s we just need to simulate 

IJ A'udn\A'0 = ai/{t - s),A[ = a2/(t - s)\ . 

This can be done by decomposing this conditional distribution into the sum of three 

independent random variables as done in Theorem 2.2.1 as a straightforward application 

of the squared Bessel bridge decomposition of Pitman and Yor (1982). The proof of the 

following theorem is omitted. 

Theorem 2.6.1 The distribution of J A'udu conditional on endpoints A'0, A'x admits a decomposi-

tion: 

Ij A'udu | A'0 = a'0, A\ = a{) = Y, + Y2 + Y3 = Y, + Y2 + J^ZJ 

where Yj's are independent random variables, Z'.'s are i.i.d. copies ofZ' and rf is an independent 

Bessel random variable with parameters v = 6/2 - 1 and z = ^a'0a'r Moreover, Y\, Y% and Z' have 
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the following representations: 

oo N„ oo oo 

where Nn's are independent Poisson random variables with mean a'0+a'v Expj(l)'s i.i.d. Exponential 

random variables with rate 1 and Tn{k,6)'s independent gamma random variables with shape 

parameter k and scale parameter 8. 

The series expansion of Y2 is taken from p.21 of Pitman and Yor (2000), which is a direct 

consequence of (2.11). We can also derive Levy densities of Y\ and Y2 as done for Xi and 

Xj- Now we can apply gamma and beta approximations to L A'udu and tabulation is free 

of the time step size. In other words, we make distribution tables once all parameters K, 6, 

a are fixed and use them for any time grid. 

Remark Note that 5 - 4x6/a2 is the only value used in tabulation which is associated with 

model parameters. Suppose we use the above series expansion to simulate Yi instead of 

tabulation. In other words, we apply the beta or gamma approximation to Y2 as well. This 

means that we are free of any model parameter and the beta or gamma approximation 

requires once-in-a-lifetime tabulation. This extends the possibility of the proposed ap-

proximate schemes to efficient calibration of model parameters to market prices. Detailed 

investigation in this direction remains as a future research. 

Remark One can extend gamma and beta approximations to variants of the Heston model 

such as the SVJ or SVCJ models. The extensions are straightforward and explained well in 

Broadie and Kaya (2006), so we do not deal with this issue in this chapter. 

2.7 Conclusion 

We showed a series expansion of the conditional path integral of the variance process 

L Vsds\Vo, Vt) in the Heston stochastic volatility model. This path integral is decomposed 

into the sum of three independent random variables and each of them expands as an infinite 

sum of the Poisson mixture of exponential random variables or an infinite sum of gamma 
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random variables. Based on this result, we proposed a new Monte Carlo simulation scheme 

of the Heston model. The basic procedure is same as that of the exact scheme of Broadie and 

Kaya. However, we simulate I J[ Vsds\Vo, Vt J by simulating Poisson, exponential, gamma 

and Bessel random variables which appear in the series expansions. We also tested the 

beta approximation which uses a single beta random variable and tabulation of the CDF 

of some base random variable. 

In our implementation, we used the gamma and the beta approximations for X\, but 

the tabulation idea is used for the other two random variables X2 and X3 as long as the 

model parameters and the time step size are fixed. This pre-caching needs to be done in 

the initialization of Monte Carlo simulation. In this pre-caching procedure, one can avoid 

using a given time step size by facilitating the Girsanov theorem. After some change of 

measure, it turns out that we only need parameters K, 6 and a to be fixed. One can apply 

this approach to the derivatives of which payoffs depend on the time grid with different 

step sizes. 

The numerical results show that the beta and the gamma approximations work better 

than the exact method, while they exhibit similar performance as Andersen's QE scheme 

in some cases. However, in all cases considered here, the gamma approximation shows a 

larger convergence rate. 
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Figure 2.6: Convergence of Simulation Methods for In-the-money European Call. 
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Figure 2.7: Convergence of biases of the QE method for In-the-money Call. 

Log (number of steps) 

CASE III 

Log (number of steps) 

CASE IV 

Log (number of Steps) Log (number of steps) 



CHAPTER 2. GAMMA EXPANSION OF THE HESTON MODEL 46 

Figure 2.8: Comparison of Gamma approximation with K = 10 and the QE method for 
In-the-money Call. 
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Figure 2.9: Convergence of Simulation Methods for Out-of-the-money European Call. 
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Figure 2.10: Convergence of biases of the QE method for Out-of-the-money Call. 

Log (number of steps) LogJnumber of steps) 

CASE IV 

Log (number of steps) Log (number of steps) 



CHAPTER 2. GAMMA EXPANSION OF THE HESTON MODEL 51 

Figure 2.11: Comparison of Gamma approximation with K = 10 and the QE method for 
Out-of-the-money Call. 
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Table 2.19: Biases of the Gamma approximations with K = 10 and more accurate 

tabulation. 

Tabulation Time Bias 

ITM, CASE I 

OTM, CASE I 

OTM, CASE II 

1.500 0.00105 (0.00029) 
1.484 -0.00014 (0.00003) 
2.031 -0.00178 (0.00021) 

Figure 2.12: Comparison of Gamma approximation with K = 10 and the QE method with 
more accurate tabulation. 
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Chapter 3 

Moment Explosions and Stationary 

Distributions in Affine Diffusion 

Models 

Many of the most widely used models in finance fall within the affine family of diffusion processes. The affine 

family combines modeling flexibility with substantial tractability, particularly through transform analysis; 

these models are used both for econometric modeling and for pricing and hedging of derivative securities. 

We analyze the tail behavior, the range of finite exponential moments, and the convergence to stationarity 

in affine models, focusing on the class of canonical models defined by Dai and Singleton (2000). We show 

that these models have limiting stationary distributions and characterize these limits. We show that the tails 

of both the transient and stationary distributions of these models are necessarily exponential or Gaussian; in 

the non-Gaussian case, we characterize the tail decay rate for any linear combination of factors. We also give 

necessary and sufficient conditions for a linear combination of factors to be Gaussian. Our results follow from 

an investigation into the stability properties of the systems of ordinary differential equations associated with 

affine diffusions. 

55 
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3.1 Introduction 

The affine family of diffusion models includes many of the most widely used models in 

finance. The affine framework offers substantial modeling flexibility and a high degree of 

tractability, particularly through Laplace or Fourier transforms. Examples of affine diffu-

sions include the Ornstein-Uhlenbeck (OU) process, the square-root diffusion associated 

with the Cox-Ingersoll-Ross (CIR) interest rate model (Cox et al. 1985), the Heston (1993) 

stochastic volatility model, the interest rate models of Brown and Schaefer (1994) and 

Longstaff and Schwartz (1992), and the Duffie and Kan (1996) family of term structure 

models. Affine models are used both for econometric modeling of time series data and for 

pricing and hedging of derivative securities. 

Duffie et al. (2000) develop a transform analysis for affine jump-diffusions in a very 

general setting. They derive generalized characteristic functions associated with these 

models and show that these are exponentials of affine functions of the state variables; the 

coefficients of these affine functions are characterized as solutions to ordinary differential 

equations (ODEs). Duffie et al. (2003) characterize regular affine processes and their asso-

ciated differential equations. Dai and Singleton (2000) define equivalence classes of affine 

models that are invariant under certain affine transformations, and they define a canonical 

model within each class. See Singleton (2006) for an extensive discussion of the estimation 

of these models. 

In this paper, we study the tail behavior of affine diffusions and their stationary dis-

tributions. We focus on canonical models and show that these models do indeed have 

limiting stationary distributions. We characterize the tail behavior of the transient and 

stationary distributions of these models, and we show that the tails are always exponential 

or Gaussian. This in turn allows us to characterize the range of finite moments for asset 

price processes constructed from affine diffusions. 

We obtain our results through an analysis of the stability of the ODEs that determine 

the transforms associated with an affine model. To illustrate the connection between 

tail behavior and transforms, let X be a positive-valued random variable and let cp(6) = 

E[exp(0X)] denote its moment generating function (the mapping 6 —> (p(-8) is its Laplace 
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transform). We can distinguish various types of tail behavior for X based on properties 

of (p(d) for 9 > 0: If (f)(9) = oo for all 6 > 0, then X is heavy-tailed; if (f)(6) is finite all for 

6 e [0, 6Q), for some 0g > 0, then the tail of X is exponentially bounded; if, in addition, 

cp(d) - oo for all 6 > do, then the tail is exponentially bounded both above and below, so 

X has an exponential tail; and if (j)(9) < oo for all 0 > 0, then X is light-tailed. Similar 

statements apply to a two-sided random variable through consideration of both positive 

and negative values of 6. When we refer to the tails of a random vector X e W, we mean 

the tails of random variables of the form u • X, u e W, with u • X denoting the scalar product 

of u and X. 

Consider, now, an OU process 

dYt = a(b-Yt)dt + adWt, (3.1) 

with a, a > 0 and b > 0, or a CIR process 

dYt = a(b - Yt)dt + a y[Y~t dWt (3.2) 

with, in addition, lab > a1 and Yo > 0. In either case, take Yo fixed, for simplicity. Then, in 

the case of (3.1), Yf has a Gaussian distribution for all f > 0 and a stationary Gaussian limit 

distribution as t -» oo; in particular, Yt has light tails for all t. In the case of (3.2), Yt has a 

scaled noncentral chi-square distribution for alH > 0 and a stationary limit with a gamma 

distribution; thus, Yt has an exponential tail for all t. 

Our results extend this simple illustration to the full range of canonical affine models. 

We establish the existence of limiting stationary distributions, and we show that any linear 

combination of the state variables has either an exponential tail or a Gaussian distribution. 

The dynamics of a canonical affine model cannot produce heavy-tailed distributions, nor 

can they produce non-Gaussian light-tailed distributions; the same holds for any affine 

model obtained from a canonical model through an affine transformation. As a point of 

contrast, we note that GARCH models typically generate heavy-tailed marginal distribu-

tions, even when driven by light-tailed innovations; see Basrak et al. (2002). 
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The tail behavior of an affine process determines the maximal moments in an asset-price 

model constructed from the affine process. More explicitly, suppose the process Y takes 

values in W, and construct a price process Pt = exp(af + ut • Yt), where at is a scalar function 

of time, and ut is an W-valued function of time. The points 

6t = inf{0 e M : E[Pf] < 00} and 0, = sup{# e R : E[Pf] < °o) 

coincide with the endpoints of the interval of convergence of the moment generating 

function of ut • Yt. We use the structure of the transform of Y( to characterize these points. 

It follows from our investigation that the interval (0f/ 6t) shrinks (or, more precisely, does 

not expand) as t increases. Inverting the dependence on t leads to the smallest t at which 

E[Pf] becomes infinite, for fixed 6. This is the problem of finding the moment explosion time 

studied by Andersen and Piterbarg (2007) in the Heston model. Through results of Lee 

(2004), the extremal values 6_t, dt determine the asymptotic slope of the implied volatility 

curve for options on P(. 

We derive our results through an analysis of the ODEs that arise in the transform 

analysis of affine models. We show that the moment generating function of u • Yt, u e W, 

is infinite at 6 precisely if the solution to the ODE for Y explodes by time t from initial 

condition 6u. It follows that Y< has exponential tails if the solution remains finite on [0, t] 

from all initial conditions in a neighborhood of the origin, and Yt has light tails if this holds 

for all initial condition in W. The limiting behavior of the distribution of Yt is determined 

by the behavior of the ODEs as t —> 00. By characterizing the stability of the ODEs, we 

show that {Yt,t > 0} has a limiting distribution that does not depend on YQ, and that this 

limiting distribution is, in fact, stationary for Y. The tails of this stationary distribution are 

determined by the stability region of the ODE for Y; properties of the stability region are 

themselves of some interest, as we illustrate through examples. Our final result shows that 

a linear combination of the components of Yt is light-tailed only if it is Gaussian, and we 

characterize which linear combinations have this property through the model parameters 

defining Y. 

The rest of this chapter is organized as follows. Section 3.2 reviews the dynamics and 
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parametric restrictions for canonical affine models and states our main results. Section 

3 illustrates these results with examples. Sections 3.4 to 3.6, develop the analysis and 

proofs underlying our results. Section 3.4 includes relevant background on the theory of 

dynamical systems. We conclude in Section 3.7. 

3.2 Main Results 

The canonical affine models introduced byDai and Singleton (2000) follow equations of the 

form 

dY, = -AT(& - Yt)dt + jdiag(Ft)dWt, (3.3) 

evolving on R" and driven by an n-dimensional standard Brownian motion W. Here, Ft is 

an affine function of Yt, also taking values in W, and diag(Ft) denotes the nxn diagonal 

matrix whose diagonal entries are the components of Ft- The interpretation of the process Y 

depends on the application. For example, in some models, one defines a short rate process 

rt by setting rt = u$ + U\ • Yf, for some «o e R and some u\ e R"; other models define an 

asset price process Pt by setting log(Pf) = at + bt- Yt, for some deterministic functions a and 

b. 

The canonical specification of Dai and Singleton (2000) imposes additional restrictions 

on (3.3). To state these, we introduce some notational conventions to be used throughout 

the paper. For vectors or matrices a and b, we write a>bii every entry of a is at least as large 

as the corresponding entry of b; we write a > bifa > b and a + b; and we write a » b if every 

entry of a is strictly larger than the corresponding entry of b. We set R"' = {x e Rm : x > 0} 

and R"'+ = ( i e W" : x » 0), with the dimension of the zero vector determined by context. 

We write \x\ for the Euclidean norm of the vector x. 

In the Dai and Singleton (2000) classification, the canonical model Am(n) partitions the 

state vector Y as (Yv, Yd), with Yv evolving on Rf and Yd on R" m, as a consequence of 

restrictions imposed on (3.3). The components of Y° are called volatility factors, and the 

components of Yd are called dependent factors. We use the superscripts v and d more 

generally to indicate partitions of vectors and matrices associated with the partioning of 
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Y. Thus, we often write a vector u e W as (uv,ud), with uv having m components and 

ud having n - m components. The parameters of a canonical model Am(n) are required to 

satisfy conditions (C1)-(C4), below. Dai and Singleton (2000) and Singleton (2006) explain 

the econometric identification issues that motivate these conditions. 

(CI) The matrix A has the block form 

A = 

( Av Ac \ 

0 Ad
 / 

and it has real and strictly negative eigenvalues. 

(C2) The off-diagonal entries of Av are nonnegative. 

(C3) The vector 0 = (0°, 0 d) has ©d = 0, 0 ° > 0, and (-AT&)'° » 0. 

(C4) The vector Ft = {F°t, F
d) satisfies 

F<; = Y{, Fd = e + {BcYY°t, 

where e is a vector of Is and Bc is a matrix in R " ' x ^ . 

The eigenvalue condition in (CI) ensures mean reversion in Y. It implies (through, e.g., 

p.62 of Horn and Johnson 1990) that Av and Ad also have strictly negative eigenvalues, 

in view of the block triangular form of A. Together, (CI) and (C2) imply that -Av is an 

M-matrix (as defined, e.g., in Berman and Plemmons 1994). The vector © represents the 

long-run mean of Y. We could rewrite (3.3) in terms of 

A = -AT&. (3.4) 

Indeed, if we specify A" rather than 0 , with Av » 0, then the fact that -Av is an M-matrix 

guarantees (see p.137 of Berman and Plemmons 1994: inverse-positivity of M-matrix) that 

we can find a © " > 0 for which -AvT&v = Av; in fact, we can take ®v = -(AvT)~1Av. If we 

then set ©d = 0 and Ad - ( -A T 0) d = (AcT)(AvT)~'1 Av, we complete the specification of A in 
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a manner consistent with (C3) and (3.4). Thus, we can choose either 0 or A in specifying 

the model. 

Condition (C4) requires that only the volatility factors Yv appear inside the square root 

in (3.3), which is natural, given that the components of Yd will be allowed to become 

negative. The form of Fv
t implies that the volatility factors are correlated only through the 

matrix A in the drift of Y. Cheridito et al. (2006) show that the diffusion matrix of any affine 

diffusion on R"' X Rn~m can be diagonalized through an affine transformation if m < 1 

or m > n - 1 (in particular, if n < 3); but they also provide examples for which no such 

transformation exists. 

To illustrate this modeling framework, we formulate a stochastic volatility model in the 

class Aj(2) — that is, a two-factor model with a single volatility factor. We write the state 

vector as Y = (Yv, Yd), with dynamics 

dY°t = {mi + pY°t)dt + JYv
tdW] 

dYd = (m2 + qY°t + rYd)dt + ^ 1 + sYJdWf, 

(3.5) 

(3.6) 

for some constants ni\, ni2, p, cj, r and s. The restrictions of the general model Am(n) require 

nti > 0, p < 0, q > 0, r < 0, s > 0, and qrti\ = pni2- We can then construct an asset-price 

process Pt by setting 

log(Pt) = a,+2btY° + 2ctYf, (3.7) 

for some deterministic functions at, bt and C(. We will apply our general results to the mo-

ments of Pt in the next section and illustrate the qualitatively different behavior produced 

by different ranges of parameter values in the model. 

The model (3.3) has associated with it a system of ODEs on W specified by 

x„(t) 

1 Av Ac ^ 

0 Ad 

xi (0 

x„(t) 

' I Bc ^ 

0 0 

' *?(0 ^ 

4(t) 

(3.8) 
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We will write this system more compactly as 

x = f0(x) = Ax + B{x\, ...fx\), x(0) = u, (3.9) 

with B the corresponding block matrix in (3.8), and the initial condition u e W1 included 

here for future reference. We will see that, for any initial condition u, the system (3.9) 

admits a unique solution on a time interval [0, t), for some t > 0. But, the solution may 

blow up in finite time and fail to exist beyond some finite time T. We discuss this point in 

greater detail in Section 3.4.1. 

The analysis in Duffie et al. (2000) leads to the representation 

E [exp(2w • Yt)} = exp J2 J A • x(s)ds + 2 I ^(stfds + 2x{t) • Y0\, (3.10) 

with x solving (3.9) and A as in (3.4), at least under some regularity conditions. Our 

first result asserts the validity of this formula (even in the infinite case) without further 

conditions and adds a stronger conclusion: 

Theorem 3.2.1 The transform formula (3.10) holds in the sense that if either side is well-defined 

and finite, then the other is also finite and equality holds. Moreover, the right side of (3.10) is 

well-defined and finite if and only if the solution of (3.9) exists at time t. Consequently, for any 

t > 0, the right side of (3.10) is finite for any vector u in a neighborhood of the origin. 

This result connects the stability of the ODE (3.9) with the tail behavior of Yt: 

Corollary 3.2.1 Consider the system in (3.9) with initial condition x(0) = du/2, 6 > 0. If the 

solution x exists at t, then 

1 
lim sup - logP(w • Yt > y) < -6. 

y—»oo y 

If the solution explodes before t, then 

1 
lim sup - logP(M • Yf > y) > -0. 

y->oo y 

For any t >0, the solution x exists at tfor all sufficiently small \6\ > 0. 
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Corollary 3.2.1 describes the tail behavior of Yt: the last statement of the corollary and 

the first limsup together imply that for any u and any e > 0, we have 

P(M -Yt>y)< e-
(e~£)y, 

for some 0 > 0 and all sufficiently large y. Thus, u • Yt has an exponentially bounded right 

tail and, with an obvious modification to the argument, an exponentially bounded left tail 

as well. 

A further consequence of Theorem 3.2.1 is a comparison of the tails of the volatility 

factors of two models. For processes Y1 and Y2 on M"!, if Eexp(w • Y*) > Eexp(w • Y2) for 

all u G R"1, then Y] has heavier tails than Y2. We give conditions for such a comparison for 

processes in Am(m). 

Corollary 3.2.2 Let Y' be a process in Am(m) with parameters A' and A', i = 1,2. 

1. Suppose A1 = A2 and Yj = Y2; then Eexp(2w • Y]) > Eexp(2w • Y2) for all u e R™ and 

t > 0 if and only if A1 > A2. 

2. Suppose A1 = A2 and Y\ = Y2 = Y0; then Eexp(2w • Y)) > Eexp(2M • Y2) for all 

(u, Y0) e M™ x R™ andt>0 if and only if A1 > A1. 

Our next result considers the limit as t —> oo. Define the stability region S of the ODE 

(3.9) to be the set of initial conditions u for which the solution x(t) exists for all t > 0 and 

limbec x(t) = 0 if x(0) = u. 

Theorem 3.2.2 The process Y has a unique stationary distribution, which is also the limiting 

distribution ofYt, as t —> oo,for any YQ. Moreover, ifY^, has the stationary distribution of Y and 

we define 

S = [u e R" : Eexp(2w • Yco) < oo), 

then S coincides with S, the stability region of the system (3.9). This set contains a neighborhood of 

the origin. 
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By arguing as in Corollary 3.2.1, we conclude that u • Y^, has exponentially bounded 

tails for all u € W. As a consequence of our analysis, we will identify the distribution of 

Yoo through its moment generating function. 

Theorems 3.2.1 and 3.2.2 preclude the possibility of heavy tails for Yt and Yoo — any 

linear combination of the components of Yf or Y^, has tails that are bounded by some 

exponential decay. We turn next to the possibility of light tails — tails that decay faster than 

any exponential. The Gaussian subfamily of canonical affine models (which corresponds 

to taking m - 0 and thus removing all volatility factors) demonstrates that such light-tailed 

models are indeed possible within the canonical affine framework. Our next result shows 

that the Gaussian case is the only light-tailed case among canonical models. More precisely, 

we show that if the moment generating function of u • Yt is finite for all 9 e M, then the 

distribution of u • Yt is Gaussian. 

Before stating the theorem, we review some facts from linear algebra. By choosing an 

appropriate basis, we can transform Ad into a Jordan canonical form; in other words, there 

exists an invertible matrix P such that P~xAdP = ], and / is a block diagonal Jordan matrix. 

(The columns of P are eigenvectors or generalized eigenvectors of Ad.) Let X\,..., Aj- denote 

the distinct eigenvalues of Ad, and let a\t denote the algebraic multiplicity of A„ which is 

the multiplicity of (x — A,) in the characteristic polynomial of Ad. The matrix / can then be 

chosen to have k diagonal blocks of the form A ,7, + N„ i = l,...,k, with 7/ the identity matrix 

and N{ a nilpotent matrix, both of dimension AA, X «A,-- The entries of N,- immediately above 

its main diagonal take the values 0 or 1, and all other entries of Nj are equal to 0. 

We introduce a special matrix W to state our last theorem. For this, we select the q-th 

row of P if there exists some p with W ^0,q — l,...,n-m. Denoting the row vectors thus 
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extracted fromPby w\,... ,w\, we define 

W: 

W\ 

W\ 

ACP 

W i Wk 

In the block decomposition on the right, Wi consists of the first a^l columns of W, W2 

consists of the next a\2 columns, and so on. Similarly, we define 

u := P~V 

' u1 ' 

uk 

u' e 

Theorem 3.2.3 Assume that a Jordan canonical form / ofAd is given as above. Then for any given 

t > 0 and u e Rn, the following holds: E exp(29u • Yt) < 00 for all d e M if and only ifuv-0 and 

Wr-Ato' = 0, l = 0,...,aAj-l, i = l,...,k. (3.11) 

Moreover, u • Yt has a Gaussian distribution if and only if these conditions hold. 

Since the multiplicities of the roots of the characteristic polynomial of Ad are sensi-

tive to the coefficients of the polynomial, small changes in the entries of Ad can make it 

diagonalizable. For diagonalizable Ad, (3.11) reduces to 

WiUl=0, i=\,...,k. (3.12) 

Conditions (3.11) and (3.12) may seem surprisingly complicated, but we will illustrate 

their significance and application through examples in the next section. A more intuitive 

approach to checking whether a linear combination of factors has a Gaussian distribution 

would be to check if each of the factors is Gaussian; individual factors might then be 
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checked recursively, as follows: no volatility factor is Gaussian, no dependent factor that 

has a volatility factor in its drift or diffusion coefficient is Gaussian, no dependent factor 

that has a non-Gaussian dependent factor in its drift is Gaussian, and so on. Our examples 

will show that this approach cannot cover all cases because of special cancellations that 

can occur; nevertheless, Theorem 3.2.3 does support sufficient conditions of this type, 

as we will show in the next corollary. These conditions become necessary when each 

eigenvalue of Ad has a geometric multiplicty of 1, a restriction that effectively rules out 

certain cancellations. The geometric multiplicity g^ of an eigenvalue A, is the dimension 

of the eigenspace associated with A,-. 

We make precise the recursive procedure sketched above through a directed graph G 

on the coordinates of the dependent factors. Introduce an edge (i, i + i) in G if J,/!+i — 1. Call 

a node / of the graph restricted with respect to a matrix M if M;/ =£ 0 for some i. Extend this 

property to other nodes by saying that j is restricted if it is reachable from a restricted node 

through a directed path in G. For any matrix D, let In denote the matrix with (ID);/ = 1 if 

Djj + 0 and 0 otherwise. 

Corollary 3.2.3 A sufficient condition for (3.11) is that Uj = Ofor all j restricted with respect to 

IAPP + lfldp. This condition becomes necessary if g\i — 1 for alii- 1 , . . . , k. 

3.3 Examples and Applications 

3.3.1 Stochastic Volatility: A Simple Case 

To illustrate our results, we begin by considering the stochastic volatility model (3.5)-(3.7), 

based on the Ai(2) dynamics in (3.5)-(3.6). Through (3.10), moments of Py are given by 

E[P£] = exp (aTd + 2 \ (mixi(0 + m2x2(t))dt + 2 \ x2{t)2dt + 2(xi(T)Y£ + x2{T)Yd
0)\, 

(3.13) 

where (x\, x2) solves the ODE 

x\ = px-i + qx2 + x\ + sx\, x2 = rx2, (3.14) 
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with initial condition (xi(0),X2(0)) = (6br, dcj). 

We begin with the simple case q = s = 0, in which the ODE for x\ reduces to a scalar 

quadratic differential equation. We digress briefly to record properties of this scalar system 

because it will be an important tool at several points in our analysis. 

Consider, then, the scalar quadratic ODE x - ax2 + f}x + y, with a > 0. Let D = jS2 - Aay, 

and denote by r\\ and 772 the two solutions of ax2 + f>x + y = 0. The following properties 

of the solution x, which are easily derived from its closed form, are also used in Andersen 

and Piterbarg (2007). If D > 0 with 771 < 772, then 

x(t) —» r\\ as t —> 00, if x(0) < 172; 

x(t) = rji or 172, if x(0) - r\\ or 772, respectively; 

x(t) —> co as t —> T, if x(0) > 772, 

with 

If D = 0, then 

1 x(0) - m 

l o g — - . (3.15) a(f?2-r/i) x(0)-r72 

j3 
4 0 -+ -j-ast-*oo, if x(0) < -/3/2a; 

x(t) = ~ , ifx(0) = -jS/2a; 

x(t) -^ 00 as t -y T, if x(0) > -f3/2a, 

with 

If D < 0, then 

x(0) - /3/2a 

a 2«x(0) + /3 
x(i) —> 00 as t —> T = ——= 17i — 2 tan 

-D \ V-D 

These cases are illustrated in Figure 3.1. Consider, in particular, the first case, D > 0. 

The two roots are equilibrium points — points at which x = 0. The root 771 is a stable 

equilibrium for the ODE; x(t) moves toward 771 from any initial condition less than 771 or 
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Figure 3.1: Qualitative behavior of x - ax2 + fix + y with equilibria r\\, r\i 

between the two roots, so the stability region for the system is 

S = {x : x < T]2}. 

In contrast, r\i is an unstable equilibrium, and x blows up in finite time T if x(0) > 772- The 

set ST consists of all initial conditions from which x continues to exist throughout [0, T). 

From the expression for the explosion time T in (3.15), we find that 

ST = {x:x< (r]2e
aT(''2_,?,) - /?i)/(e"r(r?2~T?l) - 1)). 

We can now apply this to (3.13). In the case q = s = 0, the solution X\ in (3.14) becomes 

infinite at T = (log(8bj + p) - \og(6bT))/p, if dbr > —p; otherwise, x\(t) is finite for all t and 

converges exponentially to zero. In other words, if 6br < - p / ( l - epT), then the right side 

of (3.13) is finite; the second coordinate xi is always finite and integrable. We therefore 

conclude that 

if bT > 0; 

if bT < 0; 

if bT > 0; 

if bT < 0. 

sup{0 : E[P^] < 00} bT(l-t?T)' 

inffg : E[P°] < oo} = 

ftT(l-£*'T)' 
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We can illustrate these properties through the following sets: 

S = l(x, y ) : lim E exp(2xY? + 2yY?) < 00} 
t—>CO 

ST = ((x, y ) : E exp(2xYf + 2yYf) < 00, W € [0, T)}. 

Theorems 3.2.1, 3.2.2 imply that these sets coincide, respectively, with the set S of initial 

conditions for which the solution to (3.14) exists for all time and converges to zero, and the 

set ST for which the solution exists throughout [0, T). Rewriting S and ST above in terms 

of p and T, we get 

S = (-00, -p) x R 

ST = ( - 0 0 , - p / ( l - eP
T)] x R. 

If (6bT, 0cT) e S°T (the interior of Sr), then (3.13) is finite; if (6bT, 9cT) e S, then (3.13) is 

finite for all T. The left panel of Figure 3.2 illustrates the boundaries of these sets. The 

parabola shows the values of x\ = px\ + x? in (3.14) as a function of X\. The larger of the 

two solutions to the equation X\ = 0 determines the upper limit of the stability region for 

X\ (as in Figure 3.1), so dS passes through this point. As T decreases, 9ST shifts to left. 

We can also see from the figure that (Ofrr, OCT) lies outside ST for some (and then all) 

sufficiently large 6 > 0 or 6 < 0, unless (fr-r, CT) lies on the vertical axis. Thus, P^ has infinite 

expectation for some 6 unless for = 0. When bx = 0, log(PT) = «T + 1CTY\ has a Gaussian 

distribution, and thus does indeed have finite moments of all orders. This is a simple 

graphical description of the conditions in Theorem 3.2.3 for this example. 

3.3.2 Stochastic Volatility: Further Cases 

We continue to work with the basic model (3.5)-(3.7), but now take s > 0, q - 0, and 

p = r < 0. In this case, the function £(£) := e™Pfxi(f)/ Vsx2(0)2 solves H{E,2 +1) = ^sx2(Q)2eP'. 

Then, we have 

tan"1 (5(0) - tan"1 (5(0)) = ^sx2
2(0)(ePt - l ) /p. 
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Figure 3.2: Boundaries of S and Sj for Ai (2) models. The left panel has parameters p = ~2, 

q = s = 0; the right panel has p = r - - 2 , q — 0, s = 1. 

Therefore, 

xj(0 = ^ ( O ) e P ' tan Usx2
2(0)(ePt - l) /p + tan"1 (x^O)/ ^ ( O ) ) ) , x2(0 = x2(0>>'". 

Then, 

and 

S = {(x, y ) : x < A/sy2 tan(7i/2 + Jsy2/p)} 

ST = {(x,y):x< ^sy2 tan(n/2 + ySy2( l - epT)/p)|. 

These sets are illustrated in the right panel of Figure 3.2. For any nonzero point (bj, cj), 

the line defined by the points {dbj, dcj) as 6 ranges over K crosses the boundary of ST 

twice, once with 6 positive and once with 8 negative. If (br, CT) is in the interior of Sj, then 

these values of 8 are the extremal moments Qj and 8_T as a consequence of Theorem 3.2.1. 

In particular, E[P^] becomes infinite for all sufficiently large positive or negative 8. The 

log price log(Pr) is never Gaussian. 

We next consider the effect of varying r < 0, which is the coefficient on Yd in the 

expression for dYd in (3.6), while fixing s > 0, q = 0 and p < 0. We can represent X\(t) in 

terms a function ip(l) by setting 

f 
( Vfert 

y/ii bH+D* 
( Vfert 

(3.16) 
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with k = SX2(0)2. The function \p(l) solves a second order ODE, 

l2f'(l) + If (J) + [l2 - ( 0 ) fl) = 0. (3.17) 

It follows that ip(l) is a linear combination of Bessel functions of the first and second kinds, 

respectively; see, e.g., p.748 of Polyanin and Zaitsev (2003) for properties of the solution. 

Since any multiple of fl) satisfies (3.16), we can set ip{l) as the solution to (3.17) for 

/ 6 (0, - yfk/r] with f - Vk/r) = Vfc, which then satisfies f(- Vk/r) = xi(0) + p/2. Since 

5 = {x(0) : lim^oo x(t) = 0}, from (3.16) we get 

S = \x(0): lim ~^- = ~ \ = (*(0): - Vfc/r < the first zero of fl)). 

A similar analysis can be carried out for s = 0, q > 0 and p < 0 case. Figure 3.3 shows 

the boundary of S for different values of r. The left panel has q = 0 and s = 1; the right panel 

has q = 1 and s = 0. In both cases, the stability region becomes smaller as r approaches 

zero, indicating that Yoo = (Y^,, Y«) has heavier (though still exponentially bounded) tails 

at smaller values of \r\. This is to be expected from the role of r in the dynamics (3.5)-(3.6) 

of the model. 

The two panels of Figure 3.3 show an interesting contrast. In the right panel, we see 

that a line of the form {6u : 6 e R), n e S n R++/ crosses the boundary of S just once, at some 

6 > 0; in the left panel, such a line would cross the boundary of S at both a positive and 

negative value of 6, as noted in our discussion of Figure 3.2. This reflects an interesting 

distinction between two ways the volatility factor Y° can influence the dependent factor 

Yd. When Y° appears in the diffusion coefficient of Yd (the left panel, with q = 0, s + 0), it 

makes both the right and left tails of u • Y^ exponential, u 6 M .̂+; when Yv appears only 

in the drift of Yd (the right panel, with q ^ 0, s = 0), one tail of u • Y^ is exponential, but 

the other is light. The figure has q > 0, so the right tail is the exponential one; taking q < 0 

would reflect the figure about the horizontal axis, corresponding to an exponential left tail. 
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Figure 3.3: Stability boundaries for Ai (2) models. The left panel has parameters p = - 2 , 
q = 0, s = 1; the right panel has p = - 2 , q = 1, s = 0. 

3.3.3 Two Volatility Factors 

Our next example is a model in A2(2): 

dY,1 = (mi + pY,1 + rY^) df + TJY~J dW] 

AY] = (m2 + qY\ + sYf) At + JYJdW?. 

This can be viewed as a two-factor CIR model; it also belongs to the family of continuous-

state branching processes, as explained in Duffie et al. (2003). The associated system of 

ODEs is 

±\ = px\ + q%2 + x\ (3.18) 

±2 = rx\ + s*2 + x\. (3.19) 

To satisfy the restrictions on the A matrix in (3.3), we require p, s < 0, q, r > 0, and ps-qr > 0. 

The ODEs (3.18)-(3.19) do not admit a closed-form solution, but we can investigate 

the qualitative behavior of the system and illustrate this behavior graphically. (We review 

relevant background on dynamical systems in Section 3.4.1.) Figure 3.4 shows the vector 

field defined by (3.18)-(3.19) with p — - 3 , q - \ , r - \j1, and s = - 1 . The two parabolic 

curves are the points in the plane satisfying x\ = 0 in (3.18) and ±i — 0 in (3.19). At the 

intersections of the two parabolic curves we have {x.\,xi) = 0, making these equilibrium 
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as 

Figure 3.4: Vector field of an A2(2) model and dS with , p = - 3 , q = 1, r = 0.5 and s = - 1 . 

points; there are two equilibrium points in the example of Figure 3.4, one of which is the 

origin. The origin is a stable equilibrium: the system approaches the origin from all initial 

conditions in a neighborhood of the origin. Indeed, the system approaches the origin from 

all initial conditions in the stability region S, whose boundary dS is indicated by a dashed 

line in the figure. If x(0) lies outside of S, the system explodes, in the sense that \x(t)\ —> oo. 

The other point of intersection of the two parabolas is an unstable equilibrium: there 

are initial conditions arbitrarily close to this point from which the system will approach 

either the origin or infinity. (In the language of dynamical systems, this is a hyperbolic 

equilibrium of type 1, and therefore unstable; see, Section 3.4.1 and, e.g., Chiang et al. 

1988 for background.) Associated with the unstable equilibrium is a stable manifold — a 

curve in the plane of initial conditions from which the system moves toward the unstable 

equilibrium. This curve is contained within dS. 

From Theorem 3.2.2, we know that the points u in S are precisely the points for which 

E[exp(2w • Yoo)] is finite. Because S contains a neighborhood of the origin, any linear 

combination of the components of Yoo has exponentially bounded tails. For u e S n K++, 

the line [6u : 0 e l | crosses dS just once, at some 6 > 0, so E[exp(0M • Yoo)] becomes infinite 

at for all sufficiently large 6 > 0 but remains finite for all d < 0. In other words, u • Yco has 

an exponential right tail and a light left tail (in fact, u • Yoo is nonnegative). 

Figure 3.5 illustrates the behavior of this system for other parameter values. The 

left panel of the figure shows an example with three equilibrium points, and the right 
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Figure 3.5: The stability boundary for A2(2) models. The left panel has parameters p = —3, 

q = 1, r = 0.089, s = - 1 ; the right panel has the same parameters, except with r = 0.07. 
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Figure 3.6: The stability boundary for A2(2) with p = -3, q = r = 0, s = —1. 

panel shows one with four equilibrium points. In both cases, the origin is the only stable 

equilibrium. Figure 3.6 shows a degenerate case with q — r = 0. Here, equations (3.18) 

and (3.19) decouple, and the stability of each reduces to the analysis of the scalar quadratic 

differential equation in Section 3.3.1. 

3.3.4 Gaussian Conditions 

In Theorem 3.2.3, we gave conditions under which u • Yt and u • Ya, have finite moments 

of all orders, and we noted that these conditions also determine when Yt and Yoo are 

Gaussian. From the perspective of the associated ODEs, u • Yco has finite moments of all 

orders precisely if the ODE solution exists for all t > 0, from all initial conditions Gu, 0 e l ; 
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in other words, the stability region S includes all multiples u. We now illustrate these 

properties with examples. 

Consider the following family of models in A] (3): 

dY\ 

dYi 

dY] 

{Al-Y))dt+ ^Y]dWJ 

[A2 + aY] -Y2)df + dW2 

(A3 + bY) + cY] - Y3) dt + dW'i 

(3.20) 

(3.21) 

(3.22) 

The model has Y1 as volatility factor and Y2 and Y3 as dependent factors. The matrix A has 

the form 

A 

( 
Av 

I 

Ac 

Ad 

\ 

) 

( 
- 1 

0 

0 

a 

- 1 

0 

b 

c 

- 1 

and Bc = 0 because the volatility factor Y1 does not appear in the diffusion coefficient of 

either Y2 or Y3. 

Since Ad is already block diagonal, it is easy to check that 

P = 
1 0 

0 1/c 

if c + 0, and P = li if c = 0. Condition (3.11) becomes 

a «2 + b «3 = 0, a c M3 = 0. (3.23) 

The case c = 0 reduces to (3.12). Theorem 3.2.3 requires uv - 0, so we must have U\ = 0. 

We consider several cases for the parameters a, b, and c. 

a = 0: We can satisfy (3.23) with any u that is a multiple of (0,1,0); i.e., with u • Yt -

ujY2
r This is also evident from the fact that Y2 is an Ornstein-Uhlenbeck (OU) process 

when a = 0. If we also have b - 0, then «2 and M3 are both free in (3.23) and, indeed, 

(Y2, Y3) is a Gaussian process. 
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c = 0, a + 0, b + 0: Condition (3.12) is satisfied by taking u = (0,1/a,-1/b), or any 

multiple thereof. From (3.20)-(3.22), we see that neither Y2 nor Y3 is Gaussian — each 

has the volatility factor Y1 in its drift. Nevertheless, the linear combination ud • Yd is 

Gaussian. We can also see this by noting that 

d(ud-Yd) = (m--Y^ + lYhdt + -dWf-ldWf 
a b ' a b 

= -ud-Y?dt + -dW?-ldW?, 
a b 

with m = {Aj/a) - (A^/b) = 0, in light of (3.4); thus ud • Yd is an OU process constructed 

from non-Gaussian processes. This example illustrates why Corollary 3.2.3 cannot 

cover all cases. 

c + 0, a + 0: (3.23) requires u-i = uj, = 0; thus, no u • Y is Gaussian, except the 

degenerate case u = 0. If b = 0, then the equation for Y3 in (3.22) has no direct 

dependence on a volatility factor, but it fails to be Gaussian because it depends on 

Y2 which depends on Y1. This is also a consequence of Corollary 3.2.3; the first 

coordinate of w = P_1wd — (U2 CM3) is restricted with respect to \ACP and the second 

coordinate has a directed path from the first coordinate. 

In this example, the conclusion of the first case {a — 0) and that of the third case (c + 0, 

a + 0) coincide with what one would expect based on the intuitive approach to checking for 

Gaussian distributions outlined after (3.12) and formalized in Corollary 3.2.3. However, 

the second case (c = 0, a + 0, b + 0) shows that the intuitive approach cannot cover all 

cases. The necessary and sufficient conditions in Theorem 3.2.3 capture the possibility of a 

Gaussian distribution resulting from a cancellation of factors, as in this example. 

3.4 Analysis of Quadratic Dynamical Systems 

3.4.1 Definitions and Terminology 

In this section, we establish some properties of the ODE system (3.9), in particular viewing 

it as defining a mapping from the initial condition u to the solution x(t) at time t. We begin 
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by reviewing some definitions and basic properties from the theory of dynamical systems; 

additional background can be found in Hirsch and Smale (1974) and Chiang et al. (1988). 

Consider, then, an equation 

* = fix) (3.24) 

defined by a C function / : W —> E, with W c £ open and E a normed vector space. 

For each u e W, there is a unique solution to (3.24), with x(0) = u, defined on a maximal 

open time interval J(w) c R. For t € I(u), we denote this solution either by x(t) or Of(w); 

the notation <J>J(M) makes explicit the dependence on the initial condition u. Also, the 

uniqueness of the solution allows us to write, for example, 

OS+,(M) = Os(Ot(w))/ 

for t and s + t in /(M). In particular, 0_ t is the inverse of Of. 

Define 

O = {it, u)eRxW:te /(«)}; 

then <E> is a mapping from O to W. Standard properties of dynamical systems imply that O 

is open i n l x W and O is C if / is C , for 0 < r < oo. In fact, <t> is analytic in t and u as long 

as Of (w) stays in the domain of analyticity of / . 

Let T denote the (possibly infinite) right endpoint of the interval /(«). If T < oo, then 

for any compact set K c W, there is a t e J(M) with Of(w) + K; in other words, the solution 

escapes the domain of definition in finite time, and T is the "blow-up time" from u. 

An equilibrium point of (3.24) is a point q e Wat which firj) = 0. An equilibrium point 

T\ is called hyperbolic if every eigenvalue of the Jacobian of / at r\ has a nonzero real part. 

The type of an equilibrium point is the number of eigenvalues (counted according to their 

multiplicity) with positive real parts. The stable manifold of a hyperbolic equilibrium is 

the set of points u e W for which <t>f(w) —» r\ as t —> oo; the unstable manifold is the set 

of u € W for which O-t(w) —> r\ as £ —> oo. A hyperbolic equilibrium T70 of type zero is a 

stable equilibrium; this means that its stable manifold contains a neighborhood of rjo or, 

equivalently, that its unstable manifold consists solely of rjo- It is also a standard fact that 
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this stable manifold of rjo is an open set. 

For the system (3.9) associated with a canonical affine model, the origin is a hyperbolic 

equilibrium of type zero and thus a stable equilibrium. The origin is, in fact, a unique 

stable equilibrium (see Lemma 4.3.1). We denote its stable manifold by S and call this 

the stability region of the dynamical system. Part of the content of Theorem 3.2.2 is that 

the stable manifold of the origin determines the range of finite moments of the limiting 

stationary distribution of the model. 

As an aside, we note that the unstable equilibrium in Figure 3.4 is of type 1; the 

equilibrium at the point of tangency of the two parabolic curves in the left panel of Figure 3.5 

fails to be hyperbolic; and, in the right panel of Figure 3.5, the four equilibrium points 

defined by the four points of intersection of the two curves have types 0 ,1 , 2, and 1 when 

taken in clockwise order, starting from the origin. The type-2 equilibrium is a source: its 

stable manifold consists solely of the point itself. 

3.4.2 Solution Properties 

Our analysis of the dynamical system (3.9) makes extensive use of comparison theorems, 

and these in turn prove to be very useful in establishing some distributional properties of Y. 

The comparison results rely on a concept of quasi-monotonicity. Under the componentwise 

ordering of vectors introduced in Section 3.2, we call a function / : R" —» Kn quasi-monotone 

increasing if, whenever x < y and x% = y^ for some k, then fa(x) < fk(y)- A mapping x i-* Ax 

defined by a matrix A is thus quasi-monotone increasing if and only if Aij > 0 whenever 

i + j . Suppose that / defined on W is quasi-monotone increasing and locally Lipschitz 

continuous. Let x(t), y(t): [a, b] —> K" be differentiable functions such that 

m - mm < m - mm, v f e i*> bi 

then it follows from Volkmann (1972) that 

x(a) < yifl) =» x(t) < y(t) W e [a, b]. (3.25) 
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When n — 1, this reduces to a standard comparison result for scalar differential equations. 

The relevance of this result to our setting comes from property (C2), which makes Av 

quasi-monotone, and the fact that the mapping (x\,...,xn) i-» (.r?,..., x2) is also quasi-

monotone. Through (3.25), we arrive at the following comparison property for the solution 

* to (3.9): 

Lemma 3.4.1 For any H E ! " and 9 > 1, we have 

0O,(M) < ®t{du), 

for all t > 0 at which both sides are well-defined. 

The proofs of this result and the next two lemmas are deferred to the appendix. 

For later reference, we also record the following results on the decay of solutions. See, 

e.g., Chapter 7 of Verhulst (1996). For the system (3.9), there exist positive constants C, <5, 

and [i such that 

|Of(w)l < C\u\e-^ (3.26) 

for all \u\ < <5, and 

|<D?(H)| < C\ud\e~^, (3.27) 

for all u € W. The constant -JU can be chosen to be the eigenvalue of A of smallest 

magnitude. 

Lemma 3.4.2 For each u e W, the trajectory {<&t(u): t e [0, T)} of (3.9) is bounded below. 

Lemma 3.4.3 Suppose |<I>{(w)| —> oo as t —> r, for some T < oo. Then J A • <E>s(w)rfs —> oo as 

t ->T . 

3.4.3 Proof of Theorem 3.2.1 and its Corollaries 

In light of the expression that appears in the exponent of (3.10), it is natural to introduce 

the notation 

Wt(u) = f A • ®s{u)ds + f |Of (w)|2rfs + 0((«) • Y0. 
Jo Jo 
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For (t, u) G Q, 0,(M) is bounded for s e [0, t], so ^( (M) is well-defined and finite. As part of 

the proof of Theorem 3.2.1, we will show that xVt («) blows up at T precisely if <t>f (u) does. 

Proof of Theorem 3.2.1 We first show that the finiteness of <&t(u) is equivalent to that of 

VP^M). One direction is trivial: if (t,u) £ Q, then OS(M) is bounded for s G [0,t] and thus 

^ ( ( M ) is finite. To show the converse, observe that |Of (H)| is bounded on t e K+ (by (3.27)) 

and <t»f(«) is bounded below for its entire life span t e [0, T) (by Lemma 3.4.2). It follows 

that 0((") • ^0 = *"(") • Yo + *?(") • Yo i s a l s o bounded below because Yg > 0. It thus follows 

from Lemma 3.4.3 and the continuity of 0{(M) (as a function of t) that 

0((u) blows up at time T <=> ^ (w) blows up at x. (3.28) 

Next, we show that if Wt(u) is finite, then Eexp(2w • Y() is also finite and equality 

holds in (3.10). Duffie et al. (2003) define regular affine Markov processes and show that 

there are necessary and sufficient conditions for parameters of an affine model to ensure 

regularity, namely, admissibility. They also show that the transform formula holds true for 

all (t, a ) e l + x C™ x iW~m for affine models with admissible parameters. It is not hard to 

check that canonical affine models satisfy the admissibility condition. And the processes 

generated by them are conservative, as defined in Duffie et al. (2003). This follows easily 

from Proposition 9.1 in Duffie et al. (2003); we note that the generalized Riccati equation 

(2.14) with (2.15) in Duffie et al. (2003) is (3.9) in the canonical case. 

Now suppose xVt(u) is finite. Since the process Y is conservative regular affine, by 

Lemma A.l .2 we can invoke Theorem 2.16 in Duffie et al. (2003) and conclude that E exp(2w • 

Y() is finite and the transform formula holds. 

We now prove the converse of the main statement of the theorem. Suppose, then, that 

E exp(2w • Yf) < oo for some t > 0 and n e l " . Because the origin is a stable equilibrium and 

its stability region S is open (see Section 3.4.1), there is a 0o £ (0,1) such that 9QU e S. But 

if 6QU e S, then lims^oo Os(0ow) = 0, and it follows that sups |Os(0o«)l < °°- We may then 

define a positive 8* by setting 

8* = sup(0 > 0 : \ J A • Os(0w)ds < oo}, (3.29) 
v Jo 
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the supremum taken over those 9 > 0 for which <J>((6>M) is well-defined — i.e., those for 

which t e I(6u). (If OS(0M) blows up before t, then the integral in (3.29) is infinite.) 

If 6* > 1, then $;(») is finite, and we have already shown that this implies that W^M) is 

finite, and we have also shown that (3.10) holds in this case. To complete the proof, we will 

show that 6* < 1 leads to a contradiction. 

Suppose, then, that 6* < 1. Because Av » 0 and <S>f(u) is linear in the initial condition 

M, Lemma 3.4.1 implies that the function 

8 Jo 

is increasing. This implies that 

• - » - | A-®s(6u)ds, de[e0,d*) 

Also by Lemma 3.4.1, we have 

lim I A • <$>J0u)ds - oo. 
ew> Jo 

—$s(0ow) < ^s(9u) 

for all (0, s ) e K = [do, 0') x [0, f]. Since Os(d0u) is bounded below (by Lemma 3.4.2), <S>s(6u) 

is bounded below uniformly on R. Moreover, the solution Of (0M) to the linear part of (3.9) 

is uniformly bounded above as well on R, as is easily deduced from (3.27). Thus, 

Wt{du) > \ A • <t>s(8u)ds + K, 
Jo 

for some constant K and all 6 e [do, 6*)- It follows that Iim0f0» Wt(6u) = oo. 

However, for any 6 e (0,9*), we have x¥t(9u) < oo, which we already know implies that 

(3.10) holds at 6u, so 

exp(2^j(0tt)) = E exp(20M • Yt) < ( E exp(2u • Y,)) < oo, 

by Jensen's inequality. This implies that lim supe*e, Wt(9u) < oo. But this is a contradiction, 
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so we must in fact have 6* > 1. 

The last assertion of the theorem now follows directly from the fact that the stability 

region S of the origin is open. | 

Proof of Corollary 3.2.1 The indicated tail properties are standard consequences of finite 

moment generating functions, but we include a brief proof for completeness. From the 

inequality l(z > y] < exp(0(z - y)), 9 > 0, we get P(M • Yt > y) < exp(-0y)Eexp(0M • Yt), 

from which the first limsup follows. Suppose now that 

1 
limsup - logP(w • Yt > y) < -6 - e, 

i/—>oo y 

for some e > 0. Then P(M • Yt > y) < exp(-(0 + e)y) for all sufficiently large y, and so 

Xco 

eeVP(u •Yl>y)dy < oo. 
CO 

With the change of variables x = exp(6y), this becomes 

P(exp(e« • Yt) >x)dx = Eexp(0« • Yt). 
o 

The last statement in the corollary is an easy consequence of the fact that the stability region 

of (3.9) contains a neighborhood of the origin. | 

Proof of Corollary 3.2.2 In the case of A„, (m), the vector field f0(x) of (3.9) is quasi-monotone 

increasing. We may therefore apply the comparison result in (3.25) with the trivial solution 

x = 0 to conclude that <D>((M) > 0, for all t > 0, for any u > 0. 

Fix a u > 0. If OS(M) blows up at or before t, then there is nothing to prove because both 

expectations are infinite. If $((«) is finite, then the transform formula (3.10) holds due to 

Theorem 3.2.1. It follows from (3.10) and the nonnegativity of 0 ((«) that the ordering of A1 

and A2 implies the ordering of the Eexp(2« • Yj), i = 1,2. Conversely, if Eexp(2w • Yj) > 

E exp(2w • Y2) for all u 6 R^ and t > 0, then we get 

A1-M = l i m - A 1 - I <£>S(MWS > A2 -u = l im-A 2 • I <£>s(u)ds. 

no t J0 ao t J 0 
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Since this holds for any u > 0, A1 > A2. 

For the second statement of the corollary, we write x(t) for a solution to (3.9) with A1 for 

A, and y(t) for a solution with A2. Suppose u > 0 and Yo > 0 are given. Then, if A1 > A2, 

we have 

x - (A2x + (x\ x2J) = {A1 - A2)x > 0 - y - {A2y + (y2 y2
m)), 

the inequality following from the fact that x(t) > 0 for x(0) = u > 0. Thus, x(f) > y(t) and 

so the inequality for exponential moments follows from (3.10), because x, y, A and Yo are 

nonnegative. Conversely, if the inequality holds for all nonnegative u and Yo, then 

lim - ( - logEexp(2u • Yl
t) - u • Y0) > lim - f- logEexp(2w • Y2) - u • Y0) 

yields ((A1 - A2)u) • Y0 > 0. Since Y0 is an arbitrary vector in R™, (A1 - A2)u > 0, and this 

in turn implies A1 > A2. | 

3.5 Convergence to Stationarity 

In this section, we use the transform formula (3.10) and our analysis of the ODE (3.9) 

to prove that a canonical affine model has a unique limiting distribution, that this limit-

ing distribution is stationary, and that the domain of the moment generating function of 

this limiting stationary distribution coincides with the stability region of the associated 

dynamical system. 

As a first step in our analysis, we show that the moment generating function of Y( 

converges, as t —> oo, precisely on the stability region. 

Lemma 3.5.1 Let S be the stability region of the system (3.9). Then, 

S = ( « e l " : lim Eexp(2u • Y,) < oo}. 

Proof Suppose I I G S . Then, as in (3.26)7 O^(u) converges to the origin exponentially as 
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t —> oo; we may therefore define 

t6 = inf{f: \0t(u)\ < 5} < oo. 

Let ji and C be as in (3.26). Then, for t > tg, 

f |A • 4>s(H)|ds < f |A| - |Os(«)|ds 
Jo Jo 

< f * |A| • \®s(u)\ds + C6|A| f e'^-'^ds. 
Jo Jtf, 

The last integral converges to a finite value as £ —> oo. The integrability of |0^(M)|2 as 

a function of t follows similarly from (3.27). Therefore, limj^co I ^ ( M ) | < oo, and thus 

Theorem 3.2.1 implies 

lim E exp(2M • Yt) = lim exp(2^(w)) = exp(2^O0(M)) < oo. (3.30) 
t—>oo J—>oo 

For the converse, supposes £ S. If Of(w)blows up in finite time T, then lim t^T exp(2xFf(M)) 

oar as shown in (3.28), so no further argument is required in this case. Assume that 0 ( (M) 

exists for all t > 0. Since S open and it contains the origin, we can choose k > 1 sufficiently 

large that u/k e S. Then Lemma 3.4.1 implies k<E>t(u/k) < <E>((M) for all t. This implies that 

pi pco 

liminf I <t>s j(u)ds > c,- := I k<S>si(u/k)ds, 
'-*°° Jo Jo 

for some real number c„ for each 16 ( 1 , . . . , m}. We also have 

liminf (t>,(w) > liminf fcO,(w/fc) = 0. 

But this liminf cannot be the zero vector; if it were, Oj(w) would reach S in finite time and 

then converge to 0, which would contradict the fact that u £ S. Thus some componenti of 

<&((M) has a positive liminf, and i must be in {1 , . . . , m} because O^(u) converges to zero. As 
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a consequence, 

liminf I Av • <$v
s(u)ds > Y" A,c, + liminf I A,<l>s,-(w)ds 

f̂ oo j 0 trf f-*°° Jo 
is — oo. 

It follows that lim infj^co Wt{u) — °° and thus lim inff^oo Eexp(2w • Yt) = 00. | 

Proof of Theorem 3.2.2 We start by showing that the sequence {Yt} is tight (as defined, for 

example, in Chung 2001, p.90). For this, we need to show limr^oo supf P(|Y(| > r) — 0. But 

we have 

P(|Yf | > r) < P( (J{|Y;,,| > rl yfc)) < £ P(|Yf;I-| > r/ V^) 
1 i 

= £ JP(YU- > rl yfc) + P(-Yt4 > rf V^)} 
i 

= Y, (P(e26Yu > e2brl ^) + P(e~26r'-' > e2brl *)] 
i 

Z
,Ee26Y>.' Ee~26y«| 

Ig26r/V" e25r/V« ' ' 

where 6 is a positive constant such that 65(0) c S. From Lemma 3.5.1, we get sup(Eexp(+25Y;/() < 

M{ < 00, for some M„ for each i. Therefore, 

sup P(|Y,| > r) < 2 Y\ Mi exp(-2<5r/ yfn) 
1 i 

which converges to zero as r —> oo. 

Because the sequence {Yt\ is tight, it is relatively compact (Chung 2001, p.90), so each 

subsequence [Yf] contains a further subsequence {Y(») converging weakly to some lim-

iting random vector Ya. Since we have sup(„ Eexp(2w • Yt») < 00, for any u £ B^(0) (by 

Lemma 3.5.1) and since Yt» => Yfl, Theorem 4.5.2 in Chung (2001) implies that 

lim E exp(20w • Yr) = E exp(20w • Ya), Vd £ (0,1). (3.31) 

Equality continues to hold if we replace du by u because B§(0) is open: we can find u' £ B^(0) 

such that u = du' for some 6 £ (0,1) and then apply (3.31) at u'. From (3.30) we know that 
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the original sequence {Yt} satisfies lim/_»oo Eexp(2w • Yt) - exp(2W „,(«)) for u € 6^(0), so the 

same limit applies to {Yf}. Applying the same argument to any other weakly convergent 

subsequence of {Yf}, say with limit Yh, we find that 

E exp(2w • Yfl) = exp(2W0O(M)) = E exp(2w • Yh), VH e B6(0). 

But the distribution of a random vector is uniquely determined by its moment generating 

function in a neighborhood of the origin, so Ya ~ Yb. Since every convergent subsequence 

has the same limiting distribution, the original sequence (Y() also converges to Ya in 

distribution, so we now denote Yfl by Ya,. WehaveshownthatEexp(2M-Yf) —» Eexp(2w-Yco) 

for all u e Bg(0). Our next step will be to show that this holds for all u £ S, and to show 

that E exp(2w • Yoo) = °o if u £ S. 

For any u e S, we can find u' e S and 0 6 (0,1) with u = Qu', because S is an open set 

containing the origin. We know that Yt => YK, and, by Lemma 3.5.1, that sup ( E exp(2w' • Y;) 

is finite. It follows from Theorem 4.5.2 of Chung (2001) that E exp(2w • Yt) -» E exp(2w • Y«,), 

so we conclude that S Q{u: Eexp(2w • Y«,) < oo}. 

We prove the opposite inclusion by contradiction. For this, suppose that u £ S and that 

Eexp(2w • Ya,) < oo. Define 

0* = sup{0e [O,l] :0weS); 

then 0* > 0 and 9*u is on dS, the topological boundary of S, because S is open and u $. S. 

Fix a 0o e (0,0*), so that 0o" e S, and set g(f) = <t>f(0OM)/0o- Lemma 3.4.1 implies that 

Of(0«) > 0g(£), for alH > 0 and all 0 € [00,0*). Consider the trajectory of O,(0*M). We claim 

that T = oo. To see this, choose a 0 6 (0o, 0*). Then, for each i e {1 , . . . , m), 

X? + J2 A;*,' + X Bijx) > x] + AgXi + 0 J], A;£,'(0 
/ / J*i 

> xj + AuXi + 6M 

where x(t) = O ((0M) and M is a lower bound of the summation. Next, we define a new 
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function y starting at to by 

y = y2 + AHy + 6M, y(t0) = x,(fo)-

If y(to) is sufficiently large, then y(t) blows up in finite time (see Section 3.3.1) and so does 

Xj(t). Suppose T < °o. Then, it is possible to choose 6 close to 6* and to < T such that some 

Xj(to) becomes large enough to make y(t) blow up in finite time. This is a contradiction to 

dueS. 

Therefore, we have l im^^, W((0*M) = oo as shown in the proof of Lemma 3.5.1. On the 

other hand, we have 

I Av-{^v
l(e*u)-d*gv{t))dt = I \imAv-(<S?t(du)-egv{t))dt (3.32) 

Jo Jo eT0* 

r y-»00 

A" • O'f (6u)dt - 6' Av-vv(t)dt 
Jo 

where the equality comes from the continuity of the flow <E> and the inequality is from 

Fatou's lemma. Since A"" • gv(t) and O^(0*M) are integrable, lim;-,^ Wt(0*u) = oo implies 

that the left side of (3.32) is infinite. Therefore, liminfeTe. £ Av • <S>v(9u)dt = oo. But for 

8 e (0,6*), 6u e S and utilizing Jensen's inequality, 

exp(2Woo(0w)) = Eexp(20w • Y^) < (Eexp(2w • Y^)) 
8 

< oo. 

Therefore, limsup0,»e, W^du) < oo and this is a contradiction. 

To conclude the proof, we need to show that the limiting distribution is a stationary 

distribution. Suppose, therefore, that YQ ~ Y^,. Then for any u e S, by taking a conditional 
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expectation, 

Eexp(2w-Y,) = Eexp(2 J A- <£>s(u)ds +2 I |Of (u)\2ds + 20,(w) • Y0) 

= exp(2 f A - Os(w)ds + 2 f |<^(w)|2ds)Eexp(2cE>,(w) • Y0) 

= exp(2 | A-Os(w)ds + 2 i |Of(w)|2rfs) 

A • cE>s(cpf(U))ds + 2 I |Of((D,(w))|2ds) 

XOO / ' •CO 

A-0,(w)df + 2 I \¥t{ufdt) (3.33) 
= Eexp(2M-Y0O). 

Because the distribution of a random vector is determined by the values of its moment 

generating function in a neighborhood of the origin, we conclude that Yt has the distribution 

of Yco whenever YQ does. | 

Observe that (3.33) gives the moment generating function of Y ,̂ and thus characterizes 

the stationary distribution of Yt. 

From the preceding proof, we see that the distribution of Y ,̂ is determined by the 

behavior of the dynamical system (3.9) on the stable manifold S of the stable equilibrium 

at the origin: the fact that 0 ( ( H ) —> 0 for w e Sis crucial to the convergence of ^ ( (M) and 

thus the moment generating function of u • Yt. This raises the question of whether other, 

unstable equilibria play any role in the stochastic behavior of the basic model (3.3). Our 

next result illustrates a setting in which they do. 

Proposition 3.5.1 Suppose that r\ is a hyperbolic equilibrium of system (3.9) of type less than n. 

Then for any u in the stable manifold ofr\, we have 

lim - logE exp(2w • Yt) = 2A • 77. (3.34) 
f—>oo t 

Proof If u lies on the stable manifold of r\, then l i m ^ ^ <&t(u) - ^, so W^u) is well defined 

for all t > 0. The limit on the left side of (3.34) is given by the limit of 2x¥t(u) as t —> 00; i.e., 
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by 

lim - A • <S>s(u)ds + lim - I |Of (u)\2ds + lim - 0 , ( M ) • Y0. 

The last term is clearly zero, and the second term also vanishes because 

- f \<S>d,{u)\2ds < - f C2\ud\2 exp(-2^is)ds = - C V l 2 " 1 ~ ex^~2^ _» 0 / 
t Jo i Jo t 2/j 

in light of (3.27). The first limit is 2A-rj. | 

The condition in the proposition on the equilibrium's type ensures the existence of a 

stable manifold. An equilibrium of type n is a source, an example of which appears in the 

right panel of Figure 3.5, at the upper right intersection of the two curves. The limit in 

(3.34) arises in the definition of the rate function used in the Gartner-Ellis Theorem (see, 

e.g., Dembo and Zeitouni 1998). The behavior in (3.34) is somewhat pathological because 

the limit, viewed as a function of u, fails to be a closed convex function. As a consequence, 

the Gartner-Ellis Theorem does not apply to the sequence {Yt/t}. 

Theorem 3.2.2 characterizes the set of u for which Eexp(2w • Yoo) is finite and identifies 

this set with the stability region S of (3.9). The problem of describing the boundary of S has 

attracted considerable attention. Genesio et al. (1985) survey methods using a Lyapunov 

approach; Chiang et al. (1988) characterize dS in terms of stable submanifolds of unstable 

equilibria. Chapter 4 establishes a similar result for the quadratic system (3.9). 

Theorem 3.2.2 raises the question of characterizing the region in which Yt has finite 

exponential moments, for finite t; that is, characterizing 

Sf = | M £ t " : E exp(2w • Ys) < oo, V s e [0, t)}. 

This set coincides with the set of initial conditions u for which the solution OS(M) exists 

throughout [0, t). Directly from the definition of St, we see that St shrinks as t increases; 

that St is convex follows from Holder's inequality. Beyond these basic properties, it is 

generally more difficult to characterize St than S, at least from the perspective of the 

dynamical system (3.9). Theorem 3.2.3 and the analysis in the next section give some 

results in this direction. 



CHAPTER 3. MOMENT EXPLOSIONS 90 

3.6 Gaussian Conditions 

Lemma 3.6.1 For any t > 0 and u e W, Eexp(20w • Yt) < oo for all 6 e R if and only if 

u" = 0, A c / ( s ) = 0, Bc(x2
m+,(s),...,x2

n(s)) = 0 

for all s > 0, where xd is the solution tox = Adx with x(0) = ud. Moreover, in this case, u • Yt has a 

Gaussian distribution. 

Proof See the appendix. | 

Proof of Theorem 3.2.3 In writing P~1AdP = J, we may assume P is chosen to give / the 

specific form described before the statement of the theorem. We further assume that the k 

distinct eigenvalues of AA are numbered in decreasing order, Ajt < • • • < X\ < 0. 

Define y(t) - P~lx{t), where x is the solution to x = Adx with x(0) = ud. Then y satisfies 

y - }y with y(0) = u and u = P~xua'. Let y' denote the block of y corresponding to the z'-th 

block /, = Ajlj + Nj of /. We use this notation similarly for other vectors. In other words, if 

the a\t X a^i matrix /, runs through coordinates (p + 1, v + 1) , . . . , (p + a\t, p + a\t) of /, then v1 

off e R " is (Vp+i,. ../vp+aA). Since we have y1 = /,-y1, t/'(0) = u1, the solution is expressed as 

follows: 

y\t) = exp(A,-0 U . 

Suppose that wTy = 0 for some w € W. Then £,-=i wl y' = 0. If we divide this by 

exp(Aif), which has the smallest magnitude among eigenvalues, and send t —> oo, then 

exp(-Aif)a '1 yl = 0; otherwise, we equate one exponentially decreasing function with a 

polynomial, which is absurd. By applying the same procedure with other A/s, we conclude 

that w1 yl = 0 for each i. Consequently, wTy = 0 is equivalent to 

iv'TN|i('' = 0, i = l,...,k, l = 0,...,aAi-l. (3.35) 

This observation implies that the first two conditions in Lemma 3.6.1 are equivalent to 

requiring that uv = 0 and that (3.35) holds for all wiT that are rows of ACP. As for the third 
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condition in Lemma 3.6.1, we note that xq = "LiPqiyi = 0 if there exists some p such that 

Bc
pq * 0. Therefore, (3.11) follows. | 

Proof of Corollary 3.2.3 Choose any block /, of / and «'. By construction, /, is itself a block 

diagonal matrix consisting of Jordan blocks associated with A,; each Jordan block has a 1 

in every entry immediately above the main diagonal. Let Q be any Jordan block of /,• and 

vfi the corresponding block of u' with dimension d, say. Then, the following condition 

becomes a sufficient condition that induces (3.35): 

WQTN'UQ = 0, l = 0,...,d-l, VQ 

where N is Q less the diagonal part. But, then, this is just 

w* 

-Q 

*tl 
~Q 

\ d ) 

= 0, w^ 

~Q 
«2 

-Q 
a 

0 
V 

= o, 

' ~Q ^ 
a 

,W ,Q
T 

0. 

Therefore, an equivalent statement is that if j is a coordinate with w -£ 0, then u = u. . = 

. . . = fi« = 0. 

The directed graph G in this case consists of paths such asn—>n + l—>•••—> n + d-lif 

Q starts at the coordinate (n, n). If j is restricted with respect to l^cp + lgclp, then (AcP)ij + 0 

or Bc.Pqj + 0 for some i, q. This in turn means that Wj ± 0 where w is the /-th row of ACP or 

the ^-th row of P, and thus Hj = 0. In this case, the observation in the previous paragraph 

requires that any other components of u that have a directed path from iij in G are also 

zero. 

If g^ = 1 f° r all h then there is only one Jordan block for each A; and thus Q coincides 

with /,. Therefore, the condition above becomes necessary, too. | 

Corollary 3.2.3 essentially means that we achieve a non-Gaussian distribution for u • Yf 

as long as it has some dependence on one or some of volatility driving factors by including 

them in the dynamics or by including a factor that depends on volatility factors. Of course, 
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u has to be outside the closed set specified by (3.11). The vectors in this set cancel out the 

effects of the volatility factors in u • Yt. The next examples illustrate this feature in more 

detail. 

Example Am(n) with diagonal Ad. In this case, we have 

dYd(t) 
( \ I 

A^£V>4Y /«
 dt+ J1+LBhYZdwi{t) 

V k ) y k 

and 

d(ud-Yd(tj) = hid • Ad+ Y\Y^udjAkj Yk + YJ
udjAdjjYp) 

\ i 

dt 

For u • Y not to have any dependence on Y'°, we must have u° — 0, 

(3.36) 

L nd,A\. = Q, k = l,...,m 
i Ki 

and ud = 0 whenever there exists k such that Bf. + 0. However, these conditions are not 
; ki 

enough to remove all the dependence on Y°. For example, suppose Ad is given by 

t \ 

A1 0 0 

0 A] 0 

0 0 A2 

Then, (3.36) becomes 

d (ud • Yd{t)) = [ud • Ad + Kx (u
d • Yd(t)) + (A2 - A^Y^t)) dt + Y^ uddWd(t) 

m 

where Sf is a set of coordinates that are restricted with respect to lgc Therefore, if Yg has 

a volatility factor in its drift or diffusion, then ud • Yd is not free of Yv effects. This kind of 

additional dependency is captured by (3.11). 
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Example Am(m + 2). This class of models has two dependent factors. We consider the case 

in which Ad has only one eigenvalue A with gA = 1. The other possible case is diagonal 

and is similar to the example above but with a lower dimension. Let P ~ (v\ »2) be the 

non-singular matrix of an eigenvector and a generalized eigenvector in a Jordan canonical 

form of Ad and let P^u - (a, b). We write 

' A 1 

0 A 
V > 

, L = 
F 0 

0 PT 
AaP = P 

Next we apply an invariant affine transformation as defined in Dai and Singleton (2000), 

Y i-» LY. Then the dynamics of Y" are the same as the orig inal and that of Y = PTYd 

becomes 

d?t = (PTAd + {AcP)TY°t + JTft)dt + PT ^Jdiag(Fd)dWd. 

Denoting Y by (Y1/Y2)/ 

I - ^ 
->T A d P* Aadt + {AcPyYv

tdt + dt 
AY,(t) 

Yi(0 + AY2(0, 

' (»i)i ^ + LBc
Hr^dW2(t) + (0l)2 Jl + ZB^VdWrt) ' 

k ( p 2 ) i ^ + LBc
klYidw2(t) + (v2hyli + LBc

k2r^dw3(t) t 

Note that w • Y{ = w • Yf = flYi(i) + bY2(t) (we assume MD = 0). Now suppose « ^ 0 . Then, 

M • Yt has a dependence on Y° unless {ACP\\ — 0 and Bf. = 0 for all fc whenever (i>i),- # 0. 

This is the same as asking whether coordinate 1 is restricted with respect to l&cp + lgcljp. A 

similar argument applies to the case b + 0 regarding the second coordinate. 

If a = 0 but b + 0, then we still have to consider the dependence of Y\ on Yv because Y2 

is correlated with Y\ through the drift term. This means that u • Yt has dependence on Yv if 

coordinate 1 is restricted. It is clear from the dynamics of Y that the final dynamics induce 

a Gaussian distribution after we remove the dependence on Y". 
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3.7 Conclusion 

We have established three general results for affine models. Our first result confirms the 

validity of the transform representation without further conditions and shows that the 

range of exponents for which the transform is finite at time t coincides with the set of 

initial conditions from which the ODE solution exists on [0, t]. Based on this result, we are 

able to investigate the properties of affine models by analyzing the associated differential 

equations. As an example, we gave two comparison criteria for processes in Am(m). 

Our second result establishes the existence of a limiting stationary distribution and 

characterizes this limit through its transform; the tail behavior of the limiting distribution 

is determined by the stability region of the associated dynamical system. 

Our last result gives necessary and sufficient conditions for a linear combination of fac-

tors to have a Gaussian distribution and shows that any non-Gaussian linear combination 

has exponential tails. Essentially, a Gaussian distribution is obtained by removing from a 

linear combination all the dependence on the volatility factors, but the precise conditions 

that achieve this turn out to be subtle. 



Chapter 4 

Stability Analysis of Riccati 

Differential Equations related to 

Affine Diffusion Models 

We study a class of generalized Riccati differential equations associated with canonical affine diffusion pro-

cesses. As seen in Chapter 3, the generalized Riccati eqviations determine the Fourier transform of the 

diffusion's transition law. We investigate stable regions of the dynamical systems and analyze their blow-up 

times. We discuss the implication of applying these results to affine diffusions and, in particular, to option 

pricing theory. 
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4.1 Introduction 

96 

In this chapter, we study the stability properties of the quadratic differential equations (3.9) 

associated with canonical affine diffusion processes. For convenience, we recall that 

x(t) = f0(x) = Ax + B , x(0) = ueW 

where A and B are given as 

A = 

( Av Ac \ 

0 Ad 

' I Bc ^ 

0 0 

(4.1) 

with Av, I £ W"xm (m < n) and other matrices belonging to Euclidean spaces with appro-

priate dimensions and parametric conditions on them as in Section 3.2. Our objectives are 

first, to study the stable regions of (4.1) and second, to investigate the blow-up phenomena 

of solutions. 

The determination of stable regions of stable equilibria in non-linear dynamical systems 

holds significance in various contexts and there have been many theoretical and numerical 

solution approaches to this question (see, e.g., Chiang and Fekih-Ahmed 1996, Chiang 

et al. 1988, Genesio et al. 1985, Vannelli and Vidyasagar 1985 and references therein). The 

techniques used in this area vary according to a specific problem of interest: for example, 

Levin (1994), Tibken (2000) for polynomial systems and Cheng et al. (2004), Saha et al. 

(1997) for power systems to name a few. On the other hand, the escape of a solution to 

infinity, or the blow-up of a solution in finite time has also been widely studied and Baris 

et al. (2006), Crouch and Pavon (1987), Getz and Jacobson (1977), Martin (1981), Sasagawa 

(1982) address this issue for certain classes of quadratic differential equations. 

The link between the diffusions (3.3) and the ordinary differential equations (ODEs) 

(4.1) is the Fourier transform formula as formulated and generalized in Duffie et al. (2000) 

and Duffie et al. (2003) for a larger class of stochastic processes. We note that (4.1) is a 

special case of generalized Riccati equations as defined in Duffie et al. (2003). Relevant 
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backgrounds are provided in the next section. 

This chapter begins by reviewing some notation and concepts from the theory of dy-

namical systems in Section 4.2. The following three sections characterize the boundaries 

of stability regions and the regions in which solutions exist at time t. Then, the results are 

applied in the option pricing context. Section 4.6 concludes. 

4.2 Model Description and Background 

Throughout this chapter, we will use the notational conventions introduced in Section 3.2 

including the orderings on R" and R"x"; n denotes the dimension of the system (4.1), m <n 

such that Av e Rmxm and we have for any vectors or matrices a and b, 

a>b < = > Ujj > bjj 

a> b <==> a>b, a t b 

a » b <=> a,-y > bjj. 

And for a e R", we define a° = (a\,... ,am) and ad ~ {ad
v... ,a^_m) — (am+\,... ,an). Similarly, 

if a is an n by n matrix, then a° is the upper-left m by m block and ad is the lower-right 

n - m by n - m block so that the notation for Av and Ad in (4.1) matches. Also, we write 

K™ = {x e Rm : x > 0), R™+ = {x e Rm : x » 0} (similarly for matrices), and \x\ is the 

usual Euclidean norm of a vector x and 0 is the zero vector (or the zero matrix) with an 

appropriate dimension which should be clear from the context. Parametric restrictions on 

(4.1) are also given in Section 3.2. 

As in Section 3.4.1, we define I(u) as the maximal open interval of existence of a solution 

to (4.1) with x(0) - u and define 

T : R" -> (0, oo], T(M) = sup I(u). 

To specify the initial condition, we write <E>((«) for x(t). If I(u) - (a,b), then \x(t)\ becomes 

infinite as t —> b. Recall that when r\ is an equilibrium and its Jacobian J(rf) has eigenvalues 



CHAPTER 4. STABILITY ANALYSIS OF RDE 98 

(counting multiplicity) with k positive real part, 77 is said to be of type k. If r\ is hyperbolic 

and type 0, then 77 is a stable equilibrium. If r\ is hyperbolic but its type is positive, then it 

is unstable and denoted by UEP for short. 

As shown in Theorem 3.2.1, (3.10) holds true unconditionally as long as either side is 

well-defined and finite. Therefore, studying the blow-up phenomena of the dynamical 

system (4.1) is equivalent to studying the finiteness of the exponential moments of the 

process (w • Ytj. In Section 4.4, we characterize S in terms of the stable sub-manifolds of 

hyperbolic equilibria on the stability boundary dS (see Chiang et al. 1988 for a general 

approach in this direction). Similarly as in Chapter 3, we define 

S| = ( « G R " : Eexp(2w • Ys) < 00, Vs e [0, t)}, 

and this coincides with a set in which a solution to (4.1) with x(0) = u exists in [0, t). In 

other words, S, = \u e R" : T(M) > t). 

4.3 Properties of the System and Blow-up Times 

A great deal of work has been performed on the analytical or numerical computation of 

stability regions, e.g., see Genesio et al. (1985) for a compact survey. In particular, Chiang 

et al. (1988) showed that the boundary of a stability region can be represented as the union 

of the stable sub-manifolds of hyperbolic equilibria on the stability boundary dS under 

certain conditions. Inspired by this, we demonstrate that a similar result can be pursued 

under a slightly altered assumption in our case. 

Before we proceed, observe that the assumptions on A and Av make ~AV a nonsingular 

M-matrix (see Berman and Plemmons 1994). This induces two nice properties that are used 

in the proofs of our results: first, -(A°)~l > 0 and second, -Avx > 0 implies x > 0. 

Another immediate consequence of the assumptions on A is some qualitative behavior 

of the system (4.1). Observe that the origin is an equilibrium, because /o(0) = 0. And since 

the Jacobian of /„ at 0 is A and A has negative eigenvalues, 0 is a stable equilibrium. On 

the other hand, the system (4.1) has a linear part, x* = AAxd. Since A is block triangular, Ad 
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also has negative eigenvalues. Therefore, there are positive constants C and u such that 

|xd(f)| < C|xd(0)|e-'". (4.2) 

This implies that the stability region S of the origin, which is invariant and open, contains 

{0} x Rn~m. Lemma 4.3.1 provides information about equilibria of (4.1). 

Lemma 4.3.1 For the system (4.1), the following statements hold: 

1. The number of equilibria is finite. 

2. lfr\ is an equilibrium, then rf = 0 and rf e n"=i[0, -An]. 

3. The origin is the only stable equilibrium. 

Proof Part 1: We show that the set 

X = x e C " :Ax + B(xj,...,xfl) = 0 

is compact in the usual Euclidean topology. Since elements of an affine algebraic set in C" 

are finitely many, the number of equilibria which are elements of X is finite. See Lemma 

12.4.3 of Sommese and Wampler (2005). 

By the definitions of A and B, 

X = {{xv, xd) e C" : Avxv + A'x* + (x\,..., x2
m) + Bc(x2

m+V ...,x2
n) = 0, AA^ = o). 

Since AA is invertible, xd = 0. Thus, X = {(xv,0) : Avxv + {x\,...,x2
m) = o}. Therefore, X 

is compact in C" if and only if X' = \x e Cm : A°x + {x\,.. .,xj„) - o} is compact in Cm. 

Rewriting the equation via x = a + ifi, here i = V-T, we get 

Ava + 

a2-?2 

I a2 - B2 

0, Av$ + 2 

tt\&i 

= 0. 
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Suppose {\a\ : a + if, e X'} is unbounded. Then we can choose a with max^ \ay\ being 

arbitrarily large. Let us assume that i = i(a) is the index that |a,| achieve the maximum 

magnitude among \cc\\,..., |am|. We then observe 

$ = a2 + £ A\ak > a? - £ \A\\ \ak\ > a] - £ \A\\ \a{\ >a]-mM |a,| 
k k k 

where M = maxy^ \AV.A. Also, for any index /', 

it it t J: 

where Cy = XIit l^\l + 1- Since we have 2a,-/3,- = - Lit^-fttr using above two inequalities, 

fc it it 

and from the first inequality, 4a2|32 > 4a2(a2 - mM\aj\). Therefore, 

4a2(a2 - mM\cci\) < ( M £ V Q ) 2 ^ -
k 

And this implies |a,-| cannot be arbitrarily large, which is a contradiction. 

On the other hand, we showed above that /32 < Cya2 for any index / if |a,| = max^ |ajtl-

Thus {|/3| : « + i/3 6 X'} is also bounded. Consequently, X' is compact because X' is clearly 

closed as a zero set of finitely many polynomials, in addition to being bounded. 

Part 2: An equilibrium 77 is a solution of Ar\ + B(T]2, ..., 7]2,) = 0. This implies rf = 0 

and 77" = —{A°)~Y{rr\,...,77^). Recall that -A" (or equivalently, the transpose of it) is an 

M-matrix. Then as mentioned at the beginning of this section, —(Av)~l > 0 and thus if > 0. 

For each i = l,...,m, i]2 + Aat]i = -Lit*!Aitr\k- Since the off-diagonal entries of Av are 

non-negative and 77 > 0, the right side is not positive. Therefore, 0 < 77,- < -An. 

Part 3: Assume that a non-zero equilibrium 77 is a stable equilibrium (thus hyperbolic) 
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and consider its Jacobian }(rj) = A + 2Bdiag(rj). Then 

/(7?)7/ = ( ^ , . . . , r ^ / 0 / . . . / 0 ) > 0 . 

And ](j]) looks like 

m = 
1 Av + ldiag(jf) Ac ^ 

0 Ad
 / 

The eigenvalues of ](rj) are those of J (iff and Ad. Since r\ is a stable equilibrium, /(7j) 

is nonsingular and every eigenvalue of J (iff has negative real part. Note also that the 

off-diagonal entries of ](rj)v are non-negative. This implies that -J(rj)v is a nonsingular 

M-matrix (see p.135 of Berman and Plemmons 1994). However, this cannot happen as the 

following argument shows. 

Suppose -J(r[f is an M-matrix. We showed above that }(rffrf > 0. Thus — ](rff(—rf) > 0 

and this, in turn, implies —rf > 0. However, this together with part 2 leads to r\ = 0, which 

is a contradiction to our assumption that r\ is non-zero. | 

Recall that we introduced the blow-up regions St in Section 4.2. We prove some 

topological properties of St's that are related to the characterization of S and dS. 

Lemma 4.3.2 Suppose that two real numbers M, c are given satisfying \ud\ < M, c < miny=i/.../„, Uj. 

If U{ for fixed i e {!,..., m}, fixing everything else, is sufficiently large, then (4.1) blows up infinite 

time. Moreover, T(M) can be bounded above by a function ofM, c and «,-, and this bound can be 

made arbitrarily small by increasing «,-. 

Proof It is shown in Lemma A.2.1 that min;=i;...,„, Xj(t) is well defined and it is bounded 

below by some function v(t). And this dynamics of v(t) depends on the bound of |wd|, here 

M, and v(0) - c which can be set as any value less than miny^...<m My. Then the trajectory of 

v(t) is b o u n d e d below, say by L = L(M, c). By (4.2), 1x̂ (̂ )1 is b o u n d e d by C\ud\. Then for any 
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i € {!,...,m), we have 

n 
.2 

k+i k=m+\ 

m n 

> X2+AjjXi + YJ AikL+ Y Aikxk 
k=l,*i k=m+l 

> x] + AuXi + CjL ~ K 

where Q = L"kL^,Aik and K = C\ud\ m a x f I ^ M + 1 |/lft|. 

Then we define a new function y by an ODE 

y = y2 + Any + QL - K, y(0) = ut. (4.3) 

With D, := A2. - 4(C,L - X), the function y blows up in finite time T if y(0) is large. If D, = 0, 

then y blows up at T = (y(0) - An/2)~l if y(0) > -Ati/2. And if D, < 0, then it does so at 

time 

_12y(0)+Aii) 
TI - 2 tan 

Finally, if D, > 0, then 

- = J_ , y(°)-m 

where r;,- are two equilibria of (4.3). We see that in any case the blow-up time goes to zero 

as y(0) = U{ increases. Since we have x,(f) > y(t), r is an upper bound of the blow-up time 

of X{, and consequently an upper bound of T(W). | 

Lemma 4.3.3 T(W) : W —> (0, oo] is continuous. 

Proof Suppose that {uk} is a sequence of vectors converging to u but lim .̂ T(%) = T* > T(M). 

Since limf|T(l() maxy <&t,j(u) = °° a n d since O is continuous in Q, we can find t' = t'(N) < r(u) 

and k = k(N) for any given large N such that N < max, <ty i(uk) < oo. 

Note that some component x,(r) of a solution x(t) to (4.1) never decreases if the initial 

condition x,(0) is sufficiently large where i e {1 , . . . , m}. To see this, find a function i>(£) as in 
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Lemma A.2.1 that is bounded below and x-,(t) > v(t). Observe that 

n m 

X{ = x] + YJ Aik*k + YJ B&Xl - A * AnJi + E AikL ~~ K 

k k=m+l tei,=l 

where L = L(M, c) is a lower bound of v and K = L£=m+1 Q
Aik\' l*rf(0)l a n d C is a constant in 

(4.2). Therefore, it is enough to have a large x,(0) that makes the right side positive. 

This observation implies that for any given large N, we can choose some t' < T(W), k 

and i such that <IV,j(wjt) > N and this does not decrease from time t'. Thus, ^%(u)Auk) > N. 

Since this is true for any large N, we conclude lim sup^. OT(„)^(MJ.) = °°. Now consider 

tf>tiuk) starting from T(M). Then, by Lemma 4.3.2, the blow up time of {Q>t{yk)}t>i(u) c a n D e 

arbitrarily close to T(«) by selecting a large k. This is a contradiction to T* > T(M). 

To prove the converse, suppose that limj; T(M^) = T* < T(M). We take t e (T*, T(U)). Then 

Of(M) is finite. Since Q is open and (t, u) 6 Q, (t, u^) belongs to Q for all large k's. Thus 

<&((«*.) is finite and this is a contradiction to x(Mjt) < T(U) for large k's. | 

Lemma 4.3.4 Suppose T(U) < oo. Then r(6u) < r(u)for d > 1. 

Proof Let y(f) = <£>t(0u)/9 and x(f) = Of (M). Then (3.4.1) implies that we always have y(t) > 

x(t). We note that y(t) satisfies y = Ay + 6B(y^,...,y^), y(0) = u. One implication of this 

is that yd(t) = xd(t). Let x(t) = max^x^t), which is a well-defined piecewise differentiable 

function in a similar way as in the proof of Lemma A.2.1. Then by assumption, x blows up 

in finite time, say T. Therefore, in the following argument we can assume that the initial 

value of x(t) starting from time to, x(to), is a sufficiently large positive real number and 

\x?(t)\/x(f) is sufficiently small, say less than e whenever t > tg. And we note that if we start 

from this sufficiently large initial value, then x never decreases during its entire life span 

[to, T). Finally, note that we can find a number M such that |xrf(£)| < M for any t. 

On this footing, we claim J x(t)dt = oo. Let x = X{ in some interval I c [to, T(U)). 

Then, 

-x=LA*j+ E A*j+x+ E %y^EA*+f+c^*+Ci 

k=\ k=m+l k=m+\ k=\ 
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for some constant C, C-[ independent of i. This implies that 

logx(f) < logx(i0)+ I x(s)ds + Ci(t - t0), 
Jta 

which proves the claim. 

Now we define y(t) = y(t)/x(t) > 1, which is also piecewise C1, and y(t) means y,-(f) 

whenever x(t) = X{(t). We observe in the interval which x = x,(f) with i e {!,...,m), y 

satisfies 

ijiXi - yiXi 
y = — i — 

I 

xj(0yj + Lk^yk + o EL«+i B*yj) - vt£ + E* A*** + LL»+iB*^) 
X2 

= exty>-yi+ £ A*(f-fy) + £ A*%-y) + £ s*>-y) 
fcti,=l fc=m+l Jt=m+1 ! 

m n n 

> ex,r2 _ y. + V A /£* - ^y) + y IA*k(l - 7) + V BlkMe(l - y) 
*""• X» X; ^"™ ^m^ 

k^t,-l k=m+\ k=m+l 

m n n 

= dxiy
2-x,y+ £ Aik(^)(l-y)+ £ |At|e(l - y) + £ BftMe(l - y) 

k+i,=\ ' k=m+l k=m+\ 

m n n 

> dxiy2 - x{y + J^ Aik(l -y)+ YL IA* | e (1 " y) + Z i B*MeQ- " y"> 
k+i,=\ k=m+\ k=ni+l 

and this can be written as 

y > dxiy2 - x{y + C(l - y) (4.4) 

where C is an appropriate non-negative constant. In the first inequality, we used that 

Ajk > 0 for k e {1 , . . . , m}\{i), y > x, y > 1, yd = xd, \xd\/x < e, |xd| < M, Bik > 0 and Xj is very 

large. In the second inequality, we utilized the fact that in the interval we are considering, 

xk < X{ for all k and y > 1. Here we note that if y(to) = 1 with x(to) being a large positive 

number, then y(io) >(d — l)x;(£o) > 0, so y(£o + e)>l for small e. Therefore, we can assume 
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y(fo) > 1 from the beginning. Then we see 

y > xl7
2 - x{y + C(l - y) = (y - \){xty -Q>(y- l)(x,- - C) = (y - l)(x - C). 

Recall that x(to) is assumed to be sufficiently large and thus x never decreases in [to, T). 

Now the above inequality with y(t$) > 1 implies 

ftln(y-l)>x-C. 

Thus y(t) - 1 > (y(to) - 1) e*p(ft (^(s) _ Qds). Therefore, y —> oo as t approaches T. Hence, 

we can assume y(to) > 2 by shifting the starting point, i.e., by taking even larger to as a 

starting point. 

Inequality (4.4) also yields 

y > xy2 - xy + C(l -y)> xy2 - xy — Cy > xy2 - 2xy. 

This and y(to) > 2 imply 

— In > 2x. 
dt y 

And this leads to 

y(t)(l - 7 ( ^ Q )
 2 exp(2 J x(s)dsj) > 2. 

'to 

Therefore, y blows up strictly before t reaches T. In other words, y{t) blows up strictly 

before x(t) does. | 

Proposition 4.3.1 The blow-up region St is a closed convex proper subset ofW. The topological 

boundary ofSt is given by dSt = {u e St : T(M) = t) and S? c S°for t' > t. 

Proof Recall that St is a set in which a solution to (4.1) with x(0) — u exists in [0, t). In other 

words, 

St = {u : E exp(2w • Ys) < oo, Vs e [0, t)} = {u : T(U) > t}. 
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For u,v £ W. and A e (0,1), by Holder's inequality, 

Eexp (2(Aw + (1 - A)v) • Ys) < [Eexp(2« • YS)]
A [Eexp(2u • YS)]1_A . 

Therefore, AM + (1 — A)v e S( whenever u,v € Sf. Since T(U) is continuous in u by Lemma 

4.3.3, Sf is closed and it is also proper by Lemma 4.3.2; if St = W, then we simply choose 

u = (0 , . . . , 0, Uj, 0 , . . . , 0) and let M,- go to infinity. 

To prove the second statement, let T = {u e St : T(W) = t}. Since T(M) is continuous in u, 

T is closed. For each «o £ T and in any small open ball U centered at UQ, we can choose two 

positive real numbers 9\ > 1 and 82 < 1 such that 0,-MO 6 (J. By Lemma 4.3.4, 

T(0IUO) < T(M0) = f < T(02«O)-

Thus, 02«o e S(\T = {M e Sf : T(M) > f}, which is open, and 6\Uo € Sc
t, the complement of 

S; which is also open. Since St\T is an open subset of Sf, it is included in S°. Conversely, 

any w e S° is in St\T because we can find some 6 > 1 such that 6u € St and consequently 

T(M) > T(0W) > t. Therefore, we conclude that St\T = S° and T = <9Sf. Hence, for t' > t, 

St, = [u : T(M) > t'} C {u : T(M) > t] = S°t. 

I 

4.4 Characterization of the Stability Boundary 

From Proposition 4.3.1, we conclude that Soo := C\t Sf is closed and convex. Since S C St for 

all t, we have S c S m . The next theorem is our first main result. 

Theorem 4.4.1 Suppose that every bounded trajectory of (4.1) converges to an equilibrium. Then 

for a hyperbolic equilibrium r\, we have r\ edS if and only ifWL c dS. Moreover, S = Sco-

Proof One direction is trivial. For the other direction, suppose rj e dS. Choose a point 

u € Wi. If it is on <9S, then there is nothing to prove. If it is in S, then it converges to 0. So 

this case cannot happen. Thus we assume u £ S. 
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Let«' be a point on the intersection of dS and a line segment connecting u and the origin. 

Then there is d e (0,1) such that u' - 6u. Then *,(" ') ^ 9<S>t(u) by (3.4.1) (they exist at any 

time t because lim(_»oo ^ ( M ) = r\ and OJ(M') cannot escape W in finite time: it is bounded 

above by %(u) and bounded below by Lemma A.2.1). This implies limf 0((M') < Qr\. By 

assumption, limf Of(w') is a non-zero equilibrium on dS (dS is an invariant set). Let us call 

this rf. By this and Lemma 4.3.1, we have 0 < rf < Br\, rf = rfd = 0 and rf, rf" are solutions 

of Avx +{x\,...,x2
m) = 0. Then, 

~e2AT>Tf = e\n\ n
2

m) > (tf T?;,2) = -A^\ 

This means -Av(62rf - T]'v) > 0. Therefore, 92if > t]'v thanks to the fact that -Av is a 

nonsingular M-matrix. Repeated application of this procedure yields 62krj > rf for any 

integer k. Since 6 < 1 and rf >0,TJ' = 0. But, this is a contradiction to the assumption that 

rf is on dS because dS does not contain the origin. 

Let us prove the second statement. Suppose u e Soo\S. We claim that {<E>f(w) : t > 0} 

is bounded in W. We know that each component of 0 ((M) is bounded below by some 

number, say c, and ^ ( w ) ! is bounded by some number M. Suppose it is not bounded 

above. Since OJ'(M) converges to zero, there is some i e {1,.. .,m\ such that {$(,i(«)}t>o is 

not bounded above. Then, Lemma 4.3.2 implies that ®f,i(w) blows up in finite time. This 

is a contradiction because M E S M and thus OJ(M) exists at all times t. Since the trajectory 

is bounded, it converges to an equilibrium point by assumption and the equilibrium must 

be non-zero. However, this cannot happen by the same argument as above. Therefore, 

i" = t̂xt- I 

Corollary 4.4.1 Suppose that every bounded trajectory of (4.1) converges to an equilibrium and 

that the system has hyperbolic equilibria only. Then, 

dS = dS^ = (J Wr 

rjtO 

Proof Since a non-zero equilibrium r\ is in Soo\S, it is on dS by the previous proposition. 

Then, the result is immediate. | 
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The corollary above implies that the stable manifolds of the UEPs of type 1 determine 

dS = dSoo except for a set of measure zero (recall dim Wl = n — k for an UEP r\ of type k). 

There are many numerical methods addressing how to compute the stable manifolds of 

equilibria. But, we will not discuss this problem in this paper. An interested reader can 

consult Cheng et al. (2004) or Saha et al. (1997), for example. 

It is a "generic" property (in the sense that a property holds true in the countable 

intersection of open dense subsets) to admit hyperbolic equilibria only for C (r > 1) vector 

fields (see Chiang et al. 1988 or Smale 1967 and references therein). The next examples 

show that the models which satisfy the first assumption of Corollary 4.4.1 are not empty, 

but rather ample. 

Example A2(n). Let Av 
a b 

. After simple calculations, we find that the following 

v C d 

conditions are necessary and sufficient for -Av to be a non-singular M-matrix. 

a < 0, b > 0, c > 0, d < 0, ad-bc>0. 

From these conditions, it is straightforward to determine conditions for the system to have 

two, three or four equilibria. And one can check that three equilibria case happens only 

when the two parabolas x2 + ax + by = 0 and y2 + ex + dy = 0 are tangent in the (x, y)-plane. 

Berlinskil's Theorem (see Chicone and Shafer 1983) has an implication about the hy-

perbolicity of an equilibrium of our system. It states that if X is a quadratic vector field in 

the plane with two relatively prime quadratic polynomials, which is, by the way, satisfied 

by our system, and if X has four equilibria, then the Jacobian determinant at each one is 

nonzero and every saddle point is hyperbolic. Moreover, if the quadrilateral with vertices 

at the critical points is convex, then two opposite vertices are saddles and the other two are 

anti-saddles (nodes, foci or centers). 

Lemma 4.4.1 In A2(n), every bounded trajectory is an equilibrium point or converges to an 

equilibrium. 

Proof First we observe that Of(Mi) ^ ^(("2) whenever Mj < u^ and M̂  = ud
T To see this, we 
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define 

x(t) = <J>°(«l), y(t) = 0?(Ml), 2(0 = <&?(«!) = «Df (M2). 

Then, they satisfy 

- /(x) = Acz + Bc 

zz_ 

y-f(y) 

where f(x) = A°x + (x2,. ..,xfH), which is quasi-monotone increasing and locally Lipschitz. 

Since x(0) = u\<u°1 = y(0), the result follows from (3.25). 

For the discussion that follows next, we refer to Chapter 4 of Verhulst (1996) for the 

results that are related. Suppose we have a bounded trajectory which is not an equilibrium, 

neither does it converge to an equilibrium. Then, the set of the limit points of the trajectory, 

the (W-limit set T is invariant, compact, connected and not empty. Moreover, there is a 

minimal (i.e., closed, invariant and nonempty with no smaller subsets with these properties) 

subset K c T . Since <E^(M) -* 0 as t -> oo, K is decomposed as KQ X (0) with Ko c K2. This 

means that KQ itself is a minimal set of the system 

x = 

2 W u 
•j a b 
2 

2 J 
c d 

Then by the Poincare-Bendixon theorem, Kg is a periodic orbit. Note that this orbit is not 

self-intersecting because this curve cannot have two different derivatives at an intersection. 

Now the Jordan Curve Theorem implies that 

R2\KQ = K°0UKC
0 

where K°0 is the inside of the orbit and Kc
0 is the outside of the orbit and they are open. 

Choose one point, say p € KjJ and define 

Kj = {p + x : x e R%] n K0, K2 = {p + x : x e R^} n K0. 
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Clearly Kj's are compact and non-empty. Let us now choose the maximizer of max„ex2 \u—p\, 

say «2- Then there is no u e K$ such that u < 1/2• Also we choose any U\ e Kj. Then we 

have U2 < u\. Since Ko is a closed orbit, there is some to such that <S?v
t (u\) = u-i. By the 

observation made at the beginning of the proof, 

O" (K2) < ^ ( « l ) = «2-

By the choice of 112, the left hand side (which is in KQ by invariant property) is not strictly 

less than «2- Therefore, O^ (112) = «2- However, this implies that to is a multiple of the 

period of Ko but O" (MI) = «2 ^ «i- This is a contradiction. | 

Proposition 4.4.1 In A2(n), every equilibrium is hyperbolic unless there are three equilibria. 

Moreover, if we have two equilibria, then one is the origin as a focus and the other is on the stability 

boundary of the origin as an UEP of type 1. And if we have four equilibria, then we have one focus 

at the origin, an UEP of type 1, an UEP of type 2 and an UEP of type 1 in the clockwise order in 

R2 x (0). 

Proof We consider be ̂  0 case only. Other cases can be analyzed similarly. An equilibrium 

point is determined by 

x2 + ax + by = 0 

y2 + ex + dy - 0 

(4.5) 

(4.6) 

Suppose r\ = (771,7]2,0,..., 0) is an equilibrium point. Then the Jacobian of the system at 

this point is 

m 
1 \ 

Av Ac 

0 Ad 

\ > 

+ 2 

' m 0 

0 r?2 

I 

\ 

0 

Since the eigenvalues of ]{r\) are those of }(r])v and Ad, and since Ad has negative eigenvalues, 

it is enough for us to study the eigenvalues of ](rff- The characteristic polynomial of ]{j])v 

is P(A) = det(J(rj)v - AI) = A2-(p + q)A +pq-bc where p = a + 2r\\ and q = d + 2r\2- Then the 
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determinant of this quadratic polynomial is D = (p - qf + bc> 0. Therefore, 77 is hyperbolic 

if and only if 0 is not an eigenvalue of ]{rj)v, i.e., pq - be. 

Consider the two parabolas (4.5), (4.6). From each, we get 

t^ = Jw %™ = -\ 

Therefore, two parabolas become tangent at 77 if and only if pej — be. Then we have exactly 

three equilibria. Hence, all critical points are hyperbolic except three equilibria case. 

Now suppose we have two equilibria. Recall that dS is a closed invariant subset of W 

of dimension n - 1 (see Chiang et al. 1988). The trajectory (Of(w) : t > 0} is bounded for 

u € dS and it is contained in dS. This is because first, dS c S^, so $((«) does not blow 

up in finite time and second, any |0^,-(M)| cannot be arbitrarily large due to Lemma 4.3.2. 

Therefore, by Lemma 4.4.1, it converges to an equilibrium. Since dS does not contain the 

origin, it is the other equilibrium point, say 77. In other words, 

lim Of(w) = 77 

whenever u 6 dS. But dS is of dimension n - \ and this means dim Ws(rj) > n - 1. 

However, 77 cannot be a focus because the origin is the only stable equilibrium as implied 

by Lemma 4.3.1. Thus dim W{r\) = n-\ and so 77 is an UEP of type 1. 

To prove the last statement, suppose that there are four equilibria. Then, two parabolas 

(4.5) and (4.6) have four solutions and since they form a convex quadrilateral, Berlinskii's 

Theorem applies and we conclude that two opposite vertices are saddles and the other two 

are antisaddles. Since the origin is the only stable equilibrium by Lemma 4.3.1, we have 

one focus at the origin, a saddle, a source and a saddle clockwise. This implies that the 

number of negative eigenvalues (we know that they have real eigenvalues) of the Jacobian 

7(77)" are 2, 1, 0 and 1, respectively. Therefore, the Jacobian 7(77) of the original system has 

77, n — 1,77 — 2 and n — 1 number of negative eigenvalues, respectively. | 

Example Am(n) with symmetric Av. Suppose that a given trajectory is bounded. Then 

we know that the limit set lies in K™ X {0}. However, when Av is symmetric, the system 
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ws 

• " < « 

x X 
VIs 

as 

Figure 4.1: A general picture of dS with two hypothetical UEPs of type 1. 

x — Avx + (Xj, ...,xfy becomes a gradient system. In other words, x = W(x) with 

V{x) = -xTAvx + 3 IE* 

Let r be the a>-limit set of the trajectory. Then, T is invariant, compact, connected, and not 

empty. Since it is in R™ X {0}, we can decompose it as To X {0}, where To is a compact invariant 

and connected set of the above gradient system. However, it is well known that a point 

in a limit set of a gradient system is an equilibrium. See p.203 of Hirsch and Smale (1974). 

Therefore, FQ consists of equilibria. Since (4.1) has only a finite number of equilibria, To 

and so T is a single equilibrium and we conclude that every bounded trajectory converges 

to an equilibrium. 

Based on these results, we can draw a simple picture of the stability region of (4.1). Fig-

ure 4.1 shows dS consisting of two stable sub-manifolds of UEPs of type 1. The intersection 

of two sub-manifolds can be thought of as a source or a sub-manifold with dimension less 

than n — 1. 

4.5 Asymptotic Behavior of Blow-up Times and Application 

In this section, we describe the blow-up times of (4.1) as a solution of a partial differential 

equation (PDE). Recall that dSt = {u : T(W) = f}. In other words, dSt's are the level sets of 

the function T(M) : K" —» (0, oo]. Since St = {u : T(M) > t} and St is convex, we conclude that 
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T(«) is quasi-concave. (This is a standard result in convex analysis.) However, T(U) is not 

necessarily differentiable as we see in the next example: 

±\ = ax\ + x\, ±2 = bx2 + x\ (4.7) 

with x(0) = u and a, b are negative. In this case, St = (—oo, -a/(l - e"')] X (—oo, -b/(\ — ebt)] 

and dSt is not smooth at the vertex. 

Proposition 4.5.1 The continuous function T|S^ : S^ —» (0, oo) is quasi-concave, and is differen-

tiable almost everywhere satisfying 

VT(M)./0(M) = - 1 (4.8) 

/or w G S ,̂ iwY/z a boundary condition T(W) — oo on dSoo- Conversely, a function T satisfying (4.8) 

and a condition that limf-f T(<I>((M)) = 0 for all u e S ,̂ is unique. 

Proof Differentiability is a direct application of the result by Crouziex (1982). For a fixed 

u € Ŝ o, we can choose a small positive h such that 0;,(H) is finite because I(u) is an open set 

containing 0. Then we have 

T(W) - ft = T(Ofc(M)). 

By differentiating this with respect to h at h = 0, we get (4.8). The boundary condition is 

obvious. 

To prove the last statement, suppose T\ (U) and T2(M) are two solutions of (4.8). Then, we 

can construct T(«) = T\{U) - T2(M) on S ,̂ and this satisfies VT(M) • /0(«) = 0. For any u € S ,̂ 

and a positive /z e /(u), 

T(<Dfc(M)) - T(U) = f VT(Os(«))-/o(<Ds(M))ds = 0. 
Jo 

Therefore, T(M) is constant on each trajectory {<&((«) : t > 0} for u e S^,. Since T(3>/(M)) 

converges to zero as £ approaches the blow-up time of 0 ((u) by the assumption, T(W) must 

be identically zero. | 
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-b/(1-eDI) 

- a / ( 1 -

6 ui 

Figure 4.2: Inverse of T(M) for (4.7). 

We are also interested in determining the critical multiplier 9 such that sup/(0M) = t for 

given u and t. This is the inverse function of T(9U) — t, but this function 9{u, t) may not be 

single-valued. For example, consider (4.7). If u belongs to the second quadrant, then there 

are positive and negative 9 such that 9u e dSt. If u is in the first quadrant, then there is 

only one such 9. And there is no 9 for any t if u = 0. See Figure 4.2. Nevertheless, the next 

theorem says 6(u, t) is well-defined at least locally under some regularity conditions and it 

becomes a solution of some PDEs. 

Proposition 4.5.2 Assume that T(M) is continuously differentiable on some neighborhood of UQ G 

dSto and VT(MO) • «o + 0. Then, there is some open neighborhood U x I of (UQ, to) such that 

9 : U x l —» (0, oo) fs well-defined and it satisfies 

V 0 - M = -e, dte = - v e • f0(9u), 9(u0,t0) = i. 

Proof Suppose that T(U) is C1 on some neighborhood of Mo e dSt0. Consider a function 

<p(u, t, 9) := T(9U) - t defined on some neighborhood of («o, to, 1). Since (d<p/d9) (UQ, to, 1) = 

VT(«O) • Mo and this is nonzero by assumption, we conclude that there exists a C1 function 

9(u, t) defined on some neighborhood U x / o f (HQ, fa) such that 

T(9(U, t)u) = t (4.9) 

by the Implicit Function Theorem. Clearly, 9(UQ, fa) = 1. 
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If we take a derivative with respect to t in (4.9), then we get (9J0VT(0W) • u = 1. This 

implies VT(0M) • u = l/dtu + 0 on U X L And if we do the differentiation with respect to u, 

then 

(VT(0M) • w) V0 + 0VT(0M) = 0. (4.10) 

Multiplying (4.10) by u, we have (VT(0M) • w)(V0 • u + 6) = 0. Since VT(0M) • u * 0, we 

conclude that V0 • w = —6 on U X L On the other hand, if we multiply (4.10) by f0(9u), then 

from (4.8), (VT(0M) • u) V0 • /O(0M) = 0 and the result follows because dtd = (Vt(du) • u)^. 

I 

Equation (4.8) and the first equation in Theorem 4.5.2 look similar to the Zubov equation 

for the stability region of an equilibrium (see, e.g., Genesio et al. 1985). Concisely, if C1 

functions £(M) € [0,1] and (p(u) > 0 satisfy V£(M) • f0(u) - -<p{u)(l - £(«)), then S = {u : 

E,{u) = 1}. Or equivalently, 

n(u) • f„(u) = -<f>(u), l := - log(l - E) 

and thus S = {u : £,(u) — oo). There have been many results concerning approximation 

methods for the Zubov equation. However, we do not pursue this direction in this article. 

Instead, we prove a limiting behavior of T{u/t) and 6(u, t) near t = 0 under some mild 

conditions. 

Theorem 4.5.1 Let [ut] be a sequence of vectors in Rn that converges to u as t | 0. Suppose that 

u'° >0ora:= Bc(u2 ,u2„) + Q. Then, 

lim - T | — | = lim 16(ut, t) =• E, 

no t \ 11 no 

where £. = min;- T,-. And each T-Jor i = \,...,mis given by 

1 (n . _i Ui l „ 1 
- - tan —— if at > 0, T ; = — if u{ > 0, a{ = 0 

yfal\2 sjlij 

or tj = oo otherwise. 
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Proof Consider the following system of ODEs: 

x(s) 

*i(s)2 

v x„(sf ) 

, x{0) = u. 

It is straightforward to see that the above system explodes at time E, given in the statement. 

And the assumptions imposed on u make E finite. Next, we consider a perturbed system 

with a parameter t: 

y(s) - tAy(s) + B 

yi(s)2 

y„(s)2 

A solution of this system is continuous in t, s and y(0) as noted in p.44 of Lefschetz (1957). Let 

us denote the solution with y(0) = ut by y(s; t). Since ut converges to u, limfj0 y(s; t) - x(s) 

if x(s) exists. 

Let E,t be the blow-up time of y(-; t). We claim E,t —> E, as t I 0. Suppose £* — limj-^K, £tk > 

E, for some convergent sequence {E,tk\ with lim/j^oo t^ — 0. Observe that we have 

f-tAY 

n 

yt, 

ym+\ 

I tn ) 

+ tAcyd > tA'xf = tAczd = zv- tAvzv 

where z = tAz with z(0) = Ut- Invoking (3.25), we conclude that y(s; t) > z(s; t) = exp(tAs)ut 

for any s and t. 

Since A has negative eigenvalues, (4.2) implies |z(s; t)\ < C\ut\ < C(\u\ + 1) for some 

positive constant C and all sufficiently small t's. Since x(s) blows up at E,, lims-f̂  x,(s) = oo 

for some i e {1 , . . . , m). By the assumption £* > E,, y(E,; t^) is finite and well-defined for all 

sufficiently large k and we get 

lim y,-(£; fy) = oo 
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as y(s; t) converges to x(s). But we have, as in the proof of Lemma 4.3.2, 

n 

Vi = y2
l+tAiiyl + tYJAikyk+ J^ Biky

2
k 

k±i k=m+\ 

> y2 + tAuyi + tJ^AkZk 
Hi 

> yf +tAuyi-tK 

where K = C(\u\ + 1) X^i A'Jt- Assume that a new function w(s) starting at E, satisfies 

w(s) = w2 + tkAuw(s) - tkK - 1, w(E) = yi{E,; tk). 

Then, y(s; tk) > w(s) on [£, E,tk) and we deduce Z,tk < TW, the blow-up time of the function w. 

Let us denote the two equilibria for w(s) by a > ji and choose tk so small that y;(£; tk) > a. 

Then w(s) starting at E, blows up in finite time 

1 . w(£)-p 
Tw = <S + , l og ; 

fal + ̂ K + 4 W^~a 

Since lim^co y(4; tk) - °°, £tk < T„, —> ^ as tk decreases. This is a contradiction and as a 

consequence, a limit of every convergent subsequence of {E,t} is less than or equal to E,. 

Now we suppose E,* < E,. Since x(s) = lim^o y(s/' 0 a r , d ar(s) is well-defined for any 

s e [0, E), y(s; tk) is also finite for sufficiently small tk's for each s in that interval. However, 

this is clearly a contradiction to the assumption that E,tk ~ E,* < E. for small tk's. Therefore, 

E,* = E,. Since this is true for every convergent subsequence of { (̂}, we conclude limf|o €( = £• 

To prove the main statement, we define C(s) by 

>=-MH C(s 

Then, C satisfies (4.1) with C(0) - ut/t and, by definition, r(ut/t) = tE,t. By the previous 

argument, 
1 /u,\ 

MT) 
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If we denote i(ut/t) by ft, then d(ut, tt) — 1/f. Since ff —> 0, we can re-parameterize ut as a 

function of v := f f/ say uv := Mf, thus 

vd{uv,v) = ttd(ut,tt) = -j -> 4. 

Since this holds for any sequence wv converging to u, we can replace it by the original 

sequence uv. Therefore, 

td(ut, t) -» E,. 

In modern financial economics and econometrics, one important subject is the study 

of financial instruments called derivatives. To explain complex phenomena observed in 

the markets, there are a large number of stochastic models developed by researchers and 

affine diffusion processes have been applied successfully in this regard. Especially in the 

option pricing theory, it is typical to model the log value of the underlying asset price Pt of 

a contingent claim as 

logP s = as+2bs- Ys 

where as and bs are deterministic functions of time and Y is an affine diffusion process (see, 

e.g., Duffie et al. 2003). One of the most popular derivatives is a call option and its price 

is the value of the right to buy a stock (or any underlying asset) at pre-determined time T, 

maturity, and at fixed price K, strike. The call price is given by 

C(K,T) = B0E(PT -K)+ 

where BQ is the price of a bond maturing at T (see Lee 2004). It is standard to analyze this 

price in terms of Black-Scholes implied volatility o(x, T) which is defined implicitly by 

C(e*EPT, T) = (B0EPr) {*(<*+) - e* *(d_)}, d± ^ — - + g ( X / ? 
a(x, T) Vr 2 
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where O(y) := j ^ -7=e~" /2du. The complexity of o(x,T) makes its explicit analysis hard. 

Rather, there is a stream of literature dealing with asymptotic behavior of a(x, T) as x —> +00 

or T —> 0 or 00 under some specific models of Ps. For example, see Benaim and Friz (2006) or 

Lee (2004). In particular, Lee (2004) proved a nice asymptotic relationship between a(x, T) 

and the critical exponents p*, q* in any modeling setting: 

o2{x T) o2(x T) 
l l m SUP Irl/T = ^(P')' H m SUP W\',T = $lff) t4-11) 

X^OO \MI * X—»— DO \X\I J-

where 

f = sup{p : EPl
T

+p < 00}, q* = supft?: EP~q < 00}, t/)(x) = 2 - 4( Vx 2 +x - x). 

In our setting, p* + 1 and <?* are merely the critical multipliers 6(bT,T) and 9{-bj,T), 

respectively. Therefore, a solution to the PDEs in Proposition 4.5.2 has a direct implication 

on o(x, T) for large K's. 

Now suppose that lim^o fy = b and b satisfies the assumptions in Theorem 4.5.1: 

bv>0 or Bc(b2
m+1 b2

n)*0. 

Since D is open, we can choose an open ball U centered at (0, b) so that (t, bt) e U for all 

small t. This implies 8(bt, t) > 1 and so p* is well-defined and positive. Let E.(b) be the value 

corresponding to E, in Theorem 4.5.1. Then, we get 

o2(x,T) t/»(0(bT,T)-l) e{bT,T)^(6(bTlT)-l) 1 
hmsup——— = = ' T F 7 i A a s T J - 0 

x->oo |x| T Td{br,T) 2E,(b) 

where the first equality comes from (4.11) and the approximation is from Theorem 4.5.1 

and the fact that lim^co i/>(x)x = 1/2. A similar conclusion can be drawn for q* as long 

as — b satisfies the assumptions in Theorem 4.5.1. Empirically, the tail slopes of implied 

volatility o(x, T) are bigger for shorter maturity options (e.g., see Duffie et al. 2000). The 

above observation means that this tail slope, however, cannot be arbitrarily large even for 

extremely small maturities under the canonical affine diffusion models. 
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4.6 Conclusion 

We have shown that the stability boundaries of Riccati differential equations which arise 

in financial econometrics can be expressed as unions of stable sub-manifolds of equilibria 

on the stability boundaries under the assumption that every bounded trajectory converges 

to an equilibrium. Since we have only one stable equilibrium while all other equilibria, 

which are finitely many, are contained in some compact set in R"' x {0}, a general picture of 

stability regions is obtained. 

The blow-up regions of our system are defined via the blow-up times T(M) and the 

boundaries of blow-up regions are level sets of T(M). The function T(W) turns out to be 

continuous and quasi-concave, and it solves a PDE similar to the Zubov equation. The 

critical multipliers 6(u,t) such that T(9U) = t satisfy another PDE, and both functions 

possess an asymptotic property that has an implication on implied volatilities for options 

with extreme strikes and small maturities in the option pricing theory. 



Chapter 5 

Saddlepoint Approximations for 

Affine Jump-Diffusion Models 

Affine jump-diffusion (AJD) processes constitute a large and widely used class of continuous-time asset pricing 

models that balance tractability and flexibility in matching market data. The prices of e.g., bonds, options, 

and other assets in AJD models are given by extended pricing transforms that have an exponential-affine 

form; these transforms have been characterized in great generality by Duffie et al. (2000). Calculating model 

prices requires inversion of these transforms, and this has limited the application of AJD models to the 

comparatively small subclass for which the transforms are available in closed form. This article seeks to 

widen the scope of AJD models amenable to practical application through approximate transform inversion 

techniques. More specifically, we develop the use of saddlepoint approximations for AJD models. These 

approximations facilitate the calculation of prices in AJD models whose transforms are not available explicitly. 

We derive and test several alternative saddlepoint approximations and find that they produce accurate prices 

over a wide range of parameters. 
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5.1 Introduction 

Affine jump-diffusion (AJD) processes constitute a large class of continuous-time asset 

pricing models that balance tractability and flexibility in matching market data. In an 

AJD model, the drift vector, the diffusion matrix and the jump intensity all have affine 

dependence on the state vector. As shown by Duffie et al. (2000), this restriction leads 

to considerable tractability in term structure modeling and option pricing, while at the 

same time allowing model features like state-dependent conditional variances and flexible 

correlations between state variables that are absent from simpler models. The objective 

of this article is to further expand the scope of tractable AJD models through the use of 

approximate transform inversion techniques. 

The AJD family of models includes many widely used special cases, such as the Gaus-

sian model of Vasicek (1977), the square-root diffusion of Cox et al. (1985), the Heston 

(1993) stochastic volatility model, and extensions of these models to include jumps. AJD 

processes have been used extensively in empirical work, including, for example, Bakshi 

et al. (1997), Bates (1996, 2000), Broadie et al. (2007), Chernov (2003), Duffie et al. (1997), 

Duffie and Singleton (1997), Eraker (2004), Eraker et al. (2003) and Pan (2002). The yield 

factor models of Dai and Singleton (2000) and Duffie and Kan (1996) fall within the AJD 

family. Duffie et al. (2003) develop the theoretical foundations of AJD processes. A detailed 

account of the econometric aspects of AJD models is given in Singleton (2006). 

As demonstrated in Duffie et al. (2000) (henceforth DPS), the tractability of AJD models 

lies in the special form taken by a wide class of transforms, including various Fourier and 

Laplace transforms as special cases. These transforms have an exponential-affine form, 

meaning that they are exponentials of affine functions of the state vector; the coefficients 

of these affine functions are in some cases available explicitly and, more generally, can be 

characterized through solutions of ordinary differential equations. Through their trans-

form analysis, DPS derive what could be viewed as a far-reaching generalization of the 

Black-Scholes formula for option prices. This makes the AJD family of models particu-

larly attractive for empirical studies that combine option prices with time series data on 

underlying prices or rates. Studies of this type include Andersen et al. (2002), Bakshi et al. 
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(1997), Bates (1996,2000,2003), Broadie et al. (2007), Chen and Scott (2002), Chernov (2003), 

Chernov and Ghysels (2000), Eraker (2004), Eraker et al. (2003) and Pan (2002). 

Despite the many examples of studies using AJD models, the models used in empirical 

work have remained limited to a relatively small subclass for which the pricing transforms 

are available in closed form. This restriction appears to be driven more by convenience of 

implementation than by considerations of empirical validity. In the general framework of 

DPS, the pricing transforms are characterized in terms of solutions of ordinary differential 

equations (ODEs). The AJD models used in practice (such as those of Cox et al. 1985 

and Heston 1993) are those for which these ODEs can be solved explicitly, thus providing 

explicit expressions for the pricing transforms. In this setting, each model-price calculation 

requires the numerical inversion of a closed-form transform, which can be accomplished 

with relatively modest computational effort. 

For more general AJD models — those for which the pricing transforms are not available 

in closed form — each price calculation requires, in principle, embedding the numerical 

solution of a system of ODEs within a numerical inversion routine. Numerical transform 

inversion is a numerical integration problem that typically uses hundreds or thousands of 

evaluations of the transform, and each such function evaluation requires the solution of a 

system of ODEs. It is the impracticality of this combination that has limited the application 

of AJD models to the most tractable cases. 

In this article, we develop the use of saddlepoint approximations as alternatives to 

numerical transform inversion in order to widen the scope of practical AJD models. The 

saddlepoint method is rooted in asymptotic expansions for evaluating contour integrals 

in the complex plane. It was introduced in statistics by Daniels (1954) to approximate the 

probability density function of the sum of independent random variables. Lugannani and 

Rice (1980) derive a saddlepoint approximation for the distribution function. See Daniels 

(1987) and Jensen (1995) for overviews of applications in statistics. Rogers and Zane (1999) 

apply saddlepoint approximations to option pricing; applications in credit risk include 

Dembo et al. (2004), Gordy (2002), Martin et al. (2001), and Yang et al. (2006). Ait-Sahalia 

and Yu (2006) derive saddlepoint approximations for transition densities of continuous-

time Markov processes with applications to statistical inference. In the affine framework, 
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Collin-Dufresne and Goldstein (2002) use Edgeworth expansions for swaption pricing. 

Saddlepoint approximations also have potential applicability to risk management in the 

setting of Duffie and Pan (2001). 

Saddlepoint approximations rely on the solution to an equation defined by the deriva-

tive of the transform to be inverted; this solution is the saddlepoint. We investigate various 

ways of computing or approximating the saddlepoint in the setting of AJD models. We 

also compare alternative versions of saddlepoint approximations for price calculations. 

We find that saddlepoint approximations do indeed provide an effective way to calculate 

prices in AJD models whose ODEs do not admit explicit solutions. 

This chapter consists of six sections. After this introductory section, in Section 2 we 

present the extended transforms of AJD models that are necessary in calculating the deriva-

tives used in the approximations. In Section 3, we review the saddlepoint method and 

associated approximations, and we explain how the saddlepoint method applies to AJD 

models. In Section 4, we propose an alternative saddlepoint method that relies on as-

sociated partial differential equations (PDEs) derived using convex duality. We test the 

approximations numerically in Section 5, and find that saddlepoint techniques yield sur-

prisingly small relative errors over a wide range of parameters. We conclude the paper in 

Section 6. 

5.2 Affine Jump-diffusion Model and Extended Transforms 

We start by reviewing basic facts about AJD processes. Following the notation in DPS, an 

AJD process X e MP is defined as a solution of the stochastic differential equation (SDE) 

dX, = p(Xt)dt + o(Xt)dWt + dZt 

where W is an (^)-adapted Brownian motion in M", Ft stands for the a-field of information 

sets available up to time t, and Z is a pure jump process whose jumps have a fixed probability 

distribution v on K" and arrive with intensity A(Xf). The asset price of interest, St, at time t 

is assumed to be (at + bt • Xt) exp(aj + bt • Xt) for deterministic at, bt, at and bt; for simplicity 
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we assume St = e*'Xt. The more general case can be reduced to this case at the expense of 

introducing time-dependency in the characteristics of X defined below. The dynamics of 

other assets, stochastic interest rates or stochastic volatility can be included as coordinates 

of the vector-valued process X. The functional forms of p(X/), o(Xt), A(X/) and the interest 

rate r(Xt) are specified as follows: 

p(x) = K0 + K^x, K0 e R", Kt e Rnxn, xeM." 

{a{x)a{x)T)ij = Hotj + HUj • x, H0ij e R, H^ e Rn 

A(x) = l0 + h-x, i = (Z0 ,Zi)eRxR" 

r(x) = p0 + pi • x, p = (p0, pi) e K x Rn 

6(c) — I exp(c • z)dv(z) for c e C", "jump transform". 

The process X is said to have the characteristic (K, H, 1,6, p). 

The state variable Xt at time t takes values in a domain D c R" on which the process 

is defined. For instance, (CT(X;)CT(XJ)T),7 should be non-negative for each i. A discussion 

of the state space D and constraints on the charateristic of X can be found in Chapter 5 of 

Singleton (2006), and Duffie et al. (2003) deal with this issue in a more general framework. 

The definition above implies that the process X is Markovian and that when a jump occurs, 

its jump size is independent of the jump arrival rate or the past history of X. 

In DPS, the authors prove that certain Fourier-type transforms of an AJD process can 

be found by solving the following set of ODEs: 

ftt) = - p j + ^ O + ^ t f H i / i t O + i ^ i - l ) (5.1) 

a(t) = -po + Xo^(O + ^(OTHo^(O + W0(j8(O)-l) (5-2) 

B(t) = X1
TB(O + i3(OTH1B(f) + /iV0(i3(O)B(O (5.3) 

A(t) = K0-B(t) + fS{t)THoB{t) + l0Ve(p{t))B(t) (5.4) 

with /S(0) = u, a(0) = 0, B(0) = v, ,4(0) = 0 for some u e C", v e R", with V0(c) a 

row vector. These transforms facilitate the pricing of many financial derivatives such as 



CHAPTER 5. SADDLEPOINTAPPROXIMATIONS 126 

European calls or puts, quanta options, Asian options and others using Fourier inversion. 

To apply saddepoint techniques, we will need ODEs that characterize cumulant generating 

functions (CGFs) and their derivatives. See DPS for the proof of the next theorem. 

Theorem 5.2.1 (DPS) Suppose the system of ODEs (5.1)-(5.4) has a unique solution and the other 

technical conditions in Duffie et al. (2000), p.1351, hold. Then 

ifj0(u,Xt,t,T) = E exp f r(Xs)ds\eu-x-i r, 
ea(T-t)+p(T-t)-Xt 

xl>i(v,u,Xt,t,T) = E e x p ( - f r(Xs)ds\ (v • XT)euXT\Tt 

= !/»„(«, Xt, t, T)(A(T - 0 + B(T - t) • Xt) 

where u e C", v e W, t < T and the process X has the characteristic (K,H, 1,6, p). 

The integral that we shall consider in later sections is E[exp(- f r(Xs)ds)(b-XT)ke^a+zb^'XT \ 

Tt\ for some a,b e W1 and z e l . When k = 0 and t = 0, it becomes ipQ(a + zb,X0,0,T) = 

exp(a(T,z) + /3(T,z) • Xo). Note that here we include z to express the dependence of a, f5 

on z through the initial conditions a(0,z) = 0, j3(0,z) = a + zb. If k = 1, t = 0, then by 

Theorem 5.2.1 we get ipi{b,a +zb,X0,0,T) = (A{T,z) + B(T,z) • X0)exp(a(T,z) + jS(T,z) • X0) 

with initial conditions A(0,z) = 0, B(0,z) = b. Provided we can interchange differentiation 

and expectation in 

d\po(a + zb,Xt,t,T) d 

dz dz 
E e x p j - f r(Xs)ds\e^+zb>XT\rt 

viewing i/>o as a function of two variables z and t, we get 

da(T-t,z) o»jS(T-f,z) 

dz 
+ • 

dz 
• Xt = A(T - t,z) + B(T - t,z) • Xt 

for all t and Xt, so we conclude da(t,z)/dz - A(t,z), df>(t,z)jdz = B(t,z). One condition that 

justifies the interchange of differentiation and integration is the finiteness of i/>o for some 

interval z 6 (—/, /) containing 0 as an interior point. This can be proved by the Dominated 

Convergence Theorem and the Mean Value Theorem; see, e.g., page 43 of Shreve (2004). By 
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repeating the same argument, one can calculate the A>th partial derivative of xpo, dkipo/dzk, 

by interchanging the order of differentiation and integration without changing the interval 

in which dkil>o/dzk becomes finite. 

Through this line of reasoning, we arrive at Theorem 5.2.2, below, and the following 

new set of ODEs: 

D(t) - X1
TD(O + |S(OTH1D(f) + /iV0(JS(i))D(O (5.5) 

+B(t)TH1B(t) + hB(t)TV26(p(t))B(t) 

C(t) = K0-D(t) + p(t)THoD(t) + l0Ve(p(t))V(t) (5-6) 

+B(t)TH0B(t) + l0B(t)TV29(fS(t))B(t) 

with a{t),p(t), A(t), B(f),V(0(c)) as before, C(0) = 0,D(0) = 0, and (V20(c)/,;) = (JV-2z,-Z/dv(z)) 

the Hessian of 6(c). We also need the following technical conditions, which extend condi-

tions in DPS. The proof of Theorem 5.2.2 is based on showing that a certain process is a 

martingale; these conditions are useful in verifying the martingale property. 

Definition 5.2.1 (K, H, 1,6, p) is well-behaved at (v, u, T) if ODEs (5.1)-(5.6) are solved uniquely 

\ if 6 is twice differentiable at fi(t)for all t < T, and if the following conditions are satisfied: 

(i) E[ f \y(t)A(Xt)\dt] < oo, where y(t) = (oj(0(/SO - 1) + 2<D,V0(ft)B/ 

+WtBjV26(pt)Bt + W't (0(/3f) - 1) + W,Ve(p,)Dt) 

(ii) E[( f 77(f) • r](t)dt)12] < «,, where 77(f) = (<P'tpJ + 20>tBj + %pj + W,Dj) o{Xt) 

{Hi) E[\&T + ^ | ] < oo 

Here <£<, <£,, Wt, W't are processes defined in the appendix and jSf = fi(T - t), Bt = B(T - t), 

Dt = D(T - t) for notational convenience. The next theorem is a natural extension of 

Theorem 5.2.1 and will play a key role in later sections. 

'Conditions that ensure this are presented in Duffie et al. (2003) in a more general framework. 
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Theorem 5.2.2 Suppose (K, H, 1,0, p) is well-behaved at (v, u, T). Then 

ip2(v,u,Xt,t,T) = E exp I- f r(X5)ds\ (v • XTfeu^ | % 

= fQ(u,Xt,t,T) 

x((A(T -t) + B(T - t) • Xtf + (C(T -t) + DCT - t) • Xtj) 

where v e Rn, u e C", t < T, the process X has the characteristic (K, H, 1,6, p). 

Proof See the appendix. | 

Again assuming that we can interchange the order of differentiation and expectation 

(for example, supposing \ ip0 \< co for all z 6 (-/, I) for some / and treating xpo as a function 

of z and t), we have 

d2ip0(a + zb,Xt,t,T) 
fe5 E exp (-r r(Xs)dsUb • XT)2e{a+zh)-xATt 

= ip2(b,a + zb, Xt, t, T); 

and from this we conclude 

d2a(t,z) d2f,{i,z) 
= C(t,z), ——-7.— = D(t,z). dz2 dz2 

These transforms can be continued as long as we are working with a sufficiently well 

behaved AJD process. Indeed, it is easy to find a pattern in the related ODEs. From the 

relationships above between a, /3, A, B, C and D and the corresponding ODEs (5.1)-(5.6), 

we observe that if we have a set of ODEs for the k-th derivative of i/'o, then we get a new set 

of ODEs for the (k + l)-th derivative just by differentiating the previous ODEs with respect 

to the variable z2 For a rigorous proof we would need to define suitable processes as in 

2This leads us to conjecture the functional form of E[exp(- ft r(Xs)ds)(b • XTf e(f'*zhyXT | Tt] should be 

L 
N! 

(m-l,...,mNYT„kmt=N 
mi!m2! •••»%! 

M" + d,,Xt,t,T) [J l^(T-t,z)+-^(T-t,z).x\ ' 

from the Faa di Bruno's formula and the ODEs satisfied by d'a/dz', d>fi/dz> can be derived by applying the 
same formula to the ODEs (5.1), (5.2). 
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Theorem 5.2.2 and give some extended conditions to make the Brownian part and the jump 

part martingales. We write the next set of ODEs for later use. 

Theorem 5.2.3 Under the conditions in the appendix we have 

rfr(v,u,Xi,t,T) = E 
e x p j - f r(Xs)ds\(vXT)3euXT\rt 

= Wu,Xt,t,T) 

x((A(T -t) + B(T - t) • Xtf + 3(A(T - t) + B(T - t) • Xt) 

x(C(T -t) + D(T - t) • Xt) + (E(T -t) + F(T - t) • X,)) 

where v e W, u eCn,t <T, the process X has the characteristic (K, H, 1,9, p) and 

t{t) - KjF(t) + p(t)THiF(t) + hVdW))F(t) 

+3B(t)TH1D(t) + 3/1B(OTV20(jS(O)D(O + h \ ^ ( z • B(t)fdv(z) (5.7) 
Jm." 

E(t) = K0-F(t) + p(t)THoF(t) + l0Ve(P(tW(t) 

+3B{t)TH0D(t) + 3ZoB(OTV20(jS(f))D(O + l0 f ezm(z • B{t)fdv(z) (5.8) 
J R " 

with a(t), p(t), A(t), B{t), C(t), D(t), V(0(c)), V2(0(c)) as before, and E(0) = 0, F(0) = 0. 

Proof See the appendix. | 

5.3 Saddlepoint Approximation and Option Pricing 

5.3.1 Option Pricing 

When we price options with the log of underlying asset following an AJD process, St = edX', 

the basic building block is 

Gfl,b(y;X0/r) = E e x p ( - J r{Xs)ds\eXTMb-xT<y 
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so that, as shown in DPS, a European call option price, for example, can be calculated as 

follows: 

C(T,c) E 

= E 

exp 

exp 

(-r 
(-r 

r(Xs)ds \(eaAT-c) 

r(Xs)ds\(ea^-c)l{d.XT>lnc] 

= Gd-d(- In c; X0, T) - c G0-d{- In c; X0, T). 

To facilitate the application of saddlepoint approximations, we will express this as a 

difference of two probabilities, after some possible scaling and change of measure. This will 

reduce the calculation of the option price to the task of calculating those probabilities. To 

this end, first suppose the characteristic (K, H, 1,6, p) of the AJD process X is well-behaved 

at (b, a, T). Then there exist a(t), /!(r) solving the ODEs (5.1), (5.2) in Theorem 5.2.1 with the 

boundary conditions a(0) = 0, /?(0) = a. On the other hand, it is easy to show, as noted in 

DPS, that 

ii = exp 
Jo 

(Xs)ds Ur-O+flT-0-: 

is a positive martingale, using Ito's formula and (5.1), (5.2). So an equivalent probability 

measure Q given by dQ/dF = £r/£o is well defined. Also note that from the definition of 

i/>o in Section 2, ipo(a,Xo,0,T) = E[exp(- JC r(Xs)ds)ef'XT] — E,Q. Thus the random variable 

Y := b • Xt has a moment generating function under Q given by 

PK(z) EQ[ecY] = j-E e x p j - f r(Xs)ds)e(fl+2*)-Xr 

xpo(a + zb, XQ,0, T) I \ 

ipo(a,Xo,v, I) v ' 

where a(t, z), /3(f, z) denote the solutions of (5.1), (5.2) with a(0, z) = 0, /5(0, z) = a + zb so that 

a(0 = a(f,0),^(0 = j3(f,0). 

The CGF of Y is 'TC(z) under Q. Unless Y is a constant almost surely, Y has a positive 

variance and so "K{z) is strictly convex in z. Proposition 5 in DPS implies that X is again an 
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AJD process under Q with the characteristic (KQ, H, fi, 6®) where 

Kg(t) = K0+ H0jS(T - t), Kf(t) = K1+ H^(T - t), 

/Q(f) = ketfw -1)), if(t) = h e0{T -1)), 

eQ(c,t) = d(c + p(T-t))/d(p(T-t)). 

Finally we note that Gfl,fc(y; X0, T) = E[exp(- j f r(Xs)ds)e"-xn|fc.XT<yl] = ^0Q(Y < y). So the 

option-pricing problem is reduced to the calculation of the cumulative distribution function 

(CDF) Q(Y < y) or its complement Q(Y > y). 

In the AJD setting, this tail probability can be represented through the Fourier inversion 

formula, 
^ / -T+IOO j 

Q(Y>y) = - L emz)~zy)<Ei T > 0 _ 3 

Numerical calculation of this integral requires evaluation of the integrand at hundreds or 

thousands of points. Unless 7C(z) is available in closed form, we would need to solve the 

ODEs (5.1), (5.2) numerically at each evaluation point. This computational burden limits 

the scope of AJD models amenable to practical application and motivates our investigation 

of approximations. In the next subsection, we review the saddlepoint method and explain 

how we apply this method to option pricing in AJD models. 

Remark For European call options, a simpler calculation is possible. To simplify the 

measure transform, suppose the short rate is a constant r. Then the option price is given 

by 

C(T,c) = E[e~rT(ST-cy] 

= e-rT{EeXT - E [eXr A c] ] 

= e-rT[eKm - c P(XT + Y > In c)} 

where ST — eXr, Y is exponentially distributed with unit mean, independent of Xj, and 

3This can be shown using the Plancherel Theorem and the Dominated Convergence Theorem (see the 
appendix of Rogers and Zane (1999)). 
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eK(z) = E[ezXj-]_ S o 

E [^(XT+Y)] = eK(z)_L_ = efC(z)-hV-z)t z<1_ 

This means we need to calculate only one tail probability. If we want to use the Fourier 

inversion formula, this reduces the workload by almost a half. A similar but different use 

of exponential density functions was made in Butler and Wood (2004) to approximate the 

moment generating functions of truncated random variables. 

5.3.2 Saddlepoint Approximation 

Daniels (1954) introduced the saddlepoint method to statistics in order to approximate the 

probability density function (PDF) of the mean of i.i.d. random variables X,-'s. Assuming 

we know the CGF %{z) where e%{z) = fife2*'], the PDF fn(x) of X = £ " Xt/n is given by 

/«(*) enCK(z)-zx)dZi for a n y T e j x e K : |^"(X)| < oo) 
2ra JT_ioa 

Daniels (1954) used the method of steepest descent to expand this contour integral. The 

saddlepoint z is defined by the saddlepoint equation 7C'(z) = x; the modulus of the inte-

grand is minimized along the real axis at z and maximized at z along the contour parallel 

to the imaginary axis passing through z. So, the region outside a neighborhood of the 

saddlepoint contributes little to the integration, and we get Daniels' formula through a 

Taylor expansion of the exponent 'TC(z) — zx around z. (The method of steepest descent is 

explained in Chapter 7 of Bleistein and Handelsman (1975).) 

Lugannani and Rice (1980) approximated tail probabilities rather than densities. The 

following form of the Lugannani-Rice (LR) formula can be found in Daniels (1987): 

P(X > x) = 1 - 0( A M + (p( yfnw) \ h - + h-+ o(n-3'2) 1 (5.9) 
[n1/z nd/z J 

whereb0 = l/u-l/w,^ = (A4/8-5Al/24)/u~A3/(2u2)-l/u3+l/w3andw = sgn(z) V2(zy - %{£)), 

u = z yfK77^), A3 = 'K^\z)l'K"(zf12, A4 = 'K(-4\z)/'K"(z)i'2. When x = E[Xj] = K'(0), the 
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formula reduces to 

P(X>fl*(0)) = - - A 3 ( 0 ) +0(n-3/2). (5.10) 

2 6i2rm 

Here O, (p are the CDF and the PDF of the standard normal distribution, respectively. We 

will use this formula with n = 1 and bo in test cases. The accuracy of the approximation 

(5.9) for small n depends on the proximity of the underlying distribution to the normal 

distribution. Wood et al. (1993) study the saddlepoint approximation with a non-normal 

distribution replacing <J> and (p for a better approximation. We will test such a variant 

with a stochastic volatility jump-diffusion model using a gamma distribution as the base 

distribution in the approximation. 

To apply the LR formula (5.9), we need to find the solution z of the saddlepoint equation 

1C(z) = y for some given real number y and compute 'Tf(z) and its derivatives. In an AJD 

setting, from Section 2 we have 

<K{z) = a(T, z) - a(T, 0) + (/3(T, z) - jg(T, 0)) • X0 

<K'(z)=A(Trz) + B(T,z)-Xo 

<K"{z) = C(T, z) + D(T, z) • X0, etc., 

and these functions can be evaluated by solving a set of ODEs, the size of which depends 

on the order of derivatives one wants to compute. Once z is found, each system of ODEs 

need only be solved once. The total number of ODE solutions required depends on 

the approximation chosen through the number of derivatives of ^(z) used. In contrast, 

numerical inversion of the characteristic function requires the solution of ODEs (5.1), (5.2) 

for each evaluation point in the numerical integration. Finding z is therefore critical to the 

method. 

Under rather mild conditions, the saddlepoint equation 'K'iz) = y has a unique root. 

We will, in particular, impose the following two conditions on the AJD process X, option 
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maturity T and real vectors a, b. 

Assumption 1 There exists an I > 0 such that \\\>o(a + zb, Xo, 0, T)\ < oofor all z e {-I, I). 

Assumption 2 The CGF *K{z) of b • XT is strictly convex and steep at the boundary of 

D = jz e M : \<K{z)\ < oo} . 

Unless b • Xj is constant almost surely, ,7("(z) is strictly convex and the convexity of <7C(z) 

implies that D is an interval. Steepness means lim2^D 'K'iz) = —oo and limz_H, 'K'iz) = oo 

where v = iniD and u = s u p © (see Barndorff-Nielsen (1978) for more details). These 

assumptions are conditions on the tails of the random variable b • Xj. Assumption 1 allows 

us to interchange the order of differentiation and integration as discussed in Section 2. 

Assumption 2 ensures the existence of a unique solution of the saddlepoint equation for 

any given y e R and is not restrictive in practice. 

Remark Although we focus on AJD models, the same approximations can be applied to 

quadratic term structure models (see, e.g., Leippold and Wu (2002) or Cheng and Scaillet 

(2002)) where extended transforms are again given by systems of ODEs. We also note that 

such systems of equations can be derived by re-writing quadratic term structure models as 

AJD models as observed in Cheng and Scaillet (2002), Proposition 3. 

5.3.3 Approximating the Saddlepoint 

As already noted, solving the saddlepoint equation is a key step in applying the saddlepoint 

method. Numerical solution of the equation might require many iterations, each iteration 

requiring evaluation of the derivative of the CGF. This could be problematic in high-

dimensional models without a closed-form CGF. The approximations to the saddlepoint 1 

discussed in this section address this difficulty. 

Several authors have addressed the problem of analytically intractable CGFs. Easton 

and Ronchetti (1986) approximate ^ (z ) by 

9C(z) = \iz + -o2z2 + - K 3 Z 3 + ^ K 4 Z 4 
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using the first four cumulants, and use z for which 9C(z) - y instead of the true saddlepoint 

z. This approximate saddlepoint equation for 9C might have multiple roots, so Wang (1992) 

modifies this method and uses 

1 / l 1 \ 
<7C(z;b) = fiz + -o2z2 + (gK3z3 + — K4z

4jgb(z) 

where gb(z) = exp(-K2^2z2/2) with a properly chosen constant b > 0. 

Starting from a Taylor expansion of (K'(z) around z - 0, Lieberman (1994) presents a 

series reversion of the saddlepoint equation 7C"'(z) = y as a power series in (y - \i)la2. When 

expanded to third order, this yields 

Z3 
y-v 

2o2\ o2 ) 2ff4 6cr2 V CT: 
•p (5.11) 

as an approximation to the exact saddlepoint z. Here, (y — ,u)/cr2 is the first iteration 

of a Newton-Raphson algorithm starting from ZQ = 0. Lieberman (1994) then derives a 

saddlepoint approximation based on z3. With #3 = % ̂ jn(K"{z3), A3 = (K^'\z^)l'K"(z-if'l2, 

A4 = <K^4\z3)/<K"(z3)^2 and H(x) = l(x>o} + jlj^o)/ Lieberman's approximation is 

P(X > y) HH>3) + exp|nCX-(23)-yS3)+y 

(H(z)3) - O(o3)) 
A3fl| | l ( A 4 ^ | A 2 ^ 

72 

+^(e3) 
| % ( p 2 - i ) 1 

6V" " 

6Vn " ^ 24 

A4(t)
3 - v3) {£-&l + 3i)3\ 

24 
+ A 

2 "3 

72 

(5.12) 

(l + 0(n"3 / 2)) . 

We will test this idea of an approximate saddlepoint. We will see that Lieberman's 

method is not uniformly accurate over a large range of strikes because the error in Lieber-

man's approximate saddlepoint, z3 which is an expansion in terms of (y - fj)/cr2, becomes 

large as y increases. 

We propose an improvement that proceeds one more step. We expand 'K'iz) around 
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z = z3 (rather than z — 0) to third order to get 

. = y-K'(z3) K'"(z3)(y-K'(z3)\
2 

2 3 Z <7C"(z3) 27C"(z3)\ 7C"(z3) j 

/•7C(3)(%)2 ^ 4 ) ( z 3 ) \ / y - ^ ( z 3 ) \ 3 

\2^"(23)2 6-7C''(z3)/\ K"(z3) J ' K ' ' 

Note that (5.13) reduces to (5.11) if z3 is replaced by zero. Evaluation of z3 uses the same 

set of ODEs which are used to get z3; we do not need higher order derivatives of 7<"(z) or 

any extra set of ODEs for (5.13). To evaluate (5.13), we solve one set of ODEs associated 

with 7C"(z) through *7C^(z) twice to get z3, and then solve the same set of ODEs to get z3. 

In our numerical tests, we will test the effectiveness of using the approximate saddle-

points z3 and z3 in the LR formula (5.9) in place of the exact value z. The approximations z3 

and z3 can also be used to initialize the root-finding procedure to solve for z, and we will 

test this idea with z3. 

5.4 A Dual PDE and Approximate Saddlepoint Method 

In this section, we show that the problem of solving the saddlepoint equation can be 

transformed from a root-finding problem into a matter of a function evaluation through a 

duality relation. 

Recall 7C(z) = a{T, z) - a(T, 0) + (^(T, z) - p(T, 0)) • X0 with a(0, z) = 0, |3(0, z) = a + zb. Let 

us express the ODEs (5.1)-(5.4) as 

^M,z) = Lp{p)t ja{t,z) = La{§), jB{t,z) = LB(B,p), jA{t,z) = LA(B,fS) 

where L. is the operator corresponding to each function; for example, L^(x) = - p i + Kjx + 

xTHix/2 + h{6(x) - 1). Now define 

1-{(t, x, z) = a(t, z) + |3(£, z) • x 

so that E[e~ £ rsdse{a+zh>XT \ Tt,Xt = x] = e«(r-f,z)+/i(r-(,z)-x = e<H(T-t,x,z) imp\ies 

<H{T, X0, z) = K{z) + a(T, 0) + jS(T, 0) • X0. 
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The function *H(f, x, z) is convex in z, and strictly convex as long as b • Xt is not constant 

almost surely. This allows us to apply a technique developed by Jonsson and Sircar (2002) 

in their analysis of a partial hedging strategy. We define the convex dual 

tH*(t,x,y) := sup(yz - *H(t,x,z)}. 
z 

The supremum should be understood to be taken over the set D(t) = {z € K : \H{t,x,z)\ < 

oo}. (Indeed, a{t,z) and |3(£,z) can take infinite values, as illustrated by Andersen and 

Piterbarg 2007.) Note that D(t) is defined analogously to D in Assumption 2. We similarly 

define v(t) = ini D{t) and u(t) = sup D(t). The next proposition tells us that under this 

assumption the solution of the saddlepoint equation z is actually a partial derivative of 

'H*{t,x, y) and that 7Y\ z jointly satisfy some PDEs. 

Proposition 5.4.1 Suppose Assumption 1 holds, and suppose that Assumption 2 holds for all 

t e (0,1]. Then'H*{t,x,y)for(t,x,y) e (0,T]xRnxRcanbeexpressedas'H:t(t,x,y) = yz{t,x,y)-

1i(t, x, z(t, x, y)) where z(t, x, y) is the unique solution of (d'H/dz)(t, x, z) = y for each (t, x, y). In 

addition, z(t,x, y) is a continuously differentiable function with (cW*/dy)(t,x, y) = z(t,x, y) and 

^ = -La(-VX9T) - LP(-VX9T) • x, (5.14) 

~ = -LA{-Vxi, -VX9C) - LB(-Vxz, -VXW) • x. (5.15) 

Proof Consider a function T(t, x, y, z) := (<W/<9z)(f, x, z) - y. By the steepness of *7C(z) and 

the relation *H(T, XQ, Z) - 'TC(z) + a(T, 0) + fi{T, 0) • Xo, T(to, x$, yo, z) - 0 has a unique solution 

z for each (f0, *o, J/o) ^ (0, T ] x l " x R. If (dT/dz)(t0, x0, yo, z) ^ 0, then the Implicit Function 

Theorem implies that we can find a small neighborhood B of (to, XQ, yo) and a unique con-

tinuously differentiable function z(t, x, y) such that z(to, XQ, yo) = z and T(t, x, y, z(t, x, y)) - 0 

for all (t,x, y) e B. By patching these neighborhoods together throughout the domain of 

(t, x, y), we confirm the smoothness of z(t, x, y). 

To see why dT/dz = d2^/dz2 does not vanish, we observe that eH^,x'z^ = EX[A] where 

A = e~ i) r s S
e
a-Xte

z(l'-Xi) a n ( j ^ g subscript x on the expectation indicates the initial condition 

X0 = x. Similarly, (d"H/dz)eH = Ex[(b • Xt)A] and ((dft/dz)2 + d2<H/dz2)eH - Ex[(b • X,)2A]. 
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Suppose (d2rH/dz2)(t,x,z) = 0 for some (t,x,z). Then by the Cauchy-Schwarz inequality, 

{~J^ = Ex[(b-Xt)A]2 = Ex{(b.Xt)A^A^f 

< Ex[(b-Xt)
2A]Ex[A} = (~\ e2'H. 

Therefore, (b • Xt)A
1/2 and A1/2 should be linearly dependent. However, this implies b • Xt 

is constant almost surely, which contradicts the assumptions. 

From the existence of a unique solution z of the saddlepoint equation, we have 

•H*(f, x, y) = yz(t, x, y) - rH{t, x, z(t, x, y)). 

The differentiability of z(t, x, y) enables us to take its partial derivatives to derive 

#H*. . dz, , d'H, „ dW. „d2. 
-(t,x,y) = y—{t,x,y)-—{t,x,z)-—{tlxlz)—i{

t'x>f> 

dt 
-(t,x,z(t,x,y)). (5.16) 

Taking partial derivatives with respect to x and y yields 

Vx<H*{t,x,y) = -Vx<H(t,x,z(t,x,y)) = -p(t,z), (5.17) 

d'H* 

dy 
= z(t,x,y). 

By definition, we have rH(t,x,z) = a(t,z) + fi(t,z) • x and thus d^H/dt - La(fi) + Lp(p) • x. 

Plugging this into (5.16) and using (5.17), we get (5.14). 

Now to derive (5.15) we first recall that dajdz = A, dfi/dz = B, dAjdz = C, dB/dz = D, 

and so (c?H/dz)(t, x, z) = A(t, z) + B(t,z) • x = y. Taking partial derivatives with respect to y, 

x and t for both sides of this equation gives 

cjz dz 
C{t,z)— + (D(t,z) • x)— = 1, (5.18) 

dy dy 

C(t,z)Vxz + (D(t,z) • x)Vxz + B(t,z) = 0, (5.19) 

LA(B,p) + LB(B,p) • x + (C(t,z) + (D(t,z) • x))~ = 0. (5.20) 
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The first equation (5.18) implies dz/dy + 0 and thus C(t,z) + D(t,z) • x = 1/(dz/dy). We 

combine this with (5.19) and (5.20) to get 

dz/dy' 

dz dz 
jt=^{rLA(B,p)-U{B,fi)-x). 

Since LA and Lg are linear in their first arguments, the last equation is equivalent to (5.15). 

I 

The PDEs (5.14), (5.15) help identify z (or <K{zft when they are easy to calculate numer-

ically. However, the boundary behavior of "H* as t —» 0 can be tricky because there is a 

possible discontinuity at t = 0. For example, suppose that X is a one-dimensional Levy 

process (within the AJD class) with continuously differentiable characteristic exponent ip{z) 

such that \jj(z) = °o outside of (a, b) for some real values a < 0 < b. This particular example 

was suggested by one referee to Glasserman and Kim (2008). We further assume that the 

risk free interest rate is zero. Then, 

E ^ ' I X o =x] = exp (txp(z) + xz), 'H(t,x,z) = t\p(z) + xz 

and thus D(t) = (a, b), but D(0) = (-oo, oo). However, this leads to 

9T(t,xty) = (y-x)z-t4>(z), t = ^~1^Z^ 

and <H*(0, x,y) ~ oo • ly±x. By sending t to zero, we can see that if y > x, then z —> b. Since 

t/>(z*) becomes positive for z sufficiently close to b, we get 

lim sup y-T{t, x, y) < (y - x)b. 
fj.0 

Similarly, if y < x, then z —> a and 

lim sup (H*{t, x, y) <(y — x)a. 
no 



CHAPTER 5. SADDLEPOINT APPROXIMATIONS 140 

This discontinuity complicates numerical solution of the PDEs (5.14), (5.15). We can get 

around this by advancing time a little bit, say until e > 0. In other words, since <H*{e,x,y) 

is a finite function, we initiate a numerical scheme from this function to get z(T, x, y). In the 

case of a diffusion process, we approximate "H*(e,x, y) by using an Euler approximation 

for the diffusion from time 0 to time e. This leads to a quadratic approximation for *H and 

then a quadratic approximation for "H*. We illustrate this in the next example, which deals 

with the Heston model. 

Example Suppose the dynamics of the underlying process (X, v) e R2 are given as follows: 

dXt = (r + uvt)dt + y/v~tdWj, 

dvt - (a - bvt)dt + a -^UtdWJ, 

(5.21) 

(5.22) 

where the correlation of the two Brownian motions W1, W2 is p. The characteristics of this 

affine diffusion model are 

K0 

1 r" 

a 

, Kt 
0 u 

0 -b 
, Ho = 0, 

#1,11 = 

1 0 ^ 

v l ) 

t Hi 12 - Hi 21 
' 0 ^ 

\°P) 

. Hi 22 

' 0 ^ 

y°2 , 

As shown in the next section, the SDEs (5.21) and (5.22) include the Heston model as a 

special case. With an asset price St = eXt and eH(t'x'v'z') = E[ez(1'0)(x,'u,)] = exp(a(t,z) + 

j8i(£,z)x + fi2{t,z)v), Proposition 5.4.1 implies 

dt 
(t, X, v, y) = K0 • V(JW«W* + (Kj y{X,v)^l • (X, v) 

\ ((V(x,,)^)T H i V ^ w ) • (X,v) 

= r-

2 

dx 
+ a-zr H M-T—-— b-^r— \v 

dv 

t*\2 

dX 
+ 2ap 

dX dv 

dX dv 
+ <7[-dv-

(5.23) 

As discussed above, we use an e approximation to implement a numerical method for 
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this PDE. First, we freeze the drift and volatility coefficient during a small time interval 

[0,e] (this is the Euler approximation), to get X£ « Xo + (r + uvo)e + ^JVQW1
£. This then leads 

us to 

exp CH(e, x, v, z)) = E [e2^ | (X0, v0) = (x, v)] 

« E\exp(zx + z(r+ uv)e+ z^JvWl)\ 

= exp izx + z(r + uv)e +-z2ve\. 

Finally, we get 'H*{e, x, v, y) ~ zy - z (x + (r + uv)e) - \z2ve where z = (y - x - (r + uv)e)/(ev). 

Since we have jSi(f,z) = z for this model, we either compute {d1~{*ldy)(T, Xo,Vo,y) or 

(d9~(*/dX)(T, Xo, VQ, y) where T is the option maturity. We then use this as an approximate 

saddlepoint. 

Figure 5.1 shows the graphs of this quadratic approximation for 'H and <H* for the 

following parameter values: r = 3%, u = - 1 /2 , a = 0.08, b = 2, a = 0.2, X0 = log(lOO), 

v0 = 0.04 and e = 0.01. The strike K varies from 60 to 140 and S0 = 100. Note that 

1H(Q,XQ,VO,Z) = XO • Z and 'H*{0,Xo,vo,y) = oo • l)y^x0)- The log-moneyness is defined 

by log(K/So) - y - log(So). The approximation "Ho of 7Y captures the true curve well in 

the middle, but fails to do so where "H explodes. Likewise, the approximation "Kg* of 'H* 

performs well when the strike K is close to So, but produces larger errors as it moves away 

from So. 

5.5 Test Cases 

In this section we test the performance of saddlepoint approximation technique, for the 

Heston model, a stochastic volatility jump-diffusion (SVJ) model and the Scott model. 

Particularly, we look at the following methods: 

LR method 

Lieberman method 

L-LR method 

App-LR method 

PDE method 

equation (5.9) with numerical calculation of the saddlepoint z 

equation (5.12) 

equation (5.9) with z approximated vising z3 in (5.11) 

equation (5.9) with z approximated using Z3 in (5.13) 

equation (5.9) with z approximated using PDEs (5.14), (5.15) 
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• H(e,x0,v0,z) 

. Hn(e,x„,vn,z) 

-2000 -1500 -1000 -500 500 1000 1500 

-0.6 -0.5 -0. 

Figure 5.1: Graphs of 9i(e, XQ, VQ, Z), *H*(e, XQ, VQ, y) and their quadratic approximations. 
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In applying equation (5.9), we exclude b\ and higher order terms as their inclusion does 

not consistently improve the results. The motivation for testing the last four methods lies 

in avoiding potentially time-consuming calculation of z. All tables can be found at the end 

of this chapter. 

5.5.1 Heston Model 

In the Heston model (Heston 1993), the pricing transforms are available in closed form, so 

no approximations are necessary. We use this as a test case for the approximations precisely 

because the tractability of the model allows us to compare the approximations with values 

computed through transform inversion. 

The stock price and the volatility in the Heston model under a risk-neutral measure are 

assumed to follow 

dS, = rStdt + y/v~tStdW}, 

dvt = K(0 - vt)dt + a V^WWf 

where r is the constant interest rate and (dV\lj,dWf) is a 2-dimensional Brownian motion 

with < dWj, dW2
t >= pdt. We define Xt = log St and apply Itd's formula to Xt to get an AJD 

process (X, v) with 

dXt = (r-^vt\dt+ ^dWJ 

and v is as above. See the appendix for the characteristic of this process. The price of a 

European call option is then given by 

C(T, c) = E [e-rT(ST - c)+] = S0Q(XT > In c) - c e~rT¥(XT > In c), 

where Q is defined by the measure transform dQ/dV = e~rTeXj~x°, which corresponds to 

taking ST as numeraire asset. The dynamics of (X, v) can be written as 

dXt = (r + vt/2)dt + ^dW1/0, 

dvt = (KO - (K — po)vf)dt + a V^dW ( '
u , 
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where W1'® and W2'® are standard Brownian motions under Q with correlation parameter 

p. The CGF of XT under P is defined by eK^ = E f e * ] = exp(a(T) + jS(T) • (X0,i;o)) where 

/S(0) = (z, 0), a(0) = 0. Through Heston (1993), we have an explicit solution for the CGF of 

XT given by 

K(z) = C + Dv0 + zXQ 

K9 ( 
C = rzT+—i(K-poz + d)T - 21n 

l-ge*7 

K - paz + d 
D = — 

K - paz + d 

l - e f l 

1 - gedT 

K - paz - d 

d = J(paz - K)2 - a2(~z + z2). 

Again the idea is that when this kind of analytic solution is not available, we use the 

associated ODEs to find the saddlepoint and apply the saddlepoint method. How many 

calculations does this require? Let us suppose, for simplicity, that the computation times 

in solving ODEs for (a,|S), (A, B) or (C,D) are approximately the same, say T. Although 

the dimensions of the ODEs will grow exponentially as we differentiate repeatedly we 

are interested in ODEs associated with 'K^ for j = 4 at most. Also some special structure 

of the models helps to simplify the equations. For example, Bi(t) - 1, E>\{t) = F\{t) = 

H\{t) — 0 in the Heston model. With the assumption of constant T, we can compare 

the computational loads of different saddlepoint approximations. The computing time 

to approximate Ga^{y; Xo, T) = loQ(^ ^ y) using the LR method is about T + 2/CT + 3T, 

where k is the number of iterations to solve the saddlepoint equation numerically. Here 

the first term is for e^°) = £o and the last term is for 'TC(z), 7f"(z). On the other hand, 

the time needed to apply the Lieberman method is then about 5T + 5T because we have to 

find 70(0),..., TC^O) and evaluate K^z),..., <K{i)(23), while the L-LR method would require 

approximately 5T + 3T because we evaluate only up to 7C"(z3). The time for the App-LR 

method is 10T + 3T. In each case, the most time-consuming step is getting an accurate or 

approximate saddlepoint, and the computational load of this step determines the efficiency 

of the approximation. It will become clear in our examples that the cost of this step depends 
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60 

48 
13 

70 

45 
9 

80 

42 
7 

90 

36 
7 

100 

20 
5 

110 

35 
6 

120 

39 
8 

130 

43 
12 

140 

45 
15 

Table 5.1: Average number of function evaluations in the numerical solution of the 

saddlepoint equation in the Heston model, by strike price. The first row corresponds to 

initializing the root-finding procedure at zero; the second row corresponds to starting at 
Lieberman's approximate saddlepoint. 

on option moneyness and maturity. 

Numerical Results 

The LR method. The initial asset price So is set equal to 100, the strike c varies from 60 to 

140 and the option maturity T is in the range of 0.1 to 2 years. Other parameters are given 

by So = 100, v0 = 4%, K = 2, d = 4%, o = 0.2, p = 20%, r = 3%. We solve the saddlepoint 

equation numerically by using the fzero function in MATLAB (which uses a bisection 

and interpolation algorithm) and solving the ODEs (5.1)-(5.4) at each iteration. Table 5.1 

shows the average number of iterations in this step for each strike. Initializing f zero at the 

approximate saddlepoint Z3 in (5.11) reduces the number of iterations by 66%-84%. Table 

5.5 shows the relative errors of the LR method with respect to the accurate prices shown in 

the upper half.4 The relative errors are less than 0.1% over the whole range considered. 

The Lieberman Method and the L-LR method. Tables 5.6 and 5.7 show the relative errors 

of the Lieberman method and the L-LR method, respectively. As mentioned earlier, the 

approximate saddlepoint Z3 incurs large errors as y (log of strike) moves away from the 

mean p.. So the Lieberman method works best for at-the-money (ATM) options while the L-

LR method yields the smallest errors for deep in-the-money (ITM) calls. Also, we find that 

relative errors are enormous in the upper right part of the tables, but the out-of-the-money 

(OTM) call prices in that section are very small, so even small absolute errors become very 

large relative errors. 

The App-LR method. In Table 5.8, we use the App-LR method. This method solves the 

4The analytic prices in Table 5.4 for the Heston model and the SVJ model are produced using the program 
SecPrcV2.7 by Mark Broadie, Ozgur Kaya and Guy Shahar. They employed a modified trapezoidal-type 
routine for transform inversion. We thank Mark Broadie for providing us with a copy of this program. 
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ODEs for dat/dz!, dft/dz!, / = 0 , . . . , 4, one more time, but it reduces the relative errors a 

lot compared to the Lieberman method and the L-LR method. An important advantage of 

this method is that, while keeping the errors small, we solve the ODEs a fixed number of 

times. Using a root-finding iteration like fzero requires solving ODEs an unpredictable 

number of times. 

In light of the greater accuracy of the App-LR method compared with the Lieberman 

method and the L-LR method, in the subsequent examples we restrict attention to the LR 

method and the App-LR method. 

Dependence of Approximation on Saddlepoint. The results above have the implication that 

the accuracy of saddlepoint approximations largely depends on how well we approximate 

the saddlepoint itself. To illustrate this more clearly, we display the shapes of the curves 

"Kiz) and 'TC'(z) in Figure 5.2.5 The shape of 'K'iz) looks approximately cubic. This suggests 

the following approach: solve ODEs (5.1)-(5.4) for some fixed values of z and for a fixed 

maturity, and apply a cubic spline interpolation to get an approximation for 7C(z).6 The 

results are reported in Table 5.9. In most cases, the relative errors are close to the values 

from the LR method in Table 5.5 except in the upper right section of the table where we 

have small option prices. However, this approximation has an exceptionally large relative 

error at T - 1.9, c = 110. This again shows the importance of accurate evaluation of the 

saddlepoint. Any user who wants to adopt this approach should be very careful regarding 

this matter. One advantage of this spline approach is, first, the time for computation is 

relatively small (in the example, it resolves ODEs (5.1)-(5.4) 30 times for each maturity) 

and, second, a single approximation can be used for options with the same maturity but 

different strikes. 

The PDE method. We also test the idea of an approximate saddlepoint in Section 5.4. 

Because of the non-linearity of the PDE (5.23), we use an explicit finite difference method 

to solve it numerically. Table 5.10 reports results for this PDE method. Relative errors are 

small for ITM calls (c = 60, 70, 80) with values less than 2%. But they become close to 8% 

for c = 90 and 100% for c = 100. This poor performance arises in part because we set the 

5The graph of "Kiz) shows the moment generating function explodes around 20 + e and -25 - e. 
6 interpl in MATLAB 



CHAPTER 5. SADDLEPOINTAPPROXIMATIONS 147 

Figure 5.2: Graphs of 'Kiz) and 7C"'(z) with T = 1 in the Heston model 

number of time steps n equal to 20 and e to be T - 0.02 only. However, if one tries to make 

further refinements, increasing n or decreasing e, then function values tend to explode 

easily. It was this instability that led us to restrict the range of strikes and maturities tested 

as shown in the table. This method is fast in finding an approximate saddlepoint, but better 

numerical methods are necessary to reduce huge relative errors for non-ITM options. 

5.5.2 SVJ Model 

As in Bates (1996), the asset price and volatility processes in the SVJ model under a risk-

neutral measure P are as follows: 

dSt_ 

St-
ir - Ak)dt + y/FtdW} + (£N,_ - V)dNt, 

dvt - K(9 - vt)dt + a y/v~tdW* 

where N is a Poisson process with rate A and the £;'s are i.i.d. lognormal random variables 

with mean ju/ and variance a?. Since {e~rtSt} is a martingale under the risk-neutral measure, 

this condition gives the relation k = eW
+t7//2 - 1. Also, W1 and W2 are standard Brownian 

motions with correlation parameter p as in the Heston model. We define Xt = log St as 

usual and then Ito's formula yields 

dXt = (r-Ak- vt/2)dt + V^^Wf + ?lNt-dNt' 
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60 

47 
27 

70 

43 
16 

80 

41 
9 

90 

35 
7 

100 

18 
6 

110 

35 
6 

120 

40 
6 

130 

43 
7 

140 

44 
8 

Table 5.2: Average number of function evaluations used in the numerical solution of the 

saddlepoint equation for each strike in the SVJ model. The first row initiates the 

root-finding at zero and the second row initiates it at Lieberman's approximate 

saddlepoint. 

where 77, ~ N(/JJ,(TJ). The characteristic of this AJD process (X,v) is given in the appendix. 

Its CGF 'K(z) under P is defined by e™ = E ^ ] . 

A European call option price is, with a new probability measure <Q> defined by dQ/d¥ — 

eXT-<K(\)r 

C(T,c) = e " r T {e^ ( 1 ) Q(X T >lnc ) - cP(X r >lnc )} . 

And e ' W = E ^ t r * ] = ^d+z)-^(D, <KQ(z) denoting the CGF of XT under Q. From this 

relation between <KQ{Z) and 9C(z), the solution z of "K'0(z) = y is given by z - 1 with K.\z) = y. 

Numerical Results 

The LR method. As in Section 5.1.1, we test the LR method and compare the results with 

analytical option prices. Table 5.2 shows the effectiveness of using the approximate saddle-

point Z3 in (5.11) as a starting point for the root-finding routine for the saddlepoint equation. 

The average number of function evaluations for each strike is reduced considerably, as we 

noted in the Heston model. We use the parameters r = 3%, K - 2,9 - 4% (long run mean 

volatility = 20%), v0 = 4% (initial volatility = 20%), a = 20%, p = -20%, / j ; = - 3 % , oj = 2%, 

A = 100%, So = 100. Table 5.11 present the true option prices. Table 5.12 shows that the 

relative errors of the LR method are less than 0.4% in the whole region. 

The App-LR method. With the same parameters, the App-LR method produces small 

relative errors close to those of Table 5.12, as reported in Table 5.13, except the one fairly 

extreme case of T = 0.1 and c = 60. The reason that the method fails for this case is that 

the approximate saddlepoint, Z3 - 23.9788, from (5.11) is too far from the true saddlepoint, 

z - -64.4843, resulting in the huge error of the modified approximate saddlepoint, % = 
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Figure 5.3: Graphs of yz — ^(z) , y — 'K'iz) where y = lnc, T = 0.1, c = 60 in the SVJ model 

63.4224, from (5.13). In fact, this error makes w in the LR formula (5.9) imaginary. More 

precisely, zy - <K(z) becomes negative, as illustrated in Figure 5.3. (One could address this 

problem by checking if zy - 'Kiz) is positive and reverting to a root-finding iteration if it is 

not.) This indicates the potential limitation of the application of the App-LR method when 

a call option is deep ITM with a short maturity. We will see a similar pattern in the Scott 

model. 

Sensitivity of Approximation. With the option strike 100, T = 0.1 and c = 100, the effects 

of A, p.), and oj are shown in Figures 5.4, 5.5 and 5.6. As the jump arrival rate A increases 

from 0 to 200%, relative errors increase linearly up to 0.085%. As the mean of the jump size 

pj decreases from 0 to -20%, relative errors make a smooth curve with a peak of 1.4% at 

pj = -16%. The volatility of the jump size has the biggest effect, making the relative error 

more than 10% as oj grows.7 However, empirical values found in the literature stay small 

enough for the LR method to produce small relative errors. More specifically, as Broadie 

et al. (2007) summarize in their paper, Eraker et al. (2003), Andersen et al. (2002), Chernov 

et al. (2003) and Eraker (2004) report 4.07%, 1.95%, 0.7% and 6.63% for ah respectively. 

Broadie et al. (2007) report 07 between 9% and 10% when a risk premium for oj is assumed 

to exist. 
7Figure 5.6 shows the relative errors grow as oj becomes larger. Numerical values are obtained from (5.9) 

with n = \ and b0 only or (5.10) if z is close to zero (in our case, (5.10) is used if z < 10"4). Indeed, when 
Of = 14%, we have z = 4.38 x 10~5 and (5.9) yields a 184.86% relative error while (5.10) gives a relative error of 
6.97%. 
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Figure 5.4: Effect of the jump arrival rate in the SVJ Model 
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Figure 5.5: Effect of the mean of the jump size in the SVJ Model 

Figure 5.6: Effect of the volatility of the jump size in the SVJ Model 
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Nonnormal-based Approximation. The added skewness due to the jump component in 

the SVJ model makes the saddlepoint approximation using a gamma distribution for the 

base distribution attractive. We test this method for two strikes in Table 5.14.8 The gamma-

based approximation is better for c = 90, but not for c = 100. This result reasserts the 

conclusion of Wood et al. (1993), " . . . any gains are likely to be small when the normal-

based approximation does well." 

5.5.3 Scott Model 

As the last test case, we apply the methods to the jump-diffusion model with stochastic 

volatility and stochastic interest rates in Scott (1997). Under a risk-neutral measure P, the 

dynamics of the state variables are given by 

dXt = (rt - Ak- a2y) /2)dt + a JyjdWt + rjN(_dNf, 

dy\ = KI (0I - y])dt + cii ^tdWJ, 

dyj = K2(02 ~ y2
t)dt + o2 Jy2dWf 

where W(, Wj, W2 are Brownian motions with < dWt,dW* >- pdt, < dWt,dWf >= 0, 

rt — y\ + ¥t> li ~ N(p.j, ex?) and k = e'i,+<V - 1. The stock price St is exp(X(). 

The characteristics for this model are given in the appendix. A function 'TC(z) is defined 

by e^(z) = E[e"X r*dsezXT]. Note that <K{z) is not the CGF of XT under P. The European call 

option price is 

C(T, c) = e ^ ^ Q ^ X r > lnc) - c e7f(0)Q2(XT > lnc), 

where the probability measures Q;, i = 1,2, are defined by d(Qh /dW = e^ -» rs^exT-'K(i) a n ( j 

dQ2/df = e-fo^-™, so that 

e ^ Q l (z) = E Q , LzXrl = £'K(-i+z)-'Km/ eKQ2(z) = E Q 2 f^Xr! = ^ ( z J - ^ O ) 

8The PDF of a gamma distribution Gamma(t, 6) is expressed as f(x, k, 0) = xk^e~{x/0)/(T(k)6k) for x > 0, the 
shape parameter k and the scale parameter 0. We use a chi-square distribution x2(v) of which PDF is that of 
Gamma(v/2,2) where v is the degree of freedom. In Table 5.14, v is set equal to 4. Other values for v have 
similar results. 
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60 

47 
21 

70 

45 
17 

80 

43 
10 

90 

38 
7 

100 

29 
7 

110 

34 
5 

120 

42 
7 

130 

43 
8 

140 

46 
10 

Table 5.3: Average number of function evaluations used in the numerical solution of the 

saddlepoint equation for each strike in the Scott model. The first row initiates the 

root-finding at zero and the second row initiates it at Lieberman's approximate 

saddlepoint. 

and <KQ.I is the CGF of Xj under Q,. The saddlepoint equation is given by 'K' (z) = 

7C'(1 + z) = y for <Qh and %' (z) = 7C'(z) = y for Q2. So implementing the LR method 

requires solving 'TC'(z) = y only. 

There are two ways to use the App-LR method. One is to use this method for each of 

Q;(Xr > In c), i = 1,2, trying to approximate the corresponding saddlepoints separately. 

The other is to set the approximation of z equal to the approximation of z minus one, based 

on the relation z = z - 1 . Using this consistent approximation requires solving half as many 

ODEs. In more detail, the first method solves the ODEs for da'/dzi, dft/dzi, j = 0,. . . ,4 , 

four times to get two approximate saddlepoints z and z, while the latter one solves the same 

ODEs just twice. In our tests, the second method produces smaller errors, particularly at 

short maturities. 

Numerical Results 

The LR method. We use the same range of parameters for maturity and strike. Additional 

parameters are set as follows: So = 100, yj — Q\ = 3%, y^ = 02 - 2%, K\ = 5, KJ - 0.4, a = 1, 

ai = 0.23, ff2 = 0.1, p = -26%, fij = -4%, cjj = 1%, A = 100%. The analytical values in Table 

5.15 were computed using Fourier inversion, using the quad function in MATLAB with a 

large interval for the numerical integration. Different integration intervals give different 

values, but we find the errors to be very small. Again in Table 5.3, we find that initiating 

fzero at the approximate saddlepoint 23 in (5.11) helps to reduce the computation time for 

solving the saddlepoint equation, and in Table 5.16 we observe small relative errors (less 

than 0.1% in most cases) for the LR method with respect to the analytical valuation. 

The App-LR method. Table 5.17 shows results of the App-LR method. As noted in 
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Section 5.2.1, we see that the method is not applicable to some deep ITM calls with short 

maturities. There are also two big errors in the upper right part of the table that do not 

have counterparts in the SVJ model. These errors, however, disappear when we use the 

second implementation, setting the approximation of z equal to the approximation of z 

minus one. We find that this method dominates the first method throughout the whole 

region considered. See Table 5.18. Even though this second method still cannot be applied 

to some deep ITM calls with short maturities, it produces relative errors very close to those 

of the LR method. 

5.6 Conclusion 

When a closed-form solution for the characteristic function in an affine jump-diffusion 

model is not available, transform inversion combining numerical integration with hun-

dreds or thousands of ODE solutions can be very time consuming. We have seen that 

saddlepoint approximations can be an effective alternative computational tool for calculat-

ing prices in affine jump-diffusion models. 

In saddlepoint approximations, we find that accurate calculation of the saddlepoint is 

the most critical and often the most challenging task. We can address this issue either by 

solving the saddlepoint equation numerically or by obtaining an approximate saddlepoint. 

Results in this paper can be summarized as follows: 

• The LR method (the Lugannani-Rice formula with a numerical solution of the sad-

dlepoint equation) yields the smallest relative errors, ranging from 0.0% - 0.3% in 

most cases for the models considered here. 

• Initiating a root-finding iteration at the approximate saddlepoint % of Lieberman 

substantially reduces the number of iterations. 

• The App-LR method (the LR formula with an improved series approximation to the 

saddlepoint) gives small relative errors close to those of the LR method. However, it 

gives poor results for some deep ITM options with short maturities. 
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• For ATM options, the LR method dominates. For OTM or ITM options, the App-LR 

method is better, considering speed and accuracy together. 

• If speed is of greater concern than accuracy, then it is best to use the Lieberman 

method for ATM options and to use the L-LR method for ITM options. 

In our numerical tests, we have considered a wide range of strikes and maturities. 

Empirical work with AJD models generally focuses on a much more limited range, and 

this further supports the use of saddlepoint approximations. 
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Appendix A 

A.l Proofs for Chapter 3 

Proof of Lemma 3.4.1 Define x(t) = <J>t(w) and y(t) = <&t{9u)/0; then 

x = Ax + B(x2,. ..,x%), 

if = Ay + 6B(y\,...,y2
n) 

with x(0) — y(0) = u. It is immediate that x* = yd because they satisfy the same linear 

ODE with the same initial condition. So, we concentrate on xv and y'°, for which the 

corresponding ODEs are 

xv = Avxv + {x\,...,x2
m) + c(t) + d{t), 

f = A"yv + e{y\ y2
m) + c{t) + 6d(t) 

where c{t) = Acxd(t) and d(t) = Bc(x2
m+V.. .,xl). Now define 

f(xv)=Avxv + (xl...,x2
m). 

By condition (C2) (see the discussion preceding Lemma 3.4.1), the mapping x° i—* Avx'° is 

quasi-monotone increasing, as is the mapping xv i-> (x2, . . . , x^), and thus also / . Recalling 



APPENDIX A. 171 

that Bc has nonnegative entries and 9 > 1, we get 

±v-f(xv) = c(t) + d(t) 

< (0-i)(y? y2j + c(t) + ed(t) 

= f-f(f)-

It now follows from the comparison result (3.25) that x(t) < y(t). | 

For the proof of Lemma 3.4.2, we need a preliminary result that limits the crossing of 

coordinates of the solution to (3.9). 

Lemma A.l.l For the system (3.9), suppose (t, u) e O and let x(t) = Ot (w). For i, j e {1 , . . . , n), 

the set Is e [0, t] : x,(s) = Xj(s)\ has only finitely many isolated points. 

Proof As noted in Section 3.4.1, <Pt{u) is analytic in (t, u) so long as it lies within the domain 

of analyticity of f0 in (3.9); but this function is analytic in the entire domain. It follows that 

xt(s) - Xj(s) is analytic in s. An analytic function can have only a finite number of isolated 

zeros on a compact interval. | 

Proof of Lemma 3.4.2 Fix u eRn and let us denote 4>f(w) by x(t) to simplify notation. We 

define a piecewise differentiable function y(t) — minJ=i. m x,(£). Since xd(t) converges to 

zero as (implied by (3.27)), we can find M > 0 such that sup, \xd(t)\ < M. The value of M 

depends on xd(0). Lemma A.l.l implies that in any bounded interval [0, t] with x(t) finite, 

the set of s at which x,-(s) = Xj(s) is either finite or an interval. Therefore, we can define a 

sequence of closed intervals of M.+, {Ij}, such that I(u) n ]R+ = U t i Ij a n d 

y(t) = xl(j), Vf e V., 

for some /(/') e {!,..., m\, where 1°. denotes the interior of Ij. 
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In an interval 1° throughout which y(t) = x;(f), we have 

n n 

fit) = y2 + YJ
A^k+ YJ BikXl (A1) 

k=\ k=m+l 

rn r\ 

> y2 + YJ
Aik7+ YJ AikXk 

k=1 k=m+l 

m n 

> y2 + Y Alky-M.max Y \Ajk\. 
x — ' j=i,...,m '—' 

k=\ ' k=m\\ 

In the first inequality, we used the assumption that A'° has non-negative off-diagonal entries 

and Bc > 0. Next, we define a continuous, piecewise differentiable function v by 

m 

v = L{v), L(v) •=v2 + YJ
 A\kV ~ K 

k=\ 

whenever y(t) = *,-(£), with K - MmaxyX!^=m+i l-A/itl a n d y{0) > v(0). Then, since y and v 

satisfy 

y - h{y) >i>- L(v), 

we get y > v by applying the standard comparison result repeatedly on each interval 7y. If 

we show that v is bounded below, then y is also bounded below and the statement follows. 

To see that v is indeed bounded below, we observe that M can be set large enough to 

make L(x) = 0 have two real solutions, T]J < rf2, for each i; in this case v(t) > 0 or v(t) > rf^ 

(as is evident in Figure 3.1) when y(t) - x,(t). | 

Proof of Lemma 3.4.3 We write x(t) for Of(w) to simplify notation. Define a piecewise 

differentiable function y — maxPiv . ; r a x„ similarly as in the proof of Lemma 3.4.2. We saw 

there that we can define a sequence of intervals {Jy) until % with y(t) — x;(/)(0 in 1°. In an 

interval I on which y = x\, y satisfies (A.l). Since the trajectory of x(t) is bounded below 

(by Lemma 3.4.2), y —-> oo. So, at some time to < T, y(to) is sufficiently large that the right 

side of (A.l) becomes positive for all i — 1 , . . . , m, and then y never decreases. We can then 
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divide both sides of (A.l) by y to get 

y_ 

y 

m n n 

= E^*?+y+z E AikXk+y E B*% 
k=\ r ' k=m+\ Y Jt=m+1 
m 

< Y,A* + y + M 

on (to,T), for some sufficiently large M. Here we have used the fact that x^ < y,ke {\,...,m), 

and the nonnegativity of the off-diagonal entries of Av. The existence of M is guaranteed 

by the fact that \xd\ is bounded and y never decreases after to. Then, 

-dt < I ydt + [ max Y" Aik + M ) ( T - t0). 
J t0 y Jt0

 l T~t 

However, the left side is infinite, so J ydt = oo as well. We can pick a constant C such that 

|Adxrf(f)l < C for all t > 0; then, since A" » 0, we have 

I A-x(t)dt> (minA?) f 
Jo * Jo 

ydt - CT = oo. 

The system (3.9) can be thought of a system of equations defined in C" by setting 

x(t) = Rex(t) + ilmi(t). Based on the analyticity of f0, the solution x(t) also has a nice 

analytic property which is used in the proof of Theorem 3.2.1. 

Lemma A.1.2 For the system (3.9), suppose (t,u) e Q. Then we can find an open convex subset 

ofCn, containing the line segment L = \Xu e K" : A e [0,1](, in which <5t(-) is analytic. 

Proof Since 0 ((M) is finite, Of(Aw) is finite for all A e [0,1]. This is because, first, 0((Aw) < 

AO((M) by Lemma 3.4.1 (take 6 = 1/A, for A G (0,1]) and, second, it is bounded below by 

Lemma 3.4.2. 

For each Au e L, there is an open ball B\ in C" centered at Xu in which <!>((•) is analytic, 

because of the analyticity of /„. Since L is compact, we can cover L by a finite number of 

such balls. We can then find an open convex set Lf that contains L and is contained within 
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the cover; for example, we can U to be the set of points less than a distance e from L, for 

sufficiently small e > 0. Then O f() is analytic in U. | 

Proof of Lemma 3.6.1 The proof uses an approach of Getz and Jacobson (1977). We write 

the ODE for xv in (3.9) as 

' x1 / 
m+l 

+ A V" + ,4C j r f + Bc 
, X°(0) = MB 

Choose any w e R™+ and let p = min, W{. Multiplying both sides of the ODE by wT, we get 

wTx° = xoT diag(w)x° + (wTAv)x° + wTAcxd + xddiag{wTBc)xd. 

Define b = A""Tw;/2 and x-x0jv diag(w) lb. Then, 

wTx = xTdiag(w)x - bTdiag(wy1b + w1Acxd + xddiag(wT Bc)xd 

> pxTx - bTdiag(w)"1b + wTAcxd + xddiag(wTBc)xd 

> -^{wTx)2-bTdiag{w)-1b + wTAcxd+xddiag(wTBc)xd. (A.2) 

\zv\ 

Let g(w) = ^diagiw^b, y = wTx and y(0) = wrx(0). 

We want to determine whether there is a real number 6 such that x(s) blows up as s —> t 

for the scaled initial condition x(0) = 6u. We divide the rest of the proof into four cases. 

Case (i): Suppose vP + 0. From(A.2) we get 

P 2 

> 

- g(w) + wTAcxd 

^y1 - g(w) - C\6\ • \wTAc\ • \ud\ 

(A3) 

zv 

with y(0) = 6wTuv + eTb, using (3.27) in the second inequality. Now choose w so that 

wTuv + 0. Define a new function z by setting 

P a 
\w\ 

zl - g(w) - \e\M, (A.4) 
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with z(0) = j/(0) and M = C|w;TAc| • \ud\; then y > z on their common interval of existence. 

Let 772 = yj{g(w) + \0\M)\w\2/p and r\\ = -r/2, the two equilibria of the ODE (A.4). Because 

w e R++, g(w) > 0 so r/2 £ 0. By increasing 0 (if IWTMU > 0) or increasing - 0 (if wTu'° < 0), 

we can make z(0) > r/2. Then, as in (3.15), z has a finite blow-up time 

M 2
 1 2(0) - Tfr 

T = log . 

p(m - m) z(°) - m 

Since we always have y > z, T is an upper bound on the blow-up time of y. Moreover, this 

upper bound can be made arbitrarily small because T|Oas0—>ooor(9- j>-oo, depending 

on the sign of wTuv. Thus, by taking 6 of sufficiently large magnitude and with the sign of 

wTuv, we ensure that x blows up by time t. 

Case (ii): Next, suppose u"° - 0 but Acxd(s) is not identically zero, xd having initial 

condition xd(0) - ud. The solution xd{t) is given by exp(Adt)ud. So, there is some fo < t 

for which j ° Ac exp(Adt)udds + 0; otherwise, Acxd(s) - 0 for all s e [0, t) and this implies 

Acxd = 0 because Acxd is analytic. Now consider the scaled initial condition x(0) = 6u, 

and let y be the function defined above by y - wTx. Then, the initial condition becomes 

y(0) = erb. For s < f0, (A.3) yields 

y > ~^y2 - gip) + wTAcxd > -g(w) + wTAcxd, 

and so 

J
r»fo 

Ac exp(Ads)udds. 
0 

The integral in this expression is nonzero, so the last term is nonzero for some w G R"'+. On 

the other hand, for t > to, we use 

y>^y2-g(w)-\d\M, 

with M as before. We can make y(to) greater than r/2 by increasing 6 or -6. Applying the 

same argument we applied to z following (A.4), we conclude that y blows up in time t, and 

then x does too. 
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Case (Hi): Suppose that uv = 0 and Acxd = 0, but Bc(x^i+1(s),..., x^(s)) is not identically 

zero. We can pick to < t such that 

Jnf0 

o 

^ \ , ,^T J • „/,„T nc\ „ „ „ / 4<i^\,,d„ N = (exp(Aas)uaydiag(wTBc)exp{Aas)uads±0. 

Now consider x with x(0) = Ou and take y = wTx. Then (A.2) yields 

w 
-y2 - g(w) + wTAcxd + xddiag(wTBc)xd 

> -g(w) + xddiag{ivTBc): Tncwd 

and so y{to) > eTb - g(w)to + 02N. And we use the following inequality for t > to (by (A.2)): 

»-\ky2-g{w)-
By the argument in Cases (i)-(ii), we conclude that x blows up by time t for sufficiently 

large |0|. 

Case (iv): Suppose u° = 0, Acxd = 0 and Bc(x2
j+1,... ,x2) = 0. This means that xv is a 

solution of 

\V,.V JO 

X2 

\ m ! 

+ Avxv, xy(0) = 0. 

This makes xv = 0 and thus 

Eexp(20w • Y,) = exp (id2 f \xd{s)\2ds + 20 j f Ad • xd{s)ds + xd(t) • Yd
0 

where xd is the solution from the original (unsealed) initial condition, xd(0) — ud. Because 

the moment generating function of u • Yt is the exponential of a quadratic function of d, we 

conclude that u • Yt is Gaussian. | 
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A.2 Useful Result for Chapter 4 

Lemma A.2.1 Suppose that two real numbers M, c are given satisfying \ud\ < M,c < min;=^..v„, My. 

Then, there exists a function v(t) such that its dynamics only depends on A, M and v(0) = c, and 

v(t) is bounded below while ®i,y(M) > v(t)for all t € [0, T(W)) and any / e {1 , . . . , m). 

Proof The proof is similar to that of Lemma 3.4.2. Since 0 ( (M) is analytic in t (also in x; 

see p.44 of Lefschetz 1957), a set {s e [0, t] : OS,;(M) = <J>S/y(M)} for fixed i, j has finitely many 

isolated points. Therefore, y(t) := min/c=1 _„, ̂ ^ ( M ) is well-defined in [0, T(M)) and we can 

define a sequence of closed intervals {Ij} such that [0,T(M)) = [Jyly and y(t) - x,(yj in P., 

interior of Ij, for some index f(y'). 

If y{t) = Xi(t) in 1°, we have 

n n m n 

y = y2 + Y_,Ai^ + YJ B*X^ - yl + YjA,k7 ~ C'"d| max
m YJ ^ 

k=l k=m+l k=l ! "'"mk=m+\ 

where we use (4.2) and the assumptions that Av has non-negative off-diagonal entries and 

that B > 0. Now define a function v in 1° by 

m n 

v = v2 + Y Aikv -K, K = CM max Y \Aik\. (A.5) 
i—l i=l,...,m *—' ; 

Starting from u(O) = c < y(0), v{t) becomes a well-defined piecewise continuous and 

differentiable function such that v(t) < y(t). Let us write 1° = (fly, by). A simple stability 

analysis of (A.5) reveals that 

— if (A.5) has one or no equilibria, then v(t) increases in Ij, 

— if (A.5) has two equilibria, say r\\ and r\i but v(aj) i [r\\, r}{\, then v(t) does not decrease, 

— v(t) decreases only if v(aj) e (771,772)/ but then it is bounded below by 771. 

Therefore, v(t) is bounded below and this bound is a function of A, M and c. | 
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A.3 Appendix for Chapter 5 

Proof of Theorem 5.2,2. We follow the approach used in Theorem 1 in DPS. Throughout the 

proof, let us denote a(T - t), fi{T - t), A{T - t), B(T - t), C(T - t) and D(T - t) by at, ft, At, 

Bt, Q, D(, respectively, for notational convenience. We also write r(Xt), JU(XJ), a(Xt), A(Xt) 

as rt, \ii, at and At. We use a dot, as in / , to denote a time derivative dfjdt. Next we define 

W,=exp(- | r(Xs)ds\ea'^'-Xt 

and 0 ( = Wt(At + Bt • X,). In addition, we set O; = Wt(A, + Bt • X,)2 and W; = Wf(Q + D, • X,). 

If we show that <J>| + W't is a martingale, then <&'t+W't= E[0^, + ̂  | ft] leads to the desired 

result. 

Ito's formula for jump-diffusion processes (as in Cont and Tankov 2003) yields 

do; = 0't^-rt + at + ̂ -Xt)dt + {jif^dt + SiJotdWt)+^r{otoJ)^d?j 

+20 ( {{At + Bt • Xt)dt + (Bt • \itdt + BjotdWt) + pJ{otoJ)Btdt) 

+WtBj(o,aJ)Btdt + d], 

= Yltdt + TtdWt+dJt 

for appropriate drift and volatility coefficients EL, T( and ]t = Lo<T(i')<f(®T(!) ~ ®T(J)-)
 w * t n 

T(Z) = inf{£ : Nt = i). Here Nt is the counting process with intensity At. Letting Ef be the 

^-conditional expectation under F for 0 < t < s < T, and writing AX, for the increment in 

X at T(Z'), we have 

E'[ E^»-*i(0-)] 
«T(0<S 

= Ef[ £ EK(0-^(l)-IXT(l)_,T(i)]] 
«T(i)<S 

«T(I)<S 

+vFT(l)_ET(!)_[e^orAX '(BT(0 • A X , ) 2 ] } ] 

= E,[ f (<J>;_(e(ft,) - 1) + 2«&„_V0(/3„)BU + ^U-B^V20(|3u)Bu)rfNu] . 
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Proceeding similarly, 

dWt = tltdt + %dWt + djt 

for suitable coefficients tlt, Tt (they are straightforward to compute, but omitted to save 

some space) and ]t = LO<T(I)<((^/T(I) ~~ ^ m - ) " ^ n e ^a s t t e r m satisfies 

K T ( I ) < S ^ ( + 

Now, we observe that if the condition (i) of Definition 5.2.1 is satisfied, then 

Ef[/S + Js - /, - h] = E([ f y(u-)dNu] = Ef[ f y(u)A„dM] 

and Jt + Jt~ L y(u)Audu becomes a martingale thanks to the Integration theorem in p.27 of 

Bremaud (1981). 

From these observations, by adding and subtracting y(t)Atdt we get 

d(&t+Vt) = dUt + Jt)-y(t)Atdt + (Tt + rt)dWt 

+d>; (-rt + 6ct + fr • X, + fr • fit + ij3T(a,^)jS( + (0(/Jt) - l)A,)df 

+20, (A, + B, • X, + B, • /if + pl(otoJ)Bt + V0(j3t)B(At)df 

+Vf (B (
T(a^)B f + BjV2d(pt)BtAt)dt 

+% (-rt + at+PfXt + pfHt + \pT{oto])Pt + (0(/?t) - l)A t)dt 

+Vf (Q + D, • X, + D, • Hf + pJ(a,cjJ)Dt + Ve(p,)D,A,)dt 

= dUt + h)-y(t)Atdt + (rt + rt)dwt (A.6) 

as af/ j3(, Af, Bt, C{ and D; are solutions to (5.1)-(5.6). The condition (ii) of Definition 5.2.1 

ensures that J (TM + Tu)dWu is a martingale. Therefore, <$>'t + Wf is a martingale and the 

proof is complete. | 

Theorem 5.2.2 can also be established as a consequence of Proposition 2 in Cheng and 

Scaillet (2002); for higher-order derivatives we need to consider higher powers of b • Xj, 

and these require separate treatment. 
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Conditions for Theorem 5.2.3. The characteristics (K, H, 1,9, p) are well-behaved at (v, u, T), 

if all ODEs in Theorems 5.2.1,5.2.2,5.2.3 are solved uniquely, if 6 is three times differentiable 

at |3(f) for all t < T, and if the following conditions are satisfied: 

(0 E[J \y(t)A(X,)\dt] < oo, 

where y(t) = f,(t) + f2(t) + f3{t), 

/ i (0 := ®}(d(pt) - 1) + 3^f((A, + Bt • X()
2V0(/3,)Bf 

+(At + B, • Xt)BjV2d((St)Bt\ + Wt f ez^(z • Btfdv{z) 

JR" 

f2(t) := **(0(ft) - 1) + 3Wt{(At + Bt • X,)V6(pt)Dt 

+(Q + D, • X,)V0(/J,)Bf + WfBf' V
Z0(J3()D, 

n 

f3(t):=®>{etft)-l) + WtVdtfl)Fl 
T 1/2-, 

(fi) E [ ( J 7/(0 • r/(t)dt) ]<oo , where rj(t) = (gi(t) + gi(t) + &{t)) a(Xt) 

gi(t) := ®}pj + 3Wt(At + Bt • XtfB] 

g2{t) := &ift + 3W,j(Q + D, • X,)BJ + (At + Bt • Xt)Dj) 

g3{t):=tffiJ+VtFj 

(Hi) E[|0>J. + ®2
T + ®3

T |] < oo 

where xVt/ 0 | for i — 1,2,3 are defined in the proof of Theorem 5.2.3 and a;, . . . , F( stand for 

a(T -t),...,F(T- t) which are the solutions to (5.1)-(5.8). | 

Proof of Theorem 5.2.3. This can be proved by defining appropriate functions, as in the 

previous theorems. We set Wt = exp(— JC r(Xs)ds)ea'T~^+^T~^ X| as before and 

0} = (A(T - 0 + B(T - t) • XtfWt 

tf = 3(A(T -t) + B(T - t) • Xt)(C(T -t) + D(T - t) • Xtyvt 

<J>f = (£(T - t) + F(T - t) • Xt)Wt 

and apply Ito's formula. Under the assumed conditions, S>* +0^ + ̂  becomes a martingale. 

I 
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Characteristic of the model dynamics in the Heston model: 

K0 = 
r 

v 7 C b , 

, Ki = 
u 2 

0 -K 

, H0 = 0, 

Hi,n -
' 0 N 

v X / 

/ H i 12 = H i 21 -
' 0 ^ 

op ) 

, Hl,22 -

( (P 

v a2
 J 

Characteristic of the model dynamics in the SV] model: 

Ko 
r - Ak 

, K i : 

o 4 
0 - K 

, H0 = 0, 

Hi,n = 
' 0 ̂  

v l ) 

, H i 12 - H i 21 
' 0 ^ 

I aP 

,H 1,22 

1 o ̂  

v ff2 / 

0(c) = I exp(c • z)dv(z) = exp(cifi/ + c2a2/2), 1$ = A, /i = 0 
JR 2 

Characteristic of the model dynamics in the Scott model: 

K0 

i \ 

-Ak 

K101 

K202 

0 

, Xi = 

0 1-iff2 1 

0 - j q 0 

0 0 - K 2 

, H0 = 0, 

H i , ii 

v 0 

/ H i 12 - Hi / 2 1 

0 

pooi 

0 
V J 

, Hl,22 -

( \ 
0 

°\ 
0 

V ) 

/ 

, H i / 3 3 = 

V 

Hl,13 = H131 = Hi,23 - H132 - 0, 

0(c) = I exp(c • z)dv(z) = exp(ciju/ + c?a?/2), /o = A, Zi = 0 
JR 2 
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