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Abstract 

The similarity between classical and quantum physics is large enough to make 

an investigation of quantization methods a worthwhile endeavour. As history 

has shown, Dirac's canonical quantization method works reasonably well in 

the case of conventional quantum mechanics over 
n  but it may fail in 

non-trivial phase spaces and also suffer from ordering problems. Affine quan-

tization is an alternative method, similar to the canonical quantization, that 

may offer a positive result in situations for which canonical quantization fails. 

In this paper we revisit the affine quantization method on the half-line. We 

formulate and solve some simple models, the free particle and the harmonic 

oscillator. 
 

Keywords 

Classical Physics, Quantum Physics, Affine Quantization 

 

1. Introduction 

Although non-relativistic quantum mechanics stands as a well-established 

theory and a well experimentally test theory, the question of how to pass from 

classical to quantum theory and a better understanding of the relation between 

classical and quantum mechanics is still of particular interest. Indeed, 

• Ongoing attempts to quantize general relativity where a definitive answer to 

the question of the correct quantum theory of gravitation is still missing; 

• A quantization method that is able to take the nonlinear structure into ac-

count right from the outset is a useful tool to construct and study possible 

candidates for a theory of gravity; 

• A better knowledge of quantization in a situation when physical systems sa-

tisfy constraints or boundary conditions is needed. 

In physics, quantization is generally understood as a correspondence between 

a classical and a quantum theory. The question is how can we construct a quan-
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tum theory if a classical system is given? If we consider the quantum theory to be 

a more fundamental theory and classical mechanics to be only approximatively 

correct, the very concept of quantization seems pointless or appears to be 

ill-founded since it attempts to construct a correct theory from a theory which is 

only approximatively correct. For instance, there is the phenomenon of classical 

anomaly in the sense that if the quantization of some models gives the necessary 

quantum system, it may turn out that not all the quantum symmetry properties 

of the system are automatically reflected at the classical level [1]. There are 

quantum systems for which no classical counterpart exists: for example He-II 

superfluidity and some broad class of such systems can be found in the literature 

[2]. 

Quantum mechanics, like any other physical theory, classical mechanics, elec-

trodynamics, relativity, thermodynamics, cannot be derived. The laws of quan-

tum mechanics, expressed in mathematical form, are the results of deep physical 

intuition, as indeed, are all other physical theories. Their validity can only be 

checked experimentally. From this point of view, quantization is not a method 

for deriving quantum mechanics, rather is a way to understand the deeper phys-

ical reality which underlies the structure of both the classical and quantum me-

chanics and which unifies the two from geometrical perspectives. 

It is conceptually very difficult to describe a quantum theory from scratch, 

without the help of a reference classical theory. The similarity between classical 

and quantum physics is large enough to make quantization a worthwhile ap-

proach. There is a certain mathematical richness in the various theories of quan-

tization where the method does make sense. Quantization in its modern sense is 

therefore often understood as the construction of a quantum theory with the 

help of a classical reference, not necessarily as a strict mapping. Quantization is 

studied not only for the sake of novel predictions: it is equally rewarding to re-

produce existing results in a more illuminating manner. 

Originally P. A. M. Dirac introduced the canonical quantization in his 1926 

doctoral thesis, The method of classical analogy for quantization [3]. The ca-

nonical quantization or correspondence principle is an attempt to take a classical 

theory described by the phase space variables, let’s say p and q, and a Hamilto-

nian ( ),H q p  to define or construct its corresponding quantum theory. The 

following simple technique for quantizing a classical system is used. Let 

, , 1, 2, ,
i

iq p i n=  , be the canonical positions and momenta for a classical system 

with n degrees of freedom. Their quantized counterparts ˆ ˆ, , 1, 2, ,
i

iq p i n=  , are 

to be realized as operators on the Hilbert space ( )2
,

n
L dx=   by the pre-

scription 

( )( ) ( ) ( )( ) ( )ˆ ˆ; ; 1, 2, , , .
i i n

i i
q x x x p x i x i n x

x
ψ ψ ψ ψ∂

= = − = ∈
∂
      (1) 

This method is known as canonical quantization and is the basic method of 

quantization of a classical mechanics model [4] [5] [6]. More general quantities, 

such as the Hamiltonians, become operators according to the rule 
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( ) ( )ˆ ˆ ˆ, , ,H p q H p q→                       (2) 

an expression that may have ordering ambiguities [7] [8]. In which canonical 

coordinates system does such a quantization method works? 

1) According to Dirac, replacing classical canonical coordinates by corres-

ponding operators is found in practice to be successful only when applied with 

the dynamical coordinates and momenta referring to a cartesian system of axes 

and not to more general curvilinear coordinates. 

2) Cartesian coordinates can only exist in a flat space. 

3) The canonical quantization seems to depend on the choice of coordinates. 

4) Beyond the ordering problem, one should keep in mind that [ ]ˆ ˆ, dq p i I=   

holds true with self-adjoint operators ˆ ˆ,q p , only if both have continuous spec-

trum ( ),−∞ +∞ , and there is uniqueness of the solution, up to unitary equiva-

lence (von Neumann). 

There are two attitudes that may be taken towards this apparent dependence 

of the method of the canonical quantization on the choice of coordinates. The 

first view would be to acknowledge the cartesian character that is seemingly part 

of the method. The second view would be to regard it as provisional and seek to 

find a quantization formulation that eliminates this apparently unphysical fea-

ture of the current approaches. 

The aim of eliminating the dependence on cartesian coordinates in the stan-

dard approaches is no doubt one of the motivations for several methods such as 

the geometric quantization [9] [10] [11] [12], the path integral quantization [13], 

the deformation quantization [10] [14] [15] [16] [17] [18], the Klauder-Berezin- 

Toeplitz quantization [19] [20] [21] [22]. There is no general theory of quantiza-

tion presently available which is applicable in all cases, and indeed, often the 

techniques used to quantize has to be tailored to the problem in question. 

As history has shown, Dirac’s canonical quantization method works reasona-

bly well in the case of conventional quantum mechanics over 
n  due to the 

following reasons: 

• The underlying configuration space 
n  is so well behaved; 

• When we try to quantize classical systems with phase spaces other than the 

cotangent bundle 
n

T  , the situation changes drastically; 

• Already in classical mechanics, the phase spaces different from 
n

T   re-

quire a more elaborated mathematical formalism; 

• Global and topological aspects play a much bigger role in quantum theory 

than in classical physics. 

Although quite successful in applications, the canonical quantization method 

has some severe shortcomings from a theoretical point of view. A number of 

questions arise in connection with the scheme of canonical quantization. 

1) Let Q be the position space manifold of the classical system and q any point 

in it. Geometrically, the phase space of the system is the cotangent bundle 

T QΓ =  . If Q is linear, means n
Q  , then the replacement i i

q x→ ,  
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j j
p i

x

∂
→ −

∂
  works fine. But what happen if Q is not linear? 

2) How do we quantize observables which involve higher powers of ,
i

jq p , as 

for example ( ) ( ) ( ),
n m

i i

j jf q p q p=  when 3n m+ ≥ ? 

3) How should we quantize more general phase spaces, which are the sym-

plectic manifolds not necessarily cotangent bundles? 

As we are currently interested in new developments in quantization methods 

[23] [24] [25], the goal of this paper is to highlight through simple models the 

benefits of affine quantization. 

In Section (2), we revisit a method of quantization by J. R. Klauder, the affine 

quantization, then in Section (3) we formulate and solve the free particle and the 

harmonic oscillator. Concluding remarks are given in Section (4). 

2. Affine Quantization 

While in confinement due to COVID-19, our attention has been drawn on a re-

cent published paper of J. R. Klauder on The benefits of Affine Quantization 

[26]. Our motivation is due to the fact that there is a difficulty with canonical 

quantization when it comes to configuration spaces other then 
n . Consider, 

for example, a particle that is restricted to move on the positive real line. The 

configuration space is +=  . It seems reasonable to use the position q and 

momentum p as classical observables, which satisfy the usual commutations re-

lations. However, when we try to represent these by operators q̂ q≡  and  

p̂ i
q

∂
≡ −

∂
 , it turns out that the momentum operator p̂  is not self-adjoint on  

the Hilbert space ( )2
,L dq

+=  . Thus a straightforward application of Dirac’s 

canonical quantization recipe is impossible. 

Our goal is to apply the method of affine quantization to study the free par-

ticle and the harmonic oscillator that would serve as a test in order to study a toy 

model of a massive Klein Gordon field coupled to an harmonic oscillator at the 

the boundary considering the half line. In this section, we revisit the affine quan-

tization method from some previous works of J. R. Klauder [27] [28] [29]. 

Let us start with a single degree of freedom, the classical phase space variables 

p and q are real satisfying a standard Poisson bracket 

{ }, 1,q p =                           (3) 

multiplying by q Equation (3) we get 

{ }, ,q q p q=                          (4) 

that is equivalent to { },q pq q= , setting d pq= , we have 

{ }, .q d q=                           (5) 

The two variables d and q form a Lie-algebra and are worthy of consideration 

as new pair of classical variables even though they are not canonical coordinates. 

It is also possible to restrict q to 0q >  or 0q <  consistent with d. The varia-
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ble d acts to dilate q and not to translate q as the variable p does. 

For the case of the single degree of freedom above, the canonical quantization 

involves q̂  and p̂  which are self adjoint operators that satisfy the canonical 

commutation relation 

[ ]ˆ ˆ, .dq p i I=                           (6) 

From the canonical quantization, it follows that 

[ ] [ ] ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,
2

qp pq
q q p q qp q q d i q

+   = = ≡ =    
             (7) 

where the dilation operator is define as ( )ˆ ˆ ˆ ˆ ˆ 2d pq qp≡ +  is self adjoint. The 

operator d̂  is called the dilation operator because it dilates q̂  rather than 

translates q̂  as p̂  does, in particular 

ˆ ˆ

ˆ ˆe e ,

iqp iqp

dq q qI
−

= +                        (8) 

while 

( ) ( )ˆ ˆln ln
ˆ ˆ ˆe e .

i q d i q d
q q q q q

− = = 
                  (9) 

In the second relation in Equation (9), 0q ≠ , and q as well as q̂  are nor-

mally chosen to be dimensionless. According to Equation (7), the existence of 

canonical operators guarantees the existence of affine operators. If ˆ 0q >  or 

( ˆ 0q < ), then the operator p̂  cannot be made self-adjoint, however in that 

case, both of the operators q̂  and d̂  are self adjoint. As usual q̂  and p̂  are 

irreducible, but q̂  and d̂  are reducible. There are three inequivalent irreduc-

ible representations; one with ˆ 0q > , one with ˆ 0q <  and one with ˆ 0q =  and 

all three involve representations that are self-adjoint. The first two irreducible 

choices are the most interesting and, for the present, we focus on the choice 

ˆ 0q > . 

3. Testing Some Models 

3.1. The Free Particle 

The simplest Hamiltonian one can envisage is the free particle on the half line. 

The Hamiltonian reads 

( ) 21
, ,

2
f x xx p p

m
=                      (10) 

with { }, 1, 0xx p x= > , in terms of the affine variables as described in Section (2) 

we may rewrite 

( ) 21
, ,

2
f x x xx d d x d

m

−=                     (11) 

where the variable 
xd  is the dilation variable 

x xd p x=  and { }, xx d x= . By 

mean of canonical quantization where the affine variables , xx d  are respectively 

promoted to operators ˆˆ, xx d  the corresponding Hamiltonian for the free par-

ticle reads 
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( ) ( ) 21ˆ ˆ ˆˆ ˆ ˆ, ,
2

f x x xx d d x d
m

−=                   (12) 

where ˆ
xd  stands for the dilation operator and ˆˆ ˆ, xx d i x  =   . We have the re-

presentation ( )ˆ 1 2xd i x≡ − ∂ +  and x̂ x≡ , with 0x > . The time indepen-

dent eigenvalue equation can be written as 

( ) ( ) ( )21 ˆ ˆˆ ,
2

x xd x d x E x
m

φ φ−  = 
 

                 (13) 

that is equivalent to 

( ) ( )
2 2 2

2

2

d 3
.

2 2 4d
x x E x

m mx
φ φ− 

− + = 
 

 
              (14) 

We are then interested in solving the problem (14). If we divide by 
2

2m
−


 

and setting 2

2

2 kmE
k =


, where we assume 0kE >  and label 3 4α = , Equa-

tion (14) takes the form 

( ) ( )2

2
.k kx k x

x

αφ φ ′′ = − 
 

                   (15) 

Let’s consider the change of variable variable 1
x k y

−= . The equation in (15) 

is rewritten in terms of the new variable y as follows 

( ) ( )
2

1 .y y
y

αφ φ
 

′′ = − 
 

                    (16) 

Setting ( ) ( )1 2
y y yφ ϕ=  and reminding that 3 4α = , we obtain the ordi-

nary differential equation 

( ) ( ) ( )
2

1 1
1 0,y y y

y y
ϕ ϕ ϕ

 
′′ ′+ + − = 

 
               (17) 

that is a variant of the Bessel’s equation and the solution is defined by the Bessel 

function of order one, ( )1
J x . A continuum of eigenfunctions exist for the 

problem (15), hence for problem (14) as 

( ) ( ) ( )
2 21

2
1

, , 0.
2

k k

k
x kx J kx E k

m
φ = = >


             (18) 

that are satisfying the important closure relation 

( ) ( ) ( )
0

d , 0.k kx y k x y kφ φ δ
∞

= − >∫                (19) 

since the order of the Bessel function is greater than (−1/2). The details about 

that property can be found in reference [30]. 

3.2. The Harmonic Oscillator 

We consider the one dimensional harmonic oscillator represented by the classic-

al Hamiltonian 

( ) 2 2 21 1
, ,

2 2
o x xH x p p m x

m
ω= +                  (20) 
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where ( ),xp x
+∈ ×  , that means 0x > , with { }, 1xx p = . Our aim is to test 

the affine quantization that has already been partially considered in [29]. Let us 

first determine the classical affine variables as in Section (2). We set 
x xd p x= , 

also called the dilation variable and the new variables called affine variables are x 

and 
xd  that satisfy the relation { }, xx d x= . The Hamiltonian in Equation (20) 

can be then rewritten in terms of the affine variables as 

( ) ( )2 2 21 1
, .

2 2
a x x xH x d d x d m x

m
ω−= +               (21) 

By mean of the affine quantization, the classical affine variables are promoted 

as operators 

ˆ ˆ; ,x xd d x x→ →                       (22) 

and the corresponding quantized Hamiltonian is 

( ) ( ) 2 2 21 1ˆ ˆ ˆˆ ˆ ˆ ˆ, .
2 2

a x x xH x d d x d m x
m

ω−= +               (23) 

The affine operators satisfies the commutation relations 

ˆˆ ˆ, ,xx d i x  =                           (24) 

and act as follows 

( ) ( )ˆ ˆ, , ; 0, 0,x x t x x t x xψ ψ= > >                 (25) 

and 

( ) ( )1ˆ , , ,
2

xd x t i x x t
x

ψ ψ∂ = − + ∂ 
                 (26) 

where the wave functions are normalized 

( ) 2

0
, d 1.x t xψ

∞
=∫                       (27) 

We can then solve for the Schrödinger equation 

( ) ( )
,

ˆ , .o

x t
i H x t

t

ψ
ψ

∂
=

∂
                     (28) 

Since we are in presence of autonomous system we may set the Ansatz 

( ) ( ), e ,
itE

x t xψ φ−= 
                     (29) 

and then the corresponding time-independant eigenvalue equation is 

( ) ( ) ( )ˆˆ ˆ, ,a xH x d x E xφ φ=                    (30) 

that is explicitly the equation 

( ) ( )
2 2 2

2 2

2 2

d 3 1 1
,

2 8 2d
m x x E x

m mx x
ω φ φ

 
− + + = 
 

 
          (31) 

and we can rewrite as 

( ) ( )
2 2 2

2

2 2 2 2

d 3 1 2
.

4d

m mE
x x x

x x

ω φ φ
 
− + + = 
  

           (32) 
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For matter of simplication, let’s set the following parameters 

2

2

2 3
; ; ,

4

m mE
k

ωλ α= = =
 

                 (33) 

and Equation (32) becomes 

( ) ( )
2

2 2 2

2 2

d
.

d
x x k x

x x

αλ φ φ
 
− + + = 
 

               (34) 

A standard asymptotic analysis for , 0x x→∞ → , requires the following An-

satz for the wave function 

( ) ( )
2

1 2e ,
x

x x v x

λ
βφ

−+=                      (35) 

where the constant β  and α  are related by ( )1α β β= +  and ( )v x  is 

unknown function. The relation between α  and β  gives two possible values 

of β  that are 1 2β+ = +  and 3 2β− = − . We choose not to specify for the 

moment the values of β . From the Ansatz in Equation (35), an equation for the 

unknown function ( )v x  is given by 

( ) ( ) ( ) ( ) ( )1 2
2 1 2 2 3 0.v x x x v x k v xβ λ λ β−   ′′ ′+ + − + − + =        (36) 

Making the change of variable 2
y xλ=  in Equation (36), we obtain the dif-

ferential equation 

( ) ( ) ( ) ( ) ( )
2

1
3 2 2 3 0.

4 4

k
yv y y v y v yβ β

λ
 

′′ ′+ + − + − + =    
 

     (37) 

The general solution of Equation (37) also known as Kummer’s differential 

equation, can be expressed in terms of confluent hypergeometric functions 

( ) ( )

( ) ( )

1 1

1

2

1

1

1 1
3 2 , 3 2,

2 2

1 1 1
, , ,

2 2
1 2

2

v y A F y

By F y
β

β µ β

β µ β− +

 = + − + 
 

 + − + − − 
 

        (38) 

where ( )2
2kµ λ= , and ( )1 1

, ,F a c y  denotes the confluent hypergeometric 

function which has the following series representation 

( ) ( )
( )

2

1 1

1
, , 1

1 2!

a aa y
F a c y y

c c c

+
= + + +

+
               (39) 

Due to the asymptotic behavior of the confluent hypergeometric function 

given by 

( )1 1
, , e ,

y a c
F a c y y

−                      (40) 

which implies divergencies of both of the terms in Equation (38) and then the 

impossibility to normalize the wave function, we impose the following conditions  

( )1 1
3 2

2 2
nβ µ+ − = −  or ( )1 1

, 1,2,
2 2

1 2 n nβ µ− + − = − =   

For the first condition, that is ( )1 1
3 2

2 2
nβ µ+ − = − , the eigenfunctions of 
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Equation (32) have the form 

( )
2

1 22
1 1

e , 3 2, ,

m
x

n n

m
x A x F n x

ω
β ωφ β

−+  = − + 
 




           (41) 

with the energy levels of the form ( )2 3 2 , 1,2,nE n nω β= + + =  , where the 

constants 
nA  have to be determined using the normalization conditions. We 

have for 1 2β = + , the solution 

( ) ( )
2

3 2 22
1 1

e ,2, , 2 1 , 1,2,

m
x

n n n

m
x A x F n x E n n

ω ωφ ω
−  = − = + = 

 
  


  (42) 

The value of 3 2β = −  is skipped as it leads to undefined confluent hyper-

geometric function. 

For the second condition, that is ( )1 2
1 1

2 2
nβ µ− + − = − , the eigenfunctions 

of Equation (32) have the form 

( )
( ) 2

22

1

1 1

2
1

e , , ,
2

m
x

n n

m m
x B x F n x

β ω
βω ωφ β

− +
−−   = − −   

   


 
      (43) 

with 
1

2 , 1,2,
2

nE n nβ ω = − + = 
 

  , where the constants 
nB  have to be de-

termined using the normalization conditions. For 3 2β = −  we have 

( ) ( )
2

3 2 22
1 1

e , 2, , 2 1 , 1, 2,

m
x

n n n

m m
x B x F n x E n n

ωω ωφ ω
−   = − = + =   

   
  

 
  (44) 

The value of 1 2β = +  leads in this case to an undefined confluent hyper-

geometric function. 

The constant 
nA  and 

nB  in Equation (42) and respectively in Equation (44) 

are determined from the normalization condition 

( )2

0
d 1n x xφ

∞
=∫                        (45) 

In order to compute the integral (45) for each case, we use a lemma which is a 

generalization of formula f6 in the book Quantum Mechanics by Landau and 

Lifshitz [30]. 

Lemma: For 0γ > , and , 0,1, 2,m n =   

( ) ( ) ( )
( )

2
2 1 2 2

1 1 1 10

1
e ; , ; , d ! ,

2

x

mn

n

x F n x F m x x n
γ β

γ

γ
γ β γ β δ

β γ
∞ − − Γ

− − =∫    (46) 

where 0mnδ =  for m n≠  and 1 for m n= , and ( )
n

γ  is the Pochhammer 

symbol ( ) ( ) ( )
n

nγ γ γ≡ Γ + Γ . 

The constants nA  and nB  respectively in Equations (42) and (44) are expli-

citly given by 

( )
( )

( )
( )

2 2 2 2
, , 1, 2, ,

! 2 ! 2

n n

n n

m
A B n

n n

ω = = =  Γ Γ 



         (47) 

which are simplified using ( ) ( ) ( )2 2 2
n

n≡ Γ + Γ  to 
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( ) ( )2 1 , = 2 1 .n n

m
A n B n

ω = + + 
 

              (48) 

To summarize the eigenfunctions and the eigenvalues of Equation (32) are 

respectively given by 

( ) ( )
2

3 2 22
1 1

2 1 e ,2, ,

m
x

n

m m
x n x F n x

ωω ωφ
−   = + −   

   


 
        (49) 

( )2 1 , 1, 2,nE n nω= + =                    (50) 

The eigenfunctions as we can see in Equation (49) satisfy the orthogonality 

conditions and are different from the ones of the full harmonic oscillator. They 

are similar to the ones of the family of harmonic oscillators to which a singular 

repulsion at the origin is added. The energy eigenvalues in Equation (50) are 

countably and equally spaced. 

4. Concluding Remarks 

We have revisited the procedure of affine quantization introduced by J. R. 

Klauder. Our motivation is to better understand this quantization method on 

nontrivial phase spaces where canonical quantization fails. We have tested the 

procedure for the simple case of the free particle and the case of the harmonic 

oscillator, both on the half-line. 

For the case of the free particle in the upper half-line, the equivalent of the 

Hamiltonian in the affine coordinates turns out to be the case of a particle in a 

square inverse potential ( ) 2
V x xα= . This kind of problem has been consi-

dered in the literature [31] [32] [33] and the case of 01 4 α− < <  has been ex-

plicitly discussed in [31]. There is a richness in the inverse square potential in 

quantum mechanics due to the connections to diverse physical phenomena [34] 

[35] [36]. 

For the case of the harmonic oscillator on the half-line, usually called the 

half-harmonic oscillator, the equivalent of the Hamiltonian in terms of the affine 

coordinates is the case of model with the potential  

( ) ( ) 2 2 2
01 2 ,V x m x x xω α= + > , that is a well-known model in the literature. In 

fact, the family of quantum Hamiltonians known as spiked harmonic oscillators is 

given by the general Hamiltonian operator 2 2 2 2
d dH x x xα= − + +  acting on 

the Hilbert space ( )2
0,L ∞ . The name of the operator derives from the graphi-

cal shape of the full potential ( ) 2 2
V x x xα= +  which shows a pronounced 

peak near the origin for 0α > . The spiked harmonic oscillator has drawn the 

attention of many authors since the publication of the pioneering paper of J. R. 

Klauder [38], four decades ago. It represents the simplest model of certain realis-

tic interaction potentials in atomic, molecular and nuclear physics, and second 

and also due to its interesting intrinsic properties from the viewpoint of mathe-

matical physics [39] [40]. The method used in Section (3) is similar to the one 

discussed in the problem of quantization of the systems with a position-dependent 

mass [41]. 
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We have been curious about the possibility of getting back to canonical quan-

tization from affine quantization. Is it possible to recover the solutions of the 

usual harmonic oscillator on the line from the solutions of the half harmonic os-

cillator? In order to analyse that question, we consider a positive real 0b ≥ , 

where b x− < . In the situation of the half-line, the endpoint and the symmetry 

point coincide to 0. Now we imagine the situation in which we save the symme-

try point that remains 0 while the endpoint can move toward negative infinity. 

The situation is described by the Hamiltonian 

( ) ( )( ) ( )( )2 21 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,
2 2

a x x x x xH x d d bp x b d bp m x
m

ω−= + + + +       (51) 

where ˆ
xd  is the dilation operator defined in the previous sections and 

[ ] ˆˆ ˆ ˆ ˆ, , , .x xx p i x d i x = =                      (52) 

The corresponding time independent Schrödinger equation is given by 

( )
( ) ( )

2 2 2

2

2 2 2 2

d 3 1 2
,

4d

m mE
x x x

x x b

ω φ φ
 
− + + = 

+   
         (53) 

When 0b = , we recover the problem in Section (3), and when b → +∞  

Equation (53) tends to the one of the harmonic oscillator on the line. While Eq-

uation (53) is not obvious to solve analytically, we guess that the limit b → +∞  

leads from affine to canonical and should lead to usual even and odd about the 

symmetry point 0x =  eigenfunctions. The study of this problem is presently 

under investigation as another example of how affine quantization deals with 

harmonic oscillator problems that canonical quantization cannot resolve [42]. 

We are also interested in considering more toy models for instance the case of 

the model that consists of a massive Klein Gordon field in 1 + 1 dimensions re-

stricted to the left half-line by a boundary and coupled to a harmonic oscillator 

at that boundary, thus introducing some additional degrees of freedom. The 

classical Hamiltonian is defined by 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

0 22 22

2 22

1 1 1
d , , ,

2 2 2

1 1
0, .

2 2

xH x x t x t x t

t q t m q t p t
m

π φ µ φ

βφ ω

−∞

 = + ∂ + 
 

+ + +

∫
        (54) 

We hope to report on that problem soon [43]. 

As pointed out in reference [29], gravity does not fit well with canonical quan-

tization and affine quantization may be an alternative procedure. So we are also 

interested in understanding how the affine quantization can help in quantum 

gravity. 
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