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Abstract. Deleting a hyperplane from a polar space associated with a sym-
plectic polarity we get a specific, symplectic, affine polar space. Similar
geometry, called an affine semipolar space arises as a result of generaliza-
tion of the notion of an alternating form to a semiform. Some properties
of these two geometries are given and their automorphism groups are
characterized.
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Introduction

Dealing with symplectic affine polar spaces we observe some regularities that
lead to a new notion: semiform. In turn semiforms give rise to an interesting
class of quite general partial linear spaces called affine semipolar spaces.

In [5] an affine polar space (APS in short) is derived from a polar space the
same way as an affine space is derived from a projective space, i.e. by deleting
a hyperplane from a polar space embedded into a projective space. Such affine
polar spaces are embeddable in affine spaces and this let us think of them as
of suitable reducts of affine spaces.

In general we have two types of APS’es. Structures of the first type are associ-
ated with polar spaces determined by sesquilinear forms; one can loosely say:
these are “stereographical projections of quadrics”. They can also be thought
of as determined by sesquilinear forms defined on vector spaces which repre-
sent respective affine spaces. These structures and adjacency of their subspaces
were studied in [17]. Contrary to [5], in this approach Minkowskian geometry is
not excluded. In particular, the result of [17] generalizes Alexandrov–Zeeman
theorems originally concerning adjacency of points of an affine polar space (cf.
[1,19]).
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The second class of APS’es, which is included in [5] but is excluded from [17],
consists of structures associated with polar spaces determined by symplectic
polarities. The aim of this paper is to present in some detail the geometry
of the structures in this class from view of the affine space in which they are
embedded. The position of the class of thus obtained structures—let us call
them symplectic affine polar spaces—is in many points a particular one.

Firstly, symplectic affine polar spaces are associated with null-systems, quite
well known polarities in projective spaces with all points selfconjugate. So,
symplectic APS’es have famous parents. Moreover, in each even-dimensional
pappian projective space such a (projectively unique) polarity exists. Thus
a symplectic APS is not an exceptional space, but conversely, it is also a
“canonical” one in each admissible dimension.

A second argument refers to the position of the class of symplectic APS’es
in the class of all APS’es. As an affine polar space is obtained by deleting
a hyperplane from a polar space, while the latter is realized as a quadric
in a metric projective space, the derived APS appears as a fragment of the
derived affine space. If the underlying form that determines the polar space
is symmetric then the corresponding APS can be realized on an affine space
in one case only—when the deleted hyperplane is a tangent one. And then
the affine space in question is constructed not as a reduct of the surrounding
projective space but as a derived space as it is done in the context of chain
geometry (cf. [2,8]). Moreover, such an APS can be represented without the
whole machinery of polar spaces: it is the structure of isotropic lines of a metric
affine space.

The only case when the point set of the reduct of a polar space is the point
set of an affine space arises when we start from a null system i.e. in the case
considered in the paper. But such an APS is not associated with a metric
affine space i.e with a vector space endowed with a nondegenerate bilinear
symmetric form. What is a natural analytic way in which a symplectic APS
can be represented, when its point set is represented via a vector space? A way
to do so is proposed in our paper: to this aim we consider a “metric”, a binary
scalar-valued operation defined on vectors. It is not a metric, in particular, it is
not symmetric, and it is not invariant under affine translations. Nevertheless,
it suffices to characterize respective geometry.

Symplectic APS’es have famous parents but they have also remarkable rela-
tives. Although the “metric”: the analytical characteristic invariant of sym-
plectic APS’es is not a form, it is closely related to forms. Loosely speaking,
it is a sum of an alternating form η defined on a subspace and an affine vector
atlas defined on a vector complement of the domain of η. Immediate general-
ization with ‘an alternating map’ substituted in place of ‘an alternating form’
comes to mind. Such a definition of a map may seem artificial. The result-
ing map, that we call a semiform, has quite nice synthetic characterization
though. Their basic properties are established in Sect. 2. A symplectic “met-
ric” appears to be merely a special instance of such a general definition and



Vol. 110 (2019) Affine semipolar spaces Page 3 of 20 37

many problems concerning it (so as to mention a characterization of the au-
tomorphism group) can be solved in this general setting easier. To illustrate
and to motivate such a general definition we show in Example 2.5 a semiform
associated with a vector product, that yields also an interesting geometry. On
the other hand, this geometry has close connections (see Example 2.5-B ) with
a class of hyperbolic polar spaces.

A semiform induces an incidence geometry that we call an affine semipolar
space [cf. (11) and (12)]. It is a Γ-space with affine spaces as its singular
subspaces (cf. Theorem 3.5), and with generalized null-systems comprised by
lines and planes through a fixed point (cf. Proposition 3.13; comp. a class with
similar properties considered in [6]). In the paper we do not go any deeper into
details of neither geometry of semiforms nor geometries other than symplectic
APS’es. We rather concentrate on “APS’es and around”.

Finally, we pass to our third group of arguments: that geometry of symplectic
APS’es is interesting on its own right. Geometry of affine polar spaces is, by
definition, an incidence geometry i.e. an APS is (as it was defined both in [5]
and [17]) a partial linear space: a structure with points and lines. From the
results of [4] we get that geometry of symplectic affine polar spaces can be
also formulated in terms of binary collinearity of points—an analogue of the
Alexandrov–Zeeman Theorem. A characterization of APS’es as suitable graphs
is not known, though.

The affine polar spaces associated with metric affine spaces (as it was sketched
above) can be, in a natural consequence, characterized in the “metric” lan-
guage of line orthogonality or equidistance relation inherited from the under-
lying metric affine structure. It is impossible to investigate a line orthogonality
imposed on an affine structure so as it gives rise to a symplectic APS. How-
ever, in case of a symplectic APS a “metric” mentioned above determines an
“equidistance” relation which can be used as a primitive notion to characterize
the geometry.

1. Definitions and preliminary results

Let S be a nonempty set, whose elements will be called points, and let L be
a family of at least two element subsets of S, whose elements will be called
lines. A point-line structure M = 〈S,L〉 is said to be a partial linear space
whenever two of its distinct points lie in at most one line. Two points a, b ∈ S
are collinear if there is a line l ∈ L such that a, b ∈ l; then we write a, b = l.
We call M a Γ-space if it satisfies a so called none-one-or-all axiom stating
that for all a ∈ S and l ∈ L the point a is collinear with none, one or all of
the points of the line l. A sequence of lines l0, l1, . . . , ln is called a path in M

if li meets li−1 in some point for all i = 1, 2, . . . n. We say that two points a, b
are joinable in M if there is a path l0, l1, . . . , ln such that a ∈ l0 and b ∈ ln. If
every two points in M are joinable we call M connected.
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Recall that the affine space A(V) defined over a vector space V has the vectors
of V as its points and the cosets of the 1-dimensional subspaces of V as its
lines.

We write τω for the (affine) translation on the vector ω, τω(x) = x + ω.

1.1. Polar spaces

Let W be a vector space over a (commutative) field F with characteristic �= 2
and let ξ be a nondegenerate bilinear reflexive form defined on W. Assume
that the form ξ has finite index m and n = dim(W). We will write Sub(W)
for the class of all vector subspaces of W and Subk(W) for the class of all
k-dimensional subspaces. In the projective space P = 〈Sub1(W),Sub2(W),⊂〉
the form ξ determines the polarity δ = δξ. We write Q(ξ) for the class of
isotropic subspaces of W:

Q(ξ) = {U ∈ Sub(W) : ξ(U, U) = 0} ; Qk(ξ) = {U ∈ Q(ξ) : dim(U) = k} .

Assume that m ≥ 2. The structure

Qξ(W) := 〈Q1(ξ),Q2(ξ),⊂〉

is referred to as the polar space determined by δ in P. Note that k-dimensional
isotropic subspaces of W are (k−1)-dimensional singular subspaces of the polar
space Qξ(W).

1.2. Hyperbolic polar spaces and their reducts

This section may look superfluous from view of symplectic polar spaces but
it is used later in Example 2.5-B which justifies our general construction of
semiforms.

Assume that the form ξ on W is symmetric and set Y := W ×W , Y := W⊕W,
Z := W × {θ} (θ being the zero vector), H :=

{

[u, v] ∈ Y : u ⊥ξ v
}

. The form

ζ on Y defined as ζ
(

[u1, v1], [u2, v2]
)

:= ξ(u1, v2) + ξ(v1, u2) is symmetric,
nondegenerate, and Sub1(H) = Q1(ζ). Since Z is a n-dimensional maximal
isotropic subspace of 2n-dimensional vector space Y equipped with the form
ζ, the projective index of Q := Qζ(Y ) is n− 1. Hence Q is a hyperbolic polar
space (or a hyperbolic quadric, cf. [15, Sec. 1.3.4, p. 30]).

Now let Z be a maximal, i.e. (n − 1)-dimensional, singular subspace of a
hyperbolic polar space Q of projective index n − 1 and let R = R(Q,Z) be
the structure obtained by deleting the subspace Z from Q. We also write
R(W, ξ) = R(Qζ(Y ),Sub1(Z)).

Since Z is contained in a hyperplane of Q the next theorem follows from
[16, Theorem 3.11] which says that the ambient, thick, nondegenerate, embed-
dable polar space of rank at least 3 can be recovered in the complement of its
subspace that is contained in a hyperplane. We give an independent, not so
complex proof based on the decomposition of the hyperbolic polar space Q.

Theorem 1.1. The hyperbolic polar space Q is definable in its reduct R.
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Proof. We need to recover in R points and lines of Z which are missing to get
Q. Let C be the family of all maximal singular subspaces of Q and let R be
the family of all maximal singular subspaces of R. It is seen that R = {X\Z :
X ∈ C}, and thus, every element of R carries the geometry of a slit space (cf.
[11,12]). Write

– R0 = {X\Z : dim(X ∩ Z) = 0} for the family of punctured projective
spaces, every one of which determines on Z its improper point,

– R1 = {X\Z : dim(X ∩ Z) = n − 2} for the family of affine spaces, every
one of which determines on Z a (n − 2)-subspace of its improper points.

As Q is a dual polar space of type Dn, in view of [14, Sec. 4.2.3] the family C
can be uniquely decomposed into the disjoint union of two subsets C+ and C−

(the half-spaces) such that

– dim(X ∩ Y) = n − 2, n − 4, . . . if X ∈ C+ and Y ∈ C−,
– dim(X ∩ Y) = n − 1, n − 3, . . . if X ,Y belong to the same half.

Correspondingly, the family R can be decomposed into R+ = {X\Z : X ∈ C+}
and R− = {X\Z : X ∈ C−}.

We assume that Z ∈ C−. Then R1 ⊂ R+. If n is even, then R0 ⊂ R+,
otherwise R0 ⊂ R−.

Let J0 = X0\Z ∈ R0 and J1 = X1\Z ∈ R1 where X0,X1 ∈ C. Taking into
account that J0 has a unique improper point and using the decomposition into
half-spaces which gives that 1 ≤ dim(X0 ∩ X1) independently on n we have
that whenever J0 ∩ J1 �= ∅ there is a line L of R such that L ⊂ J0 ∩ J1. It is
seen that L goes through the improper point of J0. Now, for J0, J ′

0 ∈ R0 let
us write

J0 ≃ J ′

0 iff for all J1 ∈ R1 we have (J0 ∩ J1 �= ∅ iff J ′

0 ∩ J1 �= ∅).

Note that ≃ is an equivalence relation and J0 ≃ J ′

0 means that J0, J ′

0 share
the improper point. Therefore, there is a one-to-one correspondence between
the equivalence classes of the relation ≃ and the points of Z.

Next, for every (n−2)-dimensional singular subspace N of Q there are precisely
two maximal singular subspaces containing N , one of them is from C+ and
the other belongs to C−. This gives a one-to-one correspondence between the
elements of R1 and the hyperplanes of Z.

That way, in terms of R, we get an incidence structure with points and hyper-
planes of Z. Using standard methods we are able to recover lines of Z which
makes the proof complete for Z ∈ C−. In case Z ∈ C+ the reasoning runs the
same way. �

1.3. Symplectic affine polar spaces

From now on ξ is a nondegenerate symplectic form of index m. Then n =
dim(W) = 2m. Assume that m ≥ 2. The polar space

Q := Qξ(W) = 〈Q1(ξ),Q2(ξ),⊂〉
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is frequently referred to as a null system (cf. [3], [9, Vol. 2, Ch. 9, Sec. 3]). Since
ξ is symplectic, Q1(ξ) = Sub1(W) so, the point sets of Q and of P coincide.

Let H0 be a hyperplane of Q (cf. [5]); then H0 is determined by a hyperplane
H of P; on the other hand H is a polar hyperplane of a point U of P i.e.
H = U⊥. Finally, H0 = H is the set of all the points that are collinear in Q

with the point U of Q. The affine polar space U derived from (Q,U) is the
restriction of Q to the complement of H; in view of the above the point set
of U is the point set of the affine space A obtained from P by deleting its
hyperplane H. The set G of all the lines of U is a subset of the set L of the lines
of A. Moreover, the parallelism of the lines in G defined as in [5] (two lines are
parallel iff they intersect in H0) coincides with the parallelism of A restricted
to G. Clearly, not all the lines of P that are not contained in H are isotropic.
Furthermore, none of the lines of P through U which is not contained in H is
isotropic. For this reason, in every direction of A, except the one determined
by U , there is a pair of parallel lines in A such that one of them is isotropic
and the other is not. In this exceptional direction no line is isotropic.

In [17] affine polar spaces determined in metric affine spaces associated with
symmetric forms were studied. A somewhat similar interpretation of U can be
given here as well.

Recall that there is a basis of W in which the form ξ is given by the formula

ξ(x, y) = (x1y2 − x2y1) + (x3y4 − x4y3) + · · · =
∑m

i=1
(x2i−1y2i − x2iy2i−1).

We write 〈u, v, . . .〉 for the vector subspace spanned by u, v, . . . and [x, y, z, . . .]
for the vector with coordinates x, y, z, . . . (in some cases x, y, . . . may be vectors
too).

Let us take U = 〈[0, 1, 0, . . . , 0]〉; then H is characterized by the condition
〈[x1, . . . , xn]〉 ⊂ H iff x1 = 0. We write V for the subspace of W characterized
by x1 = x2 = 0; note that the restriction η of ξ to V is also a nondegenerate
symplectic form. We can write W = F⊕F⊕V and then for scalars a1, a2, b1, b2

and vectors u1, u2 of V we have

ξ([a1, b1, u1], [a2, b2, u2]) = a1b2 − a2b1 + η(u1, u2). (1)

Moreover, A = A(Y) where Y = F ⊕ V. A vector [a, u] (a is scalar and u ∈ V )
as a point of the affine space A can be identified with the subspace 〈[1, a, u]〉
of W, and the (affine) direction of the line [a, u]+ 〈[b, w]〈 is identified with the
(projective) point 〈[0, b, w]〉.

Lemma 1.2. Let p1 = [a1, u1], p2 = [a2, u2] with scalars a1, a2 and u1, u2 ∈ V
be a pair of points of A. Then

p1, p2 are collinear in U iff η(u1, u2) = a1 − a2.

Proof. Embed the points p1, p2 into P; then pi corresponds to Ui = 〈[1, ai, ui]〉.
Since p1, p2 are collinear iff the projective line which joins U1, U2 is in Q we
get that p1, p2 are collinear iff ξ(U1, U2) = 0. By (1) we get our claim. �
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2. Semiforms

2.1. Definition and examples

Formula (1) together with Lemma 1.2 suggest the following construction.

Definition 2.1. Let V, V′ be vector spaces over a (commutative) field F with
char(F) �= 2. Let V, V ′ be their sets of vectors and θ,0 be their zero vectors,
respectively.

(i) Let η : V × V −→ V ′ be an alternating bilinear map. Then we have
η(u1, u2) = −η(u2, u1) and η(u, u) = 0 for all u, u1, u2 ∈ V .

(ii) Let δ : V ′ × V ′ −→ V ′ be a map that satisfies the following conditions

C1. δ(v1 + v, v2 + v) = δ(v1, v2),
C2. δ(αv1, αv2) = αδ(v1, v2),
C3. δ(v1, v) + δ(v, v2) = δ(v1, v2).

for all scalars α and v, v1, v2 ∈ V ′.

Set Y := V ′ × V and Y := V′ ⊕ V. On Y we define a binary operation
̺ : Y × Y −→ V ′ by the formula

̺([v1, u1], [v2, u2]) := η(u1, u2) − δ(v1, v2). (2)

The resulting map ̺ is referred to as a semiform defined on Y.

If η is a bilinear map, then we write ηu for the map defined by ηu(v) = η(u, v).
An alternating bilinear form η, like the one considered in Definition 2.1, is
nondegenerate when for all nonzero u ∈ V there is v ∈ V such that η(u, v) �= 0,
in other words, if ker(ηu) �= V . All those u ∈ V such that ker(ηu) = V form
the radical of η.

The formulas that are coming next are technical but quite important. They
follow immediately from the definition. Let pi = [vi, ui], i = 1, 2, q = [v, y],
then

̺(αp1, αp2) − α̺(p1, p2) = α(α − 1)η(u1, u2); (3)

̺(p1 + q, p2 + q) − ̺(p1, p2) = η(u1 − u2, y);

in particular, (4)

̺(p1, p1 + p2) − ̺(θ, p2) = η(u1, u2). (5)

̺(q, θ) = v, (6)

̺(αp1, q) − α̺(p1, q) = (1 − α)v, (7)

̺(p1 + p2, q) − (̺(p1, q) + ̺(p2, q)) = −v. (8)

What follows are various examples of more or less natural semiforms.

Example 2.2. Let V′ = F, η be a null form on V, and δ(a, b) = a− b. Applying
Definition 2.1 we get ̺([a1, u1], [a2, u2]) = η(u1, u2) − (a1 − a2) a semiform
related to the form ξ in (1). �
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Example 2.3. Every alternating map η : V ×V −→ V ′ is derived from a linear
map g :

∧2
V −→ V ′ by the formula

η(u1, u2) = g(u1 ∧ u2).

(see any standard textbook, e.g. [13, Ch. XIX]). It is known that dim(
∧2

V) =
(

n
2

)

, where n = dim(V). Note that for a fixed u ∈ V the set Su := {u ∧ y : y ∈

V } = Im(∧u) is a (n − 1)-dimensional vector subspace of
∧2

V.

If we take g = id, then we get a specific bilinear alternating map η with
the property that dim(ker(ηu)) = 1 for all nonzero u ∈ V as for linearly
independent u1, u2 the wedge product u1 ∧ u2 cannot be zero.

Clearly, the operation η = ∧ together with a given δ determines via (2) a
semiform. �

Example 2.4. Let ηi : V × V −→ V ′

i be an alternating bilinear map for i =
0, . . . ν. Consider the map η : V × V −→ V ′ := ×ν

i=0V
′

i given by the formula

η(u1, u2) =
[

η0(u1, u2), η1(u1, u2), . . . , ην(u1, u2)
]

.

Applying (2), the map η together with some suitable δ gives rise to a semiform.

In case dim(V ′

i ) = n < ∞, for some i, it is possible to decompose ηi into n

alternating bilinear forms η̄j
i : V × V −→ F , where F is the ground field of

V, V ′

i and j = 1, . . . , n so that

ηi(u1, u2) =
[

η̄1
i (u1, u2), η̄

2
i (u1, u2), . . . , η̄

n
i (u1, u2)

]

.

If dim(V ′) < ∞ we can do the same with η. �

Example 2.5. Let V be a 3-dimensional vector space. Then
∧2

V ∼= V and we
can write η(u1, u2) := u1 ∧ u2 = u1×u2, where × : V × V −→ V is a vector
product. A standard formula defining × is the following:

[α1, α2, α3]×[β1, β2, β3] =

[

ε1

∣

∣

∣

∣

α2 α3

β2 β3

∣

∣

∣

∣

, ε2

∣

∣

∣

∣

α1 α3

β1 β3

∣

∣

∣

∣

, ε3

∣

∣

∣

∣

α1 α2

β1 β2

∣

∣

∣

∣

]

with εi = ±1 (cf. [10, Ch. 2, Sec. 7, pp. 67–73], [18]). Then ̺ defined on V ⊕ V
by the formula

̺([v1, u1], [v2, u2]) = u1×u2 − (v1 − v2)

is a semiform. �

2.2. Affine atlas and its characterization

In this and the forthcoming Sects. 2.3 and 2.4 most of the proofs consist in
direct computations and therefore they are left for the reader.

Let us give a more explicit representation of a map δ characterized in Defini-
tion 2.1(ii).

Lemma 2.6. Let δ meet conditions C1–C3 of Definition 2.1. Then the following
conditions follow as well:
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C4. δ(0,0) = 0 (by C2);
C5. δ(v, v) = 0 (by C1, C4);
C6. δ(v1, v2) = −δ(v2, v1) (by C3, C5);
C7. δ(v1 + v2,0) = δ(v1,0) + δ(v2,0) (by C1–C3, C6);

for all v, v1, v2 ∈ V ′.

Define φ : V ′ −→ V ′ by the formula φ(v) = δ(v,0). Then φ is a linear map
and δ is characterized by the formula

δ(v1, v2) = φ(v1) − φ(v2) ( = φ(v1 − v2)). (9)

A map δ defined by formula (9) is called an affine atlas. It is said to be non-
degenerate when φ is an injection (i.e. if ker(φ) is trivial). Note that when
dim(V′) < ∞ and δ is nondegenerate then the representing map φ is a surjec-
tion as well.

Lemma 2.7. If φ : V ′ −→ V ′ is a linear map and δ is defined by (9), then δ
meets conditions C1–C3 of Definition 2.1.

Finally, we note that affine atlases can be equivalently characterized by an-
other, less elegant but more convenient for our further characterizations, set
of postulates.

Lemma 2.8. If δ satisfies conditions C1, C2 of Definition 2.1 and postulates
C6, C7 of Lemma 2.6, then δ satisfies C3 as well.

2.3. Synthetic characterization and representations of semiforms

Let Y = 〈Y,+, θ〉, Z = 〈Z,+,0〉 be vector spaces with the common field F of
scalars. Let ̺ : Y × Y −→ Z be a map. Consider the following properties:

A1. ̺(p, q) = −̺(q, p) for each p, q ∈ Y .
A2. If ̺(θ, p) = 0 then ̺(αq, p) = α̺(q, p) for each scalar α and each vector

q.
A3. If ̺(θ, p) = 0 then ̺(q1 + q2, p) = ̺(q1, p) + ̺(q2, p).
A4. If p �= θ then there is q with ̺(p, q) �= 0 and ̺(θ, q) = 0.
A5. ̺(−p,−q) + ̺(p, q) = 2(̺(p, p + q) − ̺(θ, q)).
A6. (∀p)[ ̺(p + q, q) = ̺(p, θ) ] implies (∀p1, p2)[ ̺(p1 + q, p2 + q) = ̺(p1, p2) ].
A7. 2

(

̺(αp1, αp2) − α̺(p1, p2)
)

= α(α − 1)
(

̺(−p1,−p2) + ̺(p1, p2)
)

.
A8. For each q ∈ Y there is p ∈ Y such that ̺(p, θ) = 0 and ̺(p − q, −r) =

−̺(q − p, r) for all r ∈ Y .

In view of formulas (3)–(8) it is evident that Axioms A1–A8 are satisfied by
each semiform as defined in (2).

Set M := {p ∈ Y : ̺(θ, p) = 0}. With each p ∈ Y we associate the map

̺p : Y −→ Z, ̺p(q) = ̺(q, p).

Note that if ̺ is a semiform defined in Definition 2.1 then M = V and ̺ ↾

M × M = η.
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Recall that in one of the most intensively investigated cases in geometry when
we consider a sesquilinear form ̺, M = Y , ̺p is a linear map, and p �→ ̺p is
semilinear. Our axioms lead to a similar situation.

Lemma 2.9. If ̺ satisfies A1 then ̺(p, p) = 0 for each p ∈ Y . Consequently,

θ ∈ M.

Lemma 2.10. Assume that Axiom A1 is valid. Let p ∈ Y .

(i) If ̺p is additive, then p ∈ M .
(ii) If ̺p is multiplicative, then p ∈ M .

Consequently, if Axioms A2 and A3 are valid then the map ̺p is linear iff
p ∈ M .

In particular (cf. Lemma 2.9), ̺θ is a linear map, i.e. the following hold:

̺(αp, θ) = α̺(p, θ),

̺(p1 + p2, θ) = ̺(p1, θ) + ̺(p2, θ).

Clearly, M = ker(̺θ) and thus M is a subspace of Y.

If, moreover, Axiom A4 is valid then the assignment M ∋ p �−→ ̺p is injective.

Lemma 2.11. (i) Set

D′ :=
{

q ∈ Y : (∀p ∈ Y )
[

̺(q, q + p) = ̺(θ, p)
]

}

.

Then θ ∈ D′ and the set D′ is closed under vector addition.
(ii) Assume that Axiom A6 is valid. Then q ∈ D′ iff ̺(p1 + q, p2 + q) =

̺(p1, p2) for all p1, p2 ∈ Y .
(iii) Set

D′′ :=
{

q ∈ Y : (∀p ∈ Y )
[

̺(−p,−q) = −̺(p, q)
]

}

.

If Axiom A7 is valid, then the set D′′ is closed under scalar multiplication.

If Axiom A5 is adopted, then D′ = D′′.

Consequently, if Axioms A6, A7, and A5 are valid then D := D′ = D′′ is a
vector subspace of Y.

Moreover, if Axioms A1–A7 are valid, then M ∩ D = {θ}.

Lemma 2.12. With the Axioms A1–A7, Axiom A8 can be expressed as the fol-
lowing statement:

Y = D ⊕ M.

Assume that the Axioms A1–A8 are valid and set η := ̺ ↾ M × M , δ :=
̺ ↾ D × D. Then η is an alternating nondegenerate vector-valued form. The
map δ is a nondegenerate affine atlas; it is determined by a linear injection
φ : D −→ D by the formula (9).
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Lemma 2.13. Let qi = pi + ri with pi ∈ M , ri ∈ D for i = 1, 2. Then, we have
[cf. (2)] the following

̺(q1, q2) = η(p1, p2) − δ(r1, r2).

Summing up the above, with not too tedious computation, we close this part
by the following representation theorem

Theorem 2.14. Let ̺ : Y × Y −→ Z be a map. The following conditions are
equivalent.

(i) ̺ is a semiform defined in accordance with Definition 2.1, where η, δ are
nondegenerate.

(ii) ̺ satisfies Axioms A1–A8.

Remark 2.15. A semiform ̺ is nondegenerate and scalar-valued (i.e. dim(Z) =
1) iff it is associated with a symplectic polar space.

Example 2.16. Let dim(V) = 2. Then the determinant is a symplectic form.
Therefore the following map is a semiform (xi, yi are scalars).

̺([x1, x2, x3], [y1, y2, y3]) =

∣

∣

∣

∣

x2 x3

y2 y3

∣

∣

∣

∣

− (x1 − y1)

The associated APS is determined by the so called line complex in the 3-
dimensional projective space over F (cf. [7, Ch. 6], [9, Vol. 2, Ch. 9, Sec. 3]).

�

2.4. A simplification of semiforms

Forthcoming constructions are provided for a fixed nondegenerate semiform ̺
defined in Definition 2.1. Moreover, we assume that

dim(V′) =: ν < ∞.

Set A = A(Y). Let p1, p2 be vectors of Y, so pi = [vi, ui], vi ∈ V ′, ui ∈ V . By
definition,

̺(p1, p2) = η(u1, u2) − φ(v1 − v2)

for suitable maps η, φ. Recall that they need to be nondegenerate. As a con-
sequence, φ ∈ GL(V′).

There is, generally, a great variety of semiforms. But some of them may lead
to isomorphic geometries. Write ̺η,φ for ̺ defined by Definition 2.1 with δ
defined by (9). We have evident

Proposition 2.17. (i) There is a linear bijection Φ ∈ GL(Y) such that for
any q1, q2 ∈ Y it holds:

̺η,φ(q1, q2) = ̺η,id(Φ(q1),Φ(q2))
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(ii) Let B ∈ GL(V), γ be a nonzero scalar. Then, clearly, the map γηB
defined by γηB(u1, u2) = γ·η(B(u1), B(u2)) is an alternating form. There
is a linear bijection Φ ∈ GL(Y) such that the following holds for any
q1, q2 ∈ Y

̺γηB,id(q1, q2) = γ−1 · ̺η,id(Φ(q1),Φ, (q2)).

Remark. In terms of Example 2.3 we have ηB = g ◦ (B ∧ B).

In view of Proposition 2.17, till the end of our paper we assume that ̺ is
defined by a formula of the form

̺([v1, u1], [v2, u2]) = η(u1, u2) − (v1 − v2). (10)

3. Affine semipolar spaces

3.1. Geometrical structure

Under the settings of Sect. 2.4 that A = A(Y) and p1, p2 are points of A with
pi = [vi, ui], vi ∈ V ′, ui ∈ V , imitating Lemma 1.2, we put generally

p1 ∼∼ p1 iff ̺(p1, p2) = 0. (11)

From definition it is immediate that p1 ∼∼ p2 iff η(u1, u2) = v1 − v2.

Lemma 3.1. Let p1, p2 be two distinct points of A and L = p1, p2. If p1 ∼∼ p2,
then q1 ∼∼ q2 for all q1, q2 ∈ L.

Proof. Let p1 = [v, u], p2 = p1 + q, q = [v0, u0]. From assumption we have
η(u, u + u0) = v − (v + v0) = −v0. Then, it can be directly computed that
η(u + αu0, u + βu0) = (α − β)η(u, u0) = (α − β)v0 = (v + αv0) − (v + βv0).
This yields p1 + αq ∼∼ p1 + βq for any scalars α, β and the proof is closed. �

In view of Lemma 3.1, the relation ∼∼ determines the class G of lines of A by
the condition

L ∈ G iff p1 ∼∼ p2 for any p1, p2 ∈ L. (12)

For computation purposes it is convenient to have this criteria:

[v0, u0] + 〈[v, u]〉 ∈ G iff η(u0, u) = −v. (13)

It is a straightforward consequence of (12) and (11).

The class G induces the partial linear space

U := 〈Y,G〉

that we call affine semipolar space determined by ̺. Let us put down some of
its properties.
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Remark 3.2. A triangle in an affine semipolar space U is of the form:

[v0, u0], [v0 + η(u, u0), u0 + u], [v0 + η(y, u0), u0 + y], (14)

where η(u, y) = 0.

Lemma 3.3. (i) The class G is not closed under parallelism, i.e. for every
L1 ∈ G there is an affine line L2 �∈ G such that L1 ‖ L2.

(ii) Let L1, L2 ∈ G, L1 �= L2, and p ∈ L1 ∩ L2. If L is an affine line through
p from the affine plane 〈L1, L2〉, then L ∈ G.

Proof. (i): Let L1 = [v0, u0]+〈[v, u]〉, where η(u, u0) = v. Suppose that L2 ∈ G
for all L2 with L2 ‖ L1. This yields that η(u, u0) = v for all u0 ∈ V . So take
any u1 ∈ V and note that η(u, u1) = η(u, u0 −u2) = v−v = 0 for some u0 ∈ V
and u2 = u0 − u1. This gives v = 0. Thus u⊥ = V , and hence u = θ as η is
nondegenerate. Finally, [v, u] is the zero of Y, a contradiction.

(ii): Without loss of generality we can assume that p = [v0, u0] and Li = p+〈ai〉
where ai ∈ Y , i = 1, 2. Then L = p+ 〈α1a1 +α2a2〉 for some αi ∈ F . Applying
(13) to L1, L2 and then to L we are through. �

Note that Lemma 3.3(ii) means that the family G is closed on pencils. This
has some straightforward implication.

Corollary 3.4. The set of points that are collinear with a given point in an
affine semipolar space (determined by a semiform defined on Y) is closed on
planes and thus it is a subspace in the ambient affine space A.

Theorem 3.5. The affine semipolar space is a Γ-space and its every singular
subspace carries affine geometry.

Proof. Let U be our affine semipolar space. The first part follows directly
from (ii) in Lemma 3.3. The other part is a simple observation that a singular
subspace of U, in other words, a strong subspace wrt. ∼∼ in A or a subspace
where every two points are ∼∼-adjacent, is an affine subspace of A. �

When we deal with a Γ-space a question on the form of its triangles may
appear important. The following is immediate from (13) and (11).

Proposition 3.6. If dim(ker(ηu)) = 1 for each nonzero u ∈ V , then the cor-
responding affine semipolar space contains no proper triangle. In that case its
maximal singular subspaces are the lines.

Example 3.7. In view of Theorem 3.5 one could expect that affine semipolar
spaces are models of the system considered in [6]. In the case of wedge product
considered in Example 2.3 however, and consequently in the case of vector
product considered in Example 2.5, we have dim(ker(ηu)) = 1 for all u �= θ.
By Remark 3.2 it is seen that there are no triangles in the affine semipolar
space determined by η with this property. Therefore, affine semipolar spaces
from Example 2.3 and Example 2.5 are not models of the system in [6]. �
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Example-continuation 2.4-A Assume additionally that V ′

0 = · · · = V ′

ν and η0

is a linear combination of the other ηi, that is

η0(u1, u2) = λ1η1(u1, u2) + · · · + λνην(u1, u2)

for some scalars λi, i = 1, . . . , ν. By (11), in the affine semipolar space U

induced by η, if points p = [v0, v1, . . . , vν , u] and p′ = [v′

0, v
′

1, . . . , v
′

ν , u′] are
collinear, then v′

0 = v0 + λ1(v
′

1 − v1) + · · · + λν(v′

ν − vν). Iterating, we can
show that whenever p′′ = [v′′

0 , v′′

1 , . . . , v′′

ν , u′′] is joinable with p, then v′′

0 =
v0 +λ1(v

′′

1 − v1)+ · · ·+λν(v′′

ν − vν). This means that U is not connected. �

In the sequel we shall frequently consider the condition (with prescribed values
u, v)

(∃y) [ η(u, y) = v ];

applying the representation given in Example 2.3 this can be read as (∃y) [ g(u∧
y) = v ], which is equivalent to (∃ω ∈ Su) [ g(ω) = v ]. This observation allows
us to construct quite “strange” (‘locally surjective’) alternating maps.

As an immediate consequence of Lemma 3.1 and the definition we have

Lemma 3.8. Let q = [v0, u0] be a vector of Y. The following conditions are
equivalent.

(i) There is no line L ∈ G with the direction q.
(ii) The equation

η(u0, u) = v0 (15)

is not solvable in u.

In particular, if u0 = θ and v0 �= 0 then (15) is not solvable and thus there is
no line L ∈ G with the direction q.

Set

D := {q ∈ Y : no line in G has direction q} (16)

Note that when ηu : V −→ V ′ is onto for each nonzero u, then D = V ′ ×
{θ}. Directly from (11) all the points collinear with p = [0, θ] form the set
{[v, u] : v = 0} and all the points collinear with q = [0, u0] form the set
{[v, u] : η(u, u0) = v}. It is clear that p ∼∼ q. So, if (15) has solutions for
[v, u] ∈ Y , that is [v, u] /∈ D, then [v, u] is collinear with p or with q for
adequate u0. This proves the following:

Proposition 3.9. If D = V ′ × {θ}, then U is connected and the maximal dis-
tance is 2 like in a polar space.

Example-continuation 2.5-A Let × be a vector product in a vector 3-space
V associated with a nondegenerate bilinear symmetric form ξ and ⊥=⊥ξ be
the orthogonality determined by ξ. Then for u0, v0 �= θ Eq. (15) is solvable iff
u0 ⊥ v0. In that case we have:
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D = V × {θ} ∪
{

[v, u] ∈ V × V : u �⊥ v
}

.

�

Lemma 3.10. For a fixed u0 ∈ V , v0 ∈ V ′ and a scalar α the set

Z =
{

[v, u] : η(u0, u) = v0 + αv
}

(17)

is a subspace of A. The class of sets of form (17) is invariant under transla-
tions of A.

Proof. Take [v1, u1], [v2, u2] ∈ Z and an arbitrary scalar λ. Then we compute
η(u0, λu1+(1−λ)u2) = λη(u0, u1)+(1−λ)η(u0, u2) = λ(v0+αv1)+(1−λ)(v0+
αv2) = v0+

(

λv1+(1−λ)v2

)

which proves that [λv1+(1−λ)v2, λu1+(1−λ)u2] ∈

Z and thus [v1, u1], [v2, u2] ⊂ Z. This proves that Z is a subspace of A.

Write Zu0,v0,α for the set defined by (17). Let q = [x, y] ∈ Y be arbitrary.
Then, for the translation τq we have τq([v, u]) = [v + x, u + y] ∈ Zu0,v0,α

iff η(u0, u + y) = v0 + α(v + x) iff η(u0, u) = (v0 − η(u0, y) + αx) + αv iff
[v, u] ∈ Zu0,v0−η(u0,y)+αx,α. Thus

τ−1
q (Zu0,v0,α) = Zu0,v0−η(u0,y)+αx,α.

This closes our proof. �

Lemma 3.11. If the set Z defined by (17) is nonempty, then it is an affine
subspace of A with dimension ν + dim(ker(ηu0

)) or dim(V).

Proof. If Z is nonempty, then by Lemma 3.10 we can assume that [0, θ] ∈ Z.
Then Z is characterized by an equation η(u0, u) = α0v with prescribed values
of u0, α0 and it is the kernel of the linear map Ψ : Y −→ V ′, Ψ[v, u] �−→
η(u0, u) − α0v.

If α0 = 0 then, clearly, Z = V ′ × ker(ηu0
) and thus dim(Z) = dim(ker(ηu0

) +
dim(V′) = ν + dim(ker(ηu0

))).

Assume that α0 �= 0. Then Z can be considered as the kernel of the map
[v, u] �−→ η( 1

α
u0, u) − v. Let (d1, . . . , dk) be a linear basis of Im(ηu0

) and
(e1, . . . , em) be a basis of ker(ηu0

). Choose one zi ∈ V with ηu0
(zi) = di for

each i = 1, . . . , k; Then the set {z1, . . . , zk} is linearly independent. Moreover,
the subspaces 〈z1, . . . , zk〉 and ker(ηu0

) have only the zero vector in common.
A basis of Z consists of the vectors

(

[d1, z1], [d1, z1 + e1], . . . , [d1, z1 + em], [d2, z2], . . . , [dk, zk]
)

.

Consequently, dim(Z) = dim(ker(ηu0
)) + dim(Im(ηu0

)) = dim(Dom(ηu0
)) =

dim(V). �

For α = −1 in (17), directly by (11), the set Z is the set of all points collinear
with [v0, u0] in U. Hence, applying Lemma 3.11 we get that the subspace in
Corollary 3.4 has dimension dim(V).

The following condition is satisfied in all our examples.
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(*) If u, v ∈ V and u ∦ v, then there is y ∈ V such that η(u, y) = 0 and
η(v, y) �= 0.

Lemma 3.12. Let L ∈ G pass through p = [0, θ] and p′ be a point on L. If the
condition (*) is satisfied, then L =

⋂
{

{x : x ∼∼ q} : q ∼∼ p, p′
}

.

Proof. ⊆: Follows from Theorem 3.5.

⊇: By (13) we can write p′ = [η(u, θ), u] = [0, u] for a nonzero vector u. Let
q ∼∼ p, p′. From (14) q = [0, y] for some y such that η(y, u) = 0. Now, suppose
that x = [z, w] ∼∼ [0, y] = q for each y with η(u, y) = 0. By (13) we get that:

η(u, y) = 0 implies η(w, y) = z for all y

Now let θ �= y ∈ ker(ηu). Then η(w, y) = z = η(w, 2y) = 2z and thus z = 0.
Hence w ∈

⋂
{

ker(ηy) : y ∈ ker(ηu)
}

. Applying the global assumptions we
infer w ‖ u and thus x ∈ L. �

Now, we are going to make a few comments that together with Remark 3.2 will
let us characterize the geometry of the lines and the planes through a point in
an affine semipolar space.

Each alternating map η : V ×V −→ V ′ determines the incidence substructure
Qη(V) of the projective space P(V) with the point set unchanged and with
the class L∗ of projective lines of the form 〈u1, u2〉, where u1, u2 ∈ V are
linearly independent and η(u1, u2) = 0 as its lines. With a fixed basis of V′

one can write η as the (Cartesian) product of ν bilinear alternating forms
ηi : V × V −→ F :

η(u1, u2) =
[

η1(u1, u2), . . . , ην(u1, u2)
]

,

where ν = dim(V′). Clearly, the ηi need not to be nondegenerate. So, each ηi

determines a (possibly degenerate) null system Qηi
(V) with the lines Q2(ηi).

The class L∗ is simply
⋂ν

i=1 Q2(ηi).

Proposition 3.13. The geometry of the lines and planes of an affine semipolar
space (determined by a semiform ̺ associated via (10) with an alternating map
η) which pass through the point [0, θ] is isomorphic to Qη(V).

Proof. Let p = [0, θ]. In view of (13) the class of lines through p is the set
{〈[0, u]〉 : u �= θ} so, it can be identified with the point set of P(V) under the
map 〈[0, u]〉 �→ 〈u〉. From Remark 3.2 two lines 〈[0, u]〉, 〈[0, v]〉 span a plane
in the corresponding affine semipolar space iff η(u, v) = 0, which closes our
reasoning. �

3.2. Automorphisms

Recall that the horizon of an affine space, in other words, the set of all the
points at infinity, can be endowed with an incidence structure and as such
carries projective geometry.
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To establish the automorphism group of the relation ∼∼ and U we need some
additional assumption that the set of directions V ′ × {θ} can be characterized
in terms of the projective geometry of the horizon of A(Y) with the set D
[defined in (16)] distinguished. It is hard to give a formal, precise formula
stating that. Let us put it this way, in the language of automorphisms.

(**) Every automorphism of the projective geometry of the horizon of A(Y)
that leaves invariant the set D defined in (16) also leaves invariant V ′ ×
{θ}.

Clearly, in view of Lemma 3.8 this condition holds when ̺ is scalar-valued.
Let us point out however, that it is not the only case. Moreover, we always
have V ′ × {θ} ⊂ D and in most of our examples even D = V ′ × {θ}, but in
general we need (**). In Example 2.5 there is a non-scalar-valued ̺ and as
seen in Example 2.5-A the set of forbidden directions D is significantly larger
than V ′ × {θ}.

Example-continuation 2.5-B In addition to the notation of Example 2.5 and
Example 2.5-A here we also use the notation of Sect. 1.2.

Let f ∈ ΓL(Y ) preserve the set of directions D. Then f preserves V × {θ}.

Indeed, the geometric structure of the complement of D carries the geometry
of the reduct R(V, ξ) of the hyperbolic polar space induced by ξ as in Sect. 1.2.
Our claim follows from Theorem 1.1. Consequently, the condition (**) is valid
here. �

Remark 3.14. The relation ∼∼ can be characterized in terms of U:

a ∼∼ b iff a = b or a, b are on a line from G.

Recall by (12) that an affine line is in G iff any two of its distinct points are ∼∼
related. Consequently, if F is an affine transformation of A, then F preserves
G iff F preserves ∼∼.

Proposition 3.15. If F is given by the formula

F ([v, u]) = [ψ1(v) + ψ2(u) + v0, ϕ(u) + u0] (18)

where v0 ∈ V ′, u0 ∈ V , ψ2 : V −→ V ′ is linear, ψ1 : V ′ −→ V ′, ϕ : V −→ V
are linear bijections, and the following holds:

(a) ψ2(u) = η
(

ϕ(u), u0

)

for every vector u of V, and
(b) η(ϕ(u1), ϕ(u2)) = ψ1η(u1, u2), for all vectors u1, u2 of V,

then F preserves the relation ∼∼.

In that case the semiform ̺ is transformed under the rule

̺
(

F (p1), F (p2)
)

= ψ1

(

̺(p1, p2)
)

(19)

for p1, p2 ∈ Y . In consequence, F is an affine (linear) automorphism of U.

Conversely, under additional assumption that (**) is valid, each affine auto-
morphism of U is of the form (18).
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Note. If η is onto V ′ then given map ϕ, condition (b) uniquely determines ψ1.
Similarly, for a given map ϕ and vector u0, condition (a) uniquely determines
ψ2.

Proof. Assume that F is defined by the formula (18) and (a), (b) hold. It is seen
by (18) that F is an affine transformation. Let pi = [vi, ui], vi ∈ V ′, ui ∈ V , for
i = 1, 2. We compute as follows: ̺(F (p1), F (p2)) = η(ϕ(u1), ϕ(u2))+η(ϕ(u1 −
u2), u0) − ψ1((v1 − v2) − ψ2(u1 − u2) = ψ1η(u1, u2) + η(ϕ(u1 − u2), u0) −
ψ1(v1 − v2) − η(ϕ(u1 − u2), u0) = ψ1η(u1, u2) − ψ1(v1 − v2) = ψ1(̺(p1, p2)),
which proves (19). This yields that F preserves ∼∼. By Remark 3.14 we get
that F ∈ Aut(U).

Now, assume that F is an affine automorphism of U and (**) is valid. Then,
F leaves invariant the set D defined in (16) and it is a composition τ[v0,u0] ◦F0,
where F0 ∈ GL(Y) and [v0, u0] ∈ Y . The map F0 can be presented in the form
F0([v, u]) = [ψ1(v)+ψ2(u), ϕ1(u)+ϕ2(v)] for some linear maps ψ1 : V ′ −→ V ′,
ψ2 : V −→ V ′, ϕ1 : V −→ V , ϕ2 : V ′ −→ V , where ψ1 and ϕ1 are bijections
as F0 is.

Notice, by (**), that the linear part F0 of F fixes the subspace V ′ and thus
ϕ2 ≡ θ. We write ϕ = ϕ1. In view of Remark 3.14 the mapping F preserves
the relation ∼∼ so, by definition we obtain the following equivalence:

v1 − v2 = η(u1, u2) iff

ψ1(v1 − v2) + ψ2(u1 − u2) = η
(

ϕ(u1), ϕ(u2)
)

+ η
(

ϕ(u1 − u2), u0

)

(20)

for all vectors v1, v2 ∈ V ′, u1, u2 ∈ V . Substituting in (20) u2 = θ and v1 = v2

we arrive to the condition (a). In particular, from (a) we obtain ψ2(u1 −u2) =
η(ϕ(u1 − u2), u0) for all u1, u2 in V. Thus, assuming (a), from (20) we get (b).
Finally, F has form (18) as required. �

Example-continuation 2.4-B If ηi, for some i ∈ {0, . . . ν}, is a linear combina-
tion of the other ηi, then, as U is not connected, automorphisms of U need
not to be given by linear or semilinear maps. �

Proposition 3.16. The group Aut(U) is transitive.

Proof. It suffices to compute the orbit O of the point [0, θ] under the group of
affine automorphisms of ∼∼. From Proposition 3.15, the orbit O contains all the
vectors [ψ2(θ)+v0, ϕ(0)+u0] = [v0, u0] with suitable maps ψ2, ϕ. Considering
ϕ = id, ψ2(u) = η(ϕ(u), u0), ψ1 = id we get a class of affine automorphisms of

∼∼: those defined by the formula

F ([v, u]) = [v + η(u, u0) + v0, u + u0]

with arbitrary fixed u0, v0. So, each point of U is in O. �

According to Proposition 3.16 affine semipolar space is homogeneous which
together with Proposition 3.13 gives the following:
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Proposition 3.17. The geometry of the lines and the planes through an arbi-
trary point of an affine semipolar space is a generalized null system.

Combining Proposition 3.16 and Lemma 3.12 we get a theorem, which is im-
portant in the context of foundations of geometry of affine semipolar spaces.

Theorem 3.18. Let U be the affine semipolar space determined by a semiform
that meets (*). For each pair p, q of points of U such that p ∼∼ q the set

⋂

{

{x : x ∼∼ y} : y ∼∼ p, q
}

is the line of U through p, q.

Consequently, the class of lines of U is definable in terms of the binary
collinearity ∼∼ of U.

Proof. In view of Proposition 3.16 without loss of generality we can assume
that p = [0, θ] and then Lemma 3.12 yields the claim directly. �
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e-mail: mariusz@math.uwb.edu.pl

Received: April 20, 2019.

Revised: June 4, 2019.

http://arxiv.org/abs/1805.00229

	Affine semipolar spaces
	Abstract
	Introduction
	1. Definitions and preliminary results
	1.1. Polar spaces
	1.2. Hyperbolic polar spaces and their reducts
	1.3. Symplectic affine polar spaces

	2. Semiforms
	2.1. Definition and examples
	2.2. Affine atlas and its characterization
	2.3. Synthetic characterization and representations of semiforms
	2.4. A simplification of semiforms

	3. Affine semipolar spaces
	3.1. Geometrical structure
	3.2. Automorphisms

	Acknowledgements
	References


