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Abstract. Answering a question of Kuniba, Misra, Okado, Takagi, and Uchiyama, it is shown that certain higher
level Demazure characters of affine type A, coincide with the graded characters of coordinate rings of closures of
conjugacy classes of nilpotent matrices.
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1. Introduction

In [14, Theorem 5.2] it was shown that the graded characters of certain An−1-stable De-
mazure submodules of level one integrable highest weight modules of type A(1)

n−1, have
graded An−1-multiplicities given by Kostka-Foulkes polynomials in the variable q = e−δ

where δ is the null root. The proof consists of showing the equality of four families of
polynomials.

(1) Graded multiplicities of An−1-irreducibles in suitable An−1-stable level one Demazure
characters of type A(1)

n−1.

(2) Graded multiplicities of An−1-irreducibles in tensor products of finite A(1)
n−1-crystals

indexed by fundamental An−1-weights.
(3) Generating functions of Young tableaux of a given shape and weight, by the charge

statistic.
(4) The Kostka-Foulkes polynomials (see [22] for their definition).

The first two were shown to coincide by [14], the next two by [24], and the last two by
[18].

The main result of this paper is a “higher level” generalization of [14, Theorem 5.2].
The Kostka-Foulkes polynomials are replaced by the generalized Kostka polynomials. They
are indexed by the isotypic component (a partition λ with at most n rows) and a sequence
R = (R1, R2, . . . , Rt ) of An−1-weights that are multiples of fundamental weights. Here R j
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is a rectangular partition with µ j columns and η j rows with η j < n. The generalizations of
the above four polynomials are:

(1) The λ-th graded multiplicity in an An−1-stable type A(1)
n−1 Demazure submodule of

higher level.
(2) Eλ;R(q), the graded multiplicity of the λ-th irreducible in the finite crystal of type A(1)

n−1

given by B R = B Rt ⊗ · · · ⊗ B R1 , where B R j (defined in [7]) is the crystal of type A(1)
n−1

whose underlying An−1-module is irreducible of highest weight R j . The grading is
given by the energy function of [24].

(3) LRTλ;R(q), the so-called generalized Kostka polynomials, which are defined com-
binatorially using Littlewood-Richardson (LR) tableaux with a generalized charge
statistic [30].

(4) Kλ;R(q), the graded multiplicity of the λ-th isotypic component of the graded gln-
module given by the coordinate ring of a nilpotent adjoint orbit closure, twisted by a
line bundle [34].

The polynomials Kλ;R(q), which possess many properties generalizing those of the
Kostka-Foulkes, have been studied extensively using algebro-geometric and combinato-
rial methods [11, 12, 30, 31, 33, 34].

Under suitable restrictions, we show that the first two families of polynomials coincide
using the methods of [14]. The last two families coincide by [30, Theorem 10], where,
analogously to [18], it is shown that the LR tableau generating function satisfies a defining
recurrence of Weyman [34, 36] for Kλ;R(q) that generalizes Morris’ recurrence for Kostka-
Foulkes polynomials [23].

Our main task is to establish the equality of the middle two families. It is well-known
that they agree at q = 1. So it must be shown that the natural grading on B R given by
the energy function, coincides with the graded poset structure on the set of LR tableaux
which parametrize the multiplicity space of B R viewed as an An−1-crystal. In particular,
using the language of tableaux and the Robinson-Schensted-Knuth correspondence, explicit
descriptions are given for the following constructions.

• The affine crystal raising operator ẽ0 acting on B R , which involves the generalized cyclage
operators of [30] on LR tableaux and the promotion operator on tableaux.

• The combinatorial R-matrix on a tensor product of the form B R2 ⊗ B R1 , which corre-
sponds to a generalized automorphism of conjugation acting on Littlewood-Richardson
tableaux [30].

• The energy function on B R [24], which is shown to coincide with the generalized charge
on LR tableaux [11, 30].

Moreover it is shown that every generalized cocyclage relation [30] on LR tableaux may
be realized by ẽ0 on B R .

As an application, a simple proof is given for a monotonicity property of Kλ;R(q) (con-
jectured by A. N. Kirillov) that extends a property of the Kostka-Foulkes polynomials that
was proved by Han [4].
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The connection between the Demazure modules and the nilpotent adjoint orbit closures
has a geometric explanation in the following special case. Let η be a partition of n and Xη

the Zariski closure of the conjugacy class of the nilpotent n × n Jordan matrix with block
sizes given by the transpose partition ηt of η:

Xη = {A ∈ gln(C) | dim ker Ai ≥ η1 + · · · + ηi for all i .}

We consider the graded gl(n)-module given by the coordinate ring C[Xη] of Xη. Lusztig
gave an embedding of the variety Xη as an open dense subset of a P-stable Schubert variety
Yη in ŜLn/P , where P ∼= SLn is the parabolic subgroup given by “omitting the reflection
r0” [21]. The relevant level l Demazure module, viewed as an sln-module, is isomorphic to
the dual of the space of global sections H 0(Yη,Ll�0), where Ll�0 is the restriction to Yη of
the homogeneous line bundle on ŜLn/P affording the fundamental weight l�0. As l goes
to infinity, H 0(Yη,Ll�0) tends to C[Xη] as a graded sln-module.

Thanks to M. Okado for pointing out the preprint math.QA/9802111, (which became
the paper [27]), which has considerable overlap with this paper (which is a revision of the
1998 preprint math.QA/9804039) and [30, 31] (math.QA/9804037 and math.QA/9804038
respectively).

1.1. Quantized universal enveloping algebras

We only require the following three algebras: Uq(sln) ⊂ U ′
q(ŝln) ⊂ Uq(ŝln).

Let us recall some definitions for quantized universal enveloping algebras taken from [5]
and [6]. Consider the following data: a finitely generated Z-module P (weight lattice), a
set I (index set for the Dynkin diagram), elements {αi | i ∈ I } (basic roots) and {hi ∈ P∗ =
HomZ(P, Z) | i ∈ I } (basic coroots) such that (〈hi , α j 〉)i, j∈I is a generalized Cartan ma-
trix, and a symmetric form (·, ·) : P × P → Q such that (αi , αi ) ∈ Z is positive, 〈hi , λ〉 =
2(αi , λ)/(αi , αi ) for i ∈ I and λ ∈ Q ⊗ P . Let g = g(I, P) be the Kac-Moody Lie algebra
defined by the above data, and Uq(g) the quantized universal enveloping algebra, the Q(q)-
algebra with generators {ei , fi | i ∈ I } and {qh | h ∈ P∗} and relations as in [6, Section 2].

For g = ŝln , let I = {0, 1, 2, . . . , n − 1}, (ai j )i, j∈I the Cartan matrix of type A(1)
n−1, P

the free Z-module with basis {�i | i ∈ I } ∪ {δ} (fundamental weights) and let P∗ have dual
basis {hi | i ∈ I } ∪ {d}. Define the elements {αi ∈ P | i ∈ I } by

αi = δ0iδ +
∑
j∈I

ai j� j ,

so that (〈hi , α j 〉)i, j∈I is the Cartan matrix of type A(1)
n−1 and δ = ∑

i∈I αi . Define the sym-
metric Q-valued form (·, ·) by (αi , α j ) = ai j for i, j ∈ I , (αi , �0) = δi0 for i ∈ I , and
(�0, �0) = 0. This defines the data for g = ŝln . Let c = ∑

i∈I hi ∈ P∗.
Let P+ = Zδ ⊕ ⊕

i∈I Z+�i be the dominant weights. For � ∈ P+ let V(�) be the ir-
reducible integrable highest weight Uq(ŝln)-module of highest weight �, B(�) its crystal
graph, and u� ∈B(�) the highest weight vector.

For U ′
q(ŝln), the same Dynkin index set I and Cartan matrix (ai j ) are used as for Uq(ŝln),

but P is replaced by the “classical weight lattice” Pcl = P/Zδ = ⊕
i∈I Z�i (where by
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abuse of notation the image of �i in Pcl is also denoted �i ). The simple coroots {hi | i ∈ I }
form a Z-basis of P∗

cl . The simple roots are {ᾱi | i ∈ I } where ᾱi denotes the image of αi in
Pcl for i ∈ I . In Pcl the simple roots are linearly dependent. The pairing and symmetric form
are induced by those above. The quantum algebra for this data is denoted U ′

q(ŝln). It may be
viewed as a subalgebra of Uq(ŝln). Let P+

cl = ⊕
i∈I Z+�i . For � ∈ P+, the Uq(ŝln)-module

V(�) is a U ′
q(ŝln)-module by restriction, with weights taken modulo δ.

For Uq(sln), the index set for the Dynkin diagram is J = {1, 2, . . . , n−1} ⊂ I , the Cartan
matrix (ai j )i, j∈J is the restriction of the above Cartan matrix to J × J , the weight lattice
is P̄cl = Pcl/Z�0. The simple coroots {hi | i ∈ J } form a Z-basis of P̄∗

cl = ⊕
i∈J Zhi .

The simple roots are {ᾱi ∈ P̄cl | i ∈ J }. The algebra for this data is Uq(sln), which can
be viewed as a subalgebra of U ′

q(ŝln). Denote by {�̄i | i ∈ J } the fundamental weights.
Often we view these as elements of Pcl by �̄i = �i − �0. We shall occasionally refer to
an element of Zn instead of its image in P̄cl under the projection wtsl : Zn → P̄cl defined
by

wtsl(a1, a2, . . . , an) =
n−1∑
i=1

(ai − ai+1)�̄i . (1.1)

The kernel of wtsl is generated by the vector (1n). Let P̄+
cl = ⊕

i∈J Z+�̄i be the dominant
integral weights. For λ ∈ P̄+

cl let V λ be the irreducible Uq(sln)-module of highest weight λ,
and Bλ its crystal graph.

Denote by W and W̄ the Weyl groups of ŝln and sln respectively. W (resp. W̄ ) is the
subgroup of Aut(P) generated by the simple reflections {ri | i ∈ I (resp. J)} where

ri (λ) = λ − 〈hi , λ〉 αi .

Let Q̄ = ⊕
i∈J Zᾱi ⊂ Pcl . W acts faithfully on the affine subspace X = �0 + Q̄ ⊂ Pcl .

For µ ∈ Q̄ let tµ : X → X be translation by µ. Then W ∼= Q̄ � W̄ where µ ∈ Q̄ acts by
tµ. Let θ = ∑

i∈J ᾱi ∈ P̄cl be the highest root of sln and rθ ∈ W̄ the reflection through the
hyperplane orthogonal to θ , given in simple reflections by

rθ = r1 . . . rn−2rn−1rn−2 . . . r1.

Then r0 = tθrθ acts on X by

r0(�0 + x) = �0 + θ + rθ x

and

ri (�0 + x) = �0 + ri x for i ∈ J

for all x ∈ Q̄.
For � ∈ P+ and w ∈ W the Demazure module of lowest weight w� is defined by

Vw(�) = Uq(b)vw� where vw� is a generator of the (one dimensional) extremal weight
space in V(�) of weight w� and Uq(b) is the upper triangular subalgebra of Uq(ŝln)
generated by the ei and h ∈ P∗.
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1.2. Main result

Let η be a partition of n and Xη as in the introduction. The coordinate ring C[Xη] has
a graded sln-action induced by matrix conjugation on Xη. For λ ∈ P̄+

cl , define the graded
multiplicity

Kλ;η(q) =
∑
d≥0

qd dim Homsln (V λ, C[Xη]d) (1.2)

where C[Xη]d is the homogeneous component of degree d.

Remark 1.1 Kλ;η(q) is not the Kostka polynomial, but a generalization; see [34]. If λ is
a partition of n with at most n parts then Kwtslλ;η(q) = K̃λt η(q) which is a renormalization
of the Kostka-Foulkes polynomial with indices λt and µ.

Theorem 1.2 Let l be a positive integer, η a partition of n, w0 the longest element of W̄ ,

and wη = tw0wtsl(ηt ) ∈ W . Then

e−l�0 chVwη
(l�0) =

∑
λ

Kwtsl(λ);η(q) chV wtsl(λ)

where λ runs over the partitions having at most n parts and |λ| = ln.

2. Littlewood-Richardson tableaux

In this section we recall the theory of Littlewood-Richardson tableaux [30].

2.1. Tableaux and RSK

For definitions regarding partitions and tableaux, see [2], which uses the English convention.
A horizontal strip is a skew shape with at most one cell per column. If D and E are skew
shapes, let D ⊗ E be the skew shape obtained by placing a translate of D to the southwest
of a translate of E (this is denoted D ∗ E in [2, Section 5.1]). A (skew) tableau b is identified
with its row-reading word, denoted here by word(b) (called w(b) in [2, Section 2.1]). A
row word is a weakly increasing one, and a column word is a strictly decreasing one. Write
mi (u) to be the number of occurrences of the letter i in the word u. Let

content(u) = (m1(u), m2(u), . . .).

Denote by T(D) the set of tableaux of shape D and by T(D, β) the set of tableaux of shape
D and content β.

Knuth’s relation ≡ [13] is the equivalence relation on words, generated by the so-called
elementary transformations, where x, y, z are letters and u, v are words:

uxzyv ≡ uzxyv for x ≤ y < z

uyzxv ≡ uyxzv for x < y ≤ z.
(2.1)
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Say that a skew shape is normal (resp. antinormal) if it has a unique northwest (resp.
southeast) corner cell [3].

Theorem 2.1 [13] For any word v,

(1) There is a unique (up to translation) tableau P(v) of normal shape such that v ≡ P(v).
(2) There is a unique (up to translation) skew tableau P↘(v) of antinormal shape such that

v ≡ P↘(v).

P(v) may be computed by Schensted’s column insertion algorithm [2, Appendix A.2].
Both P(v) and P↘(v)may be computed by Schützenberger’s jeu-de-taquin sliding algorithm
[2, Section 1.2].

Write [n] = {1, 2, . . . , n}. Given a word u and a subalphabet A, let u|A denote the word
obtained from u by erasing all letters not in A. Let v j be a row word (almost all empty) for
j ≥ 1 and write v = (. . . , v2, v1). Define the pair of tableaux (P(v), Q(v)) by

P(v) = P(· · · v2v1)

shape
(
Q(v)|[ j]

) = shape(P(v j . . . v1)) for all j ≥ 0.
(2.2)

Theorem 2.2 [13] The map v �→ (P(v), Q(v)) is a bijection from the set of sequences of
row words (almost all empty) to pairs of tableaux of the same shape, such that content(v) =
content(P(v)) and mi (Q(v)) is the length of vi for all i ≥ 1.

This bijection is a version of the celebrated RSK correspondence.

2.2. R-LR tableaux

This section follows [30, Section 2.3]. Let R = (R1, R2, . . . , Rt ) be a sequence of partitions
such that R j has η j parts. Let A1 = [1, η1] be the first η1 positive integers, A2 = [η1 + 1,

η1 + η2] the interval consisting of the next η2 integers, and so on. Let Rt ⊗ · · · ⊗ R1 be
the skew shape embedded in the plane in such a way that A j is the set of row indices for
R j . Let γ = (γ1, γ2, . . .) be the sequence of integers given by juxtaposing the parts of R1

through Rt .
For a finite sequence α = (α1, α2, . . .) of positive integers, define the key tableau of

content α by Key(α) = P(· · · 2α2 1α1). This is the unique tableau of content α, whose shape
α+ is the partition obtained by sorting the parts of α. If α is a partition then Key(α) is the
tableau of shape α whose r -th row consists of αr copies of the letter r for all r .

Let Y j = Key(R j ) in the alphabet A j .

Example 2.3 Let R = ((2, 2), (3, 3, 3), (3, 3)). Then γ = (2, 2, 3, 3, 3, 3, 3), A1 = {1, 2},
A2 = {3, 4, 5}, and A3 = {6, 7}. The tableaux Y j are given by

Y1 = 1 1
2 2

Y2 =
3 3 3
4 4 4
5 5 5

Y3 = 6 6 6
7 7 7
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Remark 2.4 The notation used here coincides with that in [30] except that here n is used
as in An−1 and is not assumed to coincide with the quantity

∑t
j=1 η j as it is in [30].

Say that a word u in the alphabet A1 ∪ · · · ∪ At is R-LR (short for R-Littlewood-
Richardson) if P(u|A j ) = Y j for all 1 ≤ j ≤ t . Denote by W (R) the set of R-LR words.
Denote by LRT(D; R) = W (R) ∩ T(D) the set of R-LR tableaux of (skew) shape D and
LRT(R) = ⋃

λ LRT(λ; R) where λ runs over partitions.

Theorem 2.5 [37] The map v �→ (P(v), Q(v)) gives a bijection

T(Rt ⊗ · · · ⊗ R1) ∼=
⋃
λ

T(λ) × LRT(λ; R). (2.3)

Remark 2.6 If R j = (γ j ) is a single-rowed partition for all j , then LRT(D; R) = T(D, γ ),
and W (R) is the set of words of content γ .

2.3. Symmetry bijections

From now on, R is assumed to be a sequence of rectangular partitions R j = (µ
η j

j ) for
1 ≤ j ≤ t . The symmetric group on the set [t] acts on sequences of t rectangles by reordering.
In [30, Section 2.4] bijections τp : W (R) → W (rp R) are explicitly defined. This notation
is not precise as τp depends on the sequence of rectangles R.

Given any word w, let Q(w) = Q(w) where Q(w) is computed with respect to the
factorization of w into the row words given by its individual letters.

Theorem 2.7 [30, Theorem 8] The bijections τp : W (R) → W (rp R) satisfy the following
properties:
(A0) τp restricts to a bijection τp : LRT(D; R) → LRT(D; rp R) for any skew shape D.
(A1) P(τpw) = τp P(w) for all w ∈ W (R).
(A2) Q(τpw) = Q(w) for all w ∈ W (R).
(A3) The bijections {τp} define an action of the symmetric group on LR words.
(A4) Suppose the permutation τ stabilizes the interval I ⊂ [t] and fixes its complement.

Let J = ⋃
i∈I Ai . Then for all w ∈ W (R), the words w and τw agree in all positions

occupied by letters not in J .
(A5) If Rp = Rp+1 then τp acts as the identity on W (R).

Remark 2.8 In the case that R j is a single row for all j , the bijections τp were defined in
[19] and are called automorphisms of conjugation.

2.4. Generalized charge

Define the statistic chargeR : W(R) → Z+ as follows. If R has less than two rectangles then
chargeR is identically zero. Let R = (R1, R2). Define dR2,R1 : W (R1, R2) → Z+ by

dR2,R1(u) = number of cells in shape(P(u)) strictly

to the right of the max(µ1, µ2)-th column.
(2.4)
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For a general sequence of rectangles R, for u ∈ W(R) define

chargeR(u) = 1

t!

∑
τ∈St

t−1∑
i=1

(t − i)di (τu)

where di (τu) is the statistic (2.4) on the restriction of τu to the union of the i-th and (i +1)-th
alphabets for τ R.

Remark 2.9 In the case that R j = (γ j ) for all j , chargeR is exactly the formula given in
[17] for the charge statistic first defined in [18, 19].

Remark 2.10 Suppose µ1 ≥ µ2, T ∈ LRT(λ; (R1, R2)) and λ is a partition such that λ1 =
µ1. Then λ is the shape consisting of R1 sitting atop R2, T = P(Y2Y1), and d1(T ) = 0. Of
course d1(τT ) = 0 as well.

Define the polynomial

LRTλ;R(q) =
∑

T ∈LRT(λ;R)

qchargeR(T ). (2.5)

The following is a special case of [30, Theorem 10].

Theorem 2.11 Let η be a partition of n and let R j have η j rows and l columns. Then for
every partition λ with |λ| = ln having at most n parts,

Kλ;η(q) = LRTλ;R(q),

with Kλ;η(q) as in (1.2).

2.5. R-cocyclage poset

The set LRT(R) admits a graded poset structure called the R-cocyclage. Let w = ux ∈ W(R)

with x a letter. By [30, Section 3.2], there is a bijection χR : W(R) → W(R) defined
by

χR(w) = (
wR

0 x
)(

wR
0 u

)
(2.6)

where wR
0 is the automorphism of conjugation associated with the longest element in the

Young subgroup SA1 × · · · × SAt .
Given S, T ∈ LRT(R), write S ←R T if there is a w ∈ W(R) such that T = P(w) and

S = P(χR(w)). More specifically, if in addition w = ux with x a letter and ν = shape(P(u)),
then write S ←R,ν T . Write S <·R,ν T if S ←R,ν T and the column index of the cell s =
shape(T )/ν is strictly greater than µ j for all j . Write S <·R T if S <·R,ν T for some ν. This
is called the R-cocyclage relation.
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Theorem 2.12 [30. Theorem 20]
(1) LRT(R) is a graded poset with covering relation <·R. Let ≤R be the associated partial

order.
(2) An element of LRT(R) is ≤R-minimal if and only if it has exactly max j µ j columns.
(3) Let R∧ = (R2, R3, . . .), T ∈ LRT(R) be ≤R-minimal and µ1 = max j µ j . Then T =

T ∧Y1 and T ∧ ∈ LRT(R∧) in the alphabet A2 ∪ A3 ∪ . . . .

The generalized charge has the following intrinsic characterization, which implies that it
is a grading function for the poset (LRT(R), ≤R).

Theorem 2.13 [30, Theorem 22] There is a unique function chargeR : LRT(R) → Z+
such that:
(C1) If R = ∅ then chargeR = 0.
(C2) If S<·R T for S, T ∈ LRT(R) then chargeR(S) = chargeR(T ) − 1.
(C3) Suppose T ∈ LRT(λ; R) with λ1 = µ1 = max j µ j . Then in the notation in

Theorem 2.12(3), chargeR(T ) = chargeR∧(T ∧).
(C4) For any permutation τ of [t], chargeτ R(τT ) = chargeR(T ).

3. Crystal structure on tensor products of rectangles

We give an explicit description of the affine crystal structure on tensor products of rect-
angular crystals. This is accomplished by translating the theory of such crystals [6, 7,
10, 24] into the language of Young tableaux and the Robinson-Schensted-Knuth (RSK)
correspondence.

3.1. Crystals

A P-weighted I -crystal is a weighted I -colored directed graph B, that is, a vertex set
B equipped with a weight function wt : B → P and directed edges colored by the set I ,
satisfying the following properties.

(1) There are no multiple edges; that is, for each i ∈ I and b, b′ ∈ B there is at most one
edge colored i from b to b′.

If such an edge exists, this is denoted b′ = f̃i (b) or equivalently b = ẽi (b′), by abuse of the
notation of a function B → B. In this case it is said that f̃i (b) is defined or equivalently that
ẽi (b′) is defined. Define ϕi , εi : B → Z+ by

ϕi (b) = max
{
m ∈ Z+

∣∣ f̃ m
i (b) is defined

}
εi (b) = max

{
m ∈ Z+

∣∣ ẽm
i (b) is defined

}
(1) If f̃i (b) is defined then wt( f̃i (b)) = wt(b) − αi . Equivalently, wt(ẽi (b)) = wt(b) + αi .
(2) 〈hi , wt(b)〉 = ϕi (b) − εi (b).

If B j is a P-weighted I -crystal for 1 ≤ j ≤ t , the Cartesian product Bt × · · · × B1 can be
given a crystal structure, denoted B = Bt ⊗ · · ·⊗ B1. The convention used here is opposite
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Kashiwara’s but is consistent with the traditional notation for tableaux. Let b j ∈ B j and
b = bt ⊗ · · · ⊗ b1 ∈ B. The weight function on B is given by

wt(b) =
t∑

j=1

wt(b j ).

The operators f̃i are defined by the signature rule [10]. Given b ∈ B and i ∈ I , construct a
biword (sequence of pairs of letters) consisting of ϕi (b j ) copies of the biletter (

j
− ) and εi (b j )

copies of the biletter ( j
+ ) for all j , sorted in weakly increasing order by the order ( j

± ) < (
j ′
± ) if

j > j ′ and (
j
− ) < (

j
+ ). This biword is now repeatedly reduced by removing adjacent biletters

whose lower letters are +− in that order. If + and − are viewed as left and right parentheses
then this removes matching pairs of parentheses. At the end one obtains a biword whose
lower word has the form −s+t . If s > 0 (resp. t > 0) let j− (resp. j+) be the upper letter
corresponding to the rightmost − (resp. leftmost +) in the reduced biword, and define

f̃i (b) = bm ⊗ · · · ⊗ b1+ j− ⊗ f̃i (b j−) ⊗ b−1+ j− ⊗ · · · ⊗ b1

and respectively

ẽi (b) = bm ⊗ · · · ⊗ b1+ j+ ⊗ ẽi (b j+) ⊗ b−1+ j+ ⊗ · · · ⊗ b1.

Then ϕi (b) = s and εi (b) = t .
A morphism g : B → B ′ of P-weighted I -crystals is a map g that preserves weights and

satisfies g( f̃i (b)) = f̃i (g(b)) for all i ∈ I and b ∈ B, that is, f̃i (b) is defined if and only if
f̃i (g(b)) is, and in that case, the above equality holds.

Using this tensor operation, P-weighted I -crystals form a tensor category.
Let B be a P-weighted I -crystal, b ∈ B, and p = ϕi (b) − εi (b). Define [5]

r̃i (b) =




f̃ p
i (b) if p > 0

b if p = 0

ẽ −p
i (b) if p < 0

(3.1)

Suppose B is an I -crystal and K ⊂ I . Say that b ∈ B is a K -highest weight vector if
εi (b) = 0 for all i ∈ K .

We only require the following kinds of crystals.

(1) The crystal graphs of integrable highest weight Uq(ŝln)-modules are P-weighted
I -crystals and are called Uq(A(1)

n−1)-crystals.
(2) The crystal graphs of integrable U ′

q(ŝln)-modules that are either highest weight or
finite-dimensional, are Pcl-weighted I -crystals and are called U ′

q(A(1)
n−1)-crystals.

(3) The crystal graphs of integrable highest weight Uq(sln)-modules are P̄cl-weighted
J -crystals and are called Uq(An−1)-crystals.

For elements of such crystals, an affine highest weight vector is an I -highest weight vector
and a classical highest weight vector is a J -highest weight vector.
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3.2. Uq(An−1)-crystals and RSK

Let λ = (λ1 ≥ λ2 ≥ · · · ≥λn) ∈ Zn
+ be a partition of length at most n. Let V λ be the irreducible

Uq(sln)-module of highest weight λ and Bλ its crystal graph. The structure of the Uq(An−1)-
crystal Bλ is given explicitly in [10] using Young tableaux.

As a set Bλ = T(λ), the set of semistandard Young tableaux of shape λ with entries in
the set [n]. The Uq(An−1)-crystal graph structure is given as follows.

(1) Let λ = (1). B(1) = [n]. f̃i (i) = i + 1 for 1 ≤ i ≤ n − 1 and f̃i ( j) is undefined for
j $= i . For 1 ≤ i ≤ n, wt(i) = wtsl(εi ) where εi is the i-th standard basis vector in Zn .

(2) The set of words (B(1))⊗N of length N in the alphabet [n], has a Uq(An−1)-crystal
structure given by the signature rule. For u ∈ (B(1))⊗N , wt(u) = wtsl(content(u)).

(3) Let D be a skew shape having N cells. Consider the embedding T(D) ↪→ (B(1))⊗N

given by b �→ word(b). The image of this embedding is stable under ẽi and f̃i for i ∈ J .
Thus T(D) has the structure of a Uq(An−1)-crystal (call it B D) by declaring that this
embedding is a Uq(An−1)-crystal morphism. If D is a partition λ this defines the crystal
Bλ.

We give a streamlined version of the signature rule for the Uq(An−1)-crystal structure on
words. Let u be a word in the alphabet [n] and i ∈ J . To compute ẽi (u), f̃i (u), and r̃i (u),
place a left parenthesis below each letter i + 1 in u and a right parenthesis beneath each
letter i in u. Match the parentheses in the usual way. The unmatched parentheses indicate
a subword of the form i s(i + 1)t . Then ẽi (u), f̃i (u), and r̃i (u), are obtained from u by
replacing the unmatched subword i s(i +1)t by i s+1(i +1)t−1, i s−1(i +1)t+1, and i t (i +1)s

respectively. ẽi (u) is defined if and only if t > 0, and f̃i (u) is defined if and only if s > 0.

Example 3.1 Let i = 2. The unmatched subword is underlined.

u = 124311324312242423

ẽ2(u) = 124311324312242422

f̃2(u) = 124311324312242433

r̃2(u) = 124311324312243433

Remark 3.2 The bijections r̃i are the automorphisms of conjugation (see Remark 2.8).
More generally, by theorem of Kashiwara [9], the bijections r̃i generate an action of the
Weyl group.

The RSK map is a morphism of Uq(An−1)-crystals in the following sense.

Proposition 3.3 If g is any of ẽi , f̃i , and r̃i for i ∈ J, then

P(g(v)) = g(P(v))

Q(g(v)) = Q(v)
(3.2)

See [19] for a proof in the case g = r̃i ; the other cases are similar.
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Let LRT≤n(R) (resp. LRT≤n(λ; R))be the subset of LRT(R) (resp. LRT(λ; R)) consisting
of tableaux whose shape has at most n rows. The next result is an immediate consequence
of Theorem 2.5, given that elements of B R have alphabet [n].

Proposition 3.4 There is a bijection

B R ∼=
⋃
λ

Bλ × LRT≤n(λ; R)

given by b �→ (P(b), Q(b)).

Say that a word is Yamanouchi if each of its right factors has partition content.

Proposition 3.5 A word is a classical highest weight vector if and only if it is Yamanouchi.

Proof: Suppose w = uxv is not Yamanouchi, with u, v words and x a letter, such that xv

is the shortest right factor of w whose content is not a partition. Then w admits ẽx−1 as this
copy of x cannot be paired. Conversely, if w = u′xv′ admits ẽx−1 and ẽx−1(w) = u′(x−1)v′,
then mx (xv′) > mx−1(xv′). ✷

Remark 3.6

(1) Key(λ) is the unique Yamanouchi tableau of shape λ, or equivalently, the unique highest
weight vector in Bλ.

(2) For w ∈ W̄ , Key(wλ) is the unique vector in Bλ of extremal weight wλ.
(3) Bλ is a connected Uq(An−1)-crystal. For if b ∈ Bλ is not Key(λ) then it admits a raising

operator ẽi for i ∈ J . Since Bλ is finite, one must eventually reach the classical highest
weight vector Key(λ).

Remark 3.7 By Proposition 3.5, the RSK map (2.2) may be defined by the property (3.2)
for g = f̃i and all i ∈ J , together with its value on each classical highest weight vector. The
latter can be given explicitly. Let v = · · · v2v1 where v j is a row word for all j such that
v is a classical highest weight vector. By Proposition 3.5 content(v) is a partition, say λ.
By Proposition 3.3 and Remark 3.6 P(v) = Key(λ). Q(v) is the tableau whose i-th row
contains mi (v j ) copies of the letter j , for all i and j .

This way of defining the RSK correspondence essentially appears in the 1938 paper of
G. de B. Robinson, [25, Section 5], who had devised the RSK map to prove the Littlewood-
Richardson rule [20]. He defines operations on tableaux which turn out to be canonical
sequences of operators ẽi and f̃i . See Macdonald’s rigorous version of Robinson’s proof
[22, I.9].

Later we shall require a characterization of ≡ in terms of Uq(An−1)-crystals.

Lemma 3.8 Let v and v′ be two words of the same length in the alphabet [n]. Then
P(v) = P(v′) if and only if v and v′ admit the same sequences of raising and lowering
operators taken from ẽi and f̃i for 1 ≤ i ≤ n − 1.
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Proof: The forward direction follows immediately from Proposition 3.3. For the converse,
again by Proposition 3.3 it may be assumed that v and v′ are tableaux of partition shape
and it must be shown that v = v′. Let shape(v) = λ and shape(v′) = λ′. Let g be a sequence
of raising operators such that g(v) is a classical highest weight vector. By Remark 3.6
g(v) = Key(λ). By hypothesis it follows that g(v′) is a classical highest weight vector,
namely, g(v′) = Key(λ′). Since g can be “undone” by a suitable sequence of lowering
operators, it may be assumed that v = Key(λ) and v′ = Key(λ′). By direct computation
ϕi (Key(λ)) = λi − λi+1 for 1 ≤ i ≤ n − 1. Again by hypothesis, λi − λi+1 = λ′

i − λ′
i+1

for 1 ≤ i ≤ n − 1. But λ and λ′ are partitions of the same size having at most n parts, so
λ = λ′. ✷

3.3. Affine crystal structure on rectangular crystals

Theorem 3.9 [7] For each 0 < k < n and l > 0, there is a U ′
q(ŝln)-module W k,l with

crystal graph Bk,l , which is isomorphic to B(lk ) as a Uq(An−1)-crystal.

In [7] the affine crystal operators ẽ0 and f̃0 are defined on Bk,l , but even the well-
definedness of the given operators is not at all clear and no proofs are given. We give an
explicit algorithm to calculate ẽ0 on Bk,l in terms of well-known tableau operations, and
prove it is correct. We shall find properties that uniquely define ẽ0 on Bk,l , and then show
our operators satisfies these properties. The main tool (used repeatedly in [7] for various
root systems) is the existence of an automorphism ψ of Bk,l . If λ is not a rectangle then there
is no way to extend the Uq(An−1)-crystal structure on Bλ to a U ′

q(A(1)
n−1)-crystal structure.

For if there were, then as argued below, Bλ would have an automorphism ψ but such an
automorphism does not exist if λ is not a rectangle.

The affine Dynkin diagram A(1)
n−1 admits the rotation automorphism that sends i to i + 1

modulo n. This induces an automorphism ψ of the U ′
q(A(1)

n−1)-crystal Bk,l such that

ψ ◦ f̃i = f̃i+1 ◦ ψ for all i ∈ I (3.3)

where subscripts are taken modulo n. Equivalently f̃i may be replaced by ẽi . Moreover, if
ψ : Pcl → Pcl is the automorphism of Pcl defined by ψ(�i ) = �i+1 for all i ∈ I , then

wt(ψ(b)) = ψ(wt(b)) for all b ∈ Bk,l . (3.4)

Equivalently,

mi+1(ψ(b)) = mi (b) for all b ∈ Bk,l and i ∈ I . (3.5)

Lemma 3.10 ψ is uniquely defined by (3.3) and (3.5).

Proof: Recall that Bk,l = B(lk ) as Uq(An−1)-crystals. By Remark 3.6 Bk,l has a unique
classical highest weight vector, namely, y = Key(lk). By (3.3) and the connectedness of Bk,l
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it is enough to show that ψ(y) is uniquely determined. By definition shape(ψ(y)) = (lk).
By (3.5) content(ψ(y)) = (0, lk, 0n−1−k). By Remark 3.6 ψ(y) = Key(0, lk, 0n−1−k). ✷

If u is a word or tableau and p is an integer, denote by u + p the word or tableau whose
entries are obtained from those of u by adding p.

Lemma 3.11 ψ is uniquely defined by (3.3) for 1 ≤ i ≤ n − 2 and (3.5).

Proof: Let b ∈ Bk,l , c = b|[2,n−1], b′ = ψ(b), and c′ = b′
[3,n]. Since (3.3) holds for 1 ≤ i

≤ n − 2, c admits a sequence of lowering operators ei1 . . . ei p for 2 ≤ i j ≤ n − 2, if
and only if c′ − 1 does. Since c and c′ − 1 are words in the alphabet [2, n − 1], P(c) =
P(c′ −1) by Lemma 3.8. Since the skew tableau c′ has antinormal shape, P↘(c) = c′ −1 by
Theorem 2.1. This specifies c′.

It remains to show that the subtableau b′|[1,2] is uniquely specified. Its shape is the partition
whose diagram is the set difference (lk) − shape(c′). Since b′|[1,2] is a tableau of partition
shape that contains only ones and twos, it must have at most two rows. It is uniquely
determined by its shape and content. But its content is specified by (3.5). ✷

Remark 3.12 Observe that a skew shape is both normal and antinormal if and only if it
is a translate of a rectangle. This property of rectangles is used prominently in the proof of
Lemma 3.11.

The following operation is Schützenberger’s promotion operator pr, which was defined
on standard tableaux but has an obvious extension to tableaux [3, 28]. Let D be a skew
shape. pr : B D → B D is defined as follows.

(1) Remove all the letters n in b, which removes from D a horizontal strip H .
(2) Slide (using Schützenberger’s jeu-de-taquin [3, 29] [2, Section 1.2]) the remaining

subtableau b|[n−1] to the southeast into the horizontal strip H , entering the cells of H
from left to right.

(3) Add one to each entry of the resulting skew tableau.
(4) Fill the set H ′ of vacated cells with ones.

Let pr(b) be the resulting object. The set of cells H ′ is a horizontal strip that was created
from left to right. It follows that pr(b) is a tableau. Note that a tableau b is uniquely specified
by its restriction b|[n−1] and its shape. These two pieces of data must also uniquely specify
pr(b). And they do, in the following manner.

Lemma 3.13 Let b be a tableau of partition shape. Then pr(b) is uniquely defined by
conditions that P(pr(b)|[2,n]) = b|[n−1] + 1 and shape(pr(b)) = shape(b).

Lemma 3.14 Let b ∈ B(lk ). Then pr(b) is the unique element of B(lk ) such that

pr(b)|[2,n] = P↘
(
b|[n−1]

) + 1. (3.6)
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Proof: In this case H consists of the last mn(b) cells in the last row of the rectangle (lk).
Note that

P↘
(
b|[n−1]

) + 1 ≡ b|[n−1] + 1 ≡ pr(b)|[2,n]

by Theorem 2.1 and Lemma 3.13. Both tableaux in (3.6) are of antinormal shape and are
Knuth equivalent. Hence they are equal by Theorem 2.1. There is no choice for the location
of letters 1 in pr(b), so all of pr(b) is determined. ✷

Proposition 3.15 ψ = pr.

Proof: It is enough to check the hypotheses of Lemma 3.11. Equation (3.5) holds by
definition. Let 1 ≤ i ≤ n − 2.

pr( f̃i (b))|[2,n] = P↘
(

f̃i (b)|[n−1]
) + 1

= P↘
(

f̃i
(
b|[n−1]

)) + 1

= f̃i
(
P↘

(
b|[n−1]

)) + 1

= f̃i
(
pr(b)|[2,n] − 1

) + 1

= f̃i+1
(
pr(b)|[2,n]

)
= f̃i+1(pr(b))|[2,n].

These equalities hold by Lemma 3.14, the explicit constructions for f̃i , and the fact that P↘
respects f̃i (Theorem 2.1 and (3.2)). This gives (3.3) for 1 ≤ i ≤ n − 2. ✷

By (3.3), the operators ẽ0 and f̃0 on Bk,l are given explicitly by

ẽ0 = pr−1 ◦ ẽ1 ◦ pr

f̃0 = pr−1 ◦ f̃1 ◦ pr.
(3.7)

From now on it is assumed that R = (R1, R2, . . . , Rt ) is a sequence of rectangular parti-
tions R j = (µ

η j

j ). We shall also write B R j to mean Bη j ,µ j .

The signature rule makes B R a U ′
q(A(1)

n−1)-crystal, but this method of computing ẽ0 on B R

requires the computation of ε0 and ϕ0 for each tensor factor. It is more efficient to compute
ẽ0 on B R as follows. Let b = bt ⊗ · · · ⊗ b1 ∈ B R with b j ∈ B R j . Define pr : B R → B R by

pr(b) = pr(bt ) ⊗ · · · ⊗ pr(b1).

By the signature rule and (3.7) it follows that

ẽ0 = pr−1 ◦ ẽ1 ◦ pr

f̃0 = pr−1 ◦ f̃1 ◦ pr
(3.8)

as operators on B R .
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Example 3.16 Let n = 7, R = ((2, 2), (3, 3, 3), (3, 3)), and b ∈ B R given by the follow-
ing skew tableau of shape R3 ⊗ R2 ⊗ R1:

× × × × × × 1 1

× × × × × × 2 2

× × × 1 1 3

× × × 2 3 4

× × × 3 4 5

2 4 6

3 5 7

We wish to compute ẽ0(b) = pr−1(ẽ1(pr(b))). The element pr(b) is given by

× × × × × × 2 2

× × × × × × 3 3

× × × 2 2 4

× × × 3 4 5

× × × 4 5 6

1 3 5

4 6 7

Let us apply ẽ1 to pr(b). It is simplest to use the Uq(An−1)-crystal embedding of B R into
the set of words. We have

word(pr(b)) = 4671354563452243322

ẽ1(word(pr(b))) = 4671354563451243322.

So ẽ1(pr(b)) is given by

× × × × × × 2 2

× × × × × × 3 3

× × × 1 2 4

× × × 3 4 5

× × × 4 5 6

1 3 5

4 6 7
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Finally ẽ0(b) = pr−1(ẽ1(pr(b))) is given by:

× × × × × × 1 1

× × × × × × 2 2

× × × 1 3 3

× × × 2 4 4

× × × 3 5 7

2 4 6

3 5 7

Observe that ẽ0(b3 ⊗ b2 ⊗ b1) = b3 ⊗ ẽ0(b2) ⊗ b1.

3.4. Connectedness

In [1] the theory of simple crystals is used to prove the following important result. It says
that the underlying U ′

q(ŝln)-module of B R , is irreducible.

Theorem 3.17 [1] B R is a connected U ′
q(A(1)

n−1)-crystal.

3.5. Combinatorial R-matrices

Again we quote a basic theorem of affine crystal theory, applied to the type A(1)
n−1 case.

Theorem 3.18 [6, Proposition 4.3.1] There is a U ′
q(A(1)

n−1)-crystal isomorphism

σ = σR2,R1 : B R2 ⊗ B R1 → B R1 ⊗ B R2 (3.9)

called the combinatorial R-matrix.

The proof uses the existence of the algebraic R-matrix acting on the affinizations (in the
sense of [6, Section 3.2]) of modules of the form W k,l .

Theorem 3.19 Let R be a sequence of rectangles and R′ a reordering of R. Then there is
a unique U ′

q(A(1)
n−1)-crystal isomorphism

σ R′
R : B R → B R′

. (3.10)

Proof: Existence is given by composing isomorphisms of the form (3.9) acting on ad-
jacent tensor factors. For uniqueness, recall from Theorem 3.17 that B R is a connected
U ′

q(A(1)
n−1)-crystal and σ R′

R is a U ′
q(A(1)

n−1)-crystal morphism. This implies that σ R′
R is uniquely

determined by its value on any single element of B R . Now B R (resp. B R′
) contains a unique
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element y (resp. y′) of content
∑

j R j = ∑
j R′

j where R j is viewed as an element of
Zn . Explicitly, y and y′ are tensor products of classical highest weight vectors in each
factor. Since σ R′

R is a U ′
q(A(1)

n−1)-crystal morphism, it must preserve weight. It follows that
σ R′

R (y) = y′. ✷

In the special case R = (R1, R2, R3) and R′ = (R3, R2, R1) the uniqueness of σ R′
R implies

the Yang-Baxter equation for combinatorial R-matrices:

(
1 ⊗ σR3,R2

) ◦ (
σR3,R1 ⊗ 1

) ◦ (
1 ⊗ σR2,R1

)
= (

σR2,R1 ⊗ 1
) ◦ (

1 ⊗ σR3,R1

) ◦ (
σR3,R2 ⊗ 1

)
(3.11)

as maps B R → B R′
.

We wish to describe the bijection σ of (3.9) in terms of tableaux. By 3.2 σ preserves
the P tableau. By Proposition 3.4, σ induces a shape-preserving bijection τ = τR2,R1 :
LRT≤n((R2, R1)) → LRT≤n((R1, R2)) such that

Q(σ (b)) = τ(Q(b)) for all b ∈ B R2 ⊗ B R1 . (3.12)

Since B R2 ⊗ B R1 is multiplicity-free as a Uq(An−1)-crystal (see for example [35]), it follows
that τ is unique. This is none other than the bijection τ1 of Section 2.3, restricted to shapes
with at most n rows. See the proof of [30, Proposition 34] for a very explicit description of τ .

By the same kind of abuse of notation used in Section 2.3, σp denotes any instance of a
combinatorial R-matrix that exchanges the p-th and (p + 1)-th tensor factors in a tensor
product of the form B R . In this notation (3.11) becomes a braid relation for the symmetric
group on [t]. Thus the proof of Theorem 2.7(A3) gives a purely combinatorial argument
that the combinatorial R-matrices satisfy (3.11).

Remark 3.20 Suppose R j is a single row (γ j ) for all j . Let b = · · · ⊗ b2 ⊗ b1 with
b j ∈ B R j , so that b j is a row word of length γ j for all j . Fix i ≥ 1. Let R′ = ri R and
b′ = σi (b) = · · ·⊗ b′

2 ⊗ b′
1. In this case τi coincides with the automorphism of conjugation

r̃i , this time acting in the multiplicity space (see Remark 3.2).

Remark 3.21 The map σ was determined only by the requirement that it be an isomor-
phism of Uq(An−1)-crystals. It can be shown combinatorially that the map so defined, is
also an isomorphism of U ′

q(A(1)
n−1)-crystals; the proof was included in the preprint version

of this paper [32].

3.6. Energy function

Affine crystal theory gives a natural grading on B R , by the so-called energy function.

Theorem 3.22 [6] There is a function H = HR2,R1 : B R2 ⊗ B R1 → Z, defined uniquely up
to a global additive constant, by the following property. Let b2 ⊗ b1 ∈ B R2 ⊗ B R1 and
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σ(b2 ⊗ b1) = b′
1 ⊗ b′

2 where σ is the combinatorial R-matrix. Then

H(ẽi (b2 ⊗ b1)) − H(b2 ⊗ b1) =




−1 if i = 0, ẽ0(b2 ⊗ b1) = ẽ0(b2) ⊗ b1 and

ẽ0(b′
1 ⊗ b′

2) = ẽ0(b′
1) ⊗ b′

2

1 if i = 0, ẽ0(b2 ⊗ b1) = b2 ⊗ ẽ0(b1) and

ẽ0(b′
1 ⊗ b′

2) = b′
1 ⊗ ẽ0(b′

2)

0 otherwise.

(3.13)

H is called the local energy function. Its existence follows from the properties of the
algebraic R-matrix. Its (essential) uniqueness follows from its defining properties and
Theorem 3.17.

We normalize H as follows. Let yi = Key(Ri ) be classical highest weight vectors for
i = 1, 2. Then

H(y2 ⊗ y1) = min(µ1, µ2) min(η1, η2). (3.14)

By definition it follows that

HR2,R1 = HR1,R2 ◦ σR2,R1 . (3.15)

Now let R = (R1, R2, . . . , Rt ) be a sequence of rectangles. Again by abuse of notation
let Hi denote the energy function acting on the i-th and (i + 1)-th tensor positions in some
tensor product of crystals of the form Bk,l .

Following [24], define the global energy function ER : B R → Z by

ER(b) =
∑

1≤i< j≤t

Hi (σi+1σi+2 · · · σ j−1b). (3.16)

Define the polynomials Eλ;R(q) by

chq(B R) :=
∑
b∈B R

ewt(b)q ER(b) =
∑
λ∈P̄+

cl

ch(V λ)Eλ;R(q) (3.17)

where ch is the formal character.

Theorem 3.23 For all b ∈ B R,

ER(b) = chargeR(Q(b)) (3.18)

Corollary 3.24

Eλ;R(q) = LRTλ;R(q). (3.19)
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Theorem 3.23 was proved in [24] when all R j are single rows and chargeR is replaced
by charge.

The following Lemma is a higher-level generalization of [14, Lemma 5.1]. Compare this
with [30, Proposition 24].

Lemma 3.25 For all b ∈ B R, ER(ẽ0(b)) − ER(b) + 1 is the number of indices 1 ≤ j ≤ t
such that ẽ0 acts on the rightmost tensor factor of σ1σ2 · · · σ j−1(b). In particular, if ε0(b) >

µ j for all j then ER(b) = ER(ẽ0(b)) + 1.

Proof: Fix b ∈ B R such that ẽ0(b) is defined. By Theorem 3.19, for every composition σ

of combinatorial R-matrices acting on B R , σ(b) admits ẽ0 and ẽ0(σ (b)) = σ(ẽ0(b)). Let
p(σ ) denote the index of the tensor position that is changed by ẽ0 acting on σ(b). Write
k = p(id). Clearly

p(σiσ) = p(σ ) unless p(σ ) ∈ {i, i + 1}. (3.20)

Write σi, j = σi+1σi+2 · · · σ j−1 for 0 ≤ i < j ≤ t . By definition σi−1, j = σiσi, j for i ≥ 1.
Fix 2 ≤ j ≤ t . By (3.13),

�i, j (b) := Hi (ẽ0(σi, j b)) − Hi (σi, j (b)) =




−1 if p(σi, j ) = p(σi−1, j ) = i + 1

1 if p(σi, j ) = p(σi−1, j ) = i

0 otherwise.

It suffices to show that

� j (b) :=
j−1∑
i=1

�i, j (b) =




1 if j $= k and p(σ0, j ) = 1

−1 if j = k and p(σ0,k) $= 1

0 otherwise.

(3.21)

There are three main cases. In each case it is shown that (3.21) is satisfied.

(1) k > j : p(σi, j ) = k for all 1 ≤ i < j and � j = 0.
(2) k < j : p(σi, j ) = k for i ≥ k. This means �i, j = 0 for j > i > k. There are two subcases.

(a) p(σk−1, j ) = k +1. Then p(σi, j ) = k +1 for 0 ≤ i ≤ k −1, �i, j = 0 for 1 ≤ i ≤ k
and � j = 0.

(b) p(σk−1, j ) = k. There is a minimum index q j such that p(σk−1, j ) = k, p(σk−2, j ) =
k − 1, p(σk−3, j ) = k − 2, down to p(σq j −1, j ) = q j , and thereafter p(σi, j ) = q j

for 0 ≤ i < q j − 1. Then �k, j = 1, �i, j = 0 for k > i ≥ q j , �q j −1, j = −1,
and �i, j = 0 for i < q j − 1. Summing, � j = 1 if q j = 1 (that is, p(σ0, j ) = 1) and
� j = 0 otherwise (that is, p(σ0, j $= 1).

(3) k = j : By definition p(σk−1,k) = p(id) = k. There is an index qk such that p(σk−2,k) =
k − 1, p(σk−3,k) = k − 2, down to p(σqk−1,k) = qk , and thereafter p(σi,k) = qk for
0 ≤ i < qk − 1. Then �i,k = 0 for i $= qk − 1 and �qk−1,k = −1. Therefore �k = 0 if
qk = 1 (that is, p(σ0,k) = 1) and �k = −1 if qk $= 1 (that is, p(σ0,k) $= 1).
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Finally, suppose ε0(b) > µ j for all j . Since a tableau of shape R j can have at most µ j

letters n, ϕ(b j ) ≤ µ j for all b j ∈ B R, j . By Theorem 3.19 ε0(σ (b)) > µ j for all j and all
compositions σ of R-matrices. Therefore p(σ ) $= 1 for all σ . ✷

4. Affine crystals and R-cocyclage

In this section a connection is established between ẽ0 on B R and the R-cocyclage poset
structure on LRT(R).

4.1. Promotion and the RSK tableau pair

To give the effect of ẽ0 on the RSK tableau pair, in light of (3.8) the effect of pr on the tableau
pair must be given first. Let b ∈ B R . We give an algorithm to compute (P(pr(b)), Q(pr(b)))

in terms of (P(b), Q(b)) without using b directly. This algorithm can be reversed in order
to compute the effect of pr−1 on the tableau pair.

Recall the notation of Section 2.2. Let wR
0 denote the automorphism of conjugation acting

on words, corresponding to the longest permutation of the Young subgroup SA1 × SA2 ×
· · · × SAt of the symmetric group of the alphabet A1 ∪ · · · ∪ At .

Proposition 4.1 Let b ∈ B R, P = P(b) and Q = Q(b). Let H be the horizontal strip
shape(P)/shape(P|[n−1]),andv be the row word and Q∧ the tableau such that shape(Q∧) =
shape(P|[n−1]) and Q = P(vQ∧) (see Lemma 7.2). Then

Q(pr(b)) = P
((

wR
0 Q∧)(

wR
0 v

))
. (4.1)

Let H1 be the horizontal strip shape(Q(pr(b)))/shape(Q∧), P1 the tableau given by ad-
joining to P|[n−1] the letters n at the cells of H1. Then

P(pr(b)) = pr(P1). (4.2)

Example 4.2 Continuing the previous example, consider the biword whose lower word is
word(b) and upper word is given by the row indices of letters in b viewed as a skew tableau.

7776665554443332211

3572463452341132211

Let P = P(b) and Q = Q(b). Then

P =

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4

5 5

6

7

Q =

1 1 3 3

2 2 4 6

3 4 5 7

4 5 6

5 7

6

7

.
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Then H is the skew shape given by the single cell (7, 1), v = 7, wR
0 v = 6,

Q∧ =

1 1 3 3

2 2 4 6

3 4 5 7

4 5 6

5 7

6

wR
0 Q∧ =

1 1 3 3

2 2 4 6

3 4 5 7

4 5 6

5 7

7

,

and

Q(pr(b)) =

1 1 3 3 6

2 2 4 6

3 4 5 7

4 5 6

5 7

7

.

So H1 consists of the single cell (1, 5) and

P1 =

1 1 1 1 7

2 2 2 2

3 3 3 3

4 4 4

5 5

6

P(pr(b)) = pr(P1) =

1 2 2 2 2

3 3 3 3

4 4 4 4

5 5 5

6 6

7

.

Proof of Proposition 4.1: Write b = · · · b2 ⊗ b1, c j = b j |[n−1], for all j , and c = · · · c2 ⊗
c1. By Lemmas 7.2 and 7.3 Q∧ = Q(c). By content considerations v = max(A1)

mn(b1)

max(A2)
mn(b2) · · ·. Let c′

j = P↘(c j ) for all j and c′ = · · · c′
2 ⊗ c′

1. Applying Lemma 7.10 for
each tensor factor, we have Q(c′) = wR

0 (Q(c)) = wR
0 (Q∧).

By Lemmas 7.2, 7.3 and 3.14, there is a row word u such that

Q(pr(b)) = P
(
Q

(
pr(b)|[2,n]

)
u
) = P(Q(c′ + 1)u) = P(Q(c′)u) = P

((
wR

0 Q∧)
u
)
.

By considering contents, u = min(A1)
mn(b1) min(A2)

mn(b2) · · ·. Since u and v are row words,
it follows just by checking contents that u = wR

0 v. Therefore Q(pr(b)) = P((wR
0 U )(wR

0 v)).
By Lemma 3.14 and Proposition 7.1,

P
(
pr(b)|[2,n]

) = P(c′ + 1) = P(c) + 1 = P(b)|[n−1] + 1.

By Lemma 3.13 applied to P1, P(pr(b)) = pr(P1). ✷
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4.2. ẽ0 and R-cocyclage

Any covering relation in the R-cocyclage is induced by an application of ẽ0 in B R , assuming
that n >

∑
j η j . This assumption implies that LRT≤n(R) = LRT(R) since the maximum

number of rows in an element of LRT(R) is
∑

j η j , achieved by the tableau P(· · · Y2Y1).

Theorem 4.3 Suppose n >
∑

j η j and S ←R T for S, T ∈ LRT(R).
(1) There is an element b ∈ B R such that Q(b) = T and Q(ẽ0(b)) = S.
(2) If in addition S <·R T then ER(ẽ0(b)) = ER(b) − 1.

Proof: Let shape(T ) = λ and S ←R,ν T with corner cell s = λ/ν = (m, λm). S is uniquely
determined by T and ν by [30, Remark 18]. Let

K = Key(λm, λ1, λ2, . . . , λm−1, λm+1, λm+2, . . .).

By Proposition 3.4 there is a b ∈ B R such that P(b) = K and Q(b) = T . By the uniqueness
of S with respect to T and ν, for part (1) it suffices to show that Q(ẽ0(b)) ←R,ν T .

Since T ∈ LRT(λ; R) and n >
∑

j η j ,λn = 0. It follows that m < n and mn(b) = mn(K ) =
0. Also m1(b) = m1(K ) = λm , so ϕ0(b) = λm . By the definition of <·R , λm > max j µ j . By
Lemma 3.25, ER(ẽ0(b)) = ER(b) − 1. This proves part (2).

We shall compute Q(ẽ0(b)) using (3.8). It will be shown first that

P(ẽ1pr(b)) = ẽ1(K + 1)

Q(ẽ1pr(b)) = T .
(4.3)

that is, H is empty. By Proposition 4.1, P(pr(b)) = pr(K ) and Q(pr(b)) = T . Since mn(K ) = 0,
pr(K ) = K + 1. Equation (4.3) follows by (3.2) for ẽ1.

Since m1(K + 1) = 0 and m2(K + 1) = m1(K ) = λm > 0, K + 1 admits ẽ1. ẽ1(K + 1)

is obtained from K + 1 by changing the 2 in the northwest corner to a 1.
In order to obtain Q(ẽ0(b)), by (3.8) the reverse of the procedure in Proposition 4.1 must

be applied to the tableau pair in (4.3). The first ingredient is H1. For this it is enough to give
the shape of P(ẽ1(pr(b)))|[n−1]. We have

P(ẽ1(pr(b)))|[n−1] = pr−1(ẽ1(K + 1))|[n−1] = P
(
ẽ1(K + 1)|[2,n]

) − 1

= P
(
ẽ1(· · · 3λ1 2λm |[2,n]

) − 1 = P
( · · · 3λ1 12λm−1|[2,n]

)
= P(· · · 3λ1 2λm−1) = Key(λm − 1, λ1, λ2, . . .) =: K ′

by Lemma 3.13 and the definition of K . But shape(K ′) = ν = λ−{s}. Therefore H1 = {s}.
To compute Q∧ andv, let u′′ be the tableau of shapeν and x ′′ the letter, such that T = P(u′′x ′′)
(see Lemma 7.2). Then Q∧ = wR

0 u′′ and v = wR
0 x ′′ and Q(pr−1ẽ1pr(b)) = P(vQ∧). There-

fore Q(ẽ0(b)) ←R,ν T . ✷
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4.3. Energy depends only on Q tableau

Let b ∈ B R . By definition ER(b)does not vary on Uq(An−1)-components of B R . Neither does
Q(b), which uniquely specifies the Uq(An−1)-component of b ∈ B R . So there should be a
way to compute ER(b) only in terms of the tableau Q(b). And indeed there is. Consequently,
the parameter n that is always present when dealing with the U ′

q(A(1)
n−1)-crystal B R , has been

rendered irrelevant, since one may choose to work with LRT(R), the parametrizing set for the
“universal multiplicity space”. The proof uses the connection between ẽ0 and R-cocyclage.

The following crucial Lemma has a subtle proof which involves very detailed properties
of LRT(R) in the two-rectangle case R = (R1, R2) given in [30, Section 5.2]. This proof is
deferred to the Appendix.

Lemma 4.4 Suppose R = (R1, R2).
(1) LRT≤n(R1, R2) has a unique ≤R-minimum element Tmin.
(2) If T ∈ LRT(R) is not ≤R-minimal, then there is an element b ∈ B R such that Q(ẽ0(b))

<·R T = Q(b) and HR2,R1(ẽ0(b)) = HR2,R1(b) − 1.

As a consequence, one obtains the two-rectangle special case of Theorem 3.23.

Proposition 4.5 Let R = (R1, R2). Then

HR2,R1(b) = dR2,R1(Q(b)) (4.4)

for all b ∈ B R.

Proof: By Theorem 3.22 and Proposition 3.3, both sides of (4.4) are constant on Uq(An−1)-
connected components. The subposet LRT≤n(R) ⊂ LRT(R) is connected by Lemma 4.4,
which, with Theorem 2.13(C2), implies that the two sides of (4.4) differ by a global constant.
But it is easy to check that they agree on the element y = y2 ⊗ y1 where y j = Key(R j ).

✷

By Proposition 4.5 and (3.12).

ER(b) =
∑

1≤i< j≤t

Hi (σi+1 · · · σ j−1b)

=
∑

1≤i< j≤t

di (Q(σi+1 · · · σ j−1b)

=
∑

1≤i< j≤t

di (τi+1 · · · τ j−1Q(b))

(4.5)

It now makes sense to define ER : LRT(R) → Z+ by

ER(Q) =
∑

1≤i< j≤t

di (τi+1 · · · τ j−1 Q). (4.6)
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4.4. Proof of Theorem 3.23

It suffices to show

ER(Q) = chargeR(Q) for all Q ∈ LRT(R). (4.7)

Since n is entirely absent from (4.7), we may assume that n >
∑

j η j and use Theorem 4.3,
which only applies in this special case.

Let Q ∈ LRT(λ; R). Note that λn = 0 since the maximum number of rows in an element
of LRT(R) is

∑
j η j . It follows from the definition of R-LR and Theorem 2.7 that R j ⊂ λ

for all j . In particular, λ1 ≥ max j µ j .
The proof now proceeds as in the cases (C1) through (C4) of Theorem 2.13.
Suppose first that Q is not ≤R-minimal. By Theorems 4.3 and 2.13(C2), this case is

finished by induction on chargeR .
Otherwise let Q be ≤R-minimal, or equivalently, λ1 = max j µ j by Theorem 2.12(2).

Suppose that λ1 = µ1. By Theorem 2.12(3), Q = Q∧Y1 where Q∧ ∈ LRT(R∧) where R∧ =
(R2, R3, . . .). By Theorem 2.13(C3) and induction on the number t of rectangles in R, it
suffices to show that ER∧(Q∧) = ER(Q). By definition

ER(Q) − ER∧(Q∧) =
∑

1< j≤t

d1(τ2 · · · τ j−1 Q).

Each summand vanishes by Remark 2.10.
Finally, suppose λ1 = max j µ j and the maximum is attained by µp+1 but not by µ j

for j ≤ p. By Theorem 2.13(C4) and induction on p (eventually reducing to the case
λ1 = µ1 = max j µ j ) it suffices to show that Erp R(τp Q) = ER(Q). For 1 ≤ i < j ≤ t , write

wi, j := τi+1τi+2 · · · τ j−1 (4.8)

and

d ′
i, j := di (wi, jτp Q)

di, j := di (wi, j Q).

By definition

ER(Q) − Eτ R(τ Q) =
∑

1≤i< j≤t

(di, j − d ′
i, j ).

The value d ′
i, j is computed using a case by case analysis.

(1) i < p + 1. In this case it is clear that d ′
i, j = di, j .

(2) i = p + 1. Then wp+1, jτp = τpwp+1, j and

d ′
p+1, j = dp+1(τpwp+1, j Q).
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(3) p = i and p + 1 < j . Then

wp, jτp = τp+1wp+1, jτp = τp+1τpwp+1, j

so that

d ′
p, j = dp(τp+1τpwp+1, j Q).

(4) p = i and p + 1 = j . Here wi, j is the identity, and

d ′
p,p+1 = dp(τp Q) = dp(Q) = dp,p+1.

(5) i < p and p + 1 < j . Then wi, jτp = τp+1wi, j so that

d ′
i, j = di (τp+1wi, j Q) = di (wi, j Q) = di, j .

since the restriction of wi, j Q to the i-th and i + 1-st subalphabets is not affected by
τp+1.

(6) i < p and j = p + 1. Then wi,p+1τp = wi,p and

d ′
i,p+1 = di (wi,p Q) = di,p.

(7) i < p and j = p. Then wi,pτp = wi,p+1 and

d ′
i,p = di (wi,p+1 Q) = di,p+1.

(8) j < p. In this case it is clear that di, j = d ′
i, j .

Consider the contributions of such terms to ER(Q) − Eτ R(τ Q) = ∑
1≤i< j≤t (di, j − d ′

i, j ).

In cases 1, 4, 5, and 8, d ′
i, j = di, j and the terms cancel. The sum of the terms in cases 6 and

7 cancel. So it is enough to show that the sum of terms in 2 and 3 cancel, that is,

0 =
∑

j>p+1

(dp+1(τpwp+1, j Q) − dp+1(wp+1, j Q))

+
∑

j>p+1

(dp(τp+1τpwp+1, j Q) − dp(wp, j Q)).

Rewriting dp(wp, j Q) = dp(τp+1wp+1, j Q), observe that without loss of generality it may
be assumed that t = 3 and it is enough to show that

0 = d2(τ1 Q) − d2(Q) + d1(τ2τ1 Q) − d1(τ2 Q). (4.9)

Using the previous cases one may assume that λ1 = µp+1 and λ1 > µr for r ≤ p where
p ∈ {1, 2}. If p = 2 then by Remark 2.10 all terms vanish. If p = 1 Remark 2.10 implies
that d2(Q) = d1(τ2τ1 Q) = 0. It is enough to show that d2(τ1 Q) = d1(τ2 Q). Since λ has µ2
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columns, any τ j that moves the wide rectangle R2, merely causes the corresponding sub-
tableau Y2 to exchange vertically within its column in Q. It follows that d2(τ1 Q) = d1(τ2 Q)

since the shapes of the tableaux used to compute both quantities coincide.
This completes the proof.

Remark 4.6 Equation (4.9) also follows from the fact that the R-matrix acting on threefold
tensor products of affinizations of modules of the form W k,l , satisfies the Yang-Baxter
equation.

5. Tensor product structure on Demazure crystals

5.1. Perfect crystals

In [6] the notion of a perfect crystal is defined. In [7] Bk,l is shown to be perfect of level l
for type A(1)

n−1. We recall some consequences of this theory.

The level of a crystal B is defined by lev(B) = minb∈B〈c, ε(b)〉. For the root system A(1)
n−1

the quantity being minimized is
∑

i∈I εi (b). The set of minimal elements in B is given by
Bmin = {b ∈ B | 〈c, ε(b)〉 = lev(B)}. Define ε, ϕ : B → Pcl by ε(b) = ∑

i∈I εi (b)�i and
ϕ(b) = ∑

i∈I ϕi (b)�i and (P+
cl )l = {λ ∈ P+

cl | 〈c, λ〉 = l}.

Theorem 5.1 [6, 7] Let B = Bk,l .
(1) The maps ε and ϕ restrict to bijections Bmin → (P+

cl )l .
(2) Given any λ ∈ (P+

cl )l , there is an isomorphism of Pcl -weighted I -crystals

Bk,l ⊗ B(λ) ∼= B(λ′) (5.1)

where λ′ = ϕ(ε−1(λ)) and ε−1(λ) ⊗ uλ �→ uλ′ .

For the rest of Section 5, assume that µ j is a constant, say l. Let λ ∈ (P+
cl )l . Iterating

Theorem 5.1, there is an U ′
q(A(1)

n−1)-crystal isomorphism

B R ⊗ B(λ) ∼= B(λ′) (5.2)

for a suitable λ′.

5.2. Tensor products as Demazure crystals

In [15] it was observed that under suitable conditions, tensor products of finite crystals
are isomorphic to crystal graphs of Demazure submodules of irreducible integrable highest
weight modules.

The tensor product structure for the Demazure crystals is a consequence of an inhomo-
geneous version of [15, Theorem 1] that uses Lemma 3.25.
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Given a sequence η = (η1, . . . , ηt ) with 0 < η j < n, let ηt be the partition with less than n
parts, given by transposing the partition η+ obtained by sorting the parts of η into decreasing
order.

Let w0 ∈ W̄ be the longest element. Let wη = wη,0 ∈ W (not related to w0 even for η = 0)
be the shortest element such that

wη�|η| = �0 + w0wtsl(η
t ). (5.3)

Note that lw0η
t is the most antidominant weight in B R viewed as a Uq(An−1)-crystal. If

|η| = n then wη acts on X = �0 + P̄cl by the translation twtsl(w0(ηt )). Let χ = r1r2 · · · rn−1 ∈ W̄
and ψ = t�̄1

χ ∈ W̃ , where W̃ = P̄cl � W̄ is the extended affine Weyl group. Note that
ψ(�i ) = �i+1 and ψ(ᾱi ) = ᾱi+1 for all i ∈ I . Define tη,s = ψ s tηψ−s ∈ W .

Theorem 5.2 Let η = (η1, . . . , ηt ) with 0 < η j < n, l > 0, and R j = (lη j ) for all j . The
isomorphismB(l�s+|η|) ∼= B R ⊗B(l�s) of Pcl -weighted I -crystals given by iterating (5.2),

restricts to a bijection

Bwη,s

(
l�s+|η|

) ∼= B R ⊗ ul�s (5.4)

as full subgraphs. Moreover, suppose s = 0 and v �→ b ⊗ ul�0 . Let wt : B R ⊗B(l�0) → P
be given by wt(b ⊗b′) = wt(b)−δER(b)+wtP(b′). Then the isomorphism (5.4) preserves
P-weights. That is,

〈
d, l�|η| − wt(v)

〉 = ER(b) (5.5)

where the left hand side is the distance along the null root δ of v from the affine highest
weight vector ul�|η| ∈V(l�|η|).

If s $= 0 then ER must be modified to make the isomorphism preserve P-weights. Only
in the s = 0 case is the above Demazure module closed under Uq(An−1)-crystal operators.

Writing q = e−δ , we have the equality of characters in Z[P]:

Corollary 5.3 With hypotheses as in Theorem 5.2 with s = 0,

ch
(
Vwη

(l�0)
) = el�0 chq(B R). (5.6)

One obtains Theorem 1.2 by putting together Theorem 2.11 and Corollaries 3.24 and 5.3.

5.3. Generating Demazure crystals

Given an I -crystal B, a subset B ′, and i ∈ I , define Li (B ′) = { f̃ m
i (b) | m ≥ 0, b ∈ B ′}.

Given a sequence i = (i p, . . . , i1) define L i = Li p · · · Li1 .
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Theorem 5.4 [8] Let λ ∈ P+
cl and w ∈ W such that w is shortest among elements of W

sending λ to wλ. Bid(λ) = {uλ}. Suppose w = riv. Then

Li (Bv(λ)) =
{Bw(λ) if w > v

Bv(λ) otherwise.

In particular if w = ri p · · · ri1 is a reduced decomposition then L i(uλ) = Bw(λ).

5.4. Proof of Theorem 5.2

First (5.4) is proved. Following [14, Section 4] (but using different indexing), a reduced
decomposition R(wη,s) of wη,s ∈ W is given as follows. All subscripts are taken modulo n.
Define

R
(
w(k)

) = (rn−krn−k+1 · · · rn−1) · · · (r2r3 · · · rk+1)(r1r2 · · · rk) (5.7)

Let R(w(k),s) be obtained from R(w(k)) by adding s to each subscript. This takes care of
the case that η = (k) has a single part. In general define

R(wη,s) = R
(
w(η1),s

)
R

(
w(η2),s+η1

)
R

(
w(η3),s+η1+η2

) · · ·R(
w(ηt ),s+|η|−ηt

)
.

One may check that these are all reduced words for the elements wη,s defined as in (5.3).
Let B j = Bη j ,l for 1 ≤ j ≤ t . Define b0 = ul�s and b j ∈ B j by ε(b j ) = ϕ(b j−1) for all

j ≥ 1. Iterating (5.2), one has

B
(
l�s+|η|

) ∼= Bt ⊗ · · · ⊗ B1 ⊗ B(l�s)

ul�s+|η| �→ bt ⊗ · · · ⊗ b1 ⊗ ul�s . (5.8)

In light of Theorem 5.4 it must be shown that

LR(wη,s )

(
bt ⊗ · · · ⊗ b1 ⊗ ul�s

) = Bt ⊗ · · · ⊗ B1 ⊗ ul�s . (5.9)

For convenience in the proof of (5.4), using the rotation automorphism of the Dynkin
diagram A(1)

n−1, it may be assumed that s = 0. The proof proceeds by induction on the number
of tensor factors. Write η = (k, η∧). Then R(wη) =R(w(k))R(wη∧,k) and by induction

LR(wη∧ ,k )

(
bt ⊗ · · · ⊗ b2 ⊗ ul�k

) = Bt ⊗ · · · ⊗ B2 ⊗ ul�k . (5.10)

By (5.2) B(l�k) ∼= B1 ⊗ B(l�0) with ul�k �→ b1 ⊗ ul�0 . It follows that

LR(wη∧ ,k )

(
bt ⊗ · · · ⊗ b2 ⊗ b1 ⊗ ul�0

) = Bt ⊗ · · · ⊗ B2 ⊗ b1 ⊗ ul�0 . (5.11)

To prove (5.10) it suffices to show that

LR(w(k),k )

(
Bt ⊗ · · · ⊗ B2 ⊗ b1 ⊗ ul�0

) = Bt ⊗ · · · ⊗ B2 ⊗ B1 ⊗ ul�0 . (5.12)
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By Theorem 5.4 for type An−1, LR(w(k))(b1) = B1. Since w(k) has no r0 in it, LR(w(k))(b1 ⊗
ul�0) = B1 ⊗ ul�0 . Equation (5.12) follows from the following Lemma, applied with B1

and Bt ⊗ · · · ⊗ B2.

Lemma 5.5 [15, Lemma 1] Let n ≥ 0, i ∈ I and b j ∈ B j for j = 1, 2. Then there exist
p, q ≥ 0 such that

b2 ⊗ f̃ n
i b1 = f̃ p

i

(
ẽq

i (b2) ⊗ b1
)
.

It remains to show (5.5). Since 〈d, αi 〉 = −δi0, the left hand side is also equal to the
number of times f̃0 has been applied in passing from ul�|η| to v under LR(wη). It suffices
to check that the energy increases by 1 upon the application of any of these operators f̃0.
Consider such an application of f̃0, to b′ ⊗ ul�0 = b′

t ⊗ · · · ⊗ b′
1 ⊗ ul�0 ∈ B R ⊗ B(l�0).

Recall that in the computation of (5.11), the tensor factor b1 ∈ B1 is never disturbed. Also
since Lw(k)

has no f̃0, it follows that b′
1 = b1. But by definition ε0(b1) = ϕ0(ul�0) = l. It

follows that ε0( f̃0(b′)) > ε0(b′) ≥ l = µ j for all 1 ≤ j ≤ t . By Lemma 3.25 it follows
that ER( f̃0(b′)) = ER(b′) + 1.

This completes the proof of Theorem 5.2.

6. Generalization of Han’s monotonicity for Kostka-Foulkes polynomials

The following monotonicity property for the Kostka-Foulkes polynomials was proved by
G.-N. Han [4]:

Kλ,µ(q) ≤ Kλ∪{a},µ∪{a}(q)

where λ ∪ {a} denotes the partition obtained by adding a row of length a to λ.
Here is the generalization of this result for the polynomials Kλ;R(q) that was conjectured

by A.N. Kirillov.

Theorem 6.1 Let R be a dominant sequence of rectangles and R0 = (lk) another rectangle.
Then

Kλ;R(q) ≤ Kλ∪R0;R∪R0(q)

where λ ∪ R0 is the partition obtained by adding k rows of size l to λ and R ∪ R0 is any
dominant sequence of rectangles obtained by adding the rectangle R0 to R.

Proof: Let R+ = (R0, R1, . . . , Rt ). By Theorem 2.11, (4.7), and Theorem 2.13(C4), it
suffices to define an embedding iR : LRT(λ; R) → LRT(λ∪ R0; R+) such that ER+(iR(Q))

= ER(iR(Q)). The elements of W(R) will be regarded as being in an alphabet A, whose
letters are larger than the zeroth alphabet A0, which has size k.

Define the embedding W(R) → W (R+) by u �→ uY0 where Y0 = Key((lk)). For any λ

this embedding induces the desired embedding, which is defined by iR(Q) = P(QY0). Since
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the letters of Y0 are smaller than those of Q, it follows that shape(iR(Q)) = shape(Q) ∪ (lk).
Thus iR is well-defined.

Fix 1 ≤ j ≤ t and B be the union of the subalphabets A0 and A′
j for R0 and R j in

R′ = r1r2 · · · r j R+ = (R0, R j , R1, R2 . . .). Let (Y0, Y ′, . . .) be the sequence of tableaux as
in the definition of W (R′). With wi, j as in (4.8) and writing d0 = dR j ,R0 ,

d0(w0, j iR(Q)) = d0(w0, j QY0) = d0((w0, j Q)Y0) = d0(((w0, j Q)Y0)|B)

= d0
((

w0, j Q)|A′
j
Y0

) = d0
(
P

(
(w0, j Q)|A′

j

)
Y0

) = d0(Y
′
j Y0) = 0

(6.1)

by the Knuth invariance of d0, the fact that w0, j doesn’t touch letters in A0, the definition
of d0, the fact that w0, j Q ∈ LRT(w0, j R), and Remark 2.10. If i > 0 then

di (wi, j iR(Q)) = di ((wi, j iR(Q))|A

= di (wi, j (iR(Q)|A))

= di (wi, j Q). (6.2)

From (6.1) and (6.2) it follows that ER+(iR(Q)) = ER(Q). ✷

Appendix A

A.1. RSK miscellany

Proposition 7.1 [19] If A is an interval and u ≡ v then u|A ≡ v|A.

Proof: Follows from (2.1). ✷

Lemma 7.2 [26]
(1) Let v be a row word of length k, S ∈ T(µ) and λ = shape(P(Sv)). Then λ/µ is a

horizontal strip of size k.
(2) Let T ∈ T(λ) and µ ⊂ λ such that λ/µ is a horizontal strip of size k. Then there is a

unique pair (S, v) where v is a row word of length k and S is a tableau of shape µ,

such that T = P(Sv).
The same is true if everywhere Sv is replaced by vS.

Lemma 7.3 Let w = · · · w2w1 be a sequence of row words in the alphabet [n].
(1) Let (v,Q1) be the unique pair where v is a row word and shape(Q1) = shape

(P(w|[n−1])), such that P(vQ1) = Q(w). Then Q1 = Q(w|[n−1]) and m j (v) = mn(w j )

for all j ≥ 1.
(2) Let (u,Q′

1)be the unique pair where u is a row word and shape(Q′
1) = shape(P(w|[2,n])),

such that P(Q′
1u) = Q(w). Then Q′

1 = Q(w|[2,n]) and m j (u) = m1(w j ) for all j ≥ 1.

A.2. Littlewood-Richardson rule

Given a word u and a letter i , define pi (u) to be the number of pairs of matched parentheses
in the word obtained from u by replacing each letter i (resp. i + 1) by a right (resp. left)
parenthesis, and ignoring other letters.
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Given a row index i and a skew shape D, let ovi (D) be the overlap of the i-th and
(i + 1)-th rows of D, that is, the number of columns of D containing cells in both the i-th
and (i + 1)-th rows.

Say that a word u is D-compatible if

(1) mi (u) is the number of cells in the i-th row of D for all i .
(2) pi (u) ≥ ovi (D) for all i .

Let C(λ; D) be the set of D-compatible tableaux of shape λ.

Remark 7.4 Let D = λ/µ. Then u is D-compatible if and only if content(u) = λ − µ

and u · · · 2µ2 1µ1 is Yamanouchi.

The following theorem is a reformulation of a theorem of Dennis White [36], which is a
version of the Littlewood-Richardson rule [20].

Theorem 7.5 b ∈ T(D) if and only if Q(b) is D-compatible. In particular, the RSK map
v �→ (P(v), Q(v)) restricts to a bijection

T(D) ∼=
⋃
λ

T(λ) × C(λ; D) (7.1)

Corollary 7.6 Let D and E be skew shapes and let A and B be the intervals of row indices
of the subshapes D and E inside D ⊗ E respectively.
(1) A tableau Q is D ⊗ E-compatible if and only if Q|A is D-compatible and Q|B

is E-compatible.
(2) Suppose c ∈ B E and b = · · · b2b1 is a sequence of row words b j such that the length

of b j is the size of the j-th row of D for all j . Then b ∈ B D if and only if Q(b ⊗ c)|A

is D-compatible.

Proof: Since the last row of E and the first row of D have zero overlap, the first part
follows from the definition of compatibility. For the second part, Theorem 7.5 applied to c
and E imply that Q(c) is E-compatible. The following are equivalent:

(1) b ∈ B D .
(2) b ⊗ c ∈ B D⊗E .
(3) Q(b ⊗ c) is D ⊗ E-compatible.
(4) Q(b ⊗ c)|A is D-compatible and Q(b ⊗ c)|B is E-compatible.
(5) Q(b ⊗ c)|A is D-compatible.

The first and second items are equivalent by the definition of a tableau, since it is assumed
that c ∈ B E . The second and third items are equivalent by Theorem 7.5 applied to b ⊗ c and
D ⊗ E . The third and fourth are equivalent by part 1. The fourth and fifth are equivalent
because Q(b ⊗ c)|B = Q(c) by definition of Q and the aforementioned fact that Q(c) is
E-compatible. ✷
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Lemma 7.7 The following are equivalent:
(1) u is λ-compatible.
(2) u is Yamanouchi of content λ.
(3) P(u) = Key(λ).

Lemma 7.8 Let λ ⊂ (lk) and λ↘ the antinormal shape obtained from λ by a 180 degree
rotation inside (lk).
(1) Key(λk, . . . , λ2, λ1) is the unique λ↘-compatible tableau of partition shape.
(2) If b ∈ T(λ) then P↘(b) ∈ T(λ↘).

Proof: Part 1 holds by direct computation. For part 2, suppose shape(P↘(b)) = µ↘.
Applying Theorem 7.5 to P↘(b) and using part 1, we have Q(P↘(b)) = Key(µk, . . . , µ1).
On the other hand, P(P↘(b)) = b has shape λ. But these tableaux must have the same shape,
so λ = µ. ✷

Lemma 7.9 u is R-LR if and only if it is (Rt ⊗ · · · ⊗ R1)-compatible.

Proof: Follows from Corollary 7.6 part 1 and Lemma 7.7. ✷

Lemma 7.10 Let λ ⊂ (lk) and b ∈ Bλ. Let P↘(b) be regarded as a skew tableau of the
antinormal shape λ↘ defined by the 180-degree rotation of λ inside the rectangle (lk). Let
b ∈ Bλ, c ∈ B D for a skew shape D, A and B the sets of row indices for the subshapes λ

and D of λ ⊗ D, and wA
0 the automorphism of conjugation for the longest element of the

symmetric group on A. Then

Q(P↘(b) ⊗ c) = wA
0 (Q(b ⊗ c)).

Proof: Let us view b as an element of B(λk ) ⊗ · · · ⊗ B(λ1). Write b = bk ⊗ · · · ⊗ b2 ⊗ b1

where b j is the j-th row of b. Let σ A be the composition of combinatorial R-matrices
that reverses these k tensor factors. Let b′ = σ A(b) = b′

k ⊗ · · · ⊗ b′
1. Applying Remark

3.20 repeatedly, one has Q(b′ ⊗ c) = wA
0 Q(b ⊗ c). It remains to show that b′ = P↘(b). We

show that b′ and P↘(b), viewed as tableaux of the skew shape (λ1) ⊗ · · · ⊗ (λk), have the
same P and Q tableaux. By the definition of σ A, P(b′) = P(b) = b = P(P↘(b)). In partic-
ular shape(Q(b′)) = λ. Since content(Q(b′)) = (λk, . . . , λ1), Q(b′) = Key(λk, . . . , λ1). By
Lemma 7.8 Q(P↘(b)) = Q(b′). ✷

A.3. Proof of Lemma 4.4

Recall that R = (R1, R2). Applying the combinatorial R-matrix σ to exchange R1 and R2

if necessary, it may be assumed that either µ1 > µ2, or µ1 = µ2 and η1 ≥ η2. This is justified
by [30, Theorem 21], (3.15), and (3.12).

Suppose first that η1 + η2 < n. In this case LRT≤n(R) = LRT(R). By Theorem 2.12 it
follows that the unique ≤R-minimum element is given by the tableau Tmin = Y2Y1. Part 2
follows from Theorem 4.3(2).
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Otherwise let η1 + η2 ≥ n. Clearly, an element T of the subposet LRT≤n(R) ⊂ LRT(R)

is minimal if and only if, for every relation S <·R T with S ∈ LRT(R), S $∈ LRT≤n(R) (that
is, S has more than n rows).

Let T ∈ LRT(R), with shape(T ) = λ, say. In [30, Section 5.2] the following explicit
description of T is given. Write A1 = [η1] and A2 = [η1 + 1, η1 + η2] for the subalphabets
of R. Then T |A1 = Y1 = Key(R1). Let Te and Tw be the east and west parts obtained by
slicing T |A2 vertically between the µ1-th and (µ1 + 1)-th columns. Let α = shape(Te); it
has at most min(η1, η2) nonzero parts. Then Te = Key(0η1 , α). Define β j = µ2 − α j for
1 ≤ j ≤ η2. Then Tw = Key(0η2 , β). Moreover β j = λη1+η2+1− j for 1 ≤ j ≤ η2. Let α(T )

be the partition α corresponding to an element T ∈ LRT(R).
It follows that T ∈ LRT≤n(R), that is, λ has at most n rows, if and only if α j = µ2 for

1 ≤ j ≤ η1 + η2 − n, if and only if (µ
η1+η2−n
2 ) ⊂ α(T ).

By [30, Lemma 37], if S <·R,ν T with λ = shape(T ) and λ/ν = s = (m, λm) then S is
uniquely defined by the property that α(S) is obtained from α(T ) by removing the corner
cell in row m. Thus Tmin exists and is given by the property that α(Tmin) = (µ

η1+η2−n
2 ).

For part 2, let S, T ∈ LRT≤n(R) as above. By the previous paragraph, α(S) is obtained
from α(T ) by removing a cell in the m-th row, so that m > η1 + η2 − n and αm > 0.

Define y ∈ B R by P(y) = Key(λ) and Q(y) = T . By the above explicit form of T , together
with Remark 3.7, y has the following explicit form. Let y = y2 ⊗ y1 with y j ∈ B R j . Then
y1 = Key(R1) and y2 ∈ B R2 is defined by

y2|[η1] = Key(α)

y2|[η1,n] = P↘
(
Key

(
0η1 , λη1+1, λη1+2, . . . , λn

)) (7.2)

Let K and b be as in the proof of Theorem 4.3. Note that

K = r̃1 · · · r̃m−1Key(λ) = f̃ λ1−λm
1 · · · f̃ λm−1−λm

m−1 Key(λ).

By Proposition 3.3 and the fact that ϕi (y1) = 0 for 1 ≤ i ≤ m − 1,

b = b2 ⊗ b1 = f̃ λ1−λm
1 · · · f̃ λm−1−λm

m−1 (y2 ⊗ y1) = (
f̃ λ1−λm
1 · · · f̃ λm−1−λm

m−1 y2
) ⊗ y1.

By (7.2) and m ≤ η1,

b2|[η1+1,n] = y2|[η1+1,n] (7.3)

and

b2|[η1] = f̃ λ1−λm
1 · · · f̃ λm−1−λm

m−1 Key(α)

= f̃ α1−αm
1 · · · f̃ αm−1−αm

m−1 Key(α)

= r̃1 · · · r̃m−1Key(α)

= Key(αm, α1, α2 . . . , αm−1, αm+1, . . .) =: K ′. (7.4)

We wish to show

ε0(b2) = m1(b2). (7.5)
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Suppose this holds. Then since ϕ0(b1) = 0 and ε0(b1) = µ1, it follows that ε0(b) = m1(b2)+
µ1 = αm +µ1 = λm > max j µ j . By Lemma 3.25 ER(ẽ0(b)) = ER(b)−1 for R = (R1, R2),
which proves the assertion on H .

Note that mn(b2) = λn may be nonzero, so (7.5) (or equivalently, ε0(b) = λm) is not
trivial, as opposed to the situation in Theorem 4.3.

By (3.7), ε0(b2) = ε1(pr(b2)) = ε1(pr(b2)|[2]). Equation (7.5) holds if and only if pr(b2)|[2]

has only one row. It suffices to compute the shape of the complementary tableau pr(b2)|[3,n].
Note that pr(b2)|[3,n] = P↘(b2|[2,n−1]) + 1 using Lemma 3.14, restriction to [3, n], and
Theorem 2.1(2). We compute P↘ in two stages. First,

pr(b2)|[η1+2,n] = P↘
(
b2|[η1+1,n−1]

) + 1

= P↘
(
Key

(
0η1 , λη1+1, λη1+2, . . . , λn

)|[η1+1,n−1]
) + 1

= P↘
(
Key

(
0η1 , λη1+1, λη1+2, . . . , λn−1, 0

)) + 1 (7.6)

by (7.2), (7.3), and the definition of Key. By Lemma 7.7(2), the shape of the tableau (7.6)
is the 180 degree rotation of the partition (λη1+1, . . . , λn−1). Using a jeu-de-taquin sliding
algorithm to compute P↘ of b2|[2,n−1], we may imagine that there are λn “holes” where
the letters n were in b2, and the holes are moving to the northwest in order from left
to right. Equation (7.6) implies that when exchanging past the entries in the subalphabet
[η1 + 1, n − 1], the holes moved directly vertically and now reside in the last λn columns
of the p-th row, where p = η1 + η2 − n + 1. Call their current position the horizontal strip
h. It remains to see how the holes enter the first row upon sliding them past K ′ = b2|[η1],
which is a tableau of shape α. Cut K ′ vertically between the αm-th and (αm + 1)-columns,
yielding west and east subtableaux Kw and Ke. Then Kw is Yamanouchi for its shape and
Ke − 1 is Yamanouchi for its shape. It follows that the holes exchange vertically within Ke

on their way to the northwest. In particular, they enter the first row in columns strictly east
of the αm-th. It follows that pr(b2)|[2] is contained in the first row. This proves (7.5).

It remains to show that Q(ẽ0(b)) <·R,ν T . ẽ0(b) = ẽ0(b2) ⊗ b1, for ε0(b2) = αm > 0 by
(7.5) and (7.4). The computation of ẽ0(b2) consists of applying pr, then ẽ1, and then pr−1.
By our detailed description of the computation of pr(b2)|[2,n] and the fact that pr(b2)|[2] is
the single row tableau 1λn 2αm , it follows that

pr−1(ẽ1(pr(b)))|[η1] = Key(αm − 1, α1, α2, . . . , αm−1, αm+1, . . . , ) =: K ′′.

Consequently P(ẽ0(b)|[η1]) = P(K ′′y1), which has the same shape as the first η1 rows
of λ but with the cell s = (m, λm) removed. This means that α(Q(ẽ0(b))) is obtained
from α = α(T ) by removing a cell in the m-th row, or that α(S) = α(Q(ẽ0(b))). But both
S, Q(ẽ0(b)) ∈ LRT(R). This implies S = Q(ẽ0(b)) and Q(ẽ0(b)) <·R T as desired.
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