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AFFINELY INVARIANT MATCHING METHODS WITH
DISCRIMINANT MIXTURES OF PROPORTIONAL
ELLIPSOIDALLY SYMMETRIC DISTRIBUTIONS

By Donald B. Rubin and Elizabeth A. Stuart∗

Harvard University and Mathematica Policy Research, Inc.

In observational studies designed to estimate the effects of in-
terventions or exposures, such as cigarette smoking, it is desirable
to try to control background differences between the treated group
(e.g., current smokers) and the control group (e.g., never smokers)
on covariates X (e.g., age, education). Matched sampling attempts
to effect this control by selecting subsets of the treated and control
groups with similar distributions of such covariates. This paper ex-
amines the consequences of matching using affinely invariant meth-
ods when the covariate distributions are “discriminant mixtures of
proportional ellipsoidally symmetric” (DMPES) distributions, a class
herein defined, which generalizes the ellipsoidal symmetry class of Ru-
bin and Thomas [16]. The resulting generalized results help indicate
why earlier results hold quite well even when the simple assumption
of ellipsoidal symmetry is not met (e.g., Rubin and Thomas [18]).
Extensions to conditionally affinely invariant matching with condi-
tionally DMPES distributions is also discussed.

1. Background. The goal in many applied projects is to estimate the
causal effect of a treatment (e.g., cigarette smoking) from non-randomized
data by comparing outcomes (e.g., lung cancer rates) in treated (e.g., cur-
rent smokers) and control (e.g., never smokers) groups, after adjusting for
covariate differences (e.g., age, education) between the groups. A common
method is to form matched subsamples of the treated and control groups
such that the distributions of covariates X are more similar in the matched
samples than in the original groups. The use of matched sampling has been
receiving more and more attention in fields such as statistics [e.g., 11, 15],
economics [e.g., 4, 7, 10, 21], political science [e.g., 9], sociology [e.g., 20],
and medicine [e.g., 1] as a class of methods for controlling bias in such obser-
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2 D.B. RUBIN AND E.A. STUART

vational studies. Here we provide theoretical guidance for choosing matching
methods that reduce bias in the matched groups as well as guidance on the
amount of bias reduction that can be achieved with fixed distributions and
fixed sample sizes.

We begin with random samples from the treated and control groups of
fixed sizesNt andNc, respectively, withX measured in both samples. Match-
ing chooses subsamples of fixed sizes Nmt and Nmc from the original groups
on which to measure the outcome variables, as well as possibly measure
additional covariates. Throughout, we use the subscripts t and c to indi-
cate quantities in the original random samples from the treated and control
groups, and the subscripts mt and mc to indicate the corresponding quan-
tities in the matched treated and control groups.

We restrict attention to a particular but general class of matching meth-
ods, those that are affinely invariant. In practice, many matching methods
are affinely invariant in the sense that the same matched samples will be
obtained after any full-rank affine transformation of X. For example, the
same matches will be obtained if people’s heights are measured in inches
or centimeters, or if their temperatures are measured in degrees Fahrenheit
or degrees Kelvin. Formally, let Xt and Xc be data matrices (units by vari-
ables). A matching method is a mapping from (Xt,Xc) to a pair of sets of
indices (T,C) representing the units chosen in the matched samples. An
affinely invariant matching method results in the same output (T,C) after
any (full-rank) affine transformation A of the X:

(Xt,Xc) → (T,C) implies (A(Xt), A(Xc)) → (T,C).

Affinely invariant matching methods include Mahalanobis metric, discrimi-
nant, or propensity score matching. Non-affinely invariant methods include
methods where one coordinate of X is treated differently from the others or
where nonlinear estimators of the discriminant (or other metric) are used,
as discussed by Rubin and Thomas [16].

Theoretical results in papers by Rubin and Thomas [16, 17] describe the
effects of affinely invariant matching on bias reduction, as well as on variance,
in the matched treated and matched control groups, whenX has ellipsoidally
symmetric distributions (e.g., the normal distribution or the multivariate t)
in the treated and control groups, with proportional covariances. Rubin and
Thomas [18] used those theoretical results to obtain a series of approxima-
tions for the bias and variance reduction possible in a particular matching
setting using true and estimated propensity scores, with no subsampling of
the treated sample and normal distributions. They then examined the per-
formance of these approximations by simulation with ellipsoidal non-normal
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MATCHING WITH DMPES DISTRIBUTIONS 3

distributions and found that the approximations based on the normal dis-
tribution held remarkably well, even for a t-distribution with 5 degrees of
freedom. They also explored the performance of the approximations with
real data from a study of prenatal hormone exposure, with 15 ordinal or
dichotomous covariates. Again, the approximations based on the normal
distribution were found to hold well, despite the clear deviations from the
underlying assumptions.

Later work by Hill et al. [8] also showed that the Rubin and Thomas [18]
approximations held quite well with real data in the context of an evalu-
ation of the New York School Choice Scholarship Program, which utilized
randomization to award scholarships to eligible participants. Out of the large
pool of possible controls, a matched sample was chosen for follow-up, where
the matching was done using an affinely invariant matching method based
on 21 ordinal or dichotomous covariates. Hill et al. compared the bias and
variance benefits of choosing matched controls rather than a random sample
of controls. The Rubin and Thomas [18] results predict a gain of efficiency
for differences in covariate means by a factor of approximately two, and Hill
et al. showed that this predicted gain in efficiency was achieved, despite the
markedly non-normal distributions of some of the covariates.

In this paper, we generalize the results of Rubin and Thomas [16–18] to
the setting where the treated and control groups’ covariate distributions are
“discriminant mixtures of proportional ellipsoidally symmetric” (DMPES)
distributions. We see that most, but not all, of the basic results in fact hold
under these more general conditions, which supports the broader applicabil-
ity of those results, as suggested by the empirical evidence referenced above.
We use as a running example the estimation of the effects of smoking on
lung cancer, where the results here were used to motivate diagnostics for
the results of matching [15].

2. Discriminant Mixtures of Ellipsoidally Symmetric Distribu-
tions. An ellipsoidal distribution for p-component X is a distribution such
that a linear transformation of X leads to a spherically symmetric distribu-
tion, which is defined by the distribution on the radii of concentric hyper-
spheres on which there is uniform probability density. Thus, an ellipsoidal
distribution is specified by its center, inner product, and distribution on the
radius [5].

Definition: The distribution on X, F (X), is a “discriminant mixture of
proportional ellipsoidally symmetric” (DMPES) distribution if it possesses
the following properties:

i. F (X) is a mixture of K ellipsoidally symmetric distributions {Fk; k =
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4 D.B. RUBIN AND E.A. STUART

1, ...,K},

(1) F (X) =
K∑

k=1

αkFk(X),

where αk ≥ 0 for all k = 1, ...,K, and
∑K

k=1 αk = 1, where Fk has
center µk and inner product Σk. Hence the “mixture” (M) and “ellip-
soidally symmetric” (ES) parts of DMPES.

ii. The K inner products are proportional:

(2) Σi ∝ Σj for all i, j = 1, ...,K.

Hence the “proportional” (P) part of DMPES.
iii. The K centers are such that all best linear discriminants between any

two components are proportional:

(3) (µi − µj)Σ−1
k ∝ (µi′ − µj′)Σ−1

k′ for all i, j, k, i′, j′, k′ = 1, ...,K.

Hence the “discriminant” (D) in DMPES, because all mixture compo-
nent centers lie along the common best linear discriminant.

In [16–18], K = 2, corresponding to the treated and control groups, and (2)
is assumed; (3) is superfluous in the case with K = 2.

With DMPES distributions, there exists an affine transformation to a
special canonical form, which is a simple extension of results in [3], [6],
and [14]. This canonical form has, for each mixture component, that the
distribution of X is spherical, so that all inner products can be written as
σ2

kI, where I is the pxp identity matrix and σ2
k is a positive scalar constant,

k = 1, ...,K. Moreover, the canonical form has the component centers lying
along the unit vector (unless all µi = µj) so that the centers are δkU , where
U = (1, ..., 1)′, the p-component unit vector, and the δk are scalar constants,
k = 1, ...,K; if all µi = µj , then all δk = 0. Therefore, in their canonical
form, the distribution of each component of X is the same, and thus the
distribution of X is exchangeable, not only within each of the K mixture
components, but also for any collection of mixture components defined by a
subset of the indices {1, ...,K}.

Moreover, further symmetry results can be stated for a DMPES distribu-
tion by decomposing X into its projection along the best linear discriminant,
Z, and its projection orthogonal to Z. Specifically, the standardized best lin-
ear discriminant can be written as

(4) Z = U ′X/p
1
2 ,
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MATCHING WITH DMPES DISTRIBUTIONS 5

unless all δk = 0, in which case Z is defined to be 0, the zero vector. Also, let
W be a standardized one-dimensional linear combination of X orthogonal
to Z,

(5) W = γ′X, γ′Z = 0, γ′γ = 1.

All such W have the identical distribution in each mixture component, and
the identical distribution for any collection of mixture components defined
by a subset of the indices {1, ...,K}. Thus, the distribution of X orthogonal
to Z has rotational symmetry, i.e., is spherically symmetric.

Now suppose Kt of the K mixture components comprise the treatment
group, and Kc components comprise the control group, Kt + Kc = K;
Kt,Kc ≥ 1. Denote the set of treatment group component indices by T
and the set of control group component indices by C, T ∪ C = {1, ...,K}.
For example, T identifies current smokers and C identifies never smokers.
The previous discussion implies that the distribution of X is exchangeable
in the treated group and in the control group, and moreover, the distribu-
tion of X orthogonal to the discriminant Z is spherically symmetric in the
treated group and in the control group. This is the theoretical distributional
setting for our results. In the more restrictive setting of [16] with propor-
tional ellipsoidally symmetric distributions, X is spherically symmetric in
both groups.

3. Results of Matching with Affinely Invariant Methods. When
affinely invariant matching methods are used with DMPES distributions,
the canonical form given in Section 2 can be assumed without loss of gener-
ality. The following results, stated in canonical form, closely parallel results
from [16]. The main symmetry arguments do not change with the use of mix-
tures of distributions. Although most of our results can be written without
assuming finite first two moments in each mixture component and with-
out restricting K to be finite, the extra generality complicates notation and
appears to be of little practical importance.

Theorem 3.1. Suppose an affinely invariant matching method is applied
to random treated and control samples with DMPES distributions. Then:

E(Xmt) ∝ E(Xmc) ∝ U,

and
var(Xmt −Xmc) ∝ I + cUU ′, c ≥ −1/p,

where Xmt and Xmc are the mean vectors in the matched treated and control
samples, and E(·) and var(·) are the expectation and variance over repeated
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6 D.B. RUBIN AND E.A. STUART

random draws from the initial treated and control populations. Also,

E(νmt(X)) ∝ I + ctUU
′, ct ≥ −1/p

E(νmc(X)) ∝ I + ccUU
′, cc ≥ −1/p,

where νmt(X) and νmc(X) are the sample covariance matrices of X in the
matched treated and control groups, respectively. Corresponding formulas
also hold within each of the mixture components. When Z = 0, E(Xmt) =
E(Xmc) = 0, the zero vector, and c = ct = cc = 0.

Proof. The proof follows directly from symmetry arguments and is es-
sentially the same as that of Theorem 3.1 in [16]. Briefly, with affinely invari-
ant matching methods, the matching treats each coordinate of X the same,
and hence the exchangeability of the DMPES distributions of X in matched
treated and control samples is not affected. Thus, the expectations of the
matched sample means of all coordinates of X must be the same, and hence
the expectation of X must be proportional to U in each matched group.
Analogously, the covariance matrices of X must be exchangeable in each
matched group. The general form for the covariance matrix of exchangeable
variables is proportional to I + cUU ′, c ≥ −1/p. When Z = 0, the direction
U is no different from any other, i.e., there is complete rotational symmetry,
and hence the simplification.

Corollary 3.1. The quantities var(Wmt − Wmc), E(νmt(W )), and
E(νmc(W )) take the same three values for all standardized W orthogonal
to Z. In addition, for each mixture component, E(νmk(W )) takes the same
value for all W , where νmk(W ) is the sample variance of W in the matched
mixture component k ∈ T or C.

Proof. The corollary follows from the fact that, due to the rotational
symmetry in matched samples implied by Theorem 3.1 orthogonal to the
discriminant, any W will have the same distribution.

4. The Effects on a Linear Combination of X of Affinely In-
variant Matching Relative to Random Sampling. As in [16–19], it
is natural to describe the results of matching by its effects on a linear combi-
nation of X, Y = β′X, where for convenience we assume Y is standardized,
β′β = 1. Any such Y can be expressed as the sum of projections along and
orthogonal to the best linear discriminant:

(6) Y = ρZ + (1− ρ2)1/2W,
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MATCHING WITH DMPES DISTRIBUTIONS 7

where ρ is the correlation between Y and Z. When Z = 0, Y = W and
ρ ≡ 0.

It is also natural, as in [16–19], to compare the results of the matching
to random sampling done in an affinely invariant way, such as randomly
sampling from the original treated and control groups, thereby sampling
from each component in proportion to its fraction in the population (the
α’s in Equation (1)), or randomly sampling from each component with fixed
proportions, where the same fixed proportions would be used in matching.
We will refer to the treated and control samples generated by any such
random sampling by indices rt and rc, respectively, where Nrt = Nmt and
Nrc = Nmc, but generally of course, Nt ≥ Nrt and Nc ≥ Nrc.

The following corollaries decompose the effects on Y of affinely invariant
matching on X into the effects of the matching on Z and on W , relative to
random sampling. Assuming the formulation from Section 2, we have the
following results.

Corollary 4.1. (a) When E(Zrt − Zrc) 6= 0, the matching is equal
percent bias reducing (EPBR), as defined by [14]:

(7)
E(Y mt − Y mc)
E(Y rt − Y rc)

=
E(Zmt − Zmc)
E(Zrt − Zrc)

.

Because the right hand side of the above equation takes the same value
for all Y , the percent bias reduction is the same for all Y .

(b) When Z = 0, the numerator and denominator of both ratios in Equa-
tion (7) are 0.

(c) When E(Zrt−Zrc) = 0 but Z 6= 0, the denominators of both ratios in
Equation (7) are 0, and then E(Y mt − Y mc) = ρE(Zmt − Zmc).

Proof. The proof of result (a) parallels the proof of Corollary 3.2 in [16];
however here, rather than simple averages of Z, W , and Y , the averages are
weighted averages of the mixture components, weighted for example by the
α’s in Equation (1). Using the definition of Y ,

E(Y mt − Y mc) = ρE(Zmt − Zmc) + (
√

1− ρ2)E(Wmt −Wmc),

where by the definition of W , E(Wmt −Wmc) = γ′E(Xmt − Xmc). From
Theorem 3.1, E(Xmt − Xmc) ∝ U and again from the definition of W in
Equation (5), γ′Z = 0. Thus,

E(Y mt − Y mc) = ρE(Zmt − Zmc).
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8 D.B. RUBIN AND E.A. STUART

Similarly, E(Y rt − Y rc) = ρE(Zrt − Zrc) because E(W rt −W rc) = 0 and
Result (a) of Corollary 4.1 follows.

Results (b) and (c) follow by analogous arguments. Situation (c) cannot
arise when K = 2 because with only one treated and one control component,
E(Zrt−Zrc) = 0 implies that Z = 0. However, with multiple components in
the treated and control groups, the difference in weighted averages (E(Zrt−
Zrc)) can equal 0 without all of the mixture component centers ({µk}) being
0.

This corollary implies that affinely invariant matching that reduces bias
in one direction can not create bias in some other direction. If bias reduction
is obtained along Z, it is also obtained for all Y .

Corollary 4.2. The matching is ρ2 proportionate modifying of the
variance of the difference in matched sample means:

(8)
var(Y mt − Y mc)
var(Y rt − Y rc)

= ρ2 var(Zmt − Zmc)
var(Zrt − Zrc)

+ (1− ρ2)
var(Wmt −Wmc)
var(W rt −W rc)

,

where the ratios

var(Zmt − Zmc)
var(Zrt − Zrc)

and
var(Wmt −Wmc)
var(W rt −W rc)

take the same two values for all Y .

Proof. Using the definitions of Z and W in Equations (4) and (5),

cov(Zmt − Zmc,Wmt −Wmc) =
1
√
p
U ′var(Xmt −Xmc)γ,

which, from Theorem 3.1, is proportional to

U ′(I + cUU ′)γ = U ′γ + cpU ′γ = 0,

again using the definition of W in Equation (5). Then, from the definition
of Y in Equation (6),

var(Y mt − Y mc) = ρ2var(Zmt − Zmc) + (1− ρ2)var(Wmt −Wmc).

Equation (8) follows because, in random subsamples, the samples from each
treated and control mixture component are independent with

var(Y rt − Y rc) = var(Zrt − Zrc) = var(W rt −W rc).
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MATCHING WITH DMPES DISTRIBUTIONS 9

Also, var(Y rt) = var(Zrt), var(Y mc) = var(Zmc), and each is a weighted
linear combination of the variances in each of the treated and control mixture
components, respectively. The final statement of Corollary 4.2 follows from
Corollary 3.1.

Corollary 4.3. Within each of the mixture components, the matching
is ρ2 proportionate modifying of the expectation of the sample variances:

(9)
E(νmk(Y ))
E(νrk(Y ))

= ρ2E(νmk(Z))
E(νrk(Z))

+ (1− ρ2)
E(νmk(W ))
E(νrk(W ))

,

where νrk(·) is the sample variance of nk randomly chosen units from com-
ponent k, and νmk(·) is the sample variance of nk matched units from com-
ponent k (k ∈ T or C), and the ratio

E(νmk(W ))
E(νrk(W ))

takes the same value for all Y . The same is true for E(νmk(Z))/E(νrk(Z)).

Proof. In the matched sample from component k ∈ T or C, the expected
covariance of Z and W is

E(covmk(Z,W )) =
1
√
p
E(U ′νmk(X)γ) ∝ U ′(I + ckpUU

′)γ = 0,

from Theorem 3.1 and the definition of W in Equation (5), and νmk(X) ∝
I + ckUU

′, where the constants ck ≥ −1/p. Then from Equation (6),

E(νmk(Y )) = ρ2E(νmk(Z)) + (1− ρ2)E(νmk(W )).

Equation (9) follows because E(νrk(Y )) = E(νrk(Z)) = E(νrk(W )). The
final statement follows from Corollary 3.1.

Note that the version of Corollary 4.3 stated for the full treated and
control groups does not hold. In the special case considered in [16], there is
only one component in each group.

5. Conditionally Affinely Invariant Matching with Condition-
ally DMPES Distributions. We now extend the results of the previous
sections to a setting where a subset of the covariates is treated differently
from the remainder of the covariates, for example, exact matching on gen-
der followed by discriminant matching, or Mahalanobis matching on key
covariates within propensity score calipers [13]. Such matching was done,
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10 D.B. RUBIN AND E.A. STUART

for example, in [15], when creating matched samples of current smokers and
never smokers.

We define X(s) to be the s “special covariates” spanning an s-dimensional
subspace (e.g., gender, race in the smoking example) and X(r) to be the
r = p − s remaining covariates spanning an r-dimensional subspace (e.g.,
education, age). The methods considered are “conditionally affinely invariant
matching methods” [16], which have the property that the result of the
matching is the same following any (full-rank) affine transformation of the
“remainder” covariates X(r):

((X (s)
t ,X (r)

t ), (X (s)
c ,X (r)

c )) → (T,C)

implies

((X (s)
t , A(X (r)

t )), (X (s)
c , A(X (r)

c ))) → (T,C).

In parallel with Section 2, we consider the case where each mixture compo-
nent of the full covariate distribution has mean vectors µ(s)

k and µ(r)
k , covari-

ance matrices Σ(s)
k and Σ(r)

k , and conditional means and covariance matrices
given by µ

(r|s)
k and Σ(r|s)

k . The full distribution of X = (X(r), X(s)) across
both groups is a conditionally DMPES distribution if (i) the conditional dis-
tribution X(r)|X(s) is ellipsoidal in each mixture component, (ii) it has pro-
portional conditional covariance matrices: Σ(r|s)

k ∝ Σ(r|s)
k′ for all k and k′, and

(iii) it has centers such that (µ(r|s)
i − µ(r|s)

j )Σ(r|s)−1

k ∝ (µ(r|s)
i′ − µ(r|s)

j′ )Σ(r|s)−1

k′

for all i, j, k, i′, j′, k′ = 1, ...,K. Notice that condition (ii) implies a common
(across all mixture components) linear regression of the r covariates in X(r)

on the s covariates in X(s), with coefficients B. As noted by [16], the special
case with X(s) binomial or multinomial and X(r) multivariate normal relates
to the logistic regression model for predicting treated or control status given
the covariates, thus relating it to the methods of propensity score estimation
developed by Rosenbaum and Rubin [12, 13].

We again can use a canonical form when a conditionally affinely invariant
matching method is used with a conditionally DMPES distribution. The
covariates X(r) are redefined as the components of X(r) uncorrelated with
X(s): X(r)−B′X(s). The following notation is then used for the moments of
the distribution of X(r) (and the conditional moments of X(r) given X(s)):

µ
(r)
k = δ

(r)
k U, Σ(r)

k = σ2
kI,

k = 1, ...,K, where δ(r)k and σ2
k are scalar constants, U is now the r-dimensional

unit vector, and I is now the rxr identity matrix. Thus, the distributions
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MATCHING WITH DMPES DISTRIBUTIONS 11

of (X(s), X(r)) and X(r) given X(s) are exchangeable under permutations of
components of X(r) conditional on X(s) in each of the mixture components.

Theorem 5.1. Suppose a conditionally affinely invariant matching method
is applied to random treated and control samples with conditional DMPES
distributions. Then, in canonical form,

E(X(r)
mt) ∝ U, E(X(r)

mc) ∝ U, and

var(Xmt −Xmc) =

[
var(X(s)

mt −X
(s)
mc) CU ′

UC ′ k(I + c0UU
′)

]
,

where k ≥ 0, c0 ≥ −1/r, and C ′ = (c1, ..., cs). Also,

E(νmt(X)) =

[
E(νmt(X(s))) CtU

′

UC ′
t kt(I + ct0UU

′)

]
,

where kt ≥ 0, ct0 ≥ −1/r, C ′
t = (ct1, ct2, ..., cts), with an analogous result and

notation for the matched control group. When Z = 0, E(X(r)
mt) = E(X(r)

mc) =
0, C = Ct = Cc = 0, the zero vector, and c0 = ct0 = cc0 = 0.

Proof. The proof of this theorem parallels that of Theorem 3.1, with the
exception of the existence of the covariances between components in X(s)

and X(r). Due to the symmetry, these covariances are also exchangeable in
the coordinates of X(r).

6. Effect on Y of Matching with Special Covariates. In parallel
with the earlier formulation, we express an arbitrary linear combination of
X as,

Y = ρZ + (1− ρ2)1/2W,

where Z and W are the standardized projections of Y along and orthogonal
to the subspace spanned by (X(s), Z), respectively, and ρ is the correlation
between Y and Z. In this framework, Z is the standardized discriminant of
the covariates uncorrelated with X(s), again expressed in canonical form as
Z = U ′X(r)/r1/2. When µ(r)

k = 0 for all k, Z is defined to be the zero vector,
and then Z is defined to be the projection of Y in the subspace spanned by
X(s).

We write Z and W as

(10) Z = ψ′X = (ψ(s)′, ψ(r)′)

(
X(s)

X(r)

)
,
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12 D.B. RUBIN AND E.A. STUART

(11) W = γ′X = (γ(s)′, γ(r)′)

(
X(s)

X(r)

)
.

Lemma 6.1. The coefficients γ and ψ satisfy:

(12) γ(s) = (0, ..., 0)′, γ(r)′ψ(r) = Zγ(r) = 0, and ψ(r) ∝ U.

Proof. Equation (12) follows because W is a linear combination of X
uncorrelated with {X(s), Z}, and thus uncorrelated with {X(s)}, and because
Z is uncorrelated with W. The other results follow from these and the
definition of Z in canonical form.

Because the symmetry results of Theorem 5.1 forX orthogonal to Z imply
that all W orthogonal to Z have the same distribution, we immediately have
the following corollary to Theorem 5.1.

Corollary 6.1. The quantities var(Wmt −Wmc), E(νmt(W)), and
E(νmc(W)) take the same three values for all standardized Y . Analogous
results hold for statistics in random subsamples indexed by rt and rc. In
addition, E(νmk(W)) takes the same value for all W within each of the
mixture components, k ∈ T or C. However, the corresponding expressions
involving Z generally do depend on the choice of Y .

Corollary 6.2. (a) When E(Zrt − Zrc) 6= 0, the percent bias re-
duction in Y equals the percent bias reduction of Y in the subspace
{X(s), Z}:

E(Y mt − Y mc)
E(Y rt − Y rc)

=
E(Zmt −Zmc)
E(Zrt −Zrc)

.

(b) When E(Zrt −Zrc) = 0, the denominators of both ratios in (a) equal
0, and E(Y mt − Y mc) = ρE(Zmt −Zmc).

Proof. The proof parallels that of Corollary 4.1 because W = γ′(r)X(r)

from the definition ofW in Equation (11) and Lemma 6.1, and from Theorem
5.1 and Lemma 6.1, γ′(r)E(X(r)

mt−X
(r)
mc) = 0. Thus, E(Wmt−Wmc) = 0.

Corollary 6.3. The matching is ρ2 proportionate modifying of the
variance of the difference in matched sample means,

var(Y mt − Y mc)
var(Y rt − Y rc)

= ρ2 var(Zmt −Zmc)
var(Zrt −Zrc)

+ (1− ρ2)
var(Wmt −Wmc)
var(Wrt −Wrc)

,

where the ratio var(Wmt −Wmc)/var(Wrt −Wrc) takes the same value for
all Y .
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Proof. The proof is analogous to that of Corollary 4.2 using Theorem
5.1 and Lemma 6.1, and parallels the proof of Corollary 4.3 in [16], where
in that proof, there is a typographical error: Zmt − Zmc and Wmt −Wmc

should be replaced by Zmt −Zmc and Wmt −Wmc, respectively.

Corollary 6.4. Within each mixture component, the matching is ρ2

proportionate modifying of the expectation of the sample variances

E(νmk(Y ))
E(νrk(Y ))

= ρ2E(νmk(Z))
E(νrk(Z))

+ (1− ρ2)
E(νmk(W))
E(νrk(W))

for all k ∈ T or C, where the ratio E(νmk(W))/E(νrk(W)) takes the same
value for all Y within each mixture component.

Proof. The proof of this corollary parallels that of Corollary 4.3, with
modifications similar to those in the Proof of Corollary 6.3. Again, as in
Corollary 4.2, this result generally holds only in each of the individual treated
and control group components, and the analogous result in the overall sam-
ples does not hold.

7. Discussion. Here we have shown that most of the results proven by
Rubin and Thomas [16] can be extended to discriminant mixtures of propor-
tional ellipsoidally symmetric (DMPES) distributions, as defined in Section
2, and provides some theoretical rationale for why the earlier Rubin and
Thomas [16–18] results hold well even when the assumption of ellipsoidally
symmetric distributions is not met. These results show that even with the
more complicated setting of DMPES distributions, the effects of matching
on an arbitrary linear combination of the covariates can be summarized by
its effects along and orthogonal to the discriminant.

Although the class of DMPES distributions is still restrictive, previous ex-
perience has indicated that mathematically convenient conditions for match-
ing can provide guidance in real-world examples. A classic example is in
Cochran [2] on the bias reduction possible from stratified matching. Al-
though Cochran’s results were proved assuming infinite samples sizes and a
linear relationship between a single covariate and the outcome, the approx-
imations and their implied guidance have found applicability and use for a
much wider range of situations. For a specific example here, the implications
of our results were the basis for the applied diagnostics in [15] used to assess
the quality of the matched samples of smokers and never smokers in the
National Medical Expenditure Survey, based on decomposing the compar-
isons of the distributions in the matched samples into components along and
orthogonal to the discriminant.
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