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Biomolecular self-assembly spatially segregates proteins with a limited number of binding sites
(valence) into condensates that coexist with a dilute phase. We develop a many-body lattice model
for a three-component system of proteins with fixed valence in a solvent. We compare the predictions
of the model to experimental phase diagrams that we measure in vivo, which allows us to vary
specifically a binding site’s affinity and valency. We find that the extent of phase separation varies
exponentially with affinity and increases with valency. Valency alone determines the symmetry of
the phase diagram.

Introduction: Protein self-assembly plays a central
role both in health and disease [1]. Aberrant protein as-
sembly is responsible for neurodegenerative diseases such
as Alzheimer’s or Huntington’s [2, 3], type-II diabetes
[4], and others. Conversely, protein self-assembly into
biomolecular condensates can spatially localize biochem-
ical processes in membrane-less, mesoscale compartments
[5, 6]. These biomolecular condensates (BMCs) can com-
prise ribonucleic acids (RNAs), nucleic acids, and various
proteins [5–8]. Examples of such BMCs include germline-
granules [9, 10], stress (responsive) granules [11–16], as
well as chromatin-bound condensates [17]. BMCs also
display crucial regulatory roles in various biological pro-
cesses [1, 5, 18] such as cell differentiation [19, 20], cen-
trosome assembly [21, 22], reaction kinetics [23], noise
buffering [24–26], or metabolic control [27]. Thus, gen-
eral theoretical frameworks that enable conceptualization
and prediction of the behavior of BMC systems are crit-
ical for comparison with experiments to foster their con-
trol. These include understanding concentrations, molec-
ular interactions and temperature [5, 18, 28, 29] under
which biomolecules condensate instead of remaining dis-
persed, or assesing whether the formation of a BMC is a
quasi-equilibrium process [30] or whether it is driven by
biochemical reactions [21, 22].

The analysis of experiments on in-vivo cellular con-
densates is often inconclusive since one does not know
all the molecular species involved nor the interactions
among them. Such uncertainty limits the ability to quan-
titatively predict the properties of phase separation of
cellular condensates. For example, BMCs often com-
prise intrinsically disordered proteins [5] for which the
structural valency (number of binding sites available per
molecule), the effective valency (number of sites that are
sterically, simultaneously accessible for inter-molecular
contacts) and the interaction energy (affinity) between
binding sites are typically unknown. In that respect, syn-
thetic systems help bridge this gap, as their parameters
are known by design. Indeed, the use of synthetic systems
in-vitro enabled understanding the impact of protein con-
centration, as well as interaction affinity on phase sepa-
ration [23, 31]. We have developed a unique, synthetic

system based on interacting dimers and tetramers which
enforces inter-molecular contacts, so that the structural
valency is equal to the effective valency [32]. The modu-
larity of this system also allows one to vary the valency
parameter, for example replacing tetramers with hexam-
ers, and changing the bond affinity, as we demonstrate
in this work.

Additionally, BMCs fundamentally differ from systems
studied in physics and physical chemistry, where one usu-
ally considers isotropically interacting, small molecule
mixtures. In contrast, biomolecules are large, and in
many cases, interactions are constrained by their geome-
try and the number and position of binding sites at their
surface. Simple models with non-specific interactions
predict phase separation with a critical volume fraction
of the order of 1/2 [33, 34]. In contrast, for polymeric sys-
tems, Flory-Huggins theory [35] predicts a critical con-
centration that scales as N−1/2, where N is the polymer-
ization index. For large N , the system phase separates
at very low polymer volume fractions with a fractal-like
polymeric ensemble. In addition, for branched polymers,
the classical theory of gelation by Flory and Stockmayer
[36–38] gives the percolation threshold of the network,
a geometric property. However, our interest here is on
the thermodynamic phase separation that leads to con-
densate formation. Reference [39] presents the effects of
varying multivalency on both phase separation and per-
colation. The latter, in particular, highlights that valence
is a critical parameter. Our theory complements the ex-
isting approaches listed above: we focus on the primary
physical mechanisms relating phase separation to finite
multivalency of rigid proteins. Progress along this direc-
tion has come from molecular-dynamics simulations of
patchy particles [40, 41], the extension of Wertheim the-
ory [42–45], and lattice-based Monte-Carlo simulations
of model biological proteins [46–48]. In this work, we de-
velop a relatively simple lattice model that automatically
includes the excluded volume effect and the multi-body
nature of finite valence. This makes the theory amenable
to analytical treatment and facilitates comparison with
experiments on the extent of phase separation as a func-
tion of affinity and valence.
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Our focus here is the phase separation into concen-
trated and dilute regions in a three-component system
of a solvent and two proteins: one of which is divalent
(dimer) and another with a valence larger than two (mul-
timer). The multimers interact among themselves via the
dimer, which links two multimers as schematically shown
in Fig. 1. The geometric design of the proteins prevents
intra-molecular binding, i.e., where two sites of a dimer
bind on the same multimer. Experimentally, we geneti-
cally encode such a pair of proteins and monitor their ex-
pression and phase separation in yeast cells, as described
in Ref. [32]. Briefly, the dimer and multimer each con-
sist of three structured domains fused by flexible link-
ers: the first domain is a fluorescent reporter, the second
confers multivalence by homo-oligomerization, and the
third mediates the affinity or interaction strength (IS)
between the dimer and the multimer. Uniquely, both IS
and the multimer valency can be modulated by the ex-
perimental, molecule design. The dimer and tetramer are
coexpressed in the cytoplasm of yeast cells and undergo
phase separation at high enough concentrations. Pro-
tein concentration in the dilute phase is quantified by
fluorescence microscopy and is compared with our the-
ory. Theoretically, we predict the phase diagram topol-
ogy and symmetry (the axis of maximum phase separa-
tion) for the association of such multimers linked (or not)
by dimers. We find that the phase boundaries enclosing
the coexisting regions form closed loops and crucially de-
pend on the valence and relative affinity, IS, between the
dimers and multimers (Fig. 2). We, therefore, focus on
the phase diagrams as a function of the dimer and multi-
mer concentrations at various interaction strengths (Fig.
2). For these coexistence curves, the valence determines
the symmetry that depends on the multimer-dimer ratio
(Fig. 3b); this is different from closed-loop phase dia-
grams in the temperature-solute concentration plane for
hydrogen-bonding systems [49, 50]. In addition, our the-
ory predicts that the minima (minimum distance from
the origin), ∆, of the phase diagrams, vary exponentially
with interaction strength, which is in agreement with ex-
perimental data (Fig. 2c-f). We then elucidate the role of
multivalency in phase separation and how valency affects
the rate of decrease of the distance to the origin ∆ with
IS (Fig. 3c). Finally, we show within the theory and the
experiment that phase separation becomes more effective
(i.e., phase boundaries cover a larger region of the con-
centration space) at higher valence for a fixed interaction
strength (Fig. 3d-f).

Theoretical model: We formulate a statistical me-
chanical description of the system of multimers and
dimers, which we solve within a mean-field approxima-
tion. Since the focus of the experiments is on the topol-
ogy and symmetry of the phase diagrams as a global
function of the two concentrations at fixed temperature,
the corrections to mean-field theory are important only
near the critical points and therefore are not of inter-
est here. Instead, we focus on the experimentally impor-
tant parameters of compositions, valence, and interaction
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FIG. 1: Schematic description of the lattice model for the so-
lution of tetramers, dimers and solvent. (a) Lattice model for
the system on a square lattice. Regions R1 and R2 show the
same particles in two different configurations: the configura-
tion in R2 has higher enthalpy owing to satisfied interactions
between A and B and a lower entropy as other configurations
of A and B are restricted by the interaction. The configura-
tion in R1 has lower enthalpy and higher entropy than R2. (b)
Four possible complexes when the B molecules are tetramers.

strengths. We designate the dimers by A and the multi-
mers by B. The proteins in the experiments are designed
so that AB interact as lock and key [32, 51]. Addition-
ally, two interaction sites of A cannot bend to interact
with two sites of the same B molecule due to the rigid-
ity of A. Therefore, phase separation proceeds through
intermolecular associations between A and B.

For concreteness, we first consider a particular exam-
ple: a dimer and a tetramer being the A and B particles,
respectively, and the rest of the system is considered as
a uniform (mostly aqueous, in the case of a cell), solvent
S. From the experiment, we find the phase separation to
be strongest (i.e., the concentration difference between
the two coexisting phases is largest) at the stoichiomet-
ric ratio of interaction sites (volume fraction of molecules
multiplied by their valence) of A and B. To elucidate this
within our mean-field theory, we consider a lattice model
where the A molecules occupy only the bonds and the
B molecules occupy only the sites of the lattice. Solvent
molecules, S, can occupy either the bonds or sites as
schematically shown in Fig. 1(a). Ns and Nb denote the
total number of sites and bonds, respectively. Since the
B molecules have four interaction sites (q = 4) each, we
consider a square lattice, where Nb = 2Ns; to treat other
valences, q, we use different lattices (see SM, Sec. V).
The system contains a total of NA

0 A molecules and N0
B

B molecules. Since the lattice is fully occupied, conserva-
tion dictates that there must be (2Ns−N0

A) S molecules
on the bonds and (Ns −N0

B) on the sites.

Modeling the experimental phase diagrams requires
the inclusion of many-body interactions to account for
the finite valency, even in mean-field theory [52, 53]. To
do so, we proceed in two separate stages: first, the A
and B molecules associate with each other forming com-
plexes, and second, the complexes interact among them-
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FIG. 2: (a) Phase diagram for a solution of tetramers, dimers
and solvent. The dotted line denotes the binodal and the
end points of the tie-lines (in light blue) are the concentra-
tions of the concentrated (dashed) and dilute (dotted) phases.
The yellow dashed line is the spinodal that gives the limit
of metastability. The two red stars denote the two critical
points where the tie line length vanishes and the two coex-
isting phases become identical. (b) Binodal for solutions of
tetramers, dimers and solvent at two different values of the in-
teraction strength, J , show stronger phase separation (larger
area of the two-phase region and larger differences in concen-
trations of the two coexisting phases) at larger J . (c) The
minimum distance ∆ of the phase boundary from origin as
a function of interaction strength J . The line is the theory
and the symbols (with error bars) are experimental data. We
note that the datapoint for the highest interaction strength
(purple) overestimates ∆ because the corresponding concen-
trations of A and B in the dilute phase reach a value below the
detection limit of the microscope (d-f) Experimental phase
diagrams for the dimer-tetramer system with different inter-
action strength (affinities) (J = − log(IS) in units of kBT ).

selves as well as with the free B molecules (i.e., those not
associated with any A) leading to phase separation. To
simplify the problem and obtain physical insight, we use
a mean-field approximation where the complexes inter-
act with the average concentration of B molecules. For
the particular case of tetramers and dimers, there can
be four different complexes: Ci with i = 1, 2, 3, 4, where
Ci denotes a configuration with i A molecules associated
with one B molecule as schematically shown in Fig. 1(b).

To illustrate the physical origin of the phase separa-
tion, consider the two shaded regions R1 and R2, in Fig.
1(a): they both contain the same number of particles,
one A, two B, and two S. When the attractive inter-
action dominates, the configuration in R2 has lower free
energy compared to that in R1; in contrast, when entropy
dominates, the arrangement in R1 has lower free energy
than that in R2. In equilibrium, the system configura-
tion is that which minimizes its free energy: When the
enthalpy term dominates, it favors R2, and the system
phase separates; on the other hand, when the entropy
term dominates, it favors R1, and the system remains in
a homogeneous, single phase.

After the complexes have formed, the dimensionless

concentration of free A molecules (the fraction of bonds
occupied by uncomplexed A molecules) is ρA = NA/Nb,
where NA is the number of free A molecules. Similarly,
ρB = NB/Ns is the dimensionless concentration of free
B molecules. This particular normalization uses the ef-
fective concentrations of the interaction sites (i.e., actual
concentrations multiplied by valence), which is the quan-
tity that we also use for analysis of the experiments. The
effective concentrations of the total (overall) A and B in-
teraction sites are ρ0A and ρ0B , respectively, and the con-
centrations of the ith complex are γi. Then, the total
free energy (see supplementary material (SM), Sec. II
for detail), f , per site, in units of kBT , where kB is the
Boltzmann constant and T , the temperature, is

f =2ρA ln ρA + ρB ln ρB + 2(1 − ρ0A) ln(1 − ρ0A)

+ (1 − ρ0B) ln(1 − ρ0B) + γ1 ln(4γ1) + γ2 ln(6γ2)

+ γ3 ln(4γ3) + γ4 ln γ4 − J(γ1 + 2γ2 + 3γ3 + 4γ4)

− (J − JBB)ρ0B(γ1 + 2γ2 + 3γ3 + 4γ4) (1)

where the product iJ is the gain in binding energy (in
units of kBT ) due to the formation of Ci. JBB is a pa-
rameter governing the change in interaction when both
sides of the dimer, compared to only one of its sides, is
attached to the corresponding site on the B molecules.
Here we consider JBB = 0 and comment on non-zero JBB
in SM, Sec. IX. Note that we have treated the solvent on
the sites and the bonds as two different states, since the
volumes occupied by A and B molecules can be different.

Modeling the effect of interaction strength on
phase separation

Conservation of the A and B molecules respectively
implies that ρA = ρ0A − (γ1 − 2γ2 − 3γ3 − 4γ4)/2 and
ρB = ρ0B−γ1−γ2−γ3−γ4 where the γi are the concentra-
tions of the complexes. For a given interaction strength
J , we first minimize f with respect to γi’s; this leads to
four equations which we solve simultaneously to obtain
the γi’s in terms of ρ0A and ρ0B , which then allows us
to calculate the phase diagrams (see SM, Sec. II). The
phase diagrams are functions of the interaction strength
J , ρ0A and ρ0B , and therefore are three-dimensional. We
plot the phase diagrams in the two-dimensional plane of
the given effective concentrations, ρ0A and ρ0B , at a fixed
value of J . There is no phase separation at small values of
J ; as J increases and crosses a certain value (depending
on valence), phase separation occurs. We find a closed-
loop phase diagram with two critical points as shown for
J = 2.6 in Fig. 2(a). The outer boundary, marked by
the dotted line, is the binodal, and the dashed line is
the spinodal. Phase separation occurs inside the binodal
region where dense (red) and dilute (blue) regions co-
exist in equilibrium, whereas outside this boundary, the
system remains homogeneous. The two stars mark the
critical points where the concentrations of dense and di-
lute regions become identical. The lines connecting the
dense and the dilute regions are the tie-lines, whose end-
points are the effective concentrations of two coexisting
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FIG. 3: (a) The symmetry axis of the phase diagrams for
phase separation of tetramers and dimers lies along the zero
of the abscissa for asymptotically large J . This shows that
phase separation is strongest at the stoichiometric ratio (of
the effective concentrations). (b) Comparison of the value of
the minimal concentration, ∆, obtained from the full model
(points) and simplified model (lines) along the symmetry axis.
(c) Theoretical phase diagram for both tetramers/dimers and
hexamers/dimers both with J = 4.0 shows stronger phase
separation for the hexamers. (d-f) Experimental phase dia-
grams for the same interaction strength and different valence
(d) Phase diagram for a dimer-tetramer system (e) Phase dia-
gram for a dimer-hexamer system (f) Experimental data from
panels (d) and (e) are overlaid. [. . .] denotes concentration
of interaction sites and dotted lines are approximate phase
boundaries.

regions. If the interaction strengths and overall concen-
trations are such that the effective concentrations are
within the spinodal region, the uniform, mixed state is
unstable, and phase separation occurs via spinodal de-
composition along the tie lines. On the other hand, if
the system lies between the spinodal and the binodal re-
gions, phase separation proceeds through nucleation and
growth [33, 39, 54].

Figure 2(b) shows the binodal phase diagrams for the
tetramer-dimer system at two different values of J ; in-
creasing J leads to more effective phase separation (as
defined above). For a quantitative comparison of theory
and experiment, we define ∆, the minimum distance of
the dilute region of the binodal, as a function of different
J and the corresponding experimentally varied affinity.
In a two-component system, ∆ decreases exponentially
with J when J � 1(see SM, Sec. VI); we expect and ob-
serve a similar behavior for the three-component system.
We plot ∆ derived from the numerical solution of the the-
ory (line) and from the experiment (symbols, see SM, Sec.
I S3) in Fig. 2(c). The experimental uncertainty in both
the affinity (corresponding to the interaction strength, J)
and the measured effective concentrations are shown in
the figure. Note that the concentrations at the largest
affinities in experiments are at the limits of our experi-
mental resolution. The agreement in Fig. 2(c) is close
given the experimental uncertainties. We also show the

experimental phase diagrams at three different affinities
(interaction strengths IS, measured in units of M , where
J = − log(IS) in units of kBT ). The points in Figs. 2(d-
f) are the effective concentrations of interaction sites of
dimers and tetramers for cells that do not exhibit a visible
condensate in them; thus, the data from the many cells
with different protein concentrations depicts the part of
the binodal that delineates the dilute phase [32].

Although the theoretical phase diagram is a closed-
loop, a quantitative measurement of the concentration
in the dense phase is challenging due to the limited ax-
ial resolution of the microscope, inner filter effects, and
foster energy transfer. Therefore, we compared only the
dilute region of the measured phase diagrams with the
theory. In the experimental system, A and B interact
with an affinity on the order of 100 nM or ∼ 15kBT [32].
The numerical solution of the theory at such affinities is
impractically slow (see SM, Sec. VII) and we did not
calculate the entire phase diagram. However, we discuss
in the SM and show in Fig. 3 that the extreme regions of
the phase diagram (those that connect largest tie lines)
can be calculated even for large values of J . We saw in
Fig. 2 that the shapes of the phase diagrams for the di-
lute region, and the trend with increasing J , are similar
to the situation at smaller values of J . When the affinity
is high, the system will use more A molecules to associate
the B molecules, as schematically shown in Fig. 1(a). As
shown in the SM (Fig. S3), when the affinity of A to B
is weak, the likelihood of complex formation is low, and
most of A molecules are free; whereas, for high affinity,
the probability is high, and most of the A molecules are
incorporated into complexes. These complexes then in-
teract with the free B particles or other complexes to
yield the dense phase.

Effect of valency: We expect maximal phase separa-
tion when the effective concentrations of interaction sites
for the two species are equal. To test this hypothesis,
we plot the phase diagrams for a mixture of dimers and
tetramers at several values of J as functions of ρ0A − ρ0B
vs ρ0A + ρ0B in Fig. 3(a). As J increases, we expect the
symmetry-line, i.e., the tie-line of maximal phase separa-
tion, to lie on the zero of the abscissa, which we indeed
observe (Fig. 3(a)). If stoichiometry determines the max-
imal extent of phase separation, ∆ should lie along this
symmetry axis. To test this hypothesis, we approximate
ρ0A = ρ0B and solve the phase diagrams along this symme-
try axis (see SM, Sec. VIII) ∆ obtained using this simple
approximation agrees well with the numerical results of
the complete theory (Fig. 3b).

We now discuss the role of multi-valency. For con-
creteness, we consider two different systems: tetramers
or hexamers, both with dimers and solvent (see SM, Sec.
V). All other parameters being equal, we find that the
system with hexameric B molecules shows a larger region
of phase separation, compared with tetramers, as shown
in Fig. 3(c) for J = 4.0. To compare the theory with
experiments, we measured the phase diagrams for both
systems: tetramers or hexamers with dimers; the phase
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diagrams are shown in Figs. 3(d-f). Consistent with the-
ory, phase separation is more effective for the hexamers
than the tetramers at a given interaction strength. Note
that the trivial factor that accounts for a larger num-
ber of interaction sites per multimer is accounted for in
these plots as we consider concentrations of interaction
sites, not concentrations of B molecules. The system
with larger valence shows stronger phase separation due
to the availability of more complexes, which increases the
interaction energy per particle. Smaller values of ∆ with
increasing multivalency q at a fixed J (Fig. 3c) are also
consistent with the experimental results.

In summary, we have presented a simple theory that
predicts phase separation in a three-component system
of multivalent proteins: where one of the components
is dimeric, and the other has a higher valence. While
we have shown the results for tetramers, hexamers, and
octamers, the theoretical approach can be extended to
other systems. The theory is motivated by and com-
pared with experiments on cytoplasmic phase separation
within yeast cells where the phase separating proteins are
synthetic and foreign to those cells [32]. Since these pro-
teins are not expected to interact with the intrinsic pro-
teins of the cells, the experimental system allows quanti-

tative control over the interaction strengths and valency
of the system compared with cellular protein condensates
which can have any number of additional, unknown com-
ponents. In most cases of intra-cellular phase separation,
the details of protein-protein interactions are unknown;
our experimental system, along with the analytical the-
ory, should be viewed as a step towards a quantitative
understanding of the phase separation process in-vivo.
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E 92, 012317 (2015).

[23] P. Li, S. Banjade, H.-C. Cheng, S. Kim, B. Chen, L. Guo,
M. Llaguno, J. V. Hollingsworth, D. S. King, S. F. Banani,
P. S. Russo, Q.-X. Jiang, B. T. Nixon, and M. K. Rosen,
Nature 483, 336 (2012).

[24] A. Klosin, F. Oltsch, T. Harmon, A. Honigmann,
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Supplementary Material
Affinity and valence impact the extent and symmetry of phase separation of multivalent proteins

In this supplementary material, we provide a summary of the experimental system and the details of the calculation
for the mean-field lattice free energy for a solution of tetramers, dimers and solvent. We then discuss how to obtain the
phase diagrams, the roles of the complexes and the specific details of the comparison of two mixtures, one consisting
of hexamers, dimers and solvent and the other of tetramers, dimers and solvent, to elucidate the role of valency in the
phase separation process. Finally, we discuss the behavior of the minima of phase diagram in a simple two-component
system, a summary of the numerical solution and the simplified model along the symmetry axis.

S1. DETAILS OF THE EXPERIMENTAL
SYSTEM

The synthetic, two-component protein system used in
the experimental work has been previously described in
Ref. [1]. Briefly, a first component consists of a large ho-
modimer that we designate A. The homodimer is fused
to a red fluorescent reporter at its C-terminus and a bind-
ing domain Im2 (Immunity protein 2) at its N-terminus.
We designate B the second component, which consists of
a yellow fluorescent protein at the N-terminus, a bind-
ing domain E9 (E. coli Colicin 9, which binds to Im2
specifically) and a homo-oligomerization domain at the
C-terminus that can be a tetramer (q = 4) or a hex-
amer (q = 6). The large size of the dimer and small
size of the tetramer/hexamer prevent intramolecular con-
tacts (i.e., two sites of the dimer binding to two sites
on the same tetramer/hexamer). Such intramolecular
contacts would inhibit the phase separation of the sys-

tem. Here, we used the wild type version of the Im2
domain as well as mutants E30A, P56A, and V37A,
which affinities to E9 have been previously measured
(PMID: 32661377). Thus, employing those mutants al-
lowed us to control the interaction strength (IS) between
the dimer and tetramer/hexamer. IS in the experiment
is measured in units of nM and related to J (in units
of kBT , the Boltzmann constant times the temperature)
by J = − ln(IS/c0), where c0 = 1M is the reference
concentration.

For valence-variation experiments the dimer-tetramer
system served as a reference. Increasing the valency
of the interacting components is expected to increase
their effective affinity. Therefore, we based these ex-
periments on a low affinity mutant of Im2 (V37A) to
enable detecting further increases in affinity associated
with changes in valence. In order to change the valence,
the tetramerization domain was replaced with selected
homo-oligomerization domains from thermophilic organ-

http://dx.doi.org/10.1126/science.1172046
http://dx.doi.org/10.1016/j.cell.2016.04.047
http://dx.doi.org/10.1146/annurev-cellbio-100913-013325
http://dx.doi.org/10.1146/annurev-cellbio-100913-013325
http://dx.doi.org/10.1016/j.cell.2018.12.035
http://dx.doi.org/10.1016/j.cell.2018.12.035
http://dx.doi.org/10.1038/s41589-020-0576-z
http://dx.doi.org/10.1038/s41589-020-0576-z
http://dx.doi.org/10.1017/CBO9780511569463
http://dx.doi.org/10.1063/1.1723803
http://dx.doi.org/10.1063/1.1723922
http://dx.doi.org/ 10.1103/PhysRevLett.91.015901
http://dx.doi.org/ 10.1103/PhysRevLett.97.168301
http://dx.doi.org/10.1103/PhysRevLett.111.188002
http://dx.doi.org/10.1103/PhysRevLett.111.188002
http://dx.doi.org/10.1007/BF01017362
http://dx.doi.org/10.1007/BF01017363
http://dx.doi.org/10.1007/BF01127721
http://dx.doi.org/10.1007/BF01127722
http://dx.doi.org/10.7554/eLife.30294
http://dx.doi.org/10.1088/1367-2630/aab8d9
http://dx.doi.org/10.1088/1367-2630/aab8d9
http://dx.doi.org/10.1101/611095
http://dx.doi.org/10.1101/611095
http://dx.doi.org/10.1063/1.440061
http://dx.doi.org/10.1063/1.440061
http://dx.doi.org/10.1016/0375-9601(80)90281-9
http://dx.doi.org/10.1016/0375-9601(80)90281-9
http://dx.doi.org/ 10.1021/bi9808621
http://dx.doi.org/ 10.1021/bi9808621
http://dx.doi.org/10.1016/S0005-2736(03)00015-4
http://dx.doi.org/10.1016/S0005-2736(03)00015-4
http://dx.doi.org/10.1073/pnas.0506043102
http://dx.doi.org/10.1073/pnas.0506043102
http://dx.doi.org/10.1080/00018739400101505


7

(a)

(b)

FIG. S1: (a) Structures of the different oligomeric scaffolds and their associated experimental phase diagram shown underneath.
The overlay of all phase boundaries highlights consistency within scaffolds with six binding sites (hexamers) and a clear shift
as compared to the reference scaffold with four binding sites (tetramer). The 4-letter PDB code corresponding to each scaffold
is given above its respective phase diagram. (b) ∆ is obtained manually from an estimate of the most probable phase diagram
in each case. The other two lines provide the extent of maximum error in the estimation of ∆.

isms, as these tend to exhibit high protein stability. The
main selection criteria for homo-oligomerization domains
was a small size and a validated homo-oligomeric state
as verified through PiQSi and QSbio (PMID: 17997962
& 29155427). Candidates with four, six, eight, ten, and
twelve binding sites were chosen. From these initial can-
didates, those with six binding sites (hexamers) showed
consistent phase boundaries despite all hexameric scaf-
folds exhibiting different tertiary structures (Supplemen-
tary Fig. 1), implying that the origin of the change in
the phase boundaries came specifically from the change
of valence. In contrast, the phase diagrams of other va-
lencies did not show consistent phase boundaries across
multiple structures (10, 12, 24-mers) nor an enhanced

phase separation relative to the tetramer (8-mers). Such
inconsistent phase boundaries could be caused by several
confounding factors such as the presence of intramolec-
ular interactions, steric hindrance preventing a regular
pavement in 3D space, improper folding, or improper as-
sembly due to expression in a heterologous organism. For
these reasons, it was difficult to interpret our observations
for valencies eight-and-up, and we focused on hexamers
in this work. Detailed information about the scaffolds’
layout and sequences can be found in Supplementary Ta-
ble 1-2.
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FIG. S2: The lowest concentration of the phase boundary was determined as the peak density (red square) of selected data
points (cyan) along the diagonal. Affinities of different Im2 mutants decrease from left to right and accordingly the lowest point
of the phase boundary shifts to higher concentrations. ∆ represents the distance of the red square from the origin. The limit of
resolution to measure concentration in our fluorescence microscope is about 6nM , which means that ∆ might be smaller than
the value observed for the affinity IS = 1.5 × 10−8M .

A. Plasmids and Strains

The creation of plasmids for interaction strengths is
described in (PMID: 32661377). To create plasmids
with novel oligomerization domains, the plasmid carrying
the tetrameric protein scaffold from our previous work
(PMID: 32661377) was onboarded with Twist Bioscience
(San Francisco, CA) as a custom vector. Plasmids in
which only the original tetramerization domain was re-
placed with selected candidates were then ordered and
co-transformed into a diploid S. cerevisiae strain cre-
ated by mating BY4741 and BY4742 strains (PMID:
9483801). Individual components were also transformed
in haploid (BY4741) cells (PMID: 9483801) to measure
their expression. The tRNA adaptation index of newly
selected scaffold proteins was optimized using custom
scripts.

B. Microscopy and image processing

Sample preparation and imaging were performed as de-
scribed previously. (PMID: 32661377). Image processing
was done as previously described in (PMID: 32661377).
Briefly, custom scripts (bioRxiv: 260695) in ImageJ/FIJI
(PMID: 22743772) were used for identification and seg-
mentation of individual cells. Among other properties
the median fluorescence intensity was recorded for each
cell. Fluorescence intensity values were converted into
concentration values based on a linear model of fluo-
rescence intensity measured at different concentrations
of purified fluorescent proteins, as described in (PMID:
32661377).

C. Analysis of the minimal distance, ∆, of phase
boundaries from the origin

The impact of valency on phase separation was quanti-
fied by determining the point of lowest concentrations on
the phase boundaries, which we define by the distance,
∆, of this point from the origin. In this analysis, we only
considered cells containing condensates as they lie on the
phase boundaries, which makes it possible to estimate
its position on the diagram. For each cell condensate,
the concentration of both scaffolds in the dilute phase
was extracted and log-transformed, yielding x- (concen-
tration of dimer binding sites) and y-coordinates (concen-
tration of tetramer/hexamer binding sites). Thereafter,
data points within a certain distance (< 1) from the di-
agonal were selected. These points were then projected
onto the diagonal and the peak of their density was de-
termined. The data point closest to the location of the
peak was then taken as the minimal concentration of the
phase boundary. Each strain was imaged several times,
and this analysis was repeated for each replicate. The
final value was determined as the mean of all replicates.
Importantly, there is a limit to this estimate, of about
∼ 6nM , due to the resolution of the microscope used
to measure the auto-fluorescence of cells. This means
we cannot resolve values of ∆ that are lower than this
limit. Thus, when J is very large, such that ∆ is very
low, our experimental resolution fails to correctly mea-
sure the concentrations. The phase diagram for J ∼ 18
or IS = 1.5 × 10−8M , shown in Fig. 2(f) in the main
text, yields boundaries at or close to this experimental
resolution limit.

Note that the experimental phase diagrams (in Figs. 2
and 3 in the main text and Fig. S1) contain some data
points representing single-phase in the two-phase region.
In an ideal scenario, these data points should not exist.
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But the experimental phase diagrams come from in-vivo
measurements in living yeast cells, and there are many
sources of noise. Given enough time, we believe that the
proteins inside these cells may eventually undergo phase
separation eliminating these data points.

S2. FREE ENERGY FOR THE MIXTURE OF
TETRAMERS, DIMERS AND SOLVENT

We are interested in the phase separation of a three-
component system consisting of a linear molecule A with
two interaction sites, a multivalent molecule B with va-
lency (i.e., interaction sites) q = 4, 6, 8, 10, . . . and the
solvent. The system is designed (see Sec. I and [2]) so
that the molecules interact exclusively intermolecularly
and the two interaction sites of the same A molecule
can not interact with two sites belonging to the same
B molecule. To formulate a mean-field theory for the
system, we consider a lattice model (see Fig. 1 in the
main text) where the A molecules can occupy the bonds
and B molecules occupy the sites of the lattice. Solvent
molecules, S, can occupy either the bonds or the sites as
schematically shown in Fig. 1 in the paper. We define
the total number of sites as Ns and the total number of
bonds as Nb . For concreteness, we consider a square lat-
tice and q = 4 for the B molecules (that is, a tetramer),
however, the formalism is more general. For the square
lattice, Nb = 2Ns and the total number of bonds and
sites in the lattice is 3Ns. We consider that there are a
total of N0

A A molecules and N0
B B molecules. Since all

the sites and bonds of the lattice are occupied, conserva-
tion dictates that there must be Nb−N0

A = 2Ns−N0
A S

molecules on the bonds and Ns−N0
B S molecules at the

sites. As we discussed in the main text, the analysis of
the phase separation involves two steps: (1) the A and B
molecules associate with each other forming complexes,
and (2) the complexes interact with the B molecules lead-
ing to the phase separation. For tetramers, there can be
four different complexes: Ci with i = 1, 2, 3, 4 where Ci
represents a complex with i distinct A molecules being
associated with a B molecule as shown in Fig. 1. The
concentration of free A molecules is ρA = NA/Nb where
NA is the number of free A molecules that are not as-
sociated with any B molecules. Similarly, ρB = NB/Ns
is the concentration of free B molecules. This particular
normalization accounts for the valence which is equal to
2Nb/Ns since a bond is shared by two sites. Since each
of these dimensionless concentrations can be unity, we
denote them by effective concentrations. The total con-
centrations of A and B molecules relative to the number
of bonds and sites, respectively, are defined as ρ0A and
ρ0B . We define the concentrations of the ith complex as
γi.

The B molecules occupy the Ns sites of the lattice and
the A molecules the Nb bonds and write the entropic part

of the total free energy per site as:

fentropic =2ρA ln ρA + ρB ln ρB + 2(1 − ρ0A) ln(1 − ρ0A)

+ (1 − ρ0B) ln(1 − ρ0B) + γ1 ln(4γ1) + γ2 ln(6γ2)

+ γ3 ln(4γ3) + γ4 ln γ4 (S1)

where we have distinguished among the solvent molecules
that are located at the bonds and at the sites, by the third
and fourth terms of Eq. (S1). The numerical factors in
the entropic contributions of the complexes come from
the simple counting of the number of ways of associating
the A molecules with the B molecules. We ignore the
rotational contributions to the entropy. The attractive
association of a A molecule with a B molecule reduces
the free energy and Ji is the reduction in free energy per
total of sites and bonds associated with the formation
of the ith complex. In our mean-field approximation,
the complexes interact with the average number of B
molecules in the system, which can lead to phase sepa-
ration. Then, the interaction part of the free energy per
total of sites and bonds can be written as

finteraction = −J1γ1 − J2γ2 − J3γ3 − J4γ4

−(J−JBB)ρ0B(γ1 + 2γ2 + 3γ3 + 4γ4) (S2)

In this expression we have used a mean-field approxima-
tion for mathematical simplicity whereby the complexes
(via the A molecules attached to them) interact with all
the B molecules on the sites. JBB is non-zero if the en-
ergy of associating a B molecule with the interaction site
of a A molecule that already has a B molecule associated
with the other end of the A dimer, compared with a A
molecule attached to a single B is different. It appears
that a good, semi-quantitative description of the experi-
ments is obtained even if we set JBB = 0 (see main text
and Discussion).

Therefore, the total free energy per total of sites and
bonds, f = F/M , where F is the total free energy, can
be written as sum of Eqs. (S1) and (S2) as

f =2ρA ln ρA + ρB ln ρB + 2(1 − ρ0A) ln(1 − ρ0A)

+ (1 − ρ0B) ln(1 − ρ0B) + γ1 ln(4γ1) + γ2 ln(6γ2)

+ γ3 ln(4γ3) + γ4 ln γ4

− J1γ1 − J2γ2 − J3γ3 − J4γ4

− (J − JBB)ρ0B(γ1 + 2γ2 + 3γ3 + 4γ4) (S3)

where ρA = ρ0A− (γ1 +2γ2 +3γ3 +4γ4)/2 and ρB = ρ0B−
(γ1+γ2+γ3+γ4) are the concentrations of the interaction
sites of free A and free B as we explained above. We
first must minimize this free energy with respect to all
of γi’s, which predicts the equilibrium concentrations of
the complexes in terms of total concentrations of A and
B molecules.

A direct minimization to find the different γi’s is diffi-
cult, even numerically, because of the nonlinear equations
arising as a result of the minimization. Therefore, we first
cast them in an algebraically simpler form before solving
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TABLE S1: Plasmids used to vary the interaction affinity. All plasmids are based on the p41x vector (PMID: 7737504). The
interaction affinities corresponding to the mutants were taken from the literature. (PMID: 9718299)

Name Valency ORF Affinity to E9 (M) Yeast Selection Marker
pMH04 2 GPD Promoter - NES - Im2 - 4LTB - FusionRed - CYC Terminator 1.5e-8 Hygromycin
pMH05 2 GPD Promoter - NES - Im2 (V37A) - 4LTB - FusionRed - CYC Terminator 9.3e-6 Hygromycin
pMH06 2 GPD Promoter - NES - Im2 (E30A) - 4LTB - FusionRed - CYC Terminator 2.8e-7 Hygromycin
pMH08 2 GPD Promoter - NES-Im2 (P56A) - 4LTB - FusionRed - CYC Terminator 2.1e-6 Hygromycin
pMH01 4 GPD Promoter - Venus - E9 - 1AIE - CYC Terminator - G418

yDO02 BY4743
Condensate strain with

Im2 (V37A) and 4NTK (C27A) as oligomerization domain
pMH05, pDOv602

G418,
Hygromycin

yDO03 BY4743
Condensate strain with

Im2 (V37A) and 4OK9 as oligomerization domain
pMH05, pDOv603

G418,
Hygromycin

TABLE S2: Plasmids encoding scaffolds with variable valencies. Plasmids pDOv601 and pDOv602 feature point mutations in
the oligomerization domain (P1A and C27A, respectively), in order to inactivate enzymatic activity.

Name Valency
PDB Code

Oligo- merization
Domain

ORF Yeast Selection Marker

pMH05 2 4LTB GPD Promoter - NES - Im2 (V37A) - 4LTB - FusionRed - CYCterminator Hygromycin
pMH01 4 1AIE GPD Promoter - Venus - E9 - 1AIE - CYC Terminator G418

pDOv601 6 2OPA (P1A) GPD Promoter - Venus - E9 - 2OPA (P1A) - CYC Terminator G418
pDOv602 6 4NTK (C27A) GPD Promoter - Venus - E9 - 4NTK (C27A) - CYC Terminator G418
pDOv603 6 4OK9 GPD Promoter - Venus - E9 - 4OK9 - CYC Terminator G418

yDO02 BY4743
Condensate strain with

Im2 (V37A) and 4NTK (C27A) as oligomerization domain
pMH05, pDOv602

G418,
Hygromycin

yDO03 BY4743
Condensate strain with

Im2 (V37A) and 4OK9 as oligomerization domain
pMH05, pDOv603

G418,
Hygromycin

them numerically. Minimizing the free energy, Eq. (S3),
with respect to γi, i = 1, 2, 3, 4, after a slight mathemat-
ical manipulation,leads to the following four equations

− lnX − lnY + ln γ1 = 1 + (J − ln 4) + (J − JBB)ρ0B
(S4a)

−2 lnX − lnY + ln γ2 = 2 + (2J − ln 6) + 2(J − JBB)ρ0B
(S4b)

−3 lnX − lnY + ln γ3 = 3 + (3J − ln 4) + 3(J − JBB)ρ0B
(S4c)

−4 lnX − lnY + ln γ4 = 4 + 4J + 4(J − JBB)ρ0B
(S4d)

where, we have defined X = ρA = ρ0A − (γ1 + 2γ2 +
3γ3 + 4γ4)/2 and Y = ρB = ρ0B − (γ1 + γ2 + γ3 + γ4) for
the convenience of notation. We next subtract Eq. (S4a)
from Eq. (S4b), Eq. (S4b) from Eq. (S4c) and Eq. (S4c)
from Eq. (S4d) and define α = exp[1+J+(J−JBB)ρ0B ].
These three equations, along with Eq. (S4a) give

γ1 =
XY α

4
(S5a)

γ2
Xγ1

=
2α

3
(S5b)

γ3
Xγ2

=
3α

2
(S5c)

γ4
Xγ3

= 4α. (S5d)

From these equations, we obtain γ1 = XY α/4, γ2 =
2αXγ1/3, γ3 = α2X2γ1 and γ4 = 4α3X3γ1. Replacing
these relations back in the definitions of X and Y leads

to

X = ρ0A −
[
1 +

4αX

3
+ 3α2X2 + 16α3X3

]
XY α

8
(S6a)

Y = ρ0B −
[
1 +

2αX

3
+ α2X2 + 4α3X3

]
αXY

4
. (S6b)

We now numerically solve these two equations for X and
Y for given values of ρ0A and ρ0B and then find the γi’s
from Eqs. (S5). Since we will have to differentiate the
free energy to find the binodal and spinodal, we use inter-
polation (we use the in-built function ListInterpolation
of InterpolationOrder (3,3) of Mathematica [3]) to ob-
tain analytical (fitted) forms for the γi’s and insert those
in the expression of the free energy, Eq. (S3). Next we
proceed through the usual procedure, as detailed below
in Sec. S3, to obtain the phase diagrams for the system
for a particular value of the interaction strength J .

S3. CALCULATION OF THE SPINODAL,
BINODAL AND CRITICAL POINTS

For the purpose of this section we set JBB = 0 and J is
the interaction strength and discuss below the effects of
finite values of this interaction. Let us consider the free
energy f(φA, φB , J) of a three-component phase separat-
ing system where φA and φB are the concentrations of
the two types of proteins in the single homogeneous phase
and the solvent density is (1−φA−φB). We want to cal-
culate the spinodal line and the critical points at fixed J
and write f(φA, φB , J) ≡ f(φA, φB).

To find the spinodal and critical points, we use the
definitions that the spinodal is the limit of stability of the
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TABLE S3: Yeast strains used in this work
Name Background Description Plasmids Selection

yMH05 BY4743
Condensate strain with

wild type Im2
pMH01, pMH04

G418,
Hygromycin

yMH06 BY4743
Condensate strain with

Im2 (V37A)
pMH01, pMH05

G418,
Hygromycin

yMH07 BY4743
Condensate strain with

Im2 (E30A)
pMH01, pMH06

G418,
Hygromycin

yEl09 BY4743
Condensate strain with

Im2 (P56A)
pMH01, pMH08

G418,
Hygromycin

yDO01 BY4743
Condensate strain with

Im2 (V37A) and 2OPA (P1A) as oligomerization domain
pMH05, pDOv601

G418,
Hygromycin

yDO02 BY4743
Condensate strain with

Im2 (V37A) and 4NTK (C27A) as oligomerization domain
pMH05, pDOv602

G418,
Hygromycin

yDO03 BY4743
Condensate strain with

Im2 (V37A) and 4OK9 as oligomerization domain
pMH05, pDOv603

G418,
Hygromycin

free energy up to quadratic order in small variations from
the average concentrations and that at the critical points
both the second and third order variations of the free
energy in these small variations must be zero. In general,

the Taylor series expansion of the free energy about the
average concentrations φA ∗ 0, φ0B can be written up to
third order in terms of δφA = φA = −φ0A and δφB =
φB = −φ0B :

δf = f(φA, φB) − f(φ0A, φ
0
B)

= fAδφA + fBδφB +
1

2

(
fAAδφ

2
A + 2fABδφAδφB + fBBδφ

2
B

)
+

1

6

(
fAAAδφ

3
A + 3fAABδφ

2
AδφB + 3fABBδφAδφ

2
B + fBBBδφ

3
B

)
(S7)

To analyze this expansion in terms of the spinodal and critical points, it is useful to consider some fixed value of δφA
and ask about the ratio of n = δφB/δφA. This merely allows us to separate out a factor of δφA to an appropriate
power in each term of the expansion which can now be written as:

δf = f(φA, φB) − f(φ0A, φ
0
B) =δφA (fA + n fB) +

1

2
δφ2A

(
fAA + 2n fAB + n2 fBB

)
+

1

6
δφ3A

(
fAAA + 3n fAAB + 3n2 fABB + n3 fBBB

)
(S8)

The term linear in δφA is zero since the free energy (which
includes the chemical potential) is a minimum. The sec-
ond term is a general quadratic function of n and is posi-
tive definite as long as fAAfBB–f2AB > 0; the spinodal is
the line in the plane defined by the two concentrations at
which this inequality becomes an equality. At the spin-
odal, we further require that the term quadratic in δφA
in the expansion be equal to zero that determines that n
is given by n = −fAB/fBB = −fAA/fAB . Using this ex-
pression for n in the third order term of the free energy,
proportional to δφ3A, we can find the condition at which
this entire term is zero (i.e., the condition for the critical

point):

∂3f

∂φ3A
−3

fAB
fBB

∂3f

∂2φA∂φB
+ 3

(
fAB
fBB

)2
∂3f

∂φA∂2φB

−
(
fAB
fBB

)3
∂3f

∂φ3B
= 0 (S9)

where fAB ≡ ∂2f/∂φA∂φB etc.

To obtain the binodal, we must look at the two phases;

the dilute phase designated as (φ
(1)
A , φ

(1)
B ) and the dense

phase, (φ
(2)
A , φ

(2)
B ). The chemical potentials of species A
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and B are given as

JA =
∂f(φA, φB)

∂φA
; JB =

∂f(φA, φB)

∂φB
(S10)

and the osmotic pressure is given by

Π = f(φA, φB)−φA
∂f(φA, φB)

∂φA
−φB

∂f(φA, φB)

∂φB
(S11)

In equilibrium, the chemical potentials of the two
molecules in each phase as well as the osmotic pressures
of the two phases must be equal. Thus, we have the
following three conditions:

∂f(φA, φB)

∂φA

∣∣∣∣
φ
(1)
A ,φ

(1)
B

=
∂f(φA, φB)

∂φA

∣∣∣∣
φ
(2)
A ,φ

(2)
B

(S12a)

∂f(φA, φB)

∂φB

∣∣∣∣
φ
(1)
A ,φ

(1)
B

=
∂f(φA, φB)

∂φB

∣∣∣∣
φ
(2)
A ,φ

(2)
B

(S12b)(
f(φA, φB) − φA

∂f(φA, φB)

∂φA
− φB

∂f(φA, φB)

∂φB

)
φ
(1)
A ,φ

(1)
B

=

(
f(φA, φB) − φA

∂f(φA, φB)

∂φA
− φB

∂f(φA, φB)

∂φB

)
φ
(2)
A ,φ

(2)
B

(S12c)

For the binodal we have four variables, two densities in
each of the dilute and dense phases, and we the three
equations S12. We therefore take one variable as a pa-
rameter to be varied and obtain the corresponding values
of the other three variables using Eqs. (S12) and thus,
obtain a line as shown in Fig. 2 in the paper.

S4. ROLES OF THE COMPLEXES

As we discussed in the main text, we must consider
multi-particle interactions to model the experimental sys-
tem. In order to include such interactions within a mean-
field lattice model, we proceed in two separate stages.
The A and B particles associate with each other to
form the various complexes where different numbers of A
molecules can associate with the B molecules. As shown
in Fig. 1(b) in the main text, for solutions of tetramers,
dimers and solvent, there are four possible complexes, Ci
with i = 1, 2, 3, 4, where i is the number of A molecules
being associated with a B molecule.

We next examine the scenarios of small and large inter-
action strengths J (relative to kBT ). In Fig. S3 we show
the concentrations of free A and B and those of the four
complexes as functions of the concentrations of the A and
B interaction sites (see above). Phase separation takes
place for this system around J ∼ 3.0; Figs. S3(a)-(f) are
for J = 0.3 and (g)-(l) for J = 4.5. When the inter-
action is very small [Fig. S3(a)], there is a substantial
amount of free A in the solution even when there are suf-
ficient B molecules [Fig. S3(b)], to associate with them
all, as expected. The concentrations of the complexes is

also relatively small compared with the situation of very
strong interactions as seen in Figs. S3(c-f) and S3(i-l)
respectively. Fig. S3(g) and (h) shows that when the
interaction is very strong, almost all of A molecules are
associated with B molecules in complexes when there are
sufficient B molecules in the solution. The line showing
the efficient use of A molecules gives the symmetry line
where phase separation is maximal - i.e., the tie line join-
ing the two coexisting phases is longest. This line shows
up in the formation of the complexes [Fig. S3] as well as
in the binodal and spinodal phase diagrams. This is the
point we have schematically alluded to through the two
shaded regions, R1 and R2 in Fig. 1(a) in the paper.

S5. ROLE OF VALENCY: COMPARISON
BETWEEN TWO SYSTEMS - HEXAMERS,
DIMERS AND SOLVENT VS. TETRAMERS,

DIMERS AND SOLVENT

To compare the role of valency in the phase separation,
we consider two separate mixtures; one consisting of hex-
amers, dimers and solvent and the other of tetramers,
dimers and solvent. For the mixture with hexamers,
there can be six different complexes whose concentrations
are denoted as γi with i = 1, . . . , 6. We consider a cubic
lattice, where the free energy fhex per overall number of
lattice sites M is

fhex = 3ρA ln ρA + ρB ln ρB + 3(1 − ρ0A) ln(1 − ρ0A)

+ (1 − ρ0B) ln(1 − ρ0B) + γ1 ln(6γ1) + γ2 ln(15γ2)

+ γ3 ln(20γ3) + γ4 ln(15γ4) + γ5 ln(6γ5) + γ6 ln γ6

− (J − ln 6)γ1 − (2J − ln 15)γ2 − (3J − ln 20)γ3

− (4J − ln 15)γ4 − (5J − ln 15)γ5 − 6Jγ6

− Jρ0B(γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6). (S13)

Using similar algebra as detailed in Sec. S2, we obtain
the concentrations for the complexes as γ1 = XY α/6,
γ2 = 2αXγ1/5, γ3 = 3α2X2γ1/10, γ4 = 2α3X3γ1/5,
γ5 = α4X4γ1 and γ6 = 6α5X5γ1 along with

X = ρ0A − (γ1 + 2γ2 + 3γ3 + 4γ4 + 5γ5 + 6γ6)/3

Y = ρ0B − (γ1 + γ2 + γ3 + γ4 + γ5 + γ6). (S14)

The detailed expression of the free energy for the mix-
ture of tetramers and the concentrations of the complexes
are detailed in Sec. S2. After a numerical solution of the
equations for the concentrations of the complexes, we ob-
tain their analytical forms via interpolation. Substitut-
ing these analytical expressions in the free energies, we
numerically obtain the phase diagrams through the pro-
cedure detailed in Sec. S7. We have reported the phase
diagrams in Fig. 3 in the main text of the paper.
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FIG. S3: Concentrations of free A and B proteins and the complexes for the system consisting of tetramers, dimers and solvent.
Figs. (a)-(f) are for J = 0.3 and (g)-(l) are for J = 4.5. The system phase separates at around J = 3.0. When J is very small
(e.g., 0.3 as in (a)-(f)), there is a significant fraction of free A molecules even when there are enough B molecules. However
when the interaction is very strong ((g)-(l)) almost all of A is efficiently used when there are enough B molecules and the
concentrations of the complexes are relatively large compared to when J is small.

S6. BEHAVIOR OF THE MINIMA OF THE
PHASE DIAGRAM

To understand how the minima of the phase diagram
vary with the interaction strength, we analyze a sim-
ple two-component system with a repulsive interaction
of strength J between the two different species (repre-
senting an attraction of each species to its own kind).
The concentrations of the two components are given by
φ and (1−φ) and the mean-field free energy of the system
can be written [4] as

f = T [φ lnφ+ (1 − φ) ln(1 − φ)] +
J

2
φ(1 − φ). (S15)

This system has symmetric phase diagram with the crit-
ical point at φ = 1/2. We consider the dilute side of the
phase diagram (since the simple, two-component lattice

gas is symmetric, the same behavior applies for the dense
regime as well) and the chemical potential Jdilute is given
by

Jdilute ≈ T (lnφ+ 1) +
J

2
. (S16)

From this expression, we see that φ ∼ exp(−J/2), where
J is the interaction strength, relative to kBT . If we con-
sider the three-component system, we also find (from our
numerical results) that the minimum concentration varies
exponentially with interaction strength.

S7. DETAILS OF NUMERICAL SOLUTION

Solving the equations governing the phase diagram,
as detailed in Sec. S3, is difficult even for a simple two-



14

component system; one often needs to solve the equations
numerically. Our theory is for a three-component system,
but the complexity of the numerical solution increases by
the formation of complexes. One first needs to minimize
the free energy, f , with respect to the concentrations of
complexes, γi, and solve the resulting equations simulta-
neously. Here we summarize the procedure for numerical
solutions of the phase diagrams:

1. We first analytically minimize f and write γi in
such a way that we need only solve two nonlinear
equations simultaneously, as shown in Eq. (S6).

2. In Mathematica [3], we numerically solve these
equations and obtain the solutions for γi.

3. Via interpolation, we next obtain an analytical so-
lution for γi, this is advantageous for the differen-
tiation of f .

4. These analytical solutions for γi are then used in
the free energy and the equations for the spinodal,
binodal and the critical points are solved numeri-
cally.

As J increases, the concentration of the dilute phase
decreases exponentially. For the correct numerical solu-
tion, we therefore, have to take a finer grid. In our nu-
merical solution, we have used a logarithmically spaced
grid, but even then, the time required for the computa-
tions increases for larger values of J , since one requires
a finer grid. For example, with q = 4 and J = 13, the
numerical solution for the binodal phase diagram close
to the symmetry axis requires about 12 hours on a 3.7
GHz computer with 6-core i5 processors. The time re-
quirement becomes larger for higher values of q as more
number of complexes increases the nonlinearity in Eq.
(S6).

S8. PHASE DIAGRAM ALONG THE
SYMMETRY AXIS

We have seen (Fig. 3a in the main text) that the
maximum phase separation takes place along the sym-
metry axis, where ρ0A = ρ0B . Thus, solving the equations
along this axis, by setting ρ0B = ρ0A, allows one to ob-
tain ∆ from this simplified model. Numerical solution of
this model is much faster compared with computations
based on the full model as the phase diagram becomes
two-dimensional. The spinodal and binodal phase dia-
grams on this (J, ρ0A) plane are presented in Fig. S4. We

find that ∆, obtained from this simplified model, agrees
well with that obtained via the solution of the full three-
dimensional model, as shown in Fig. 3(b).

S9. NON-ZERO VALUES OF JBB

We now briefly comment on the role of the additional
interaction, JBB , in Eq. (S2). A value JBB > 0 means

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

q = 4
q = 6
q = 8

ρ0
A

1/J

FIG. S4: Phase diagram along the symmetry axis for three
systems where B species is either a tetramer, hexamer or oc-
tamer. Dotted lines are spinodals and continuous lines are
binodals.

that associating a B molecule with an A molecule already
engaged to another B costs more energy compared with
the association of a B molecule with a free A. Such a
penalty could reflect, for example, an allosteric commu-
nication between the two binding sites of an A dimer. To
minimize the number of parameters, we took JBB = 0 in
the comparisons of theory and experiment. We point out
that a small value of JBB does not introduce any qualita-
tive differences in the phase separation scenario; however,
large values of JBB hinder phase separation even though
complexes still form. Conversely, a negative value of JBB ,
which could originate in avidity effects, would enhance
phase separation. However, we assume that JBB which
requires an interaction range equivalent to the length of
the dimer, is smaller than J which accounts for the more
local binding of A and B.
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