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Abstract

Improving the affinity of a high-affinity protein–protein interaction is a challenging problem that has
practical applications in the development of therapeutic biomolecules. We used a combination of
structure-based computational methods to optimize the binding affinity of an antibody fragment to the
I-domain of the integrin VLA1. Despite the already high affinity of the antibody (Kd ;7 nM) and the
moderate resolution (2.8 Å) of the starting crystal structure, the affinity was increased by an order of
magnitude primarily through a decrease in the dissociation rate. We determined the crystal structure of
a high-affinity quadruple mutant complex at 2.2 Å. The structure shows that the design makes the
predicted contacts. Structural evidence and mutagenesis experiments that probe a hydrogen bond
network illustrate the importance of satisfying hydrogen bonding requirements while seeking higher-
affinity mutations. The large and diverse set of interface mutations allowed refinement of the mutant
binding affinity prediction protocol and improvement of the single-mutant success rate. Our results
indicate that structure-based computational design can be successfully applied to further improve the
binding of high-affinity antibodies.
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Computational techniques for small molecule design have
recently become an established part of the drug discovery
process, and many studies have been published in which
structure-based design has led to high-affinity molecules
(Jorgensen 2004). In contrast, there has been considerably
less usage of computational design techniques in the field
of protein engineering. This is due in part to the effec-
tiveness of directed evolution experimental techniques
(Crameri et al. 1996; Hanes et al. 1998), the computa-

tional complexity of treating full proteins, and the relative
scarcity of structural information on engineered proteins.
Very recently there have been a number of successes in
computational protein design, such as the redesign of
an internal domain–domain interface of an endonuclease
(Chevalier et al. 2002), the design of a novel protein fold
(Kuhlman et al. 2003), the design of specific enzymatic
activity into a periplasmic binding protein (Dwyer et al.
2004), and alteration of DNase-inhibitor pair binding
specificity (Kortemme et al. 2004). It is now foreseeable
that biomolecule therapeutic design could be addressed
using computational techniques.

Antibodies are the most widely used format for protein
therapeutic applications for a variety of reasons, including
high affinity and the ability to trigger immune responses
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(Brekke and Sandlie 2003). Traditionally, monoclonal
antibodies are produced by immunization of mice, construc-
tion of hybridomas, and selection of single clones expressing
the desired antibody (Kohler and Milstein 1975). More
recently, directed evolution techniques such as phage-display
and related in vitro library display methods have become
commonly used (Crameri et al. 1996; Hanes et al. 1998).
Either in vivo or in vitro techniques can produce high-
affinity antibodies for most targets (Kretzschmar and Von
Ruden 2002; van den Beucken et al. 2003). Further affinity
enhancement using directed evolution techniques has been
shown to be quite effective (Daugherty et al. 2000; Midelfort
et al. 2004). In this report, we investigate the applicability
of structure-based computational design to improving the
affinity of a mature antibody. The antibody optimized in this
work is specific for the I domain of human integrin (VLA1)
(Karpusas et al. 2003). This integrin is a cell-surface receptor
for collagen and laminin and is present on some T-cells.
Anti-VLA1 is a potential therapeutic intended to inhibit the
entry of activated T-cells and monocytes to sites of inflam-
mation and may have uses in the treatment of arthritis
(Ben-horin and Bank 2004).

In essence, computational protein design rests on
techniques to sample a large number of designs and the
ability to accurately predict the properties of the designs.
Sampling of amino acid types and side chain rotamers
can be done efficiently using algorithms such as dead-end
elimination (DEE) (Desmet et al. 1992) and its refine-
ments (Goldstein 1994; Pierce et al. 2000; Looger and
Hellinga 2001), Monte Carlo-based searches (Kuhlman
and Baker 2000), or combinations (Shah et al. 2004).
Using these methods, a very large number of residue
types and conformations at many selected positions can
be screened in silico using fast evaluations of energetic
properties. Equally important is the quality of the energy
evaluations, especially the treatment of the solvent and elec-
trostatic interactions. For these energy terms, the highest-
quality methods, such as region-dependent dielectric
constants (Wisz and Hellinga 2003) or numerical solution
of the Poisson-Boltzmann equation (Marshall et al. 2005),
are only now becoming compatible with the exhaustive
search algorithms. In principle, the ability of computational
methods to find the best designs in a virtual library of
around 1040 sequences within a few days is a major ad-
vantage over directed evolution methods, which explore on
the order of 1010 sequences within a time frame of weeks to
months. For example, computational methods can exhaus-
tively test all sequence combinations for a system in which
20 residues are allowed to vary (2020 ; 1026), whereas
directed evolution can only explore a tiny fraction.

Computational protein design has been applied to the
redesign of protein cores for the purpose of making
proteins more thermostable or for exploring new protein
folds. Several successful core redesigns have been

reported (Dahiyat and Mayo 1997; Dantas et al. 2003),
but significant challenges still exist (Dantas et al. 2003;
Mooers et al. 2003). Compared with core redesign, there
is considerably less experience with protein–protein inter-
faces. Interface surfaces, particularly antibody–antigen
interfaces, are different from protein cores because they
may be more flexible and their residue composition
is often substantially more polar and diverse (Lo Conte
et al. 1999). They must also have good solubility and resist
aggregation when unbound. Additionally, interfaces usually
contain more bound water molecules, which suggests that
continuum treatments of solvation are more likely to fail.

In this work we use structure-based computational design
to enhance the binding affinity of the anti-VLA1 antibody
AQC2 and determined experimental binding affinities for
>80 designed variants. Mutations have been made to nearly
every antigen-contacting residue position using suggestions
from computational methods. A number of multiple-mutant
variations have been constructed, and crystallographic data
for one of the best, a quadruple mutant, have been collected.
This represents the first example in which structural verifi-
cation has been obtained for a protein–protein complex
designed to have increased affinity. Previous examples of
computationally designed higher-affinity binders used only
charge optimizations and lacked structural verification
(Selzer et al. 2000; Marvin and Lowman 2003). The extent
and the variety of the mutations allow conclusions about the
general applicability of this technology and provide a large
enough test set to further advance the quality of mutant
binding energy predictions.

Results

Our general approach to improve the antibody’s affinity
was first to computationally design and then to express
single and double mutants. We intentionally did not restrict
the expressed mutants to those we thought most likely to
succeed. The possibility of learning from mutation effects
also factored into the decisions. After identification of
mutants with improved affinity, we expressed combina-
tion mutants to further increase the affinity. Here, we first
give a general overview of the results, followed by sections
that focus on mutants designed by side chain repacking,
by electrostatic optimization, and by combination of single
mutations.

General overview

Based on the results of the calculations, nearly all
antibody residue positions in contact with the antigen
were varied. Figure 1 provides a view of the mutated
positions on the interface. Residue H:Asp101 (101 in
heavy chain), which contacts the manganese ion in the
antigen, was not mutated because it is experimentally
known to be critical for binding (Karpusas et al. 2003),
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and calculations show that it is already optimal (Sherman
2004). It is clear from the figure that most of the
beneficial mutations were found at the periphery of the
antibody–antigen interface. The exception is the H:T50V
mutation, which is located relatively deep in the antibody.
We found 10 single-point mutants with measured

affinities better than wild type from the 83 constructed
mutants, a success hit rate of 12% uninfluenced by
binding energy predictions. Of the 10, nine were found
in the first two passes of design calculations, which
included only 40 mutants (23% hit rate). Further design
rounds contributed only one additional successful mutant
and were done to test new methods. All mutations and the
measured binding affinities are shown in Table 1. EC50
values were measured for all mutants using competition
ELISA, which is a solid-phase assay. Mutants with appar-
ent affinities near or better than wild type were also tested
using a more reliable solution-phase assay (KinExA) (see
Materials and Methods). An example binding curve is
given in Figure 2b. A decomposition of the calculated
binding energies is given in the Supplemental Material.
The large number of mutations and their complex

character has allowed us to refine our protocol for predict-
ing DDG’s of binding (see Materials and Methods).
This protocol is distinct from the search algorithms used
to find the mutations and was applied after the mutations
were expressed and tested. Only a single false negative
(L:N52E) resulted from the predictions. Rigorous testing
of binding energy prediction methods is outside the focus
of this work. However, it is worth mentioning that

inclusion of more than local flexibility resulted in a higher
number of false positives. A comparison of calculated and
experimental binding energies is shown in Figure 2. If we
retroactively apply the results from this protocol, we
would only have made 35 of the 83 mutations, resulting in
nine mutations with affinity higher than wild type and
a corresponding hit rate of 26% (48% when restricted to
the first two passes).

Combination of four of the higher affinity mutations,
S28Q and N52E in the light chain and T50V and K64E in
the heavy chain, resulted in a quadruple mutant with an
affinity of 850 pM, which is an ;10-fold improvement
over wild type. For one of the combination mutants
(H:T50V/K64E, L:S28Q/N52Y), we solved the X-ray
structure in complex with the VLA1 I-domain. There is no
change in binding epitope between the original complex
structure (Protein Data Bank [PDB] ID 1MHP) and the
quadruple mutant, but some interesting structural changes
occurred, which are described in the following sections.

Figure 1. Visualization of the mutated positions (yellow and orange) on

the antibody–antigen interface. The view looks down through the antigen

onto the complementary determining region (CDR) loops of the antibody.

Only residues with an atom within 5 Å of the opposite side of the interface

and mutation positions are shown. The antigen residues are colored purple,

the light chain is green, and the heavy chain is blue. Positions of beneficial

mutations are shown in orange. Expressed mutants at each position are

noted to the right of the position number. All structural figures have been

made using PyMOL (DeLano Scientific).

Figure 2. Changes in binding for the mutants. (A) Comparison of

calculated with experimental DDG of binding. All mutants with compe-

tition ELISA EC50s near wild type were reevaluated using the solution-

based KinExA assay (inset). (B) Examples of the solution-phase (KinExA)

binding curves for wild type and mutants. Experimental numbers were

derived from the ratio of the wild-type affinity to the mutant affinity

ðDDGÞ¼2RTlnðKWT
D =Kmut

D Þ. All nonbinders and mutants for which only

an estimate is available are not shown.
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Table 1. Experimental and calculated binding affinity information

KWT
D =Kmut

D
DDG DDG

Mutation ELISA KinExA Calculated Derived

Wild type (7.0 nM) 1.00 0.0 0.0 0.0

Electrostatic optimizationa

L:N30V 0.17 NA +1.6 +1.1

L:H31R 0.15 NA +5.2 +1.1

L:H31K 0.14 NA �0.4 +1.2

L:L49K 0.26 0.21 +0.2 +0.8

L:N52R 0.24 NA +1.9 +0.9

L:N52K 0.33 NA �0.2 +0.7

H:R31Q 0.11 NA +1.7 +1.3

H:S35Q ’0.01 NA �1.3 NA

H:T50V 1.00 1.56 �1.6 �0.3

H:Y59E 0.40 NA �0.4 +0.5

H:L60D 1.00 1.23 �0.5 �0.1

H:K64E 1.00 1.30 �0.8 �0.2

H:K64Q 1.00 1.30 �0.5 �0.2

H:K64D 1.45 1.23 �0.7 �0.1

H:K64N 1.00 1.13 �0.6 �0.1

Side chain repackingb

L:S28Q 4.17 3.08 �0.3 �0.7

L:N30Y ’0.04 NA +1.1 NA

L:N30W ’0.07 NA +1.2 NA

L:N52Y 1.00 1.19 �1.0 �0.1

L:S91T ’0.02 NA �0.8 NA

L:S91R <0.01 NA �3.1 NA

L:S91K NB NA +2.1 —

L:G92Q ’0.07 NA +0.3 NA

L:G92S 0.42 NA +0.3 +0.5

L:N93D NB NA +4.1 —

L:S91R,L:N30E <0.01 NA �2.1 NA

H:S52M ’0.03 NA +3.3 NA

H:G53S 0.32 NA �0.5 +0.7

H:G53A 0.42 NA +5.6 +0.5

H:G54I 0.10 NA �0.4 +1.3

H:G54T 0.14 NA +3.2 +1.2

H:G54M NB NA �2.5 —

H:Y58Q ’0.03 NA +5.2 NA

H:Y58E ’0.03 NA +7.4 NA

H:Y58W 0.25 NA �0.4 +0.8

H:G100M 0.84 0.84 +14.1 +0.1

H:G100V NB NA +19.3 —

H:G100I NB NA +18.6 —

H:Y58E,H:H56N NB NA +9.0 —

H:Y58Q,H:H56N NB NA +6.8 —

Side chain repackingb with flexible backbone

L:S24R 1.85 1.12 +0.0 �0.1

L:N30K NB NA +1.3 —

L:L49Y NB NA +1.1 —

L:L49F 0.30 NA +0.5 +0.7

L:L49W ’0.04 NA �1.5 NA

L:N52D 0.43 NA +0.7 +0.5

L:N52E 1.00 1.35 +1.3 �0.2

L:W90Q ’0.03 NA +2.2 NA

L:S91Q ’0.05 NA �1.9 NA

L:S91W NB NA +0.6 —

L:W90Q,L:F33Y 0.23 NA +1.9 +0.9

H:T33V 0.48 NA �0.9 +0.4

H:T33N ’0.01 NA �0.4 NA

(Continued on next page)
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Side chain repacking mutants

A set of designs was proposed using a side chain repack-
ing algorithm developed by Hellinga and coworkers
(Looger and Hellinga 2001) that uses DEE to find optimal

sequences for a structure with a fixed backbone confor-

mation. Solvation effects are approximated by using

region-dependent dielectric constants in the evaluation

of electrostatic energy terms (Wisz and Hellinga 2003).

Table 1. Continued

KWT
D =Kmut

D
DDG DDG

Mutation ELISA KinExA Calculated Derived

H:T33Q NB NA +1.4 —

H:S35A ’0.07 NA �0.2 NA

H:S35V NB NA �0.3 —

H:T50Q NB NA �1.5 —

H:T50E NB NA +2.9 —

H:S52T NB NA +4.1 —

H:G53W NB NA +5.3 —

H:G53Q NB NA +8.0 —

H:G54N NB NA +0.1 —

H:H56Y NB NA �0.5 —

H:F99W 1.00 1.00 �0.5 �0.0

H:F99Y 0.28 NA �0.4 +0.8

H:G100L ’0.01 NA +20.4 NA

H:G100F 0.71 0.38 +25.6 +0.6

H:G100S 0.39 NA +1.7 +0.6

H:G102S NB NA +0.5 —

H:T33S,H:G53W NB NA +8.1 —

H:T50V,H:S35V ’0.01 NA �0.9 NA

H:T50V,H:S35A ’0.03 NA �1.8 NA

H:S35A,H:G102S ’0.07 NA +0.2 NA

H:S35V,H:G102S ’0.09 NA +0.2 NA

H:T50V,H:G102S ’0.06 NA �1.2 NA

H:S35A,H:T50V,H:G102S NB NA +0.5 —

H:S35V,H:T50V,H:G102S NB NA +1.6 —

Repacking with PB electrostatics (multilevel DEE/A*)c

L:H31W 0.12 NA �0.8 +1.3

L:N30Y,L:S91I 0.48 NA �1.4 +0.4

H:G53N 0.12 NA +1.3 +1.3

H:G54Y 1.00 1.00 �2.6 �0.0

H:F99W 1.00 1.00 �0.5 �0.0

H:F99Y 0.28 NA �0.4 +0.8

H:T33E,H:G53Q ’0.06 NA +18.9 NA

H:T33Q,H:G54W NB NA �2.3 —

H:T33I,H:S52T,H:G53N,H:G54N ’0.04 NA +8.3 NA

H:T33I,H:S52T,H:G53Q,H:G54F 0.12 NA +14.1 +1.3

Combinations of good single mutations

H:T50V,L:S28Q 3.23 NA �1.8 �0.7

H:T50V,H:K64E 1.00 1.84 �2.3 �0.4

H:L60D,H:K64Q NA 0.93 �1.0 +0.0

H:L60D,H:K64E NA 1.27 �1.2 �0.1

H:K64E,L:S28Q 4.17 NA �1.0 �0.9

H:T50V,L:S28Q,L:N52Y 5.00 7.61 �2.8 �1.2

H:K64E,L:S28Q,L:N52Y 6.25 5.00 �1.9 �1.0

H:T50V,H:K64E,L:S28Q,L:N52E NA 8.14 �1.3 �1.2

H:T50V,H:K64E,L:S28Q,L:N52Y 6.67 5.83 �3.5 �1.1

Binding affinities are reported with respect to the wild type as ratios (see Materials and Methods). Derived DDG (kcal/mol) numbers are from the ratio of
the wild-type affinity to the mutant affinity (DDG ¼ �RTln(KWT

D =Kmut
D )) and are from the KinExA results if available. No numbers are derived for mutants

for which the ratio had to be estimated. Single-structure calculations (see Materials and Methods) with minimal perturbation relative to the crystal structure
yielded the calculated DDG numbers. Many mutants were not tested (NA) or show no binding (NB) in the competition ELISA assay.
aKangas and Tidor 1998; ICE software (D.F. Green, E. Kangas, and B. Tidor [MIT]).
bBenson et al. 2000; Looger and Hellinga 2001.
cHanf 2002.

Computational affinity maturation of an antibody

www.proteinscience.org 953

JOBNAME: PROSCI 15#5 2006 PAGE: 5 OUTPUT: Thursday April 6 17:41:14 2006

csh/PROSCI/111777/PS0520305



One advantage of this DEE implementation is its ability
to quickly and exhaustively explore variations of all of the
antigen-contacting residues simultaneously.

We generated a large number (500) of alternative
structures, each with a different sequence. The structural
solutions were filtered by comparing each new sequence
to wild type and looking for promising variations at each
position. To account for cooperativity, we looked for
residue changes that were always accompanied by muta-
tions at neighboring positions. These predicted single- or
double-point mutants were inspected visually, and if we
observed an improvement in packing, additional intermo-
lecular hydrogen bonds, or an increase of intermolecular
hydrophobic contacts, we decided to make and express
the mutants.

Our first set of mutations generated our best single-
point mutant (L:S28Q), which by itself improves affinity
by almost a factor of 3. Another mutant (L:N52Y) was
found with a small but not statistically significant im-
provement over wild type by itself. Both of these mutants
are present in the quadruple mutant crystal structure and
allow comparison between prediction and experiment.

Figure 3A shows the crystal structure of the quadruple
mutant (dark gray) in the region around the best single-

point mutation (L:S28Q). The longer glutamine residue at
this position stacks against the aromatic ring of Tyr264 on
the antigen. The tyrosine residue is rotated inward toward
the bulk of the antigen. Comparison with the wild-type
crystal structure (data not shown) indicates that the
tyrosine residue changed conformation, flipping inward
to make the interaction with the glutamine. The protocol
used to evaluate the binding energies for Figure 2 predicts
a small (�0.3 kcal/mol) improvement in the binding
energy relative to experiment (�0.7 kcal/mol). It fails
to rotate the tyrosine inward as observed in the crystal
structure. Consequently, it does not pick up the correct
glutamine rotamer. Allowing a small degree of backbone
flexibility in the vicinity of the mutation substantially
improves the predicted binding energy and allows the
correct rotamer to be found and the correct stacking
interaction to be formed (shown in light gray). However,
only if the backbone of the quadruple mutant is used in
the calculations is the tyrosine conformation correctly
predicted.

Figure 3B focuses on the L:N52Y mutation, which is
part of the quadruple mutant for which the crystal
structure was solved. The tyrosine side chain extends
toward Ser295 on the antigen. A long (4.3 Å) distance
between the serine and the tyrosine oxygens means that
direct hydrogen bonding cannot account for the apparent
increase in affinity. As described below, we also designed
and tested an N52E mutant, which also resulted in a
small binding-affinity improvement. Aspartate, arginine,
or lysine substitutions at this position did not produce
an improvement in affinity.

The possibility of filling a cavity in the neighboring
antigen makes the glycine at position 100 in the heavy
chain an interesting position for mutations. However, all
attempts to increase affinity by filling the cavity were
unsuccessful. As shown in Figure 4, the cavity borders the
metal ion position in the antigen, is lined with polar
residues, and contains water molecules that were not
visible in the original structure. Although the the glycine
has glycine-only u–c backbone angles, the repacking
software suggested a number of drastic substitutions at
this position. Experimentally, mutation of the glycine to
a methionine gives essentially no change from wild-type
affinity (+0.1 kcal/mol) and is the best substitution at this
position. Substitution to phenylalanine or serine reduces
affinity by 60%, leucine drops the affinity by 1 order of
magnitude, and isoleucine or valine fail to show binding
in the competition ELISA assay.

An alternative design set using the repacking method-
ology was generated using a simple modification to
include backbone flexibility (see Materials and Methods).
Multiple starting backbone conformations were generated
using molecular dynamics and run through the same
procedure used for the single-crystal structure backbone.

Figure 3. Visualization of the quadruple mutant crystal structure (dark

gray) near side chain repacking mutants. (A) Comparison to the predicted

structure (light gray) in the vicinity of the S28Q mutation in the light

chain. The predicted structure forms a similar stacking-like interaction

between Tyr264 on antigen and the glutamine. The electron density (2Fo �
Fc, s ¼ 1.1) indicates that the tyrosine has swung inward toward the bulk

of the antigen. (B) Comparison of the wild-type (light gray) and quadruple

mutant crystal (dark gray) structures in the vicinity of the N52Y mutation

in the light chain.
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The wild-type residue appeared much more frequently
than in the single-structure calculations, which was
encouraging. However, a larger fraction of the resulting
designs showed no binding in the competition ELISA
assay. One new mutation (L:N52E) is apparently better
than wild type, and another mutation (H:F99W) is a wild-
type equivalent.
Another set of designs was proposed using a combina-

tion of high-quality electrostatic evaluations and a repacking
algorithm (see multilevel DEE/A* in Materials and Methods).
Some advantages of this method are its detailed Poisson-
Boltzmann treatment of solvation and electrostatics and
its use of both binding and folding energies in selecting
promising designs. Compared with the side chain repacking
algorithm used in the previous section, this method is best
used to redesign small clusters of residues. We used this
methodology to design an additional 10 mutants, of which
three were double mutants and two were quadruple
mutants. Two of the single-residue mutations were found
to have wild-type-equivalent affinity, but no additional
higher-affinity mutants were found.

Electrostatic optimization mutants

Another set of mutations took advantage of a charge
optimization algorithm based on the electrostatic poten-
tial generated from solving the Poisson-Boltzmann equa-
tion (PBE) (Kangas and Tidor 1998). Single residue
replacements that better meet the optimized charge
distribution are manually selected, modeled, and reeval-
uated computationally to find mutations that improve
electrostatic interactions and desolvation energies at the
interface while not adversely affecting packing interac-
tions. The specific rationale for making the individual
electrostatic mutations is presented elsewhere (Sherman
2004).
One obvious benefit to the electrostatic optimizations

is the ability to design for long-range interactions. The
H:K64E change is a charge reversal mutation that occurs

8.4 Å from the nearest positively charged atom on the
antigen. By itself, it does not produce a clear increase
in affinity, but in combination it seems to consistently
improve affinities (see last portion of Table 1). A
Coulombic potential model truncated at 7 Å would have
missed this mutation.

Though less significant than other mutations of the
quadruple mutant in improving the binding affinity,
H:T50V is interesting because it induces local hydrogen
bonding rearrangements. It is also the only mutation
buried in the interface rather than on the periphery.
Figure 5 compares the quadruple mutant structure to the
wild-type crystal structure in the vicinity of the mutation.
A side chain rotation to a different rotamer relative to the
threonine is seen in the valine mutant. The predicted
structure captures this rotation but is not shown for
clarity. Most interesting is the movement of the nearby
tryptophan residue. The wild-type threonine was making
a hydrogen bond with Ser35. This hydrogen bond is
critical for maintaining affinity; mutation of Ser35 to
alanine decreases affinity by ;1 order of magnitude.
Removal of hydrogen bonding possibilities with the
threonine at position 50 leaves an unsatisfied hydroxyl
group and causes the tryptophan nitrogen to move 0.9 Å
toward the serine oxygen to allow hydrogen bonding.
There is a clear and surprisingly large backbone move-
ment of ;0.7 Å at the tryptophan Ca. In this case, the
environment at the mutation site clearly rearranges to
eliminate an unsatisfied hydrogen bond.

Combination mutants

Construction of combination mutants serves two pur-
poses. In some cases, it allows the production of a com-
bined mutant with much higher affinity than any of its
constitutive single point mutations (see Fig. 2B). The
highest-affinity mutant was a combination of S28Q and
N52E in the light chain and T50V and K64E in the heavy

Figure 5. Comparison of the wild-type (light gray) and quadruple mutant

(dark gray) crystal structures in the vicinity of the H:T50V mutation. The

wild-type threonine hydrogen bonds with the tryptophan. When substituted

with a valine, the local environment rearranges to eliminate an unsatisfied

hydrogen bond.

Figure 4. The quadruple mutant crystal structure in the vicinity of the

metal-contacting H:Asp101 residue. The H:Gly100 position on the

antibody is colored yellow. A pocket in the antigen (purple) lined with

polar residues and water molecules (red spheres) is visible below the metal

ion (orange sphere). A new residue at the G100 position would extend its

Cb atom toward the water molecules on the right.
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chain with ;10 times the affinity of the wild type. It is also
possible to examine the cooperativity of mutations by mea-
suring affinities for the combination mutants. Combining the
K64E and L60D mutations in the heavy chain does not lead
to an apparent affinity increase, presumably because they are
nearby (see Fig. 1) and both introduce a similar redundant
negative charge. The small absolute value of many of the bind-
ing energy changes makes extensive consideration of the co-
operativity speculative, but it should be noted that significant
cooperativity effects have been observed for mutations on
antibody–antigen interfaces (Sundberg and Mariuzza 2003).

The mutations primarily improve affinity by decreasing
the dissociation rates. This is a significant contrast to
previous work, which explicitly targeted association rate
improvements through electrostatic optimization (Selzer
et al. 2000; Marvin and Lowman 2003). Table 2 compares
the wild-type kinetic rates to both the isolated S28Q
mutation and a combination of the S28Q, N52Y, and
T50V mutations. Affinities (Kd) from both the surface
plasmon resonance measurements (Biacore) and the
solution-based assay (KinExA) agree well.

The effect of the antigen-binding loop conformation
was indirectly probed by comparison with a variant with
a different supporting framework. During the humaniza-
tion of the anti-VLA1 antibody, several variants were
made that contained fewer antibody framework back
mutations but had identical CDRs. These variants had
significantly lower affinity (;1 mM) than the humanized
antibody described in this work (M. Jarpe, unpubl.). We
attempted to ‘‘salvage’’ the affinity of one of the low-affinity
humanization variants by applying the affinity-enhancing
mutants that were found in this work. When the N52Y,
S28Q, and T50V mutations were applied, they improved
the affinity to 140 nM. Adding the additional K64E muta-
tion brought the affinity to 110 nM. With the K64E mutation
and substituting N52E for N52Y, the affinity became 100 nM,
or an order of magnitude improvement, just as observed for
the wild-type reference used in this work. This shows that
beneficial mutants can be transferred to another base wild-
type anti-VLA1 with a similar net affinity improvement.

Discussion

The results presented in this paper indicate that it is
possible using rational structure-based design to signifi-

cantly enhance the affinity of an antibody produced by
traditional in vivo immunization methods. Side chain
repacking calculations found the most effective single
mutation and electrostatic optimization methods provided
additional affinity-enhancing mutations. Combination of
separately beneficial mutations yields the best binders
and validates the search-and-combine strategy.

Although we were able to increase the affinity by an
order of magnitude, many of the designs were not
successful. Computational design relies strongly on the
accuracy of the structure, and the relatively low resolution
(2.8 Å) likely contributed to inaccurate predictions. We
have seen here that most beneficial mutations, at least for
this in vivo optimized interface, tend to have <1 kcal/mol
effect on the binding energy. Predicting such small bind-
ing energy changes is difficult and our results highlight
the requirement for further improvement, a need that is
shared with the field of small molecule computational
design. Areas for improvement include better treatments
of solvation effects, protein flexibility, entropic contribu-
tions, and the unbound states of the molecules in the
complex. The crystal structure of the quadruple mutant
allows us to comment on two additional important factors:
explicit water molecules and hydrogen bonding networks.

Explicit consideration of molecular water positions
during the design process is an important contemporary
goal in structure-based drug design. There are two clear
examples in this work where water mediates the anti-
body–antigen interaction and is likely to contribute
strongly to the affinity. The L:N52Y and the L:N52E
mutations marginally increase the affinity of the antibody,
although the L:N52Y mutation does not make direct
contact with the antigen (see Fig. 3B). A contact through
a single bridging water molecule is structurally possible
and is likely to be present despite not being visible in the
crystal structure.

The Gly100 position in the heavy chain (Fig. 4) shows
an unusually broad range of mutation effects. It borders
the polar cavity on the antigen side that contains the metal
ion and buried water molecules. Although the glycine
occupies a glycine-only region in the Ramachandran plot,
substitution for methionine or phenylalanine produces
near-wild-type affinities. Strikingly worse effects are seen
for less extended residues such as serine, isoleucine, or
valine. This behavior suggests that longer hydrophobic

Table 2. Association and dissociation kinetics measured using surface plasmon resonance (Biacore) for the wild type and two variants

Biacore kinetics Kd ¼ koff /kon (nM)

Mutation kon (sec
�1) koff (M

�1sec�1) Biacore KinExA

Wild type 2.5 3 105 2.6 3 10�3 10.7 7–10

L:S28Q 2.5 3 105 1.1 3 10�3 4.3 2.4

H:T50V,L:S28Q,L:N52Y 3.7 3 105 7.0 3 10�4 1.9 0.9

The calculated equilibrium dissociation constants are similar to those observed from the solution-based equilibrium assay (KinExA).

Clark et al.

956 Protein Science, vol. 15

JOBNAME: PROSCI 15#5 2006 PAGE: 8 OUTPUT: Thursday April 6 17:41:20 2006

csh/PROSCI/111777/PS0520305



residues (methionine or phenylalanine) can gain enough
interactions in the cavity to offset the costs of desolvating
the cavity. The residues with branches at the Cb position
(isoleucine or valine) presumably introduce steric restric-
tions and may cause backbone reorientations. Expulsion
of water from the cavity by the longer residues and the
resulting entropy gain would explain why the measured
binding is much more favorable than that predicted (wild
type vs. +14.1 kcal/mol for G100M).
The H:T50V mutation shown in Figure 5 is an excellent

example of the importance of maintaining hydrogen bond
networks. As described in the results, the T50V mutation
disrupts a hydrogen bond that existed between Thr50
and Ser35. Our calculations assumed that the backbone
conformation would not change significantly, but in the
mutant crystal structure the local environment adjusted
backbone and side chains to enable a new hydrogen bond-
ing network. If a mutation leads to the introduction of
unsatisfied hydrogen bonds, it is likely that the environ-
ment rearranges to fix the hydrogen bonding network.
Similar effects have been seen elsewhere (Takano et al.
1999) and it is an important factor to take into account
when designing protein mutants.
A couple of questions arise regarding the affinity-

enhancing mutations that were found. Why didn’t nature
find these mutations when the antibody was matured in
the mouse, and have all the beneficial mutations been
found? Nature is capable of discriminating high affinity
from low affinity during the affinity maturation process
up to ;0.1 nM (Foote and Eisen 1995; Batista and
Neuberger 1998). The original affinity of the anti-VLA1
antibody was 7–10 nM, putting it well inside the dis-
crimination range of the naive B-cell receptor. For the
best single mutation that we found (L:S28Q), more than
one base mutation is needed, making it more difficult to
find via random mutagenesis. A definitive answer to the
first question would require more immunizations and
careful selection. Determining whether better solutions
exist would require the use of a set of library display
experiments, similar to those used to mature other anti-
bodies to very high affinity (Midelfort et al. 2004).
The type and locations of solutions are worth consid-

ering. Figure 1 shows that all affinity-improving muta-
tions except T50V are on the periphery of the antibody–
antigen interface. This could be a side effect of the
computational methodology that we use. Incomplete
optimization of the periphery could also be a general
feature of antibody–antigen interfaces (Li et al. 2003). At
the periphery, one needs to worry less about repacking
a set of cooperatively interacting side chains. It is
sufficient to add new interactions across the interface
by changing a single residue. The new residue is therefore
less likely to disturb existing interactions and finding
these solutions is more amenable to our present search

strategy. It is also possible that optimizing the core of the
interface could require relative reorientation of the
antibody and antigen or sizable backbone movements,
neither of which is handled in most of the methodologies
we used. As our ability to predict binding energy changes
evolves, it will be possible to trust more of the multiple
mutation designs and find solutions anywhere at the
antibody–antigen interface.

In conclusion, we have shown that structure-based
design can be used to further affinity mature antibodies
of high affinity. One of the advantages of computational
design is that, in principle, the smallest set of mutations
required for optimization can be determined. Conse-
quently, experimental follow-up by site-directed muta-
genesis or a directed library approach can be done faster
than through general directed evolution methods. It is
likely that through improvements in computational meth-
odology, structure-based protein design will become an
important industrial approach for the optimization of
protein properties such as affinity, stability, and solubility.

Materials and methods

Computational design methods

The starting complex structure at 2.8 Å was obtained from the
PDB (1MHP chains B, X, and Y) and chains X and Y were
relabeled as H and L. Asparagine, glutamine, and histidine side
chain flips and histidine protonation states were corrected using
suggestions generated by the WHATIF software (Vriend 1990).
We patched the N terminus of the light chain with an acetyl
group because the first residue was not visible in the 1MHP
structure. The constant domains from the antibody’s heavy and
light chains were removed and the C termini patched with
N-methylamide groups. The structure was minimized using
harmonic constraints (10 kcal/mol/Å2 on all heavy atoms) to
remove major steric clashes.

The calculated binding energies given in Table 1 and shown
graphically in Figure 2 were calculated using a combination of
electrostatics from the Poisson-Boltzmann equation and van der
Waals and multi-body terms from the CHARMM22 force field
(MacKerell et al. 1998). These calculations are distinct from the
search algorithms that help to find the mutations. All binding
energy calculations were done using CHARMM (Brooks et al.
1983; MacKerell et al. 1998), with the exception of the
electrostatic interactions and desolvation energies which were
calculated with the ICE software (Kangas and Tidor 1998; D.F.
Green, E. Kangas, and B. Tidor, MIT). For each binding energy
evaluation the mutant structure was generated from the same
starting structure using a custom rotamer search method. An
identical protocol was applied to regenerate the wild-type
structure at the mutant position. CHARMM was used to scan
the x angles of each rotamer exhaustively in 60° increments
using a script adapted from one written by D.F. Green
(D.F. Green, E. Kangas, and B. Tidor, MIT). From each starting
conformation, the rotamer and all side chains with atoms within
5 Å of the Ca position were minimized and the lowest energy
conformation retained. The protocol uses the rigid binding
approximation, no relaxation of the proteins in an unbound
state or the backbone was allowed.
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The electrostatic optimization is implemented in the ICE
software from the Tidor group (Kangas and Tidor 1998;
D.F. Green, E. Kangas, and B. Tidor, MIT). It uses a numerical
solution of the Poisson-Boltzmann equation to calculate the
optimal charge distribution on a set of atomic centers. Empirical
group-based PARSE charges with polar hydrogens derived from
experimental desolvation measurements are used (Sitkoff et al.
1994). The DEZYMER software (Benson et al. 2000; Looger
and Hellinga 2001) developed by the Hellinga laboratory was
used for the side chain repacking calculations. It uses a custom
force field based on region-dependent dielectric constants,
Lennard-Jones van der Waals interactions, explicit hydrogen
bonding, a pair-wise decomposable surface area term, and
approximations for rotamer entropy (Wisz and Hellinga 2003).
Van der Waals interactions were cut at 7.0 Å and the well width
expanded from the conventional Lennard-Jones form to shrink
the hard-sphere radii by a factor of 1.35 without changing the
well depth.
The flexible backbone calculations were performed by start-

ing the side chain repacking runs from 20 unique backbone
configurations. The configurations were snapshots taken every
10 psec from a constrained molecular dynamics simulation
using the CHARMM19 force field and a 4r dielectric. Harmonic
constraints of 1.0 kcal/mol/Å2 were applied to each Ca atom to
prevent large departures from the crystal structure.
The multilevel DEE/A* (Hanf 2002) protein design method

uses the dead-end elimination (Desmet et al. 1992; Lasters and
Desmet 1993; Goldstein 1994; Pierce et al. 2000) and A*
(Winston 1992; Leach and Lemon 1998) discrete search algo-
rithms to find conformations of a set of mobile residues that
minimize the sum of the binding and folding energies. The
method is novel in its use of three levels of increasingly detailed
discrete searching (sequence, fleximers [Mendes et al. 1999;
Caravella 2002], and rotamers [Dunbrack and Karplus 1993]),
and its use of multiple hierarchical energy functions. After the
multilevel DEE/A*, a more accurate energy function, including
finite-difference Poisson-Boltzmann (FDPB) electrostatics
(Gilson et al. 1988; Sharp and Honig 1990) was used to further
screen the best candidate structures found by DEE/A*. Mutant
sequences considered for synthesis were those that had a struc-
ture with better predicted binding energy, and predicted folding
energy no more than 1 kcal/mol worse, than the wild-type structure.

Protein production

Escherichia coli expressed his-tagged Fab fragments of anti-
VLA1 and the described variants were used for this study. The
plasmid consisting of the Fab fragment (Abraham et al. 2004),
a 6-His tag, and OmpA and PhoA periplasmic localization sig-
nals in a bicistronic arabinose-inducible vector was constructed.
Amino acid substitutions were introduced into the anti-VLA1
Fab by QuikChange site-directed mutagenesis (Stratagene).
Expression of the antibody variants was carried out in super
broth using induction with 0.002% arabinose. Cells were
pelleted, resuspended in 30 mM Tris, 20% sucrose with gentle
mixing, repelleted, and resuspended in 5 mM MgSO4 with
vigorous mixing. The cells were again pelleted, and the
supernatant periplasmic lysate fraction was filtered. An alter-
native cell line was used to produce Fabs for crystallography
(see Supplemental Material).
The various His-tagged mutants of anti-VLA1 were purified

by passing the periplasmic supernatant over a 1-mL HisTrap HP
nickel chelate column (Pharmacia), which had been equilibrated
with 50 mM sodium phosphate, 300 mM NaCl, 20 mM

imidazole, 0.05% Tween-20 (pH 8.0). After 10 column wash-
ings, the Tween-20 was removed from the buffer and then the
imidazole concentration was increased to 250 mM for elution.
The proteins were analyzed by PAGE, UV scan, mass spec-
trometry, and SEC/light scattering to look for aggregates and
multimers.
Recombinant a1b1 integrin I-domain (humanized rat) was

expressed in E. coli as a GST-fusion protein. The I domain was
cleaved from the purified GST-fusion protein with thrombin and
further purified as described previously (Gotwals et al. 1999). A
1.2 molar excess purified I-domain was mixed with purified
anti-VLA1 Fab and the complex purified by size exclusion
chromatography on a Superdex 200 (Amersham) in 50 mM
HEPES, 150 mM NaCl, 2 mM DTT (pH 7.4). The complex was
buffer-exchanged into 20 mM Tris, 0.04% NaN3, 2 mM DTT,
and further concentrated to 11 mg/mL using a centricon-10
ultrafiltration device (Millipore).

Production of Fabs for crystallography

For crystallography, Fabs are expressed using the strain
W3110ara, a Dara derivative of W3110. A 100-mL culture
containing the expression plasmid, at a density of >109 cells/mL,
was used to inoculate (1:100) a 5-L fermenter containing
fermentation medium containing 2% fructose and 100 mg of
ampicillin. The fermentation culture was grown overnight at a
pH of 7.0 with the DO2 maintained at 30% by fructose titration.
The culture was induced at 15 OD with a final concentration of
0.02% arabinose. At the time of induction 250 mL of induction
medium (Amisoy, 80 g/L; yeast extract, 20 g/L; L-proline, 12 g/L;
L-leucine, 12 g/L; tryptophan, 6 g/L) was added. The culture was
harvested 3 h after induction at an OD600 of ;25–30.

Binding affinity measurements

To estimate the fold change in affinity of mutant anti-VLA1 pro-
teins, we used a competition ELISA. In this assay, GST I-domain
fusion protein was coated onto an ELISA plate. A dilution series
of anti-VLA1 Fab samples was incubated with 10 nM biotin
anti-VLA1 Fab on the plate for 2 h at room temperature in HEPES
buffer with 150 mM NaCl, 1 mM MgCl2, 0.05% Tween-20, and
1% BSA. The plate was washed and the amount of biotinylated
anti-VLA1 Fab bound was determined using streptavidin HRP as
a secondary. The fold change in affinity versus wild type was
determined by comparing the EC50 of binding to wild-type Fab
measured on the same plate.
To measure the solution phase affinity we employed the

KinExA 3000 (Sapidyne Instruments) and surface plasmon
resonance (Biacore) (see Supplemental Material for details).
Polystyrene beads were coated with GST I-domain fusion
protein by passive adsorption. Purified anti-VLA1 Fab fragment
is flowed through the column to bind to the I-domain on the
bead. The Fab is detected with a secondary anti-mouse IgG
F(ab9)2 fragment specific antibody conjugated with the fluorescent
dye Cy5. A dilution series of soluble I-domain protein with 3-h
equilibration is used. The amount of free anti-VLA1 Fab that
remains in solution is determined by the intensity of the fluores-
cence signal. A nonlinear regression curve fit gives a Kd value.

Surface plasmon resonance measurements

Binding kinetic constants were obtained using the surface
plasmon resonance technique on a Biacore apparatus (Biacore
USA). Research-grade CM5 sensor chips, N-hyroxysuccinimide
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(NHS), N-ethyl-N9-(3-diethylaminopropyl) carbodiimide (EDC),
and ethanolamine-HCl were purchased from the manufacturer. All
buffers were filtered and degassed daily. For amine coupling,
carboxymethylated dextran surfaces on CM5 chips were activated
using the standard NHS/EDC procedure with 7-min contact times.
Anti-GST proteins were diluted to no less than 20 nM in 10 mM
sodium acetate (pH 5). The diluted proteins were injected over the
activated surface until the desired surface densities were achieved.
Activated, coupled surfaces were then quenched of reactive sites
with 1 M ethanolamine (pH 8) for 7 min. Anti-GST surfaces were
prepared according to the manufacturer’s recommendations. Low
and ultra-low surfaces were prepared; reference surfaces consisted
of activated CM dextran, subsequently blocked with ethanolamine.
Data were analyzed from both the low and ultra-low surface
capacities.
All data were collected at 10 Hz using at least three to four

replicate injections for each determination. Regeneration of
active surfaces (when necessary) was carried out by 3-sec
injection of 100 mM HCl. All final data sets were double-
referenced. Sensorgram data sets were analyzed using the
Scrubber software (Myszka and Morton 1998; Myszka 1999).
The data obtained fit globally to the binding models. The raw
experimental data were corrected for instrumental and bulk
solvent artifacts by double-referencing using both activated
and blocked surfaces as controls. The data were globally fit to
the replicate data for each ligand but allowed all the ligands to have
independent Rmax, ka, and kd. Each was also allowed an independent
bulk refractive index change. All responses were fit with one global
km since they should share the same molecular weight.

Crystallography

One microliter of the protein was mixed with an equal amount
of reservoir buffer containing 12%–14%Â Peg 20,000, 100 mM
Mes (pH 5.5), 10 mM DTT using vapor diffusion techniques.
Crystals typically appeared after 1–2 d with microseeding and
grew to full size (0.5 3 0.1 3 0.025 mm) in 1–2 wk. For data
collection, crystals were typically broken from a larger mass,
incubated in mother liquor with 25% ethylene glycol, and flash-
frozen in liquid nitrogen prior to data collection. Data were
collected at �160°C using 1.1 Å X-rays at the National
Synchrotron Light Source (X25; Brookhaven National Labora-
tories) using a Quantum315 CCD detector (ADSC). Data
processing and reduction was performed using HKL2000
(Otwinowski and Minor 1997). Molecular replacement was
performed using MOLREP (Vagin and Teplyakov 1997) using
one monomer of the published wild-type structure (PDB ID
1MHP). Iterative rounds of refinement and model building
utilized CNX (Brunger et al. 1998) and O (Jones et al. 1991).
The Ramachandran plot shows that 87.4% of all residues are
in the most favored regions. Data collection and refinement
statistics are given in Table 2 of the Supplemental Material. The
coordinates have been deposited at the PDB (PDB ID 2B2X).
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