
Affordable SLAM through the Co-Design of Hardware and Methodology

Stéphane Magnenat, Valentin Longchamp, Michael Bonani, Philippe Rétornaz, Paolo Germano,

Hannes Bleuler, and Francesco Mondada

Abstract— Simultaneous localization and mapping (SLAM)
is a prominent feature for autonomous robots operating in
undefined environments. Applications areas such as consumer
robotics appliances would clearly benefit from low-cost and
compact SLAM implementations. The SLAM research commu-
nity has developed several robust algorithms in the course of
the last two decades. However, until now most SLAM demon-
strators have relied on expensive sensors or large processing
power, limiting their realms of application. Several works have
explored optimizations into various directions; however none
has presented a global optimization from the mechatronic to
the algorithmic level.

In this article, we present a solution to the SLAM problem
based on the co-design of a slim rotating distance scanner, a
lightweight SLAM software, and an optimization methodology.
The scanner consists of a set of infrared distance sensors
mounted on a contactless rotating platform. The SLAM algo-
rithm is an adaptation of FastSLAM 2.0 that runs in real time
on a miniature robot. The optimization methodology finds the
parameters of the SLAM algorithm using an evolution strategy.

This work demonstrates that an inexpensive sensor coupled
with a low-speed processor are good enough to perform SLAM

in simple environments in real time.

I. INTRODUCTION

The diffusion of consumer robotics appliances would

greatly benefit from the integration of SLAM capabilities.

Robotic vacuum cleaners, for instance, can radically improve

their coverage algorithms using SLAM, as Samsung demon-

strated in their Hauzen VC-RE70V. This vacuum cleaner

successfully integrates visual SLAM and thus confirms the

analysis made by Pirjanian et al. [1]. However, as that paper

points out, visual SLAM requires an environment populated

with well-illuminated features and a large processing power.

Even lightweight visual-SLAM algorithms require laptop-level

processing power [2]. Samsung has elegantly fit to these

constraints by pointing a camera to the ceiling. This both

reduces the dimensionality of the problem to one surface and

provides few but robust visual features. The resulting product

clearly outperforms competitors. However, some applications

do not enjoy such excellent conditions, and must fall back

on distance measurements to perform SLAM. For instance

search and rescue robots often operate in dark environments

This work was supported by the Swarmanoid and Perplexus projects, both
funded by the Future and Emerging Technologies programme (IST-FET) of
the European Community, respectively under grants 022888 and 34632. The
information provided is the sole responsibility of the authors and does not
reflect the Community’s opinion. The Community is not responsible for any
use that might be made of data appearing in this publication.

Paolo Germano is with LAI-EPFL; the other authors are with LSRO-
EPFL. Please send correspondence to Stéphane Magnenat (stephane at

magnenat dot net), EPFL-LSRO, Station 9, 1015 Lausanne, Switzer-
land. We thank Basilio Noris for his picture of the experimental marXbot.

with no clear visual features. We therefore believe that there

exists a strong need for non-visual SLAM techniques that one

can integrate into cheap, small, and low-power robots.

II. RELATED WORK

The reliance of most SLAM implementations on bulky

and expensive laser scanners hinders their diffusion into

mainstream products. Several projects have therefore explored

the use of cheap and low-resolution distance sensors.

Schroter et al. [3] used the array of sonar sensors which

equips the SCITOS A5 robot. Their work focused on reducing

the memory footprint of particle-based gridmap SLAM by

sharing the map between several particles. The resulting

implementation runs in real-time on laptop-level computers.

Yap et al. [4] also used sonar sensors. They worked with

the ActivMedia P3-DX robot, which has less sensors than

SCITOS A5. To cope with this sparseness, their SLAM

implementation uses a map of line segments instead of a

gridmap. Together with a strong assumption that the walls are

orthogonal, their solution was able to reconstruct large indoor

environments. Their article do not report any performance

measurement. In the same direction, Abrate et al. [5] used

line extraction to apply SLAM to a Khepera II robot, which

only embeds 8 short-range infrared proximity sensors. Like

in the work of Yap et al., the environment consists of a small

number of orthogonal walls.

These projects are representative of a line of research which

focuses on developing SLAM algorithms that fit the features

of specific sensors. They all succeed in performing SLAM in

loopy environments thanks to robust algorithms. However,

these are too computationally intensive to run in an embedded

computer, requiring at least laptop-level performances. Gifford

et al. [6] have proposed a global approach to address these

limitations. They have both designed a robot and implemented

a distributed SLAM algorithm which uses a scanning sensor.

Their SLAM algorithm uses a particle filter, and they report

real-time performances using 15 particles and 3 seconds per

update. The authors conclude that their scanner, a simple set

of infrared distance sensors mounted on top of a servomotor,

does not provide enough information in sparse environments.

They also underline the difficulty in finding the right SLAM

parameters to fit within the available computational power.

Recently, Grzonka et al. [7] performed SLAM experiments on

an autonomous indoor flying robot. Albeit they use a laser

scanner, their SLAM implementation runs in real-time on the

computer of their small flying robot.

In this article, we show how to run SLAM in real time on

mobile robots through the co-design of hardware, software,

Fig. 1: The marXbot modular mobile robot. The modules are,

from base to top: base, connection ring, range and bearing,

rotating scanner, main processor board with cameras.

and methodology. At the hardware level, a slim rotating

distance scanner fits the cost requirements. At the software

level, our lightweight SLAM implementation builds upon

the work of [8] and runs in real time on smartphone-level

processors. At the methodological level, we propose to employ

a global optimization algorithm to find the best parameters

for the SLAM algorithm.

III. THE MARXBOT ROBOT

The rotating distance scanner that we present in this paper

is a module for the marXbot mobile robot (Fig. 1). The

marXbot consists of a base of 17 cm of diameter, and various

application-dependent modules stacked on top of it. This base

provides mobility, energy, and basic sensing. To move, the

marXbot uses a pair of treels, a combination of tracks and

wheels [9]. These provide good mobility even in rough terrain,

at the expense of the precision of odometry. Among other

sensors, the base embeds 24 short range infrared proximity

sensors and a gyroscope. A 10 Ah lithium polymer battery

provides 7 hours of continuous operation when moving around

and using the scanner. Several microcontrollers drive the

hardware and provide low-level control using the ASEBA

framework [10]. A 533 MHz ARM 11 (Freescale iMX31)

processor runs Linux to perform high-level control and

communicates with the microcontrollers through ASEBA [11].

IV. HARDWARE OF SCANNER

A. Mechanical design

To fulfill the requirements of compactness, limited power

consumption, and low cost; we decided to design our own

rotating distance scanner. Using a commercially available

laser scanner would not fit the compactness nor the cost

0 500 1000 1500

0
1

0
0

0
2

5
0

0

distance [mm]

ra
w

 s
e

n
s
o

r
v
a

lu
e

s

short range

long range

Fig. 2: The response functions of the short and long range

sharp sensors.

specification value

diameter 130 mm
height 29 mm
weight 220 g
power consumption 2 W
cost 390 USD
infrared sensors 2× GP2Y3A001K0F (4–30 cm)

2× GP2Y3A002K0F (20–150 cm)
global operating distance 4 to 150 cm
maximum scan speed 2 scans/s
angular resolution 3◦ at 1 scan/s, 6◦ at 2 scan/s

TABLE I: Characteristics of the rotating distance scanner.

Fig. 3: Overview of the rotating distance scanner module.

Fig. 4: CAD drawing of the scanner, with semi-transparent PCB.

a: long range sharp sensors, b: short range sharp sensors, c:

infrared LEDs for data transmission (fixed, 12×), d: infrared

LEDs for data transmission (rotating, 2×), e: rotating motor

with a worm gear drive, f: induction coils, directly on the

PCBs

Fig. 5: CAD drawing of the scanner, cut in a 3/4 view. a:

plastic ball bearing, b: hole in the center to pass cables to

other modules, c: fixed PCB (primary coil), d: rotating PCB

(secondary coil), e: distance sensor

requirement. Fig. 3 shows the final version of the scanner

and TABLE I shows its characteristics. Our design is based

on 4 infrared sharp distance sensors mounted on a rotating

platform. These sensors have a limited range and a dead zone

close to the device (Fig. 2), so we couple two sensors of

different ranges (40–300 mm and 200–1500 mm) to cover

distances up to 1500 mm. The platform rotates continuously

to make 360◦ scans; as it embeds two sensors of each type,

the robot gets a full scan every 180◦. A motor with a worm

gear (Fig. 4) drives the rotation while two plastic ball bearings

ensure the guidance. The motor is located in the rotating part,

to ease the synchronization between the platform position

and scanner’s values. This location also fits well within our

geometrical constraints and allows for a slim design. To

minimize the wear and maximize the life time of the scanner,

the fix part transfers energy by induction to the rotating part.

They exchange data using infrared light. This solution, albeit

more difficult to implement then sliding contacts, is much

more reliable and lasting. We have implemented induction

directly on two PCB spaced by a gap of 0.8 mm (Fig. 5).

B. Electronic design

The electronics of the scanner is distributed between the

two PCB (Fig. 6, top). The fixed PCB manages the energy

transmission, and the rotating PCB acquires the sensors

data and sends them back to the fixed PCB using infrared

communication. We can decompose the electronics into two

major subsystems: the power and the data transmission. On

each PCB, a microcontroller synchronizes the operations of

each subsystem.

The single-cell battery of the marXbot provides a voltage

in the range of 3.5–4.2 V. The sharp distance sensors demand

an input voltage of 5 V. The output voltage from the inductive

transfer must thus be higher than 5 V plus the voltage drop

in the rectifiers. We designed the inductive transfer for a

nominal output voltage before rectifier of 8 V with a peak

power transmission of 3.5 W. The primary winding (fixed

part) has 2 turns and the secondary winding (rotating part)

has 8 turns; the resonant frequency is 228 kHz. We measured

an efficiency of η = 0.78 for the (inductive) transformer with

an input voltage of 3.8 V and an output voltage of 5.51 V.

The overall efficiency is η = 0.69, when we consider the H

bridge, the rectifier, and the microcontroller of the fixed part.

Fig. 6: Electronics of the scanner. Bloc scheme (top) and

timing diagram (bottom). In the timing diagram, reception

(RX) and transmission (TX) are considered from the point of

view of the fixed PCB.

We are satisfied with this efficiency, especially considering

that the inductive energy transfer system acts as a voltage

step-up for the sharp sensors as well.

The induction generates noise on the power planes. This dis-

turbs infrared communication because its bit rate is 115 kHz,

which is close to the frequency of the induction system.

This results in erroneous transceivers’ outputs. However, we

take advantage of large capacitors (4400µF) that smooth the

rectifier’s output and thus store energy and shut down the

inductive supply during data transmission.

We have implemented bidirectional half-duplex communi-

cation between the two PCB using a simple serial transmission

with 16-bit cyclic redundancy check. When a microcontroller

transmits data, it drives all the infrared transmission LEDs

in parallel. The output of the transceivers are simply OR-

ed into the RX pin of the destination microcontroller. The

rotating PCB sends a message for each sensor acquisition (at

60 Hz) with the 4 sensor values, position of the motor, and

the voltage at the output of the rectifier. The latter enables

us to regulate the power in the induction’s primary coil, to

save energy. The fixed PCB sends back a message with the

position or speed set-point.

When synchronizing the induction and the infrared com-

munication, a variable time enables us to modulate the power

transmitted and to regulate the input voltage of the rotating

PCB (Fig. 6, bottom). The target voltage is 6.5 V, which results

in a total current consumption of 500 mA at 3.8 V for the

whole scanner. The scanner communicates with the rest of

the marXbot through a CAN bus using the ASEBA framework.

V. SLAM IMPLEMENTATION

We have adapted FastSLAM 2.0 [8] to the specificities

of our hardware. This SLAM implementation estimates the

position of the robot and incrementally builds a 2D occupancy-

grid map [12] of its surrounding environment. A time step

corresponds to a full 360◦ scan by the rotating scanner (half

a turn). Each cell of the occupancy-grid map holds the log

odds ratio of the belief that this cell is an obstacle [13]. It

consists of a particle filter, where each particle k at each

time step t contains the robot position xt = (x y θ)T , the

associated weight wt, and a full map of the environment

mt. The algorithm updates these three values with the new

measurements acquired by the scanner in four phases. These

phases are: A. the position update, B. the measurement to

map matching, C. the occupancy-grid update, and D. the

particles resampling.

A. Position update

The rotating scanner only produces enough data for a

relevant map matching every half turn. Moreover, we must

perform the estimation of the robot position at the same

rate as the measurement to map matching. Yet during a

half turn of the scanner, the robot receives several odometry

measurements. To cope with this discrepancy, we store all the

measurements and delay the computation of the robot position.

To compute the position, we reconstruct the trajectory by

iteratively applying the odometry measurements.

The update of the position x
[k]
t knowing the position at

the previous time step t − 1 and the command ut (odometry

measurements) that steered the robot between the two time

steps is described by the motion posterior:

p(xt|x
[k]
t−1,ut) (1)

The marXbot is roughly equivalent to a differential wheeled

robot at the level of the motion model. We approximate this

motion model by an odometry model in which we decompose

the interval (t−1, t] into an initial rotation δrot1, a translation

δtrans, and a final rotation δrot2. We can directly get δtrans

from the motors’ encoders as the average of displacement of

each treel. However, the tracks introduce non-linear slipping

depending on the speed, the acceleration, and the type of

surface. The slipping particularly affects the odometry when

the robot rotates. We therefore use the gyroscope integrated in

the base of the marXbot to measure the changes in orientation.

B. Measurement to map matching

We compute the weight of a particle w
[k]
t which is

proportional to the likelihood of the measurement zt:

w
[k]
t ≈ p(zt|x

[k]
t , m[k]) (2)

To compute the likelihood of each measurement, we project

4 rays oriented like the 4 sensors of the scanner at the time of

the measurement onto the particle’s internal map and compare

the distance measured by the sensor and the one found by

reading the map. We back-propagate all the measurements

along the trajectory computed at phase A such that matching

is done with the estimated robot position at the time of

the measurement. The final likelihood is the product of the

likelihood of each measurement along the trajectory of the

robot in (t − 1, t]. Since the response functions of the sharp

sensors are not injective (Fig. 2), we ignore their values

corresponding to invalid distances. The probabilistic nature

of the map is sufficient to disambiguate wrong readings from

correct ones. We manage to cover the whole (0, 1] m range

by dropping the values of short range sensors over 35 cm and

the values of long range sensors below 35 cm.

We optimize the robot position knowing the measurement

by performing a small Monte-Carlo localization. For each

particle, we explore a small space around the final position

computed in phase A, following a Gaussian distribution. We

perform the measurement to map matching for each candidate

position and keep the best match. This operation improves

the positioning, and is comparable to having more particles,

yet without the memory expense of one distinct map per

particle. However, we must project more rays per particle.

C. Occupancy-grid update

We compute the map m which is represented by the

posterior:

p(m|x1:t,z1:t) (3)

We represent m by the set of all grid cells m = {mi},

where mi is a binary variable with p(mi = 1) representing the

probability that an obstacle occupies a cell. This independence

assumption allows us to approximate the posterior of the map:

p(m|x1:t,z1:t) =
∏

i

p(mi|x1:t,z1:t) (4)

For each grid cell, we use the log odds representation of

occupancy:

lt,i = log
p(mi|x1:t,z1:t)

1 − p(mi|x1:t,z1:t)
(5)

For the sake of efficiency, we update the map for each

sensor measurement using a pre-computed update function

dependent on the sensor value (Fig. 7). We have pre-computed

tables for all sensors values for every sensor (512 KB of

data). Like in phase B, we cast a ray from the estimated

robot position into the direction of the measure. On this ray,

the update function adds information that cells before the

measured distance are free of obstacles and that cells at the

measured distance are occupied by an obstacle. It adds no

information to cells beyond the measured distance. We back-

propagate the estimated positions of the measures along the

robot trajectory in (t − 1, t].

D. Particles resampling

The particles resampling frequency is a parameter of our

algorithm. When it resamples particles, the algorithm first

sorts them according to their weight. It then draws a new

set of particles out of the previous set, with a probability

proportional to the weight of the particle. The new set may

contain many times the same particle, as particles with a large

distances

robot center obstacle

Fig. 7: The update function, whose values are added to the

occupancy-grid map.

Fig. 8: The experimental setup for SLAM experiments.

weight have a strong probability to be drawn more then once.

However, as the position update step introduces randomness,

the particles will quickly differentiate.

VI. EXPERIMENTAL METHODOLOGY

A. Measuring the quality of SLAM

We run experiments in a room with an overhead camera

connected to a robot tracker (Fig. 8). We built the tracker

using libfidtrack from the reacTIVision project1 [14].

We measure the quality of the SLAM by comparing the average

squared difference between the reconstructed trajectory of

the best particle and the real trajectory (Tslam = {T i
slam}

and Treal = {T i
real}, for i iterating over ST = |Tslam| =

|Treal| tracked positions). However, as both trajectories are

expressed in different coordinates, we must first find the

set of parameters θT = {θα,θd} for the transformation

A(T i
slam,θT) = R(θα)T i

slam + θd (knowing that R(x) is

2D rotation matrix of angle x) to minimize the distance:

d(Tslam,Treal,θT) =

ST∑

i

(‖A(T i
slam,θT) − T

i
real‖

2) (6)

We find the optimal set θ̂T :

θ̂T = argmin
θT

(d(Tslam,Treal,θT)) (7)

The quality of the trajectory is the inverse of the mean of

the residual errors:

q(Tslam,Treal) = −
1

ST

ST∑

i

(‖A(T i
slam, θ̂T) − T

i
real‖

2) (8)

1http://reactivision.sourceforge.net/

parameter default
value

mut.
σ

best
of

best
of

best
of

best
of

ray budget n.a. n.a. 8125 16250 32500 65000

dist. error ratio 0.05 0.01 0.13 0.10 0.10 0.12
dist. error const 0.01 0.002 0.014 0.010 0.016 0.006
angle error ratio 0.05 0.01 0.045 0.002 0.064 0.10
angle error const .01◦ 0.002◦ 0.01◦ 0.01◦ 0.02◦ 0.01◦

min pos uncertainty 2 0.4 0.41 0.28 0.02 0.05
min angle uncertainty 5◦ 1◦ 4.3◦ 6.9◦ 8.4◦ 0.98◦

particle resampling f. 1 0.5 1 1 2 5
angle between scans 0 2.5◦ 1.9◦ 2.9◦ 1.8◦ 3.7◦

particle count 1 1 1 1 1 1

TABLE II: Parameters for the SLAM algorithm (left) and

their values after optimization (right, best individual of last

generation). The particle resampling frequency is irrelevant

when the particle count is 1.

B. Optimizing parameters for the SLAM algorithm

The SLAM algorithm depends on multiple parameters

(TABLE II). A first set of parameters is related to the error

model of the motion model of the robot. They are the constant

error, the proportional error, and the minimal uncertainty on

position and orientation. A second set of parameters concerns

the processing power allocation policy. We have observed

that tracing rays on the map consumes most of the processing

power (>95 %). Thus to perform SLAM in real time we have

a limited ray budget. On the marXbot, when performing

1.5 scan/s, this budget is 65000 rays per scan for a load

of 100 %. The parameters related to this budget allocation

are the particle count, the minimal angle between scan for

measurement to map matching, and the particle resampling

frequency.

These parameters affect the quality of the SLAM, but they

are not obvious to measure nor compute. We thus propose to

learn them from experimental data. Our experimental setup

allows the recording of the robot’s odometry and scanner data

(Fig. 8). We have synchronized the tracker with this telemetry

using ASEBA, which allows us to replay any experiment with

any set of parameters. We utilize this feature to optimize the

set of parameters. To do so, we implement a simple evolution

strategy [15] with 25 % elitism. TABLE II gives the standard

deviations of Gaussian mutation rate for every parameter.

The quality measure q(Tslam,Treal) is well suited for

human interpretation. However, it is highly non-Gaussian: if

the robot looses itself during the map creation, the quality

will be orders of magnitude worst than in a successful map

reconstruction. To alleviate this effect, we let the evolution

strategy minimize the following term instead of the quality:

e(Tslam,Treal) = log(1 − q(Tslam,Treal)) (9)

This results in a smoother evolution, because we evaluate each

parameter set over 5 recorded experiments in three different

environments and take the mean in a log scale.

VII. EXPERIMENTS AND RESULTS

We run 5 experiments of 5 minutes each, in 3 different

environments (Fig. 9). We let the marXbot move freely

Fig. 9: The different experimental environments (top), and the map built by our SLAM implementation (middle), using a

budget of 65000 rays. The SLAM trajectory is in light red while the real trajectory (tracker) is in dark blue. The bottom

shows the map reconstruction while ignoring the phase B of our algorithm.

0 10 20 30 40

−
5
0
0

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

0

8125 rays per scan

12.5% of robot's CPU

generation

q
u
a
lit

y

0 10 20 30 40

−
5
0
0

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

0

16250 rays per scan

25% of robot's CPU

generation

q
u
a
lit

y

0 10 20 30 40

−
5
0
0

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

0

32500 rays per scan

50% of robot's CPU

generation

q
u
a
lit

y

0 10 20 30 40

−
5
0
0

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

0

65000 rays per scan

100% of robot's CPU

generations

q
u
a
lit

y

Fig. 10: Optimization of parameters for different ray budgets. We have evolved populations of 48 individuals, over 40

generations, by evaluating each parameter set over 5 recorded experiments for three different environments. The black line

represents the median and the gray area represents the interquartile range of quality.

ray budget: 16250 32500 65000

8125 rays; 12.5% of robot’s CPU 6.6e-7 2.1e-14 2.2e-16
16250 rays; 25% of robot’s CPU 1.0e-4 2.2e-16
32500 rays; 50% of robot’s CPU 6.1e-11

TABLE III: P-values of the Mann–Whitney U statistical test

between the last generation of evolutions for different ray

budgets, for the alternative hypothesis “true location shift is

not equal to 0”.

and avoid obstacles using its short range proximity sensors.

We recorded the robot’s scans, odometry, and absolute

position from the tracker. We then evolved the parameters

corresponding to allocating 1, 1
2 , 1

4 , and 1
8 of our processing

budget to SLAM. As Fig. 10 shows, allocating more processing

resources leads to statistically significatively better maps

(TABLE III).

The evolution was free to use several particles, to the

expense of the quality of the robot position optimization

during phase B of the SLAM algorithm. Yet it always kept

a single particle, and adapted the minimum uncertainty on

position in regards to the available computational power

(TABLE II). The more rays were available, the smaller

uncertainty the evolution kept. It seems that in our setup,

a small number of particles do not hold enough different

possibilities to be worth the investment in computational

power. However, the robot position optimization reduces the

need for particles, as it locally simulates several particles.

Nevertheless, we cannot rule out that a longer evolution, with

a larger population, and with more experiments per evaluation

would lead to the use of more particles. In particular, it

would be interesting to allow more computational power and

to increase the complexity of the environment to see when

multiple particles would get used.

At the qualitative level, we see that all our three environ-

ments are well reconstructed (Fig. 9). One exception are the

corners, which our scanner tend to see as holes. This is due

to the orientation of the sharp sensors and their triangulation-

based distance measurement. Corners create reflections which

lead to wrong readings from the sensors. We could alleviate

this effect by fixating the sensors vertically, but that would

triple the height of the scanner. Moreover, we could post-

process the grid map knowing that walls are flat [4], and thus

work around the problem of the corners.

Several researchers have proposed to take profit of a global

optimization algorithm to perform SLAM [16], [17]. However,

these works employ the algorithm to estimate the posterior

probability distribution over trajectories or maps, which is

taken care by our particle filter. To our knowledge, there is

no previous work on using an optimization algorithm to find

the parameters of the robot’s error model and to allocate

processing resources.

VIII. CONCLUSION

In this article, we have demonstrated a SLAM implemen-

tation using a low-cost rotating distance scanner. Based on

the hardware constraints, we have developed a methodology

to optimize the parameters of the software. The optimization

has opted for a single-particle SLAM, thus using solely scan

matching to build a consistent map. This work demonstrates

that an inexpensive sensor coupled with a low-speed processor

are good enough to perform SLAM in simple environments

in real time.

REFERENCES

[1] P. Pirjanian, N. Karlsson, L. Goncalves, and E. Di Bernardo, “Low-
cost visual localization and mapping for consumer robotics,” Industrial

Robot: An International Journal, vol. 30, pp. 139–144, 2003.
[2] V. A. Sujan, M. A. Meggiolaro, and F. A. W. Belo, “Mobile Robot

Simultaneous Localization and Mapping Using Low Cost Vision
Sensors,” in Experimental Robotics (G. E. W. Wolstenholme and
M. O’Connor, eds.), vol. 39, pp. 259–266, Springer Verlag, 2008.

[3] C. Schroter, H. Bohme, and H. Gross, “Memory-Efficient Gridmaps
in Rao-Blackwellized Particle Filters for SLAM using Sonar Range
Sensors,” in Proceedings of the European Conference on Mobile Robots

2007, pp. 138–143, 2007.
[4] T. Yap and C. Shelton, “SLAM in Large Indoor Environments with

Low-Cost, Noisy, and Sparse Sonars,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), pp. 1395–
1401, IEEE Press, May 2009.

[5] F. Abrate, B. Bona, and M. Indri, “Experimental EKF-based SLAM
for mini-rovers with IR sensors only,” in Preceedings of 3rd European

Conference on Mobile Robots, European Conference on Mobile Robots,
2007.

[6] C. Gifford, R. Webb, J. Bley, D. Leung, M. Calnon, J. Makarewicz,
B. Banz, and A. Agah, “Low-Cost Multi-Robot Exploration and
Mapping,” in Proceedings of the IEEE International Conference on

Technologies for Practical Robot Applications, pp. 74–79, IEEE Press,
2008.

[7] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a Navigation
System for Autonomous Indoor Flying,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), (Kobe,
Japan), pp. 2878–2883, IEEE Press, 2009.

[8] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in IJCAI, pp. 1151–1156, 2003.

[9] F. Mondada, G. C. Pettinaro, A. Guignard, I. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. Gambardella, and M. Dorigo, “SWARM-BOT:
a New Distributed Robotic Concept,” Autonomous Robots, special Issue

on Swarm Robotics, vol. 17, no. 2–3, pp. 193–221, 2004.
[10] S. Magnenat, P. Retornaz, M. Bonani, V. Longchamp, and F. Mondada,

“Aseba: a modular architecture for event-based control of complex
robots,” 2009. submitted for publication.

[11] S. Magnenat and F. Mondada, “Aseba Meets D-Bus: From the Depths
of a Low-Level Event-Based Architecture,” in IEEE TC-Soft Workshop

on Event-based Systems in Robotics (EBS-RO), 2009.
[12] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and

Navigation,” Computer, vol. 22, pp. 46–57, Jun 1989.
[13] S. Thrun, Probabilistic robotics. ACM, 2002.
[14] R. Bencina and M. Kaltenbrunner, “The Design and Evolution of

Fiducials for the reacTIVision System,” in Proceedings of the 3rd

International Conference on Generative Systems in the Electronic Arts,
(Melbourne, Australia), 2005.

[15] H. Beyer, The theory of evolution strategies. Springer Verlag, 2001.
[16] T. Duckett, “A Genetic Algorithm for Simultaneous Localization and

Mapping,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pp. 434–439, IEEE Press, 2003.
[17] D. J. Feng, S. Wijesoma, and A. Shacklock, “Genetic Algorithmic Filter

Approach to Mobile Robot Simultaneous Localization and Mapping,”
in 9th International Conference on Control, Automation, Robotics and

Vision, pp. 1–6, IEEE Press, Dec. 2006.

