

Affordable Virtual Reality System Architecture for
Representation of Implicit Object Properties

Stoyan Maleshkov1, Dimo Chotrov1

 1 Virtual Reality Lab, Technical University Sofia, Sofia, 1000, Bulgaria

Abstract
A flexible, scalable and affordable virtual reality software
system architecture is proposed. This solution can be
easily implemented on different hardware configurations:
on a single computer or on a computer cluster. The
architecture is aimed to be integrated in the workflow for
solving engineering tasks and oriented towards presenting
implicit object properties through multiple sensorial
channels (visual, audio and haptic). Implicit properties
represent hidden object features (i.e. magnetization,
radiation, humidity, toxicity, etc.) which cannot be
perceived by the observer through his/her senses but
require specialized equipment in order to expand the
observer’s sensory ability. Our approach extends the
underlying general scene graph structure incorporating
additional effects nodes for implicit properties
representation.
Keywords: Virtual Reality, Implicit Features, Scene Graph
Extension, Software Architecture.

1. Introduction

Virtual Reality (VR) has already passed the initial phases
of inflated expectations and disillusionment typical for
every new technology, moving nowadays to a period of
clarification and integration in everyday human activities.
In the field of engineering applications the ability to
explore the design of a product in a computer generated
immersive environment and to verify its functionality
using a virtual prototype rather than building up a physical
one gives considerable advantage over the competition
reducing time-to-market, especially for small and medium
enterprises. Research results have demonstrated that for
common data exploration and analysis tasks the immersive
systems have provided notable insight and considerable
time savings, becoming a part of the research workflow.
Recent development in the IT sector have significantly
reduced the cost of all major physical parts of a virtual
reality system: stereoscopic displays and projectors, audio
and haptic devices, input and rendering hardware can fit in
a reasonable prized project budget. However, the software
component of a virtual reality system still remains quite
expensive, especially if delivered as commercial product.

The effort to create open source software solution to
support various types of applications has led to the
development of several VR integration libraries and VR
systems but common support and consistency are still
missing or do not comply with the user requirements. This
paper describes our research to design and implement low
cost VR system architecture to be integrated in the
workflow of solving engineering tasks and oriented
towards presenting implicit object properties through
multiple sensorial channels (visual, audio and haptic).
Basic activity when exploring objects in VR environment
is to examine and verify the functionality of the design by
evaluating object properties. Special attention in our
research is given to the implicit properties which represent
hidden object features (i.e. magnetization, radiation,
humidity, toxicity, etc.) which cannot be perceived by the
observer through his/her senses but require specialized
equipment in order to expand the sensory range of the
observer’s different sensory channels. Until now,
especially in virtual engineering, representation of implicit
features is performed mainly through their substitution
with primitives perceived through the human visual
channel, i.e. temperature or pressure distribution is
presented through color codes or icons. Enhancing the
representation of implicit properties with other senses
besides seeing for the human-computer interaction and
specifically for information presentation will significantly
increase productivity in the process of solving engineering
problems. Combining explicit and implicit object
properties and mapping to multiple stimuli to make the
user simultaneously aware of different features of a virtual
object will increase the ability of the user to perceive and
evaluate several object features at the same time.

2. Related work

Several open software system architectures for VR
integration have been developed during the last decade as
an affordable alternative to the commercial VR software
packages. One group of software solutions are designed
for building large high-end VR applications e.g.
VRJuggler [2] or AVANGO [6], which describe a single
common, modular architecture for different devices. The
generic VR software system architecture VR2S [11]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 23

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

defines a high-end abstraction for building virtual
environments. In contrast to most other graphics systems,
the rendering is based on independent API providing the
opportunity to switch between different rendering systems
at runtime without the need for redesign of the application
source code.

Fig. 1. Enhanced representation of object properties in virtual
environment implementing implicit features – represent the implicit
feature surface roughness through the visual channel applying different
textures on the corresponding surfaces

The development of low cost VR system architecture is
discussed in [4] and [7]. Affordable portable solutions are
presented in [7] and [10]. To our opinion the lack of
relevant software support and consistency limits the
penetration of the VR software architectures described
above. We have created our solution based on the NVidia
SceniX [9] receiving reasonable product support and
update policy.

The common method for representation of the virtual
scene is to use a scene graph, first proposed in 1992 by
Strauss and Carey in their 3D Graphics Toolkit [13]. The
scene graph is a graph-type data structure which simplifies
and improves the performance of the visualization as well
as interaction and transformation of the objects in the
virtual scene. The scene graph contains nodes describing
geometrical information for the objects in the scene,
materials that should be used when rendering the objects,
transformations for spatially arranging the objects, as well
as nodes for description of cameras and lighting. The
scene graph can be used to avoid data redundancy by
referencing the same geometry from two or more different
group nodes.

Using the scene graph as a basis, the underlying data
structure can be extended by the design of the VR system
architecture to incorporate additional data. This approach
can be applied for adding audio [3] and [12] in the VR
system as well as haptic signals allowing for multimodal
human computer interaction and increasing the sense of
immersion in the computer generated environment.

The concept of implicit object features and their
representation in VR environment has been considered
and demonstrated in [1]. The basic approach uses two
separate data structures: one for representation of objects
in the virtual world and another one for description of the
implicit features, and implements mapping and multimodal
representation during the rendering as shown on Fig. 1.

3. Integration of Implicit Features in a
Virtual Environment

For the representation of implicit features in a virtual
environment different stimuli called Effects are used. Our
research focuses on three types of effects: audio, visual
and haptic, divided by the users’ senses they stimulate.
The effects can be combined to represent different implicit
features of the same object e.g. using audio effect to
denote the presence of a magnetic field around (and in) an
object and haptic for describing the temperature
distribution along the surface of the same object.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 24

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

For the integration of implicit feature representation in a
virtual environment a proper mechanism has to be adopted
for assigning implicit features to a virtual object, for
storing information about these features and for describing
the representation of these features in a multimodal user
interface environment.

3.1 Scene Graph Extension

Using the general structure of a scene graph as a base we
extend it so that the new scene graph includes also data
needed for the multimodal representation of implicit
features. This allows the presentation of implicit features
to be easily handled during a scene graph rendering
process. User interaction requiring implicit feature
presentation can also be detected by a scene graph
traversal process. Two additional node types have been
designed and included in the scene graph structure to store
the necessary data. The first type describes nodes which
can exist independently – e.g. the AudioNode as shown on
Fig. 2.

Fig. 2. Scene graph containing the traditional nodes extended with the
new node types: AudioNode and EffectGeoNode. Tr denotes
TransformNode and GeoNode is a node containing a virtual object.

These nodes can be bound directly to a transformation
positioning a sound source in the virtual world. And the
second type – nodes that hold geometric data and also
contain information about different effects that can be
used to react to user interaction with an object or part of
an object – e.g. the EffectGeoNode on Fig. 2.

3.2 Implicit Feature Mapping

A specialized configurator is provided to access the
transform and geometry nodes contained in the scene
graph of a virtual scene allowing the mapping of implicit

features to virtual objects. With this tool the user can
select individual nodes from the scene graph and then
assign and adjust different effects to be used to represent
the implicit features of the node (Fig. 3).

Fig. 3. Mapping implicit feature presentation effects to objects in a virtual
scene.

During the process of mapping the initial graph describing
the scene is modified to reflect the changes made by the
user. Referring back to Fig. 2 two different actions can be
performed: either a child AudioNode is added to a
Transform node or a GeoNode is replaced by an
EffectGeoNode. In the latter case the geometric data of the
GeoNode is copied to the EffectGeoNode so that the new
node contains the geometry describing the virtual object as
well as the data specifying the selected effect. The result is
a new scene graph used for the representation of the
virtual scene incorporating the implicit features of the
objects.

4. VR Software Architecture

The general structure of the proposed affordable virtual
reality system architecture follows a distributed software
model with one management node, called producer (see

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 25

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4) and one or more consumer nodes. The producer
provides a graphical user interface and also allows the
integration of additional input modules, for example
modules for user input through a tracking system and
gesture recognition. In general the producer generates
information based on user input that is to be presented to
the user by the consumers.

Fig. 4. Proposed software architecture of the virtual reality system.

The consumers execute the actual traversal and rendering
of the scene graph, including the presentation of effects
describing the implicit features mapped to virtual objects.
They are also responsible for keeping the scene graph up
to date according to changes caused by user interaction.
The consumers expose a VR menu which can be turned on
by the user in order to perform different actions or to
specify how specific user actions are to be interpreted by
the system e.g. switching from exploration to selection or
editing mode.

The communication between the producer and the
consumers is organized over TCP/IP. The producer
maintains connection with each of the consumers and uses
it to send packets informing the consumer of specific user
commands (i.e. movement, gestures) and to receive
consumer feedback.

4.1 Modules of the VR Software System

The system is decomposed into a number of modules
responsible for specific tasks, organized in packages as
shown on Fig. 5.
The Producer application is responsible for getting input
from the user. It provides a graphical user interface which
can be used, for example, to load a scene, to modify the
current view point or to play an animation. The Producer

accesses the DTRackUDPReceiver module to receive
information about user movements from a tracking
system.

Fig. 5. Decomposition of the proposed VR system architecture into
packages.

It can then use this information to check if the user has
performed a gesture by calling the GestureRecognition
module. When the Producer receives a command from the
user it sends an appropriate packet to all Consumer
applications connected to it.

The Consumer application renders the virtual scene from a
specified view point. It uses the SceniX API for scene
visualization and can use the AudioDisplayLib and
HapticDisplayLib for the audio and/or haptic presentation
of implicit features.

The Configurator application is used for mapping of
implicit features to objects from a virtual scene. It relies on
the SceneLib library to load the base scene graph (without
implicit features) which is displayed to the user during the
mapping process. Afterwards the Configurator generates
an implicit feature mapping description file which is used
by SceneLib to create the final scene graph for
representation of the virtual scene incorporating objects’
implicit features. The Configurator uses the SceniX,
AudioDisplayLib and HapticDisplayLib libraries to show a
preview of the virtual object presented with its implicit
features.
The audio and haptic display libraries are contained in
separate packages – AudioDisplayLib and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 26

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

HapticDisplayLib. This allows the output modules to be
attached independently to any Consumer application. For
example in a multi-consumer configuration one consumer
can be responsible for audio output, another for haptic
output, while in the same time both consumers are
responsible for video output. Or haptic output can be
provided by a third consumer, which does not render
visual information but is dedicated to haptics only.
The SceneLib module is responsible for tasks like loading
a virtual scene from a file into a scene graph and
performing actions on the scene graph (or part of it) - for
example determining ray intersections, object picking.
SceneLib uses the SceniX API for generating the base
scene graph for a virtual scene. It can then use the input
from the Configurator application to modify the scene
graph so, that it contains also the nodes needed for the
implicit feature presentation. SceneLib is used by all the
applications in the system to receive a scene graph for a
given virtual scene. It is important here to mention that
when an application calls SceneLib to create the scene
graph for it, it also sends to SceneLib information for the
presentation of which effects is it responsible. As a
consequence when creating the scene graph SceneLib can
skip effects for which the application is not responsible.
The result is a scene graph containing only nodes of
interest for the application – i.e. if an application is not
used to present haptic effects its scene graph will not
contain such effects.

The proposed VR software architecture uses 2 external
packages: SceniX [9] is a scene graph software
development kit designed by NVIDIA which aims at
representing virtual scenes interactively with high quality
by taking advantage of the latest improvements in graphics
hardware. Among its features it provides real time ray
tracing and the possibility for easy integration of a physics
library. SceniX is becoming more popular and, as it is
supported by one of the main graphics hardware and
software manufactures, has a good chance to become a
leading and widely accepted scene management engine.
OpenAL [8] is a cross-platform 3D audio API. It can
simulate mobile or static audio sources in a virtual space
that can be heard by a listener whose position is defined in
the same space. OpenAL is supported by Creative Labs.

4.2 Representation of Implicit Features

The diagram on Fig. 6 describes the classes used for the
representation of the new scene graph nodes and for the
presentation of the implicit feature effects stored in them.
To keep the diagram simple and readable we have
concentrated mainly on the presentation of implicit
features through the audio channel as the classes and
handling of the other two types of effects are similar.

The classes starting with nvsg:: are part of the SceniX [8]
API, which our scene description and management is
based on. The class nvsg::Node is the basic type for a
node in the scene graph. It is used as a base class for the
other node classes. The AudioNode class is inherited from
it describing a simple node, which only stores additional
audio data to be played when rendering the scene graph.
The EffectGeoNode class is inherited from nvsg::GeoNode
which represents a node containing geometrical
information of an object. This information can be used to
determine the exact surface element of a virtual object
pointed to by the user, which can affect the way an
implicit feature is presented to the user – e.g. to
distinguish between surface areas of a virtual object with
different temperatures.

Fig. 6. Classes designed to represent implicit features related to audio
data.

In order for the system to be able to interpret the
additional information in the newly defined scene graph
node types actions have to be defined that can handle these
nodes. For this purpose an interface called EffectPlayback
has been designed. The interface provides abstraction
allowing the action handling the node to execute the effect
without knowing the exact type of the effect. This allows
the EffectGeoNode class to contain a list of effects of type
EffectPlayBack, instead of storing separate lists for every
effect type. The getEffectType method of the interface
helps to identify the actual type of the stored effect, as
described by the EffectType enumeration.

The VRSGTraverser class performs the rendering traversal
of a scene graph, including the presentation of implicit
features contained in the new node types. It is inherited
from the SceniX nvsg::GLTraverser class, which handles
the rendering of the object geometry, so that only the new
actions for handling the presentation of implicit features
have to be defined – handleAudioNode and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 27

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

handleEffectGeoNode. The two methods only need to
make a call to the Play method of the EffectPlayBack
interface, implemented by the respective effect, and the
latter handles the implicit feature presentation.

The AudioEffect class is used for storing the actual data
specifying the mapped implicit feature effect. The bufID
and srcID attributes store OpenAL [7] source and buffer
identifiers needed for sound playback. The enAudioEffect
attribute stores an AudioEffectType enumeration value
describing the actual type of the audio effect.
AET_Continuous denotes an audio effect that is being
continuously played – such effects are handled during the
scene graph rendering traversal. AET_OnTouch are audio
effects that are played on user interaction with a virtual
object. The setAudioData method initializes the bufID and
srcID attributes needed for the presentation of the audio
effect. There are also two overloaded methods: one
allowing the audio data initialization and memory
allocation from a file stream and another one using already
allocated memory for specifying dynamically generated
audio data.

5. Implementation

To explore a scene with implicit features in a virtual
reality environment the user first needs to create the
mapping of effects describing how the implicit features of
the objects in the scene are going to be presented. For the
purpose the user has to start the Configurator application
and open the scene in it. The Configurator provides a
Tree-View control showing a hierarchical view of the base
scene graph and a list of effects that can be assigned to the
nodes of the scene graph. The user selects a node from the
scene graph and chooses one or more effects to be
assigned to the object. When the mapping is accomplished
the user has to save the resulting description - a file
containing the object-to-implicit feature mapping is
generated. Then the user starts the Producer application
which on its turn starts the Consumer application(s). The
configuration of the virtual reality system is determined by
a configuration file describing number of consumers,
addresses of the producer and consumer machines to be
used, common storage location (from which the scene is to
be loaded), details about tracking devices, etc. The
configuration file is also used to determine each
application and machine for what kind of output is
responsible. After the system is started the user specifies
the file containing the virtual scene and the file generated
from the Configurator application with the implicit feature
mapping. The system loads the specified virtual scene
together with its implicit feature representation and the
user can start exploring it in the generated virtual
environment.

Using the distributed software model a scalable system
can be created that can make use of different number of
consumers allowing the implementation of the system in
different hardware configurations. Different number of
consumers can connect to the producer depending on the
hardware configuration in use. For example, in a single
consumer configuration (Fig. 7a) the producer and the
consumer can run on one and the same computer. In this
case the stereo visualization is performed with proper
hardware: quad buffered video card and a 3D capable
display. In single consumer configuration the user can also
interact directly with the consumer application using
mouse and keyboard to perform tasks like picking, object
translation, etc. A two consumer configuration can be used
for power-wall visualization (Fig. 7b). In such a case the
system could run on a cluster of three computers – one for
the producer and two for the consumers. Each consumer is
responsible for generating the image for one of the eyes
and both images are projected on the power-wall in order
to produce passive stereoscopic visualization.

Fig. 7a. Sample configuration for virtual reality presentation in single
consumer configuration

Fig. 7b. Sample configuration for virtual reality presentation on a power-
wall.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 28

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7b shows a sample virtual reality configuration
applying one screen rear passive stereoscopic projection as
the one used at our Virtual Reality Lab. The configuration
consists of a cluster of three computers - one master and
two slaves, infrared optical tracking system, audio system
and a haptic device. In this case the producer application
runs on the master computer, two consumers run each on
every slave and one more consumer application runs on
the master computer. The producer receives tracking
information and user input. The two consumers on the
slave computers render the images of the virtual world for
the left and right eyes needed for the stereo visualization.
In this case a haptic device is connected to the master
computer and will be managed by the consumer
application on that computer, whereas the consumer on
one of the slave computers is responsible for the audio
output. The cost of such configuration is about 30
thousand euro (Christie DLP projectors and ART
tracking). Single computer desktop stereo visualization
solution with NVidia 3D Vision can be implemented at a
cost of about 2 thousand euro.

6. Conclusion

In this paper we propose an affordable, scalable and
flexible architecture for virtual reality representation of
implicit features and a procedure for mapping implicit
features to objects from a virtual scene. The proposed
architecture can run on different hardware configurations
– on a single computer or on a computer cluster. It also
allows tuning of the used hardware system by providing
the ability to attach audio and haptic displays to different
machines which allows for balancing the performance of
the system, especially in cases when different machines
are used to build up a cluster.

The scalability of the system comes as a consequence of
the applied distributed software model. It is relatively easy
to add more consumers responsible for other views of the
scene (i.e. for visualization in a multiple screen VR
system).
The modular architecture of the system allows for easy
improvement, replacement or addition of modules, for
example to add support for another haptic device or create
another effect for implicit feature representation. This
makes the system flexible and easy to maintain.

Acknowledgments

The authors wish to thank for the support of the National
Science Found at the Bulgarian Ministry of Education,
Youth and Science received through grant DDBY02/67-
2010.

References
[1] A. Bachvarov, S. Maleshkov, D. Chotrov, J. Katicic,

“Immersive Representation of Objects in Virtual Reality
Environment Implementing Implicit Properties”, Springer
(2011), 4-th International Conference on Developments in
eSystems Engineering - DeSE 2011, pp. 587-592.

[2] A. Bierbaum, C. Just, P. Hartling, K. Meinert, and A. Baker,
"VR Juggler: A Virtual Platform for Virtual Reality
Application Development", VR-01, IEEE, 2001, pp. 89-96

[3] K-U. Doerr, H. Rademacher, S. Huesgen, and W. Kubbat,
"Evaluation of a Low-Cost 3D Sound System for Immersive
Virtual Reality Training Systems", in IEEE Transactions on
Visualization and Computer Graphics, 2007, vol. 13, pp.
204-212

[4] T. Fellmann, and M. Kavakli, "VaiR: System Architecture of
a Generic Virtual Reality Engine", in Proceedings of the
International Conference CIMCA '05,2005,vol.2, pp.501-506

[5] M. Kalkush, and D. Schmalstieg, "Extending The Scene
Graph With A Dataflow Visualization System", in VRST’06
Proceedings of the ACM symposium on Virtual reality
software and technology, 2006, pp. 252-260

[6] R. Kuck, J. Wind, K. Riege, M. Bogen. Improving the
AVANGO VR/AR Framework |- Lessons Learned. Virtuelle
und Erweiterte Realität: 5. Workshop der GI-Fachgruppe
VR/AR, Magdeburg, 25.-26.09.2008, pp. 209-220.

[7] M. Külberg, J. C. de Oliveira, and P.F.F. Rosa, "MiniVR:
Low Cost VR Projection System", in XIII Symposium on
Virtual Reality, 2011, pp. 134-143

[8] OpenAL, http://connect.creativelabs.com/openal/default.aspx,
Last accesses 02.03.2012

[9] SceniX, http://developer.nvidia.com/scenix-details, Last
accesses 02.03.2012

10] W. Sherman, P. O’Leary, E. Whiting, S. Grover, and E.
Wernert, "IQ-Station: A Low Cost Portable Immersive
Environment", in ISVC 2010, Part II, 2010, LNCS 6454, pp.
361-372

[11] F. Steinicke, T. Ropinski, and K. Hinrichs, "A Generic
Virtual Reality Software System’s Architecture and
Application", in Proceedings of ICAT '05, 2005, pp. 220-227

[12] T. Stockman, L. V. Nickerson, and G. Hind, "Auditory
graphs: A summary of current experience and towards a
research agenda", 11-th Int. Conf. on Auditory Display, 2005

[13] P. Strauss, and R. Carey, "An Object Oriented 3D Graphics
Toolkit", in Computer Graphics Proceedings of SIGGRAPH
92, 1992, Vol. 26, pp. 341–349

Stoyan Maleshkov is associate professor of computer aided
engineering and computer graphics (1990) at the Technical
University (TU) of Sofia, Bulgaria. He has Eng. degree in system
and control engineering (1975), master in applied mathematics
(1977) and PhD in computer aided system design (1981), all
received from the TU of Sofia. Fulbright scholar (1989–1990) at
Interactive Modeling Research Lab, Louisiana State University,
Baton Rouge, USA. Department chair (2000-2004) and vice dean
(2004-2008), both at the TU Sofia. Since 2008: Head of the Virtual
reality lab, TU of Sofia. Associate professor of computer graphics
at the New Bulgarian University, Sofia - as a second job (2000).

Dimo Chotrov has received BSc. (2007) and MSc. (2009) degrees
in computer systems and technologies from the Technical
University of Sofia. Currently he is PhD student, acting at the
Virtual reality lab. Member of the IEEE.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 29

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

