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Abstract— As robots begin to collaborate with humans in
everyday workspaces, they will need to understand the functions
of tools and their parts. To cut an apple or hammer a nail,
robots need to not just know the tool’s name, but they must
localize the tool’s parts and identify their functions. Intuitively,
the geometry of a part is closely related to its possible functions,
or its affordances. Therefore, we propose two approaches for
learning affordances from local shape and geometry primitives:
1) superpixel based hierarchical matching pursuit (S-HMP);
and 2) structured random forests (SRF). Moreover, since a part
can be used in many ways, we introduce a large RGB-Depth
dataset where tool parts are labeled with multiple affordances
and their relative rankings. With ranked affordances, we eval-
uate the proposed methods on 3 cluttered scenes and over 105
kitchen, workshop and garden tools, using ranked correlation
and a weighted F-measure score [26]. Experimental results over
sequences containing clutter, occlusions, and viewpoint changes
show that the approaches return precise predictions that could
be used by a robot. S-HMP achieves high accuracy but at a
significant computational cost, while SRF provides slightly less
accurate predictions but in real-time. Finally, we validate the
effectiveness of our approaches on the Cornell Grasping Dataset
[25] for detecting graspable regions, and achieve state-of-the-art
performance.

I. INTRODUCTION

Every day, we use tools for ordinary activities, like cutting

an apple, hammering a nail, or watering a flower. While

interacting with the world, we effortlessly draw on our

understanding of the functions that tools and their parts

provide. Using vision, we identify the functionality of parts,

so we can find the right tool for our needs. As robots like

PR2, Asimo, and Baxter begin to collaborate with humans

in everyday workspaces, they will also need to understand

the wide variety of tools useful for their tasks.

Imagine Baxter in a kitchen, trying to serve soup from

a pot into a bowl. Baxter needs to find a ladle, grab the

handle, dip the bowl of the ladle into the pot, and transfer

the soup to the serving bowl. But what if this ladle has a

different shape and color from the ladles that Baxter has

seen before? What if Baxter has never seen any ladles at all?

Today, computer vision allows robots to recognize objects

from a known category, providing a bounding box around

the ladle. However, in these situations Baxter needs to not

just detect the ladle, but more importantly he needs to know

which part of the ladle he can grasp and which part can

contain the soup. As Gibson remarked, “If you know what

can be done with a[n] object, what it can be used for, you

can call it whatever you please” [11].
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Fig. 1: Predicting novel affordances in clutter (top) and in single objects
(bottom). (Top) Detections of grasp, scoop and support in a cluttered
scene. (Bottom) Novel affordance predicted for mug: pound (left) and
turner (spatula): cut (right). Notice that we are able to predict and localize
reasonable locations for novel affordances, even in clutter and not just on
well-defined object parts, but on the relevant regions of the object (e.g. the
bottom of the mug affords pounding and the edge of the turner affords
cutting). Brighter regions indicate higher probability.

In this paper, we address the novel problem of localizing

and identifying part affordance, so that a robot can explain

how an object and its parts can be used, and generalize this

knowledge to novel scenarios. Outputs demonstrating this

generalization are shown in Fig. 1 where, for example, the

proposed approach is able to predict that the bottom of the

mug is useful for pounding, or the edge of a turner can be

used for cutting.

Gibson defined affordances as the latent “action possibil-

ities” available to an agent, given their capabilities and the

environment [11]. In this sense, for a human adult, stairs

afford climbing, an apple affords eating, and a knife affords

the cutting of another object. The last example is the most

relevant to a robot using tools in a kitchen or workshop,

and we use the term effective affordance to differentiate the

affordances of tools from those found in other settings. We



define objects with effective affordances as those that an

agent can use as tools to produce an effect on another object.

Man-made tools are typically composed of parts, where each

part has multiple effective affordances such as cut, pound,

scoop, or contain. If robots could identify these affordances,

it would open the possibility to use a wide variety of tools,

including those that have not been seen before.

From a computer vision perspective however, predicting

affordances from an image presents a major challenge be-

cause tools from different categories, with unique shapes

and appearances, can have parts with the same effective

affordances. Furthermore, our goal is to identify affordances

at the level of parts, and provide precise predictions for a

robot to interact with the world.

The main contributions of this paper are as follows: 1) We

introduce a framework for jointly localizing and identifying

part affordance, so that robots can understand how objects

and their parts can be used. We show that this approach can

be used to identify and localize part affordance for a large

collection of tools and in cluttered scenes with occlusions

(§V). 2) We use and compare two methods for learning

the association: a) an unsupervised feature learning method

which learns a hierarchy of sparse dictionaries (§III-B) and

b) a fast structured random forest classifier that preserves

the spatial information of the learned affordances at its leaf

nodes (§III-C). 3) We analyze the effectiveness of different

features for affordance identification, and demonstrate in

the experiments that geometric features, derived from a

combination of 2D and 2.5D data, are essential for the task

(§V-.1). 4) We present a new RGB-D Part Affordance Dataset

(§IV-A) which consists of 105 kitchen, workshop, and garden

tools. The dataset provides hand-labeled ground truth at the

pixel level for more than 10,000 RGB-D images. In addition

to images of single objects, a separate dataset of novel objects

in clutter is also available for evaluating the robustness of

affordance detection in real-world settings (Fig. 1 (top)).

Dataset and code from this work are available online1.

II. RELATED WORK

The study of affordance has a rich history in the com-

puter vision and robotics communities. Early work sought a

function-based approach to object recognition for 3D CAD

models of objects like chairs [33]. More recently, many

papers have focused on predicting grasping points for objects

from 2D images [30] [34] [5]. [25] exploits a deep learning

framework to learn graspable features from RGB-D images

of complex objects and [17] detects tips of tools being

held by a robot. From the computer vision community, [19]

classify human hand actions in context of the objects being

used, Grabner et al. [12] detect surfaces for sitting from 3D

data.

Affordances might be considered a subset of object at-

tributes, which have been shown to be powerful for object

recognition tasks as well as transferring knowledge to new

categories. Ferrari and Zisserman [10] learn color and 2D

1http://www.umiacs.umd.edu/˜amyers/part_affordance/

shape patterns to recognize the attributes in novel images.

Parikh and Grauman [29] show that relative attributes can

be used to rank images relative to one another, and Lampert

et al. [24] and Yu et al. [36] show that attributes can be

used to transfer knowledge to novel object categories. In

the robotics community, the authors of [35] identify color,

shape, material, and name attributes of objects selected in

a bounding box from RGB-D data. [14] explored, using

active manipulation of different objects, the influence of

the shape, material and weight in predicting good pushable

locations. [2] used a full 3D mesh model to learn so-called 0-

ordered affordances that depend on object poses and relative

geometry. Koppula et al. [22] view affordance of objects

as a function of interactions, and jointly model both object

interactions and activities via a Markov Random Field using

3D geometric relations (‘on top’, ‘below’ etc.) between the

tracked human and object as features.

Recently, unsupervised feature learning approaches have

been applied to problems with 3D information. [3] propose

using hierarchical matching pursuit (HMP), and [32] propose

using a convolutional recursive neural network to recognize

objects from RGB-D images. For supervised methods, state-

of-the-art performance using structured random forests [21]

applied over RGB-D data for simultaneous object segmen-

tation and recognition has been reported in [13].

III. APPROACH

In this paper we compare two approaches for associating

part affordances with geometric features extracted from

RGB-D images. The first approach builds upon the recent

work of [4] which uses multipath HMP (§III-B) to achieve

state-of-the-art performance on challenging computer vision

image datasets. The second approach leverages the fast

inference of structured random forests (SRF) (§III-C) to

detect part affordances in real-time. In contrast to previous

works that require accurate metric models [2] or predict

attributes for segmented objects [35], we show that local

geometric primitives are sufficient for pixel accurate func-

tionality detection compared to those discovered via deep

learning (which returns only a bounding box) [25], resulting

in a more efficient and simple implementation suitable for

robotic applications. Finally, we also demonstrate the robust-

ness of the approaches in challenging real-world situations

containing clutter, occlusions and viewpoint changes which

were not explored in prior works. We first describe in the

next section the features used in our approach, derived from

a combination of 2D and 2.5D information, that allow us

to capture the local geometry of the surface for affordance

association. We then detail the two approaches for learning

this association from these features.

A. Robust Geometric Features

The key hypothesis of this work is that shape and ge-

ometry are physically grounded qualities which are deeply

tied to the affordances of a tool part. When characterizing

geometric qualities of a part, it is important that the features

we compute are robust to variations, such as changes in

http://www.umiacs.umd.edu/~amyers/part_affordance/


viewpoint. At the same time, we would like to gain insight

into the influence of basic geometric measures. Therefore, we

leverage simple geometric features, such as surface normals

and curvature, to learn the relationship between geometry and

part affordance. In order to detect affordances for a variety

of tools in cluttered scenes with occlusions, we derive the

following local geometric features from small N×N RGB-D

input patches:

1) Depth Features: We first apply smoothing and inter-

polation operators to reduce noise and missing depth values.

Then, we remove the mean from the patch to gain robustness

to absolute changes in depth. These patches are used directly

by HMP to learn hierarchical sparse code dictionaries. In

the first layer, HMP captures primitive structures such as

depth edges at various orientations, and higher layers en-

code increasingly abstract representations [3]. To provide

comparable depth edge information to the SRF, we compute

histograms over depth gradients (HoG-Depth). Similar to the

2D Histogram of Gradients (HoG) image descriptor [7], we

compute gradients on the depth image and quantize them

into four orientations to create a compact histogram feature.

2) Surface normals (SNorm): We use the depth camera’s

intrinsic parameters to recover the 3D point cloud, from

which we can estimate 3D surface normals. As with the

depth, we remove the patch mean during feature learning, to

make the representation more robust to changes in viewpoint.

3) Principle curvatures (PCurv): The principle curvatures

[8] are an extrinsic invariant of the local patch geometry,

and are independent of viewpoint. The principal curvatures

(κ1, κ2), κ1 > κ2 characterize how the surface bends in

different directions.

4) Shape-index and curvedness (SI+CV): The shape index

(SI) and curvedness (CV) measures were introduced by

Koenderink et al. [20] to characterize human perception of

shape. These measures, which are derived from (κ1, κ2), are

also viewpoint invariant and are defined as

SI = −
2

π
arctan

(

κ1 + κ2

κ1 − κ2

)

, CV =

√

κ2
1 + κ2

2

2
(1)

SI and CV are continuous in the range [−1,+1], where

the shape index captures the type of local shape (elliptic,

parabolic, etc.) and the curvedness its perceived strength.

B. Superpixel Hierarchical Matching Pursuit

We first propose a superpixel based approach to affor-

dance detection following the work of [27]. Although 2D

image segmentation in general is a challenging problem in

computer vision, recent work has shown that incorporating

depth data produces more coherent boundaries that adhere to

depth discontinuities not apparent in color images [31] [28].

Usually, great care must be taken to find segments that have

not oversegmented or undersegmented an object of interest

[16]. However, in our approach we consider tools composed

of several parts, each formed by a collection of surfaces, so

oversegmentation is advantageous.

Given an RGB-D image, we use a modified version of

the SLIC algorithm [1], incorporating depth and surface

Feature 1 Feature 2 Feature 3 SVM

Hierarchical Sparse Coding PredictionRaw Features Segmentation

Fig. 2: Affordance detection using S-HMP. An RGB-D image is segmented
into superpixels, where each segment serves as a candidate part surface
(left). For each superpixel, hierarchical sparse codes are extracted from ge-
ometric features such as depth, normal, and curvature information (middle).
Superpixels’ codes are pooled and then classified using a linear SVM to
produce the final predictions for each affordance (right).

normal information, to segment objects in the RGB-D image

into small surface fragments. Using multiple features for

segmentation is important, since parts with different affor-

dances are often connected and share some properties. For

each superpixel, we use HMP to compute hierarchical sparse

codes from each of the different geometric measures (Depth,

SNorm, PCurv, and SI+CV).

HMP [3] is a hierarchical sparse coding method that

learns feature hierarchies called paths. A path has a unique

architecture which captures information at varying scales and

abstractions, where in each layer of the hierarchy the input

is encoded by sparse coding and undergoes a max-pooling

operation. Specifically, at each layer we learn a dictionary D

of size m such that the n samples in data matrix Y can be

represented by a sparse linear combination X of dictionary

entries,

min
D,X

‖Y −DX‖
2

F

s.t. ∀m, ‖dm‖
2
= 1 and ∀n, ‖xn‖0 ≤ S

(2)

where ‖·‖F and ‖·‖
0

denote the Frobenius norm and L0 norm

respectively, S is the sparsity regularization parameter. The

dictionary bases dm are constrained to have a unit norm,

and a sample’s sparse coefficients xn must have no more

than S non-zero values. Given a learned dictionary, an image

patch can be represented by its coefficients or sparse codes.

In previous works, on image attribute recognition [35] or

image classification [4], these codes were max-pooled over

the whole image or over an image pyramid. However, we

max-pool HMP features within each superpixel, which yields

a feature vector for each surface. These features can be clas-

sified with a linear SVM, thereby providing a prediction of

each affordance for each segment. The proposed framework

is illustrated in figure 2. In our experiments we use features

from two-layer and three-layer architectures, which capture

features at different scales and abstractions. Additional de-

tails and parameters are provided in the publicly available

code.

C. Structured Random Forest

The random forest (RF), introduced by [15], is an en-

semble learning technique that combines K decision trees,

(T1, · · · , TK), trained over random permutations of the data



Fig. 3: Affordance detection using SRF. (A) Input image with example
patch highlighted. (B) Features extracted from each patch (top) and sampled
annotation patches from data (below). (C) Training different patches, X

with corresponding binary affordance annotations, Y , learns the optimal θj
at each split node. The leaf nodes store per pixel confidence scores for each
Y encountered. (D) During inference, a test patch is assigned to a leaf node
that contains affordance prediction. Averaging the predictions over the K

trees produces an affordance confidence score per pixel.

to prevent overfitting. The output of the model can either be

a class label (for multilabel classification) or a continuous

value (for regression). The main advantage of RFs is that

inference is extremely efficient [6], since data only needs to

be passed through several binary decision functions. Due to

their speed and flexibility, RFs have been widely applied in

both computer vision and robotics problems.

In this work, we propose the second approach using a

structured random forest (SRF), an extension of the standard

RF that imposes structured constraints on the input and

output. This enables the SRF to learn more expressive

information, while still retaining all the inherent advantages

of standard RFs. SRFs was first used by [21] to impose

spatial constraints for scene segmentation and was recently

extended by [9] for 2D edge detection. Different from these

previous works, we impose here a novel structure that relates

affordances to the local patch geometry and shape. To this

end, we train a SRF that takes as input X , features from

local N ×N patches described in §III-A with pixel accurate

annotations of the target affordance, Y (Fig. 3 (B)). The

annotations impose the expected spatial structure of how

the affordance should appear in the final prediction. For the

jth split (internal) node, we train a binary decision function

h(x, θj) ∈ {0, 1} over random subsets, x ∈ X , of the input

features so that the parameters θj = (f, ρ) send x(f) (where

f is the feature dimension for each feature described in §III-

A) to the left child when h(·) = 1 if [x(f) < ρ] and to the

right child otherwise. The decision threshold, ρ, is obtained

by maximizing a standard information gain criterion Gj over

Dj ⊂ X × Y , the features and annotations:

Gj = H(Dj)−
∑

c∈{L,R}

|Dc
j |

|Dj |
H(Dc

j) (3)

where Dc
j , c ∈ {L,R} indicates the portion of the data that is

split by ρ into the left and right child nodes respectively. We

use here the Gini impurity measure: H(Dj) =
∑

y py(1−py)
with py denoting the proportion of features in Dj with own-

ership label y ∈ Y . Eq. (3) is computed via an intermediate

mapping Π : Y 7→ L of structured affordance labels into

discrete labels l ∈ L following [9]. To determine Π, we

first cluster via k-means random annotation patches that have

the same affordance labels and select the largest |L| cluster

centers. We repeat the training procedure until a maximum

tree depth, Dt, is reached and we store at the leaf nodes

per pixel confidence scores for each affordance annotation

patch encountered during training. (Fig. 3 (C)). Each tree

in the SRF therefore learns jointly, the 2D spatial structure

together with the 2.5D features that describe the affordance

within a patch. Inference using the trained SRF is extremely

simple. Given a forest of K trees and a testing patch with

extracted features, the learned decision thresholds in each

split node will send the patch to a leaf node that contains

the predicted affordance labeling and confidence scores. We

then average all K predictions for the final prediction (Fig. 3

(D)).

In our implementation, we train a SRF with K = 8 trees

with a maximum training depth of Dt = 64. We use patches

of size N = 16 and we set |L| = 10 cluster centers for Π.

Training over the entire affordance RGB-D dataset (§IV-A)

in parallel with an average of 5000 RGB-D images per split

takes around 20 minutes on a 16 core Xeon 2.9GHz machine

with 128GB of ram. Inference for a single RGB-D image of

size (640 × 480) (height, width), takes an average of 0.1s

which includes the time for feature extraction.

IV. EXPERIMENTS

We first describe in §IV-A the affordance dataset that we

introduce to evaluate the proposed approaches. We present

the evaluation metrics used for all experiments in §IV-B.

We also detail in §IV-C how we apply our approaches to

the more common task of predicting grasping locations, in

order to compare with the deep-learning approach of [25].

We present and discuss the results of our experiments in §V.

A. RGB-D Part Affordance Dataset

To investigate the problem of localizing and identifying

affordance, we propose a new RGB-D Part Affordance

Dataset which focuses on everyday tools and the affordances

of their parts. We consider tool parts corresponding to a

collection of surfaces with multiple affordances. We define

each surface’s effective affordances by the way it comes in

contact with the objects it affects. For example, a coffee

mug has two affordance parts, the inner surface and the

outer surface. The inner surface of a mug has the effective

affordance “contain”, because it comes in contact with the

liquid that is contained. The surface of the mug’s handle has

the affordance “grasp” as it can be tightly held by a hand

or robot gripper. The dataset provides pixel-level affordance

labels for 105 kitchen, workshop, and garden tools. The tools

were collected from 17 different categories covering seven

affordances which are summarized in Table. I.

Each affordance is represented by objects from a variety of

categories with different appearances. Additionally, since it

is likely that object parts may have multiple affordances, we

engaged several human annotators to rank how close affor-

dances are with respect to the essential affordance category,

while allowing for ties. This allows us to determine, on an

ordinal scale, how well the affordance detector generalizes



Fig. 4: Sample objects from the RGB-D Part Affordance Dataset. (Lower-
right) An example of a full frame image with hand-labeled ground truth.
The ground truth labels include rankings for multiple affordances.

Affordance Description

grasp Can be enclosed by a hand for manipulation (handles).

cut Used for separating another object (the blade of a knife).

scoop A curved surface with a mouth for gathering soft material (trowels).

contain With deep cavities to hold liquid (the inside of bowls).

pound Used for striking other objects.(the head of a hammer).

support Flat parts that can hold loose material (turners/spatulas).

wrap-grasp Can be held with the hand and palm (the outside of a cup).

TABLE I: Description of the seven affordance labels.

to related affordances which is important when novel objects

are observed. For example, parts with the affordance “cut”

are found in kitchen knives, workshop saws, and garden

shears. Examples are shown in Fig. 4.

While there are several RGB-D object datasets, most are

designed for instance and category level object recognition

[23], attribute learning [35] or for specific robotic grip-

ping locations [25]. In addition to testing with tools from

a known category, the dataset is designed for evaluating

part affordance identification for objects from completely

novel categories. To our knowledge this is the first dataset

specifically designed for robots to identify and localize part

affordances from RGB-D data.

Data was collected using a Kinect sensor, which records

RGB and depth images at a resolution of 640×480 pixels.

Since many of the parts we want to capture are small, we

collected data at the minimum distance required for accurate

depth readings, approximately 0.8 meters. We recorded each

tool on a revolving turntable to collect images covering a full

360◦ range of views. On average, approximately 300 frames

are captured for each tool, producing more than 30,000 RGB-

D image pairs. Of these, more than 10,000 images have

pixel-level ground truth affordance labels. In addition, we

supplement the dataset with three sequences of around 1000

RGB-D frames, each collected by a mobile robot observing

novel tools in clutter under changing viewpoints. Example

frames are shown in Fig. 5 (left).

B. Evaluation Metrics

We use three evaluation metrics to provide different per-

spectives on the performance of our approaches over the

RGB-D Part Affordance dataset. The proposed approaches

output a probability map over the image for each affordance,

which can be evaluated against ground truth labels to fairly

compare their performance. First, we use the Weighted F-

Measure, Fw
β , introduced recently by Margolin et al. [26]

to evaluate saliency maps with continuous valued responses

against binary valued ground-truths. Fw
β is an extension of

the well-known F-measure Fβ
2:

Fw
β = (1 + β2)

Prw.Rcw

β2.P rw +Rcw
,with β = 1 (4)

where Prw and Rcw are weighted versions of the standard

precision Pr = TP
TP+FP

and recall Rc = TP
TP+FN

measures.

Here, TP, TN, FP, FN refer to true positives, true nega-

tives, false positives and false negatives respectively. The

key insight from [26] is to extend the standard precision

and recall measures with weights derived by comparing the

binary ground-truth and the continuous valued responses in

order to reduce biases inherent in the standard measures.

To do this, the authors proposed weights that measure the

dependency of foreground pixels (pixels clustered together

near the ground-truth are weighted higher), and assign lower

weights to pixels far from the ground-truth.

Since the ground-truth in the RGB-D Affordance dataset

provides rankings across multiple affordances, for a second

measure we define a rank weighted Fw
β ,

Rw
β =

∑

r

wr.F
w
β (r),with

∑

r

wr = 1 (5)

that sums weighted Fw
β (r) over their corresponding r ranked

affordances. The ranked weights wr are chosen so that the

top ranked affordance is given the most weight, followed by

the secondary affordance and so on. This allows us to capture

if the detector is generalizing across multiple affordances

appropriately. Note that when we impose w1 = 1, (5) reduces

to (4), where we consider only the top ranked affordance.

Finally, we use a third measure to evaluate whether

multiple affordance predictions agree with the ground-truth

rankings. We rank the continuous affordance predictions

at each pixel, and compute the ranked correlation score,

Kendall’s τk ∈ [−1, 1] [18]. τk approaches 1 as the predicted

ranks agree more closely with the ground-truth, but nears -1

as the ranks are reversed. We report τk ∈ [−1, 1], the average

τk of all pixels over the test images.

C. Cornell Grasping Dataset Comparison

In addition to the RGB-D Part Affordance Dataset, we ap-

plied our approaches to a more common, but related robotic

task of determining where to grasp (a specific affordance).

We used the recently introduced Cornell Grasping Dataset

of Lenz et al. [25] to compare against their deep-learning

method and validate the effectiveness of our approaches.

The dataset contains 1035 RGB-D images of 280 graspable

objects, where objects are captured from a small discrete

number of viewpoints. Each image contains a single object,

and is annotated with a set of rectangles indicating good

or bad graspable locations. Following the testing procedure

in [25], we averaged results from 5 random splits, and

report both recognition accuracy and detection accuracy. For

detection, we report the point-wise metric following [25] and

2The F-measure with β = 1 is defined by the harmonic mean of the

precision and recall values: Fβ = (1 + β2). Pr.Rc
β2.Pr+Rc

and is used as a

measure of the accuracy of the Pr and Rc scores. β is a positive weight
that gives preferences to either Rc (β > 1) or Pr (β < 1).



S-HMP SRF

RGB-D Input Contain Wrap-grasp Contain Wrap-grasp

Fig. 5: Results of affordance detection across three different input RGB-D frames (left) using S-HMP (middle) and SRF (right) over the cluttered sequence:
two target affordances per method – contain (l) and wrap-grasp (r). Brighter means higher probability of the target affordance.

[30], which considers the detection a success if it is within

some distance from at least one ground-truth rectangle center.

In order to use S-HMP in this setting, we treat the candidate

rectangles as superpixel segments, and perform max-pooling

over the rectangle to make a prediction. To obtain structured

labels for the SRF, we estimated the ground-truth annotations

of graspable regions by first applying a mask obtained over

all graspable rectangles followed by a edge detection and

hole filling operation (Fig. 6). We trained S-HMP and SRF

using the same parameters used in other experiments.

Fig. 6: Estimating pixel accurate annotations from the Cornell Grasping
Dataset. (Left) Input RGB image. (Middle) Overlay of several graspable
rectangles. (Right) Edge detection and hole filling produces a pixel accurate
segment.

V. RESULTS

We report results that demonstrate the performance of

our approach using the proposed metrics described above:

(Fw
β , Rw

β , τk) for affordance detectors trained using S-HMP

and SRF. We used the same train/test splits for both methods,

and report averaged results over random splits of the RGB-

D Affordance Dataset from [27]. We used the features

described in §III-A for a fair comparison. Table. IIa (left)

summarizes the two detectors’ performance over the seven

affordance labels considered.

From the results, we can see that S-HMP consistently out-

performs SRF in all three evaluation metrics. The difference

is most significant using the Fw
β measure, which shows that

the sparse codes obtained by S-HMP are able to distinguish

the top ranked affordance class much better than SRF, which

tends to produce weaker responses across multiple affordance

categories. This is not surprising since, unlike S-HMP which

learns a hierarchy of new features, SRF only extracts the

most discriminative combination of the input features. In the

sections that follow, we describe ablation experiments that

demonstrate the contribution of geometric features and how

they help in real-world scenarios with clutter, occlusions and

viewpoint changes.

1) Ablation comparisons: We performed a series of fea-

ture ablations to demonstrate the contribution of each feature

type in improving the results reported above. Table. IIb

shows the influence of additional features over the baseline

smoothed and de-meaned depth features, denoted as Depth,

with respect to the Fw
β measure.

We see that the S-HMP baseline performs very well, and

by learning multiple layers of features with increasing invari-

ance and abstraction, S-HMP is able to extract discriminative

information. Consequently, additional features provide better

but diminishing returns on performance, consistent with the

results in [27]. Additionally, increasing feature dimensional-

ity can make SVM learning more difficult. Although the full

set of features has a slightly lower Fw
β measure, we note that

it has the best performance on ranked measures and clutter.

The SRF, on the other hand, benefits more from the addition

of new features as they introduce more diversity into the

random feature subsets used during training (§III-C). Using

the full feature set the SRF achieves a large improvement

over the ablated counterparts. Interestingly, we notice that

although SI+CV are derived from PCurv, they improve

the results further. This validates that the shape-index and

curvedness measures capture discriminative information not

provided directly by the other features. Considering that the

results in [27] showed that geometric features significantly

outperformed RGB features, we also tested the SRF with

several 2D features which achieved much lower performance.

For example, using raw RGB-D values gives Fw
β of 0.055

for SRF.

2) Performance in clutter and occlusions: In order to test

the performance of the approach in real-world situations

containing clutter, occlusions and viewpoint changes, we

tested our approach over the clutter subset of the RGB-

D Part Affordance Dataset. Table. IIa (right) compares the

performance of S-HMP and SRF using the (Fw
β , Rw

β , τk)
metrics.



(a) Performance over the RGB-D Affordance Dataset. (Left) Non-cluttered subset and (Right) Cluttered subset.

Affordance
Non-cluttered subset (single objects) Cluttered subset (multiple objects)

S-HMP (Fw
β
, Rw

β
, τk) SRF (Fw

β
, Rw

β
, τk) S-HMP (Fw

β
, Rw

β
, τk) SRF (Fw

β
, Rw

β
, τk)

grasp 0.367, 0.149, 0.711 0.314, 0.133, 0.409 0.227, 0.124, 0.583 0.200, 0.122, 0.165
cut 0.373, 0.043, 0.831 0.285, 0.033, 0.798 0.160, 0.065, 0.754 0.072, 0.030, 0.724
scoop 0.415, 0.046, 0.627 0.412, 0.097, 0.559 0.165, 0.083, 0.519 0.114, 0.106, 0.446
contain 0.810, 0.168, 0.814 0.635, 0.142, 0.579 0.437, 0.222, 0.627 0.322, 0.178, 0.316
pound 0.643, 0.035, 0.787 0.429, 0.033, 0.801 0.257, 0.079, 0.609 0.072, 0.023, 0.595
support 0.524, 0.030, 0.717 0.481, 0.039, 0.724 0.297, 0.049, 0.462 0.098, 0.022, 0.509
wrap-grasp 0.767, 0.102, 0.867 0.666, 0.089, 0.821 0.208, 0.109, 0.482 0.156, 0.099, 0.482

Mean 0.557, 0.082, 0.751 0.460, 0.081, 0.643 0.250, 0.105, 0.563 0.165, 0.083, 0.435

(b) Ablation experiments. +x indicates the amount of change over Depth.

Feature Sets S-HMP Fw
β

SRF Fw
β

Depth+SNorm+PCurv+SI+CV 0.557 (+0.018) 0.460 (+0.137)

Depth+SNorm+PCurv 0.562 (+0.023) 0.449 (+0.126)

Depth+SNorm 0.547 (+0.008) 0.444 (+0.121)

Depth 0.539 0.323

(c) Results on the Cornell Grasping Dataset.
Method ra % da %

RF 85.3 62.5
SRF 93.5 87.0
SAE [25] 93.7 88.4
S-HMP 95.2 92.0

TABLE II: Full experimental results. See text for details.

We show in Fig. 5 a series of three frames illustrating the

responses of S-HMP and SRF for two specific affordances:

contain and wrap-grasp. Despite changes in viewpoint,

the approaches make reasonable predictions, such as cor-

rectly predicting the inner surfaces of bowls and cups as

contain. S-HMP exhibits precisely localized predictions,

and SRF demonstrates generalization, such as predicting

wrap-grasp on the convex surface of the bowl. From

Table. IIa (right), we note further that although both S-HMP

and SRF’s performance did drop under such challenging

scenarios, the drop in S-HMP is less than SRF, which

indicates that the learned features, unlike those obtained from

SRF are far more robust to viewpoint changes and clutter

than SRF.

3) Cornell Grasping Dataset comparison: We applied

the proposed approaches to the Cornell Grasping Dataset

and compared recognition and detection results to those of

the Sparse Autoencoder (SAE) with a two-stage structured

regularization in [25]. Table. IIc summarizes the recognition

accuracy, ra, and detection accuracy (point-wise), da, of the

SRF, SAE, and S-HMP methods. In order to highlight the

contribution of the structured constraints in the SRF, we

trained a standard random forest (RF) with 20 trees over

the annotated grasping rectangles in the dataset, using the

same feature set of the SAE: RGB + Depth + SNorms.

We note first that using the baseline feature set used in

SAE with a standard RF results only in mediocre perfor-

mance. By adding the structured constraints and the proposed

robust features, the SRF is able to achieve recognition and

detection performances comparable to the deep learning

based SAE. S-HMP outperforms the other approaches by a

large margin, achieving state-of-the-art performance for this

dataset. It is important to note however, that the SRF provides

very reasonable predictions of graspable locations with pixel-

wise accuracy (Fig. 7), within a fraction of the time needed

for inference using SAE (30s) vs. 0.1s in SRF. Such real-time

performance is crucial for practical robotics applications and

we show in the supplementary video an example of real-time

detection over the cluttered RGB-D Affordance Dataset.

Fig. 7: Grasping locations predicted by SRF. (Top) Input RGB-D images
for four example objects. (Bottom) Predicted graspable locations. Notice the
large difference in shape of the graspable regions. Brighter means higher
probability.

VI. CONCLUSION

In this paper, we have presented two methods for associat-

ing affordances with local shape and geometry information.

These methods localize and identify multiple affordances

of tool parts, providing functional information that can be

used by a robot. S-HMP provides accurate results at a high

computational cost, while SRF gives reasonable predictions

in real-time. We have also demonstrated the importance

of geometry for affordance identification, showing the im-

portance of robust geometric features. We also validated

our approaches on an existing dataset, and achieve state-

of-the-art results. Finally, we introduced a new RGB-D

Part Affordance Dataset with ranked affordance labels for 3

scenes and 105 objects which will be made publicly available

for further research.

The work opens up exciting new research directions for

recognizing objects in general. Firstly, we plan to study

and enforce stronger invariants for the features to handle

even more challenging situations. Secondly, we intend to

explore the detection of material properties, which is an

important function of affordance prediction: either via visual

methods or haptics. Finally, the approaches described here

will be implemented onto a robot with manipulators to test

the accuracy of the predictions in real manipulative tasks.
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