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Abstract 

Background: Generalization model capacity of deep learning (DL) approach for atrial fibrillation (AF) detection 
remains lacking. It can be seen from previous researches, the DL model formation used only a single frequency sam-
pling of the specific device. Besides, each electrocardiogram (ECG) acquisition dataset produces a different length and 
sampling frequency to ensure sufficient precision of the R–R intervals to determine the heart rate variability (HRV). 
An accurate HRV is the gold standard for predicting the AF condition; therefore, a current challenge is to determine 
whether a DL approach can be used to analyze raw ECG data in a broad range of devices. This paper demonstrates 
powerful results for end-to-end implementation of AF detection based on a convolutional neural network (AFibNet). 
The method used a single learning system without considering the variety of signal lengths and frequency samplings. 
For implementation, the AFibNet is processed with a computational cloud-based DL approach. This study utilized a 
one-dimension convolutional neural networks (1D-CNNs) model for 11,842 subjects. It was trained and validated with 
8232 records based on three datasets and tested with 3610 records based on eight datasets. The predicted results, 
when compared with the diagnosis results indicated by human practitioners, showed a 99.80% accuracy, sensitivity, 
and specificity.

Result: Meanwhile, when tested using unseen data, the AF detection reaches 98.94% accuracy, 98.97% sensitivity, 
and 98.97% specificity at a sample period of 0.02 seconds using the DL Cloud System. To improve the confidence of 
the AFibNet model, it also validated with 18 arrhythmias condition defined as Non-AF-class. Thus, the data is increased 
from 11,842 to 26,349 instances for three-class, i.e., Normal sinus (N), AF and Non-AF. The result found 96.36% accu-
racy, 93.65% sensitivity, and 96.92% specificity.

Conclusion: These findings demonstrate that the proposed approach can use unknown data to derive feature maps 
and reliably detect the AF periods. We have found that our cloud-DL system is suitable for practical deployment
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Introduction

A single pulse of an electrocardiogram (ECG) signal 

consists of the morphology, heart rate, regularity, wave 

segments, relative amplitudes, timing intervals, and 

normalized energy in a beat or a rhythm [1]. ECG is a 

popular non-invasive tool used to classify healthy and 

unhealthy cardiac activity based on a time series signal [2, 

3]. An estimated 300 million or more ECGs are recorded 
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worldwide every year [2], representing a tremendous 

amount of data for cardiologists to analyze.

One electrophysiologic disturbance within the atria 

that can be observed by ECG is termed atrial fibrilla-

tion (AF) [2]. AF is the most prevalent severe abnormal 

heart rhythm associated with a fast heart rate. It refers to 

an abnormal, rapid, and non-synchronized muscle fiber 

contraction with complex patophysiology [4–7], and is 

recognized as an independent risk factor for stroke, with 

important clinical and economic consequences. Diag-

nosing the symptoms is important before treatment of 

this severe disease; however, existing commercial ECG 

devices for AF detection methods still show actual misdi-

agnosis rates. �is is largely due to the lack of generaliz-

ability caused by tuning only for specific medical devices 

[8].

Continuous or real-time monitoring of an ECG may 

help distinguish heart abnormalities. All ambulatory 

12-lead ECG systems are designed to ensure reliable AF 

detection. In environments such as primary care centers 

and emergency units, where no experts are available to 

examine and interpret ECG tracings, these ECG devices 

are commonly used. Unfortunately, these devices are 

pricey, time-consuming, challenging to use, and require 

long-term exposure for AF measurements [9]. An auto-

matic and accurate interpretation is critical in low and 

middle-income countries, and could potentially prevent 

75% of cardiovascular disease deaths [9], as those popula-

tions often do not have access to cardiologists with full 

expertise in ECG diagnosis. In fact, medical professionals 

in those environments typically have limited diagnostic 

expertise in interpreting 12-lead ECGs [9, 10]. �erefore, 

a simple AF detection that does not require hospital visits 

and is publicly accessible is required for better diagnosis.

�e use of single-lead ECG with short-term detection 

is currently prevalent in daily applications because the 

device is simple, low cost, and easy to use [11]. Regard-

less, AF detection using short-term signal detection can 

be missed in many cases due to the lack of data stand-

ardization collection, the processing procedures used, 

and the inconsistent reporting of technological factors, 

such as frequency sampling [12, 13]. Several short-term 

ECG instruments have variable signal quality, frequen-

cies, and lengths for detecting AF episodes. Data may 

also need to be sampled at a different target frequency, 

when dealing with multiple instruments that are sampled 

at various frequencies. However, choosing data sampled 

at a certain frequency will influence the generalization 

potential and complexity of the model [13]. �erefore, 

the chosen approach must be robust without decreas-

ing effectiveness of the device to detect AF [13]. Hence, 

a basic approach for enhancing short-term AF identifica-

tion with acceptable results is desirable.

Many of the computer-aided ECG signals proposed for 

AF detection over the past 50 years are based on machine 

learning (ML) [14] and have been used in commercial 

ECG medical devices [15]. Two significant bottlenecks 

that still hinder early auto-detection are the energy limi-

tations of the continuous monitoring equipment and the 

lack of efficient ML-based models for AF prediction. In 

addition, conventional ML requires a separate tech-

nique of feature engineering that can be computationally 

expensive. �e desired ML-based solution for automatic 

AF diagnosis therefore requires high accuracy but it also 

needs to be computationally efficient [16].

Recently, deep learning (DL) methods have shown great 

potential in the healthcare and medical areas [17, 18]. 

Specifically, some pioneering work has shown success in 

using DL methods for AF detection [19–21]. DL models 

can be trained to perform beat and rhythm detection/

classification using ECG data collections but, unfortu-

nately, the use of DL for AF detection remains essentially 

unexplored [22]. One DL approach is to use convolu-

tional neural networks (CNNs) architecture with feature 

engineering embedded into the learning structure. Actu-

ally, the CNNs is a type of DL that excels in processing 

2D data, such as images. However, by considering signals 

as 1-dimensional (1D) data, studies have shown promis-

ing results using convolutions for signal processing [20, 

23–25]. Operations on a 1D-CNNs are only scalar multi-

plication, not matrix multiplication like two-dimensional 

(2D) CNNs. �erefore, the computational costs on the 

1D-CNNs are about the same as the traditional machine 

(ML) methods. However, the traditional ML needs a fea-

ture engineering step that requires domain knowledge. 

Due to the feature engineering process, the inference 

pipeline of the ML algorithms becomes longer compared 

to DL algorithms [13]. Moreover, 1D-CNNs show supe-

riority in AF signal processing and have outperformed 

both recurrent neural networks (RNNs) and deep neural 

networks (DNNs) [13].

Previous studies have shown that 1D-CNNs can suc-

cessfully provide fast and accurate classification of long-

term ECG records. �ey can analyze the morphological 

characteristics and learn the slit variation of an input 

signal during a short-term ECG [13]. �e 1D-CNNs 

model is developed for patient-specific ECG classifica-

tion [26]. A nine-layer CNNs model for classifying five 

types of heartbeats from initial signals used an augmen-

tation technique and had a precision of 94.03% [27]. A 

1D-CNNs model consisting of 33 convolutional layers 

based on a massive ECG dataset of 91,232 records from 

53,549 patients was able to identify 12 rhythm categories 

[28]. A generic CNNs has been presented for patient-spe-

cific ECG classification [29]. �e use of modified U-net 

architecture has been suggested to diagnose beatwise 
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arrhythmia [30]. A 31-layer 1D residual CNNs model was 

developed to identify five different types of heartbeats 

[31]. A customized CNN model has been recommended 

to classify patient-specific heartbeats using 44 records 

[32]. A CNNs model has been applied for classification of 

17 cardiac arrhythmias using long-duration ECG signals 

[33]. An end-to-end deep learning model has been pro-

posed to classify 15 ECG classes [34]. However, despite 

this extensive study of the 1D-CNNs algorithm for clas-

sification/detection of ECG wave signals, the robustness 

of this algorithm remains an important issue and these 

methods are still far removed from practical applications 

[35].

Computerized ECG signal interpretation plays a criti-

cal role in the clinical workflow. Digital ECG data are 

readily accessible and the DL algorithmic model offers 

an opportunity to greatly increase the precision and scal-

ability of automated ECG analysis [28]. A comprehensive 

evaluation of an end-to-end DL approach for AF ECG 

analysis across a wide variety of diagnostic devices has 

not been previously reported. None of the current mod-

els have been deployed to provide publicly available ECG 

AF detection services. �erefore, the aim of the present 

study was to propose a cloud-based 1D-CNNs approach 

that can be used to enhance AF detection based on CNNs 

by connecting it to the internet (AFibNet). �is approach 

can provide easy and early detection of a potential AF 

anytime and anywhere.

�is study make the following novel contributions are:

• Implementing an end-to-end of AF detection in a 

broad range of distinct ECG devices

• Develoving a generalization model for 1D-CNNs into 

a single learning system named AFibNet

• Implementing the proposed AFibNet model in a 

cloud deep learning system with 11,842 subjects for 

two-class classification (N and AF) with inter-patient 

mechanism and 26,349 subjects for three-class clas-

sification (N, AF, and Non-AF) with intra-patient 

mechanism

• Validating of the robustness of the proposes model 

through a cloud system in preparation for publicly 

available ECG AF detection services.

�e rest of this paper is organized as follows: “Meth-

ods” section explains the method, and “Result and discus-

sion” section presents the result and discussion. Finally, 

the conclusions are presented in “Conclusion” section.

Methods

Currently, health care information technology uses a 

cloud service to develop a system that combines medi-

cal devices and applications [24, 36, 37]. �e use of these 

technologies connects patients to their physicians and 

facilitates the sharing of medical data over a safe net-

work, thereby eliminating needless hospital visits and 

lessening the burden on the health care system [28]. �e 

patients can measure their own heart conditions and 

the measurement results of ECG signal recording are 

delivered to a central storage location for centralized 

decision-making. �ese measurement data are usually 

physiological signals in the cardiac ECG signal domain, 

such as beat, rhythm, and HRV [38]. �e patients use 

short-term ECG devices and transmit the HRV signals 

to a mobile device for relay to the cloud server. Figure 1 

shows a framework for collecting and analyzing ECG 

device data from a cloud server. Once the ECG data are 

collected, they are transferred to the mobile terminal via 

Bluetooth and displayed in real time, then transmitted to 

the cloud through WIFI or 4G [39]. �e DL architecture 

then validates and analyzes the incoming HRV signals in 

real time. If the model detects AF in the signals, a car-

diologist is informed. �e cardiologist can then review 

the suspicious HRV trace as a beat or rhythm and reach 

a diagnosis. �e diagnosis can later be communicated to 

the patient in a simple scheme.

�is work proposes only the DL-based cloud system 

with the 1D-CNNs model in the main processing sys-

tem for AF diagnosis support. �e cloud-based DL is 

important for the AF diagnosis as it provides an accurate 

medical interpretation system. To ensure that the imple-

mentation works properly in all stages, all parts of the 

DL-based cloud system design are presented as follows.

Dataset

In this study, nine public ECG databases are utilized: 

the MIT-BIH Atrial Fibrillation [40], the 2017 Physio-

Net/CinC Challenge [41], the China Physiological Signal 

Challenge 2018 [42], ECG Long Term AF [43], Paroxys-

mal AF [41], AF Termination Challenge [44], Fantasia 

[45], MIT-BIH Arrhythmia [46], and ECG recording from 

Chapman University and Shaoxing People’s Hospital [47], 

as well as two ECG signal recording databases collected 

from an Indonesian Hospital. Based on all these datasets, 

we separated three main processes: training, validating, 

and testing. In this process, all data sets differed in the 

lengths of signal recording and frequency sampling. All 

databases were collected from a short single-lead record-

ing with different ECG devices. As a result a diverse 

length of signal recording was formed varying from 10 s 

to 25 h and frequency varying from 100 to 500 Hz.

In the experimental study to measure the generaliza-

tion and robustness of the proposed model, we con-

ducted two cases evaluation, the two-class classification 

(N and AF) and three-class classification (N, AF, Non-

AF). For two-class case, three datasets (MIT-BIH Atrial 
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Fibrillation, the 2017 PhysioNet/CinC Challenge, and 

the China Physiological Signal Challenge 2018 data-

bases), was used for training and validating. �e model 

then was tested using the other eight datasets. �e sum-

mary and samples of the ECG dataset used in this study 

for two-class case are shown in Table 1. As we can seen 

on Table  1, the total subjects consist of 7409 training, 

823 validation, and 3610 testing/unseen data. �e total 

records for N and AF rhythm contained 7784 N and 4058 

AF records.

�e three-class case, five datasets (MIT-BIH Atrial 

Fibrillation, �e 2017 PhysioNet/CinC Challenge, 

�e China Physiological Signal Challenge 2018, ECG 

recording from Chapman University and Shaoxing 

Fig. 1 Flow diagram of deep learning model for AF diagnosis system

Table 1 ECG Record description for two-class case (N and AF)

Dataset Frequency 
sampling (Hz)

Class Records Training data Validation data Testing/
unseen 
data

PhysioNet/CinC challenge 2017 300 N 5154 –

AF 771 –

China physiological signal challenge 2018 500 N 918 7409 823 –

AF 1098 –

MIT–BIH atrial fibrillation 250 AF 291 –

MIT–BIH arrhythmia 360 AF 6 – – –

ECG long term 128 AF 38 – – –

Paroxysmal AF 128 AF 48 – – –

AF termination challenge 128 AF 10 – – –

Fantasia 250 N 24 – – –

N 1646 – – –

ECG recording from Chapman University and 
Shaoxing People’s Hospital

500 AF 1780 – – 3610

Indonesian Hospital (ECG 1) 500 N 42 – – –

AF 3 – – –

Indonesian Hospital (ECG 2) 400 AF 13 – – –

Total 7409 823 3610
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People’s Hospital, and ECG recording from an Indo-

nesian Hospital) was used for training and validating. 

However, due to data limitation, the trained model 

was not tested on unseen data. Table  2 shows the data 

description of ECG signal from 18 arrhythmias con-

dition as indicated Non-AF class. �e Non-AF class 

consists of 18 arrhythmias condition. �e summary of 

Non-AF can be presented in Table 2, which consist of 

7898 N, 3940 AF, and 14511 Non-AF records.

�e total ECG data from 11,842 subjects for two-class 

and 26,349 for three-class cases, can be described as 

follows:

• MIT-BIH atrial fibrillation

 �is database has 23 public ECG recordings taken 

from AF patients every 10 h. �e ECG signals were 

sampled at 250 Hz, with four types of rhythm annota-

tions such as AF, atrial flutter, AV junctional rhythm, 

and all other rhythms. �e analog ECG recordings 

were made at the Beth Israel Deaconess Medical 

Center using ambulatory ECG recorders with a typi-

cal recording bandwidth of approximately 0.1–40 Hz.

• �e 2017 PhysioNet/CinC Challenge

 All ECG records were sampled at 250 Hz by a single 

lead with four types of rhythms such as N, AF, Non-

AF, and Noisy. We selected the recordings from N, 

AF, and Non-AF rhythms. All ECG recordings were 

collected using the AliveCor device for 9 to 60 sec-

onds.

• �e China Physiological Signal Challenge 2018

Table 2 ECG record description for three-class case (N, AF, and Non-AF)

Dataset Frequency 
sampling 
(Hz)

Conditions Class Records Training data Validation data

PhysioNet/CinC challenge 2017 300 N N 5154

AF AF 771

Others Non-AF 2557

Noisy 46

Normal N 918

China physiological signal challenge 
2018

500 AF (Atrial Fibrillation) AF 1098

I-AVB (First-degree atrioventricular 
block)

704

LBBB (Left bundle branch block 207

RBBB (Right bundle branch block Non-AF 1695

PAC (Premature atrial contraction) 574

PVC (Premature ventricular contrac-
tion)

653

STD (ST-segment elevated) 826

STE (ST-segment elevated 202 23,714 2635

MIT-BIH trial fibrillation 250 AF (Atrial Fibrillation) AF 291

ECG recording from Chapman Univer-
sity and Shaoxing People’s Hospital

500 SR (Sinus rhythm) N 1826

AF (Atrial fibrillation) AF 1780

SB (Sinus bradycardia) 3889

ST (Sinus tachycardia) 1568

AFL (atrial flutter) 445

SI (Sinus irregularity) 399

SVT (Supraventricular tachycardia Non-AF 587

AT (Atrial tachycardia) 121

AVNRT (Atrioventricular node reen-
trant)

16

AVRT (Atrioventricular reentrant 
tachycardia)

8

SAAWR (Sinus atrium to atrial wander-
ing rhythm)

7

Indonesia Hospital (ECG 1) 500 Non-AF (other rhythms) Non-AF 7
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 �is database was collected from 11 hospitals sam-

pled at 500  Hz, with ECG normal and abnormal 

types. All 12-lead ECG recordings lasted from 6 

to 60  s and were taken from 3178 female and 3699 

male patients. �e present study used only single lead 

(Lead II) data which consist of N rhythm about 981 

records, AF rhythm about 1098 records, and Non-AF 

rhythms about 4861 records, respectively.

• ECG Long Term AF

 �is database has 84 long-term ECG recordings 

of subjects with paroxysmal or sustained AF. Each 

record was digitized at 128  Hz, and the durations 

vary but are typically 24–25 h. �e 38 records indi-

cated as AF termination rhythm were utilized in the 

present study. �e original recordings were digi-

tized and automatically annotated at Boston’s Beth 

Israel Deaconess Medical Center. Steven Swiryn and 

George Moody annotated the AF terminations.

• Paroxysmal AF

 �is challenge database consists of 50 pairs of half-

hour ECG recordings sampled at 128 Hz. �e data-

base consists of group A, who experienced Paroxys-

mal AF (PAF) rhythm and group N rhythm who did 

not have PAF. We have tested group A only, with a 

total of 48 records.

• MIT-BIH Arrhythmia

 �e database was digitized at 360 samples per sec-

ond and contains 48 half-hour excerpts of two-

channel ambulatory ECG recordings. �e database 

was obtained from 47 subjects studied by the BIH 

Arrhythmia Laboratory between 1975 and 1979. 

�e database has two types: beats and rhythms. �is 

study tested the AF rhythm type of the ECG record-

ings (records 201, 203, 210, 217, 219, and 221).

• AF Termination Challenge

 �is database is divided into a learning set and two 

test sets. �e learning set contains 30 AF rhythm 

records in total, with 10 records in each of three 

groups (N, S, and T). Each record was sampled at 128 

Hz, and the segments were extracted from 20–24 h 

ECG recordings. �e ECG recordings were created 

for use in the Computers in Cardiology Challenge 

2004. Among the three groups, the present study 

used group T, in which the AF terminates immedi-

ately.

• Fantasia

 All ECG recordings of N rhythm subjects were digi-

tized at 250 Hz. Each set includes the respiration belt 

data from 20 young (21–34 years old) and 20 elderly 

(68–86 years old) subjects. For unseen data testing, 

the present study used only 24 records randomly 

chosen from the young and elderly cohorts. �e 

respiration signals were collected by 120 minutes of 

continuous supine resting while under continuous 

ECG.

• ECG recording from Chapman University and 

Shaoxing People’s Hospital

 �is database includes a large number of individual 

subjects (more than 10,000) with 12-lead ECG sig-

nals sampled at a higher than usual sampling rate of 

500 Hz. �e database includes 11 heart rhythms and 

56 types of cardiovascular conditions labelled by pro-

fessional physicians. �e ECG records were acquired 

over 10 seconds. �e ECG recordings were collected 

from 10,646 patients, including 5956 males and 4690 

females. In the present study, we utilized 1826 N 

rhythm, 1780 AF rhythm and 7040 Non-AF rhythms 

data selected from Lead II.

• ECG recording from an Indonesian Hospital

 �e Indonesian Hospital dataset contained sampled 

at 500 Hz (ECG 1) and 400 Hz (ECG 2). For ECG 1, 

the database consist of N rhythm about 42 records, 

AF rhythm about 3 records and Non-AF rhythms 

about 7 records. In addition, 13 AF rhythm records 

for ECG 2. All ECG records were collected for 10 s. 

�e ECG database was collected by clinicians from 

patients who use ambulatory ECG devices (February 

to June 2020).

�e samples of ECG signals of N, AF, and Non-AF 

rhythms are shown in Fig.  2. Figure  2a, b show the N 

and AF rhythm, and Fig.  2c presents other 18 arrhyth-

mias rhythm. All samples of ECG raw data is taken from 

11 datasets, which shown the difference of whole sam-

ples due to varying length of recording and frequency 

sampling.

Implementation of atrial �brillation detection

In this study, the proposed classifier for two-class and 

three-class cases are based on 13 convolution and 5 max-

pooling layers of ID-CNNs architecture, which we have 

published in detail in a previous work [13]. However, in 

this study we improved the generalization and robust-

ness of the proposed model by using input from several 

devices with different frequency samplings and lengths 

of the ECG signal waveform. In addition, it verified and 

tested in clinical settings with intra-patient and inter-

patient scheme. Figure  3 shows the AFibNet methodol-

ogy, which consisted of the following six main steps as 

follow;

• �e large ECG signal data recording was used in this 

study, about 11,842 subjects for two-class classifica-

tion (N and AF rhythms) and about 26,349 subjects 

for three-class classification (N, AF, and Non-AF 

rhythms) from 11 datasets for training, validating, 

and testing process. We use inter-patients mecha-
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Fig. 2 Sample of ECG raw data for (a) N, (b) AF, and (c) Non-AF rhythms from 11 total datasets with several devices, length of recording and 
frequency sampling
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nism in two-class classification case, where the train-

ing/validating dataset is difference with testing data-

set. All data are taken from single-lead ECG standard 

recordings with varying lengths of signal and fre-

quency sampling (100–500 Hz).

• ECG noise removal using discrete wavelet trans-

form (DWT). �is step decompose the ECG signals 

into the specific wavelet levels (8 levels) with Sym5 

[13]. �e signal frequency is divided by two in DWT 

because it passes through the high pass and low pass 

filters. Frequencies that pass through the high pass 

filter will enter the detail coefficient, while the low 

pass filter will enter the approximation coefficient;

• All ECG signals are segmented into 2700 samples 

for one episode. If the total nodes are less than 2700 

nodes, we add zero-padding technique that consists 

of extending a signal with zeros. An AF rhythm 

may contract at up to 600 beats per minute (bpm), 

thereby creating a high irregularity of R–R intervals 

and a sudden disappearance of regularly occurring 

P-waves [40, 48]. �erefore, at least three to four 

heartbeats are needed to represent the AF episodes 

[40]. To assess the R–R interval in all ECG records, 

we have considered the minimum and maximum 

lengths for ECG signal segmentation based on the 

training datasets mentioned earlier. �e ECG seg-

mentation of 2700 nodes contained at least two 

R–R intervals or three beats with different fre-

quency samplings (250 Hz, 300 Hz, and 500 Hz) in 

all records. In addition, with a minimum frequency 

sampling of 128  Hz for the testing set, the 2700 

nodes segmentation could present more than two 

R–R intervals. Hence, 2700 nodes for ECG segmen-

tation were selected as the best ECG episodes.

• Two features are generated from ECG signal irregu-

larly irregular of heart rhythm and the maksimum 

of amplitude as R-peak in one episodes of ECG 

signal, and it learn episode by episode. �e fea-

ture is represented by ECG signal amplitude along 

2700 nodes. �e most important process of the 

1D-CNNs method is that the common cause of AF 

is modeled by a series of filters in the convolution 

layer and sub sampling in the maxpooling layer. �e 

feature output is used to synthesize the correspond-

ing potential abnormal and normal rhythms. �e 

feature reduce from 2700 nodes in layer-1 becomes 

78 nodes in layer-13 with maxpooling-5, and the 

selected feature that use as input in fully connected 

layer to classify the normal and AF feature.

• Each ECG signal episodes of 2700 nodes was 

trained using the 1D-CNNs classifier model was 

proposed by Nurmaini et  al. [13]. �e structure 

model has 13 hidden layers with an activation func-

tion rectified linear unit (ReLU) in the hidden lay-

ers and tanh-sigmoid in the output layers [13]. �e 

hyperparameters utilize a 0.0001 learning rate, 16 

batch size, and 100 epochs. �e training process 

for AF detection was fully supervised. It back-

propagated the gradients from the fully connected 

layer through to the convolutional layers. As a loss 

function, we minimized the binary cross-entropy to 

optimize the model parameters, and we utilized the 

gradient descent with the Adam update rule.

Fig. 3 Proposed the AFibNet methodology
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• �e 1D-CNNs model was proposed with several 

hardware platforms and software frameworks using 

both local (on-device) and remote (network-side 

server) computation (refer to Fig.  1). �e DL-based 

cloud system is designed to process the AF detec-

tion and to ensure that the proposed model works 

properly in real applications. �erefore, the compu-

tational complexity is deeply analyzed. �ree param-

eters of the computational complexity as a cloud 

performances, namely processing time, throughput, 

and testing time, are validated using a computer with 

and without GPU. �e memory consumption is one 

of the parameters to be considered, based on the 

selected classifier model. Each process in the convo-

lution layer that is fully connected can be counted as 

memory consumption in our model and can be cal-

culated from output shape from each layer parameter 

in the CNNs architecture.

Feature learning in 1D-CNNs

1D-CNNs architecture has two distinct layer types, fol-

lowed by CNNs-layer and then fully-connected (FC) 

layer. �e feature learning was processed in CNNs-

layer by using convolution and sub-sampling (pooling) 

process. �e specific function of the two layers is for 

reducing the complexity and dimension of the ECG 

feature. In this study, we generate one by one episode 

(2700 nodes) as a feature along with ECG signal record-

ing. �e amplitude is represented by each node from 

node 1 to 2700. �e CNNs-layers process and learn to 

extract features (feature learning) of the raw 1D data, 

which are used in the classification task performed by 

the FC-layers. As a result, both feature extraction and 

classification operations are integrated into one process 

that can be streamlined to improve the performance 

of the classification. All feature learning process is 

explained detail in Table 3.

In the convolution process, several unique features 

are generating. For example, in convolution layer 1, was 

feed with 2700 nodes of the ECG signal. �is layer has 

64 kernels with a size of 3 × 1 and a stride of 1. �is strid-

ing process is carried out along the ECG signal so that 

it can produce 3 features at the beginning, middle, and 

end of the signal episode. �en, the result of the convolu-

tion process is continued to the max-pooling layer. �e 

pooling layer aims to summarize the features resulting 

from the convolution process so that it not only reduces 

the computation load but also can strengthen the model 

against variations in the input signal.

Table 3 Feature learning interpretation

Layer Input nodes Filter number Kernel size/pool size Output nodes Feature interpretation

Input 2700, 1 – – ECG amplitude for one episode

Convolution 1 2700, 1 64 3 × 1, stride 1 2698 × 64 64 feature map

Convolution 2 2698 × 64 64 3 × 1, stride 1 2696 × 64 64 feature map

Max pooling 1 2696 × 64 – 2 × 1, stride 2 1348 × 64 Feature reduction (1348 nodes for one episode)

Convolution 3 1348 × 64 128 3 × 1, stride 1 1346 × 128 128 feature map

Convolution 4 1346 × 128 128 3 × 1, stride 1 1344 × 128 128 feature map

Max pooling 2 1344 × 128 – 2 × 1, stride 2 672 × 128 Feature reduction (672 nodes for one episode)

Convolution 5 672 × 128 256 3 × 1, stride 1 670 × 256 256 feature map

Convolution 6 670 × 256 256 3 × 1, stride 1 668 × 256 256 feature map

Convolution 7 668 × 256 256 3 × 1, stride 1 666 × 256 256 feature map

Max pooling 3 666 × 256 – 2 × 1, stride 2 333 × 256 Feature reduction (672 nodes for one episode)

Convolution 8 333 × 256 512 3 × 1, stride 1 331 × 512 512 feature map

Convolution 9 331 × 512 512 3 × 1, stride 1 329 × 512 512 feature map

Convolution 10 329 × 512 512 3 × 1, stride 1 327 × 512 512 feature map

Max pooling 4 327 × 512 – 2 × 1, stride 2 163 × 512 Feature reduction (163 nodes for one episode)

Convolution 11 163 × 512 512 3 × 1, stride 1 161 × 512 512 feature map

Convolution 12 161 × 512 512 3 × 1, stride 1 159 × 512 512 feature map

Convolution 13 159 × 512 512 3 × 1, stride 1 157 × 512 512 feature map

Max pooling 5 157 × 512 - 2 × 1, stride 2 78 × 512 Feature reduction (78 nodes for one episode)

Flatten 39,936 – – – Dot product between 78 nodes and 512 feature map

Dense – – – 1000 Weight params

Dense – – – 1000 Weight params

Output – – – 1 Class
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Result and discussion

1D-CNNs classi�er performances

As stated before, this study generated two-cases model: 

two and three-class case of AF classification. For each 

case, can be described as follows.

Test case 1: N and AF classi�cation (two-class)

Based on the data distribution, 6072 and 2160 records 

for N and AF signals were used in the training and vali-

dation process. All ECG data (about 8232 records), after 

segmentation at 2700 for each record, produced 54,038 

rhythm episodes. In order to avoid overfitting before the 

1D-CNNs model was generated, a k-fold (k = 10) valida-

tion technique was used to tune the class weight with the 

resampling procedure for the total data bias [13]; the per-

formances reported in the results are the average scores. 

All data are split as 90% for the training process and the 

remainder for the validation process and are resampled 

tenfold again. Table 4 shows the data distribution of the 

N and AF condition data in each fold’s training and vali-

dation set.

Each fold has obtained the 1D-CNNs model perfor-

mance based on five metrics: accuracy, sensitivity, speci-

ficity, F-score, and precision (refer to Table  4). Overall, 

the model has obtained good performance with up to 

99.80% accuracy. However, among the tenfold cross val-

idations, the 4th, 8th, and 9th fold achieved 100% in all 

performance metrics. �is means the best folds of 4, 8, 

and 9 were entirely successful in classifying N and AF. 

�e average accuracy, sensitivity, specificity, F-score, and 

precision for the two classes (N and AF) in tenfold were 

99.8%, 99.8%, 99.8%, 99.77%, and 99.74%, respectively.

�e optimum ECG sampling rate required for HR 

analysis to ensure acceptable accuracy of R–R intervals 

has not yet been determined [49, 50]. Previous studies 

indicate that a low sampling rate may decrease the accu-

racy in detection of R–R points, thereby changing the HR 

parameters [49, 50]. In the present study, the proposed 

1-D CNNs model has been tested with various datasets 

that vary in frequency sampling and lengths of the ECG 

signal recordings. No duplication exists between the 

training and testing sets, because they were separated at 

the beginning of process. Our proposed model therefore 

overcomes this problem and the ECG signal is still recog-

nized as the N or AF condition.

�e performance of the cloud DL approach is listed 

in Table  6 with the interval of frequency sampling of 

the ECG devices from 100 to 500  Hz. �e proposed 

1D-CNNs model has obtained perfect results for N and 

AF detection with 100% for accuracy, sensitivity, and 

specificity. �e results show good performance without 

considering the frequency sampling.

�e methods of AF detection are mainly based on R-R 

intervals, short-term heart rate variability analysis, and 

sequential review to verify the presence of P-waves. In 

this work, the model has been tested using unseen data 

in order to detect any false positive (FP) and false nega-

tive (FN) predictions as a way to clarify the robustness 

of the technique. As shown in Table 6, when the data are 

increased (combination of all unseen data), the classifica-

tion error from the proposed model produce 10 FN and 

29 FP which impact the model performances. �e perfor-

mance result achieved of 98.94% accuracy and 98.97% for 

both sensitivity and specificity. �e potential solution to 

this problem is to remove the noise level in the ECG sig-

nal with other filters to maximize the method’s efficiency. 

In the future, the preprocessing step will be improved 

in terms of a filter fusion mechanism for noise removal 

from the ECG recordings.

Test case 2: N, AF, and Non-AF classi�cation (three-class)

In the three-class classification, the data distribution 

produce imbalance class, due to 14,511 records of Non-

AF rhythms. In an imbalanced class, a classifier tends to 

predict the majority of classes effectively. However, the 

minority class prediction levels are substantially reduced, 

reducing the model’s reliability levels. Based on Table 7, 

by using the AFibNet model, even though the number 

of records is increased with imbalance class among N, 

AF and Non-AF rhythms, it still produces high perfor-

mance in accuracy, sensitivity, specificity, precision, and 

F1-Score, which reveals the ability of the classifier to pre-

dict the increase in the minority class. It can be seen from 

Table 7, by using our AFibNet model, it produces average 

performance with 96.36% accuracy, 93.65% sensitivity, 

Table 4 Data segementation with a tenfold scheme for a 
combination of three datasets (MIT-BIH Atrial Fibrillation, the 
2017 PhysioNet/CinC Challenge, the China Physiological Signal 
Challenge 2018 databases)

Fold Training data Validation data Total

N AF N AF

1 16,485 32,149 1790 3614 54,038

2 16,391 32,243 1884 3520 54,038

3 16,424 32,210 1851 3553 54,038

4 16,402 32,232 1873 3531 54,038

5 16,469 32,165 1806 3598 54,038

6 16,520 32,114 1755 3649 54,038

7 16,476 32,158 1799 3605 54,038

8 16,453 32,181 1822 3582 54,038

9 16,416 32,219 1859 3544 54,038

10 16,439 32,196 1836 3567 54,038
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and 96.92% specificity for three classes. It decreases only 

3% accuracy from 11,842 subjects for two classes become 

26,349 subjects for three classes.

An in-depth investigation is carried out to ensure the 

robustness of the selected model from Table  7. For all 

classes produce 99% accuracy, and for the N class, a per-

fect sensitivity of 100% is achieved (refer to Table 8). �e 

performance of all validations data produces consist-

ent results for the N, AF, and non-AF conditions, even 

though the imbalance ratio for the data between N, F 

and Non-AF. It means our proposed model is ready to 

be implemented in a real AF detection system. �e AFib-

Net model remains robust in several datasets, and it can 

be generalized and developed for binary or multi-class 

classification.

Validating robustness in a cloud server

�e convolution process generated a feature map which 

used as new input data for the next step. �e 1D-CNNs 

model with only simple array operations learns 1D sig-

nals with a few hidden layers and neurons. After the non-

linearity process, all characteristics are produced only 

during each convolution process; this stage never occurs 

in the pooling process. �is process allowed the model to 

create 64 unique features on the network’s first layer. Due 

to its ability to avoid the vanishing gradient in the train-

ing process, we use ReLU as a nonlinearity function. �e 

product of the layer of convolution is called the map of 

the function. We added the pooling layer after the second 

convolution layer. �e purpose of this layer is to reduce 

the size of the feature map to lower the complexity. �e 

max pooling layer is used since it can extract the essential 

features from the feature map. Two hidden layers in the 

fully connected part are created, each with 1000 nodes, 

while the output layer defines a sigmoid function to clas-

sify the ECG data.

At present, the computing scene has become very 

diverse regarding computing platforms. A number of 

unique accelerators have been created, in addition to 

the wide variety of GPUs available for CNNs computa-

tions. �e size ranges from small low-power systems to 

computing on the warehouse-scale [51]. Meanwhile, the 

CPU development [13] has continued and many CPUs 

offer acceleration for CNNs computations. �e same 

diversity applies to runtime systems [43]. �e compu-

tational specification and performance of CNNs for AF 

detection are not yet well understood. In order to calcu-

late the computational complexity of a CNN, the origi-

nal implementation of the CNNs algorithm is needed. In 

the present study, the Keras library is utilized to imple-

ment the CNNs algorithm based on parallel processing 

for the training process so that it is unable to present 

the exact complexity of the CNNs algorithm. However, 

the weight parameters for every layer are calculated to 

predict the computational consumption. Our proposed 

1D-CNNs model has 13 convolution layers with 5 poll-

ing layers, and the consecutive layers produce about 45, 

846, 329 weight parameters. All parameters are depicted 

in Table 9. However, the only operation with a significant 

cost is a sequence of 1D convolutions which are simply 

linear weighted sums of two 1D arrays. Such a linear 

operation during the forward and backward operations 

can effectively be executed in parallel. It means although 

the parameters are a lot, it does not increase the compu-

tation time and resources.

�e 1D-CNNs model is analyzed to determine the 

speed of the processing time needed to predict the ECG 

signal from the raw data and arrive at a decision in the 

cloud system. �e whole process is divided into four 

stages: read data, denoising, load model, and inference. 

�e computational consumption mostly involves the load 

model and inference stages. While the number of weight 

parameters is high, the execution time is quite negligible. 

For each relation, only scalar weight multiplication and 

addition are performed.

�is paper investigates the computational behavior 

and performance of AF detection from short-term ECG 

signals using 1D-CNNs. Table  10 lists the four com-

puter specifications in the cloud in this work. �e test 

was conducted to predict the AF condition in unknown 

data from short-term ECG signals using several datasets. 

Using the 4th computer specification (refer to Table 10) 

and utilizing the GPU memory, a prediction of an AF 

condition takes 0.02  s. �is means that high specifica-

tions for the CPU and GPU result in faster processing in 

the cloud system.

�e throughput time, inference time, and memory con-

sumption are also calculated in this work. �e through-

put is the number of instances that can be transmitted in 

one second on the network. We would like to process a 

single instance in as many instances as possible in parallel 

to reach the optimum throughput. A good rule of thumb 

is to hit the memory limit of the GPU for the specified 

data form to find the best network. �is size depends on 

the type of hardware and the network size. As shown in 

the results, the entire AF classification phase can still be 

processed with good performance, and the 1D-CNNs 

provide low computational complexities at acceptably 

low cost with low power hardware.

Figure 4 illustrates the total time for the model to infer-

ence the input data. �is process consists of three main 

processes: data reading, denoising, and inferencing. �e 

processes of reading the data and denoising show no sig-

nificant time differences among the four servers. How-

ever, when entering the inference step, servers equipped 

with GPUs have faster processing times compared to 
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servers without GPUs. �e time difference is quite strik-

ing due to the ability of the GPU to parallelize the process 

during the inference step. Overall, servers with CPU 2 + 

GPU 2 specifications have the fastest processing times 

compared to the others.

Another aspect that is also quite important in analyz-

ing the robustness of a cloud server is the processing time 

for loading the model. Although this process is only done 

once (when the model is deployed to the server), this step 

is also quite important because the size of the DL model 

is relatively large and the processing time also takes time. 

In this paper, the size of DL model is more than 500 Mb. 

As shown in Fig. 5, the server with CPU 2 + GPU 2 has 

the fastest time for loading the deep learning model, 

at 3.7  s. �is is because the server has the largest GPU 

memory compared to the others, so the process of model 

reading is faster.

�e last aspect tested is the throughput time of the 

server. In this test, the reliability of the four server 

specifications in serving inference requests is assessed. 

�e length of time used in testing the throughput time 

is one second. Figure  6 shows that servers with CPU 

2 + GPU 2 have the largest number of services, at 335. 

�is is directly proportional to the total inference time, 

which only takes 0.0079  s to predict input data (Fig. 4). 

For single ECG signal prediction, the dominating delay is 

the 1D-CNNs model loading and neural network setup, 

with the actual inference being comparatively fast on all 

frameworks and with both models. With the advance of 

GPU technology, our DL model can approximate a very 

complicated learning function with a reasonable training 

time. 1D-CNNs can make predictions directly from raw 

data; hence the effectiveness of the learning process is 

increased when large datasets are available.

Benchmarking over other DL algorithms with the cloud 

system

�is study achieved 100% accuracy for unseen data test-

ing of two-class case with different frequency samplings 

and datasets (refer to Table 5). �e proposed 1D-CNNs 

model obtained robust performance under several condi-

tions. For clinical use, the AI-aided ECG AF diagnostic 

method we developed appears to be sufficiently accurate. 

For major general hospitals, it may help to minimize mis-

diagnosis, thereby saving labor costs. �is study has also 

solved the ECG signal problem regarding unequal signal 

lengths, frequency sampling, and imbalanced data. �is 

study has also compared the previous studies that used 

both limited and large ECG datasets.

Some previous studies have explored the performance 

of the cloud for AF detection based on deep learning 

approaches, such as autoencoders, CNNs, and LSTMs 

(refer to Table 11). For example, Faust et al. [4] detected 

episodes of AF using heart rate signals and RNNs with 

a LSTM model. �e RNNs with the LSTM model pro-

vided the intelligence needed for state-of-the-art IoT-

based diagnosis support systems. �ey trained and 

tested with labeled HR signal data from 20 subjects 

sourced from PhysioNet Atrial Fibrillation Database 

(AFDB) and blindfolded validation, using the data from 

3 subjects from AFDB and 82 subjects sourced from 

the Long-Term AF Database. Both performances of the 

dataset achieved 99.77% and 94% accuracy. Hong et al. 

[3] introduced their work on building, training, and 

serving an out-of-the-box cloud deep learning service 

they called CardioLearn for cardiac disease detection 

from ECGs. �ey used the ECG data with two forms 

of input: single lead and 12-lead. �ey tested CNN-

RNN as the proposed approach on the 2018 China 

Physiological Signal Challenge dataset and achieved 

98.57% and 97.89% receiver operating characteristics 

(ROC) and the area under the ROC (ROC-AUC) scores 

for single lead and 12-lead data. �ey also designed a 

portable smart hardware device, along with an interac-

tive mobile program, to demonstrate its practical use. 

Zhang et  al. [52] established the Cardiovascular Dis-

ease Whole Process Management Platform for auto-

mated detection and classification of ECG signals. �ey 

obtained 98.27% accuracy for recognition of 18 classes 

of heart rhythms based on a CNNs model. �eir pro-

posed model also achieved 99.95% sensitivity for AF 

detection and 85.49% accuracy and 88.52% sensitivity 

for normal cases. Yildirim et al. [53] proposed an effec-

tive deep neural networks (DNNs) to detect different 

rhythm classes from ECG databases. With the 1,780 

AF and 1,825 normal cases, the class-based perfor-

mance achieved an average 97.91% accuracy, 96.52% 

Table 5 AFibNet performance with tenfold cross validation for 
two-class

Fold Classi�er performances (%)

Accuracy Sensitivity Speci�city F1-score Precision

1 98.22 98.24 98.24 97.98 97.74

2 99.94 99.94 99.94 99.93 99.93

3 99.98 99.98 99.98 99.97 99.97

4 100 100 100 100 100

5 99.96 99.97 99.97 99.95 99.94

6 99.98 99.98 99.98 99.97 99.97

7 99.94 99.94 99.94 99.93 99.93

8 100 100 100 100 100

9 100 100 100 100 100

10 99.98 99.98 99.98 99.97 99.97

Average 99.8 99.8 99.8 99.77 99.74
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Table 6 All performance of the AFibNet with several datasets

Training and validation dataset: The sample of data used to �t the and provide an unbiased evaluation of a model �t on the training dataset while tuning model 

hyperparameters. Unseen data: The unseen data can include data having an attribute not seen by the data set

Dataset Class Number of subjects Performance (%)

Accuracy Sensitivity Speci�city

Training and validation data

The 2017 PhysioNet/CinC challenge N

China physiological signal challenge 2018 AF 8232 99.8 99.8 99.8

MIT-BIH atrial fibrillation

Unseen data testing

ECG long term AF AF 38 100 100 –

Paroxysmal AF AF 48 100 100 –

MIT-BIH Arrhythmia AF 6 100 100 –

AF termination challenge AF 10 100 100 –

Fantasia N 24 100 100 –

Indonesian Hospital (ECG 1) N 42 100 100 100

AF 3

Indonesian Hospital (ECG 2) AF 13 100 100 –

ECG recording from Chapman University and 
Shaoxing People’s Hospital

N 1646 98.86 98.88 98.88

F 1780

All unseen data testing N 1712 98.94 98.97 98.97

AF 1898

Table 7 Two-class classification performance of the AFibNet 
with intra-patient mechanism

Fold Performances (%)

Accuracy Sensitivity Speci�sity Precision F1-Score

1 76.29 57.02 79.10 53.19 54.12

2 96.37 94.90 97.28 91.83 93.24

3 98.02 96.64 98.46 95.66 96.14

4 99.08 98.41 99.27 97.97 98.19

5 99.29 98.88 99.46 98.24 98.55

6 98.88 98.13 99.14 97.36 97.73

7 99.34 98.89 99.49 98.41 98.64

8 98.22 97.10 98.46 96.59 96.83

9 99.18 98.48 99.34 98.08 98.28

10 98.91 98.01 99.13 97.39 97.69

Average 96.36 93.65 96.92 92.47 92.94

Table 8 AFibNet performance for each class

Performance (%) N AF Non-AF

Accuracy 99.89 99.13 99.01

Sensitivity 100 97.92 98.77

Specifisity 99.84 99.33 99.32

Table 9 The number of parameters produce based on 1D-CNNs 
architecture to show the computational complexity

Layer name Output shape Parameters

Convolution 1 (None, 2698, 64) 256

Convolution 2 (None, 2696, 64) 12,352

Maxpooling 1 (None, 1348, 64) 0

Convolution 3 (None, 1346, 128) 24,704

Convolution 4 (None, 1344, 128) 49,280

Maxpooling 2 (None, 672, 128) 0

Convolution 5 (None, 670, 256) 98,560

Convolution 6 (None, 668, 256) 196,864

Convolution 7 (None, 666, 256) 196,864

Maxpooling 3 (None, 333, 256) 0

Convolution 8 (None, 331, 512) 393,728

Convolution 9 (None, 329, 512) 786,944

Convolution 10 (None, 327, 512) 786,944

Maxpooling 4 (None, 163, 512) 0

Convolution 11 (None, 161, 512) 786,944

Convolution 12 (None, 159, 512) 786,944

Convolution 13 (None, 157, 512) 786,944

Maxpooling 5 (None, 78, 512) 0

Flatten (None, 39936) 0

Dense (None, 1000) 39,936,000

Dense (None, 1000) 1,001,000

Class (None, 1) 1001

Total of parameters 45, 846, 329
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sensitivity, and 98.31% specificity from Lead II-inputs 

for AF and normal sinus detection.

In the present study, we have proposed a one-dimen-

sional CNNs for AF detection. We have experimented 

the testing (unseen data) with and without ECG record-

ings from Chapman University and Shaoxing People’s 

Hospital. Without the database, total records of 8,416 

were achieved with 100% accuracy, sensitivity, and 

specificity. We then added more data to 11,842 sub-

jects for two-class cases and obtained 98.94% accuracy, 

98.97% sensitivity, and 98.97% specificity. When we 

have applied for three-class case, with total of 26,349 

data, the performance achieved 96.36 accuracy, 93.65% 

sensitivity, and 96.92% specificity. Although the perfor-

mance results were decreased, the proposed model was 

still reliable for AF detection.

In summary, we demonstrate that an end-to-end 

approach using 1D-CNNs will classify AF from single-

lead ECGs from a wide variety of separate instruments 

with a diagnostic efficiency close to that of cardiolo-

gists. If verified in clinical settings, this methods has 

the potential to enhance the precision, performance, 

and scalability of ECG interpretation. However, our 

generalization model of a 1D-CNNs also has some limi-

tations, which can be summarized as follows: 

1. Our method is validated only for N, AF and Non-

AF detection, whereas a wide variety of different 

arrhythmias detected from single-lead ECGs need to 

be classified in the future and researched in depth to 

confirm a high diagnostic output close to that of car-

diologists;

2. �e proposed single learning method will be tailored 

to the target application prior to clinical application, 

which could entail additional pre- or post-processing 

steps;

3. Our DL-cloud architecture, which was not focused 

on the calculations of actual workloads and real com-

puting platforms, was only available for neural net-

work inference in terms of software frameworks and 

hardware acceleration.

Table 10 The sample of CPU and GPU process as a cloud server

Speci�cation CPU GPU Testing (s)

1 CPU1: 4 Core, 8 thread, 
@2.8 GHz

– 0.30

Memory: 16 GG, Disk: 1000 
Gb

2 CPU1: 4 Core, 8 thread, 
@2.8 GHz

GPU1: GTX 0.18

Memory: 16 Gb, Disk: 1000 
Gb

1050 Ti, 4Gb

3 CPU2: 8 Core, 16 thread, 
@3.6 GHz

– 0.14

Memory: 32 Gb, Disk: 1000 
Gb

4 CPU2: 8 Core, 16 thread, 
@3.6 GHz

GPU2: RTX 0.02

Memory: 32 Gb, Disk: 1000 
Gb

2080 Ti, 11Gb

Fig. 4 Processing time of 1D-CNNs in four server specification
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Fig. 5 Processing time of load model in cloud system

Fig. 6 Throughput

Table 11 Benchmarking with other DL for AF detection

Acc Accuracy, Sens Sensitivity, Spec Speci�city

Authors Method Total subject Acc. (%) Sens. (%) Spec. ROC-AUC 
Score (%)

Faust et al. [4] RNNs-LSTM 102 98.51 – – –

Hong et al. [51] CNNs-RNNs ± 20,000 – – – 98.57

Zhang et al. [52] CNNs 177,941 91.88 94.23 – –

Yildirim et al. [53] DNNs 3605 97.91 96.52 98.31 –

Proposed model 1D-CNNs 8416 100 100 100 –

11,842 98.94 98.97 98.97 –

26,349 96.36 93.65 96.92 -
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Conclusion

AF has a high risk of severe health consequences, includ-

ing death and stroke. �erefore, continuous AF monitor-

ing could have a beneficial clinical impact by allowing the 

identification of AF in patients with post-ablation chronic 

AF or pharmacological cardioversion, for example. Our 

study is the first comprehensive demonstration of a DL 

approach to perform classification across a broad range 

of the most common and important ECG rhythm diag-

noses with large datasets. We highlight the differences in 

the length of the ECG recording, the frequency sampling, 

and the data acquisition devices. �is highlights the abil-

ity of our end-to-end 1D-CNNs-based approach to gen-

eralize the cloud deep-learning approach to a new set of 

AF rhythm labels on a number of datasets.

�e approach exhibited rapid adoption that provides 

a chance for highly scalable AF detection. In the current 

study, we have trained and validated varied data with 

different frequency sampling. We also used unseen data 

from public and Indonesian hospital datasets to measure 

the robustness of proposed model. All ECG recordings 

were segmented into 2700 samples, which can present 

up to two R-R intervals. �e 1D-CNNs model with 13 

convolutions and 5 max-pooling layers reached the two-

class classification performance of 99.80% accuracy, sen-

sitivity, and specificity in the training and validation data. 

�e unseen data from 3,610 records used as blindfold 

validation revealed that the model achieved 98.94% accu-

racy, 98.97% sensitivity, and 98.97% specificity. Whereas 

three-class classification performance produce, 96.36% 

accuracy, 93.65% sensitivity, and 96.92% specificity, 

respectively.

We also tested the scalability of the proposed model 

for different server specifications, such as a cloud server. 

�e AFibNet was capable of generating an AF prediction 

quickly, indicating that our DL-based 1D-CNNs model 

has outstanding performance results. For functional 

diagnostic assistance, this concept is important since 

using information gained over a limited training period 

is precisely what a cardiologist does. In the future, the 

recommended model could be used to better classify AF 

patients early on, so that they can be managed to avoid 

stroke.
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