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Abstract

Individual-based population assignment tests have thus far mainly relied on the use of
microsatellite loci. However, the logistic difficulty of screening large numbers of loci
required to reach sufficient statistical power hampers the usefulness of microsatellites in
situations of weak population structuring. Amplified fragment length polymorphisms
(AFLP) represents an alternative for overcoming this logistical issue as the technique
allows the user to characterize a much larger number of loci with a comparable analytical
effort. In this study, an assignment test based on maximum likelihood for dominant markers
was used to investigate the potential usefulness of AFLP for population assignment. We
also compared assignment success achieved with AFLP with that obtained using micro-
satellites in a case study of low population differentiation involving whitefish (Coregonus
clupeaformis) sympatric ecotypes. The analytical investigation showed that the minimum
number of AFLP loci required to reach an assignment success of 95% stood within values
that are easily achievable in many situations. This also showed how assignment success
varied according to the number of AFLP loci used, their absolute frequency and their
frequency differential and sampling errors, as well as the number of putative source popu-
lations. The case study showed that given a comparable analytical effort in the laboratory,
AFLP were much more efficient than the microsatellite loci in discriminating the source of
an individual among putative populations. AFLP resulted in higher assignment success at
all levels of stringency and the log-likelihood differences between populations obtained
with AFLP for each individual were much larger than those obtained with microsatellites.
These results indicate that research involving individual-based population assignment
methods should benefit importantly from the use of AFLP markers, especially in systems
characterized by weak population structuring.
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Introduction

The individual-based population assignment test was
introduced first by Paetkau et al. (1995) as a means to
quantify degrees of genetic differentiation among popu-
lations. Subsequently, this method has proved useful
in a wide variety of applications in population and
conservation biology (reviewed in Waser & Strobeck 1998;
Davies et al. 1999; Hansen et al. 2001). Assignment tests

may thus be used in both plants and animals to establish
relationships among individuals within and among
populations or higher taxonomic groupings (Estoup et al.
1995; Cornuet et al. 1996; Ellegren et al. 1996; Estoup &
Anger 1998; Roques et al. 1999) and to identify putative
source populations of individuals of unknown origin. This,
in turn, has enabled researchers to determine the relative
contribution of each potential source population in mixed
fisheries (Roques et al. 1999; Potvin & Bernatchez 2001), to
assign individuals during migration (Haig 1997; Mountain
& Cavalli-Sforza 1997; Palsboll et al. 1997; Rannala &
Mountain 1997; Eldridge et al. 2001), to estimate sex-biased
dispersal (Favre et al. 1997; Dallimer et al. 2002) and gene
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flow (Paetkau et al. 1998), to identify potential admixture
between populations (Nielsen et al. 1997) and to estimate
the long-term effects of population stocking (Hansen
2002). Forensic sciences have also benefited from assign-
ment tests as they can be used to discriminate if an animal
originates from an illegal source (Primmer et al. 2000).

Thus far, assignment tests have relied mainly on the use
of microsatellite loci. Although the resolution obtained
with these markers is often adequate, an important con-
straint faced by the use of microsatellites in any type of
individual-based population assignment is the lack of
statistical power in situations of weak population differen-
tiation (FST < 0.05) (Cornuet et al. 1999). In such situations,
assignment success also decreases rapidly with increased
stringency on assignment decision (Roques et al. 1999). As
limited statistical power in situations of weak differentia-
tion between putative source populations hampers our
ability to trace back the population membership of a set
of individuals, improvement of present-day methods is
required in order to enhance actual resolution in popula-
tion assignment studies (Hansen et al. 2001).

A main ingredient towards improving current popula-
tion assignment methods is increasing the number of
loci used in such studies (Bernatchez & Duchesne 2000).
Herein, the major limitation inherent with microsatellite
markers resides in the logistic difficulty of increasing the
number of useful loci for assignment tests. Indeed, devel-
oping and applying large numbers of microsatellite
markers may be technically challenging, expensive and
time-consuming, particularly for species for which no
previous marker development was undertaken (Goldstein
& Pollock 1997). Amplified fragment length poly-
morphisms (AFLP) represents an alternative towards over-
coming this logistical issue as the technique generates a
large number of loci. Also, the cost and time required for
this moderately challenging protocol is relatively low (Vos
et al. 1995; Rieseberg 1998; Mueller & Wolfenbarger 1999).
The large number of markers generated by AFLP can then
be screened to select the best set of loci required in
assignment procedures. On the other hand, the low allelic
diversity exhibited by AFLP markers (di-allelic) may be
viewed as a potential constraint towards increasing
statistical power relative to that achieved with microsatel-
lite markers, which commonly have more than 10 alleles
per locus (Neff & Gross 2001). However, Bernatchez &
Duchesne (2000) demonstrated analytically that in contrast
to studies of parentage analysis, increasing the number of
loci used is more critical than increasing allelic diversity
per locus in studies of population assignment. Thus,
assessing whether many (e.g. > 100) di-allelic AFLP loci
would be more efficient than using few (e.g. < 10) hyper-
variable microsatellite loci for population assignment
would offer critical insights towards the improvement of
assignment procedures.

In this context, the general objective of this paper was to
use the maximum likelihood method of Paetkau et al.
(1995), adapted for use with dominant markers in order to
investigate the usefulness of AFLP loci for population
assignment, and compare empirically assignment success
achieved with both AFLP and microsatellite markers in a
case study. We describe first the assignment method based
on AFLP genotype likelihoods. The main focus is on the
minimum number of loci to reach predefined levels of
probability of correct assignment. Using this method, we
investigate the magnitude of effect that sampling errors
would have on assignment success. We then explore the
effect of the number of candidate populations on the
minimum number of loci required to reach predefined
assignment success levels.

Secondly, we present empirical results from a pair of
lake whitefish (Coregonus clupeaformis) sympatric ecotypes
that represent a case of low population genetic differenti-
ation. Using six microsatellite loci, Lu & Bernatchez (1999)
found a negative correlation between the extent of gene
flow and morphological specialization between lake
whitefish ecotypes in different lakes, with observed FST
estimates as high as 0.25 in some lakes. In East Lake (South-
eastern Québec, Canada), dwarf and normal ecotypes are
differentiated morphologically despite the persistence of a
high gene flow between them (FST = 0.058, SD = 0.013–
0.110; Nm = 4.06, SD = 2.02–18.98). Given the previous
fine-scale genetic data analyses available for the species,
the East Lake dwarf and normal whitefish pair represents
an appropriate template to explore the potential of AFLP
for population assignment relative to that of microsatel-
lites. In this perspective, assignment tests were used to
explore the effect of: (i) selective primer combination and
(ii) number of loci. The assignment success obtained with
AFLP markers under various stringency levels were then
compared with those obtained from microsatellite markers
in order to contrast their discriminating power.

Analytical investigation

Assignment procedure

Formally, AFLP genotypes are strings of presences (1 s)
and absences (0 s) of fragments. Distinct populations are
expected to show differences in their respective frequencies
of presence among polymorphic loci. These differences can
be used to assign specimens to their original population
based on the individual’s AFLP genotype, given a set of
candidate populations.

Let us call G the genotype of the individual to be
assigned. We first compute the likelihood that G be found
in each of the candidate populations based on their respec-
tive presence frequencies. G is then assigned to the popu-
lation showing the highest likelihood for G (Paetkau et al.
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1995). The likelihood of genotype G in population X,
among all possible genotypes in X, is the product:

(1)

where

fi,X, fj,X, = frequency of presence in locus i, j in population X
SP = set of indices of loci with presences in genotype G
SA = set of indices of loci with absences in genotype G

For computational reasons, it is more convenient to
express this likelihood relationship in log terms, such that:

(2)

Practically, this means that each presence (1) in G will be
replaced by the log of the frequency of 1 s within the same
locus in population X and each absence (0) by the log of the
frequency of 0 s. Because log(0) is not defined, it is necessary
to replace frequencies of zero by some appropriate value.
We found that 1/(n + 2) was the most appropriate sub-
stitution value, where n is the sample size (see Appendix I).
Subsequently, log values are summed over loci to obtain
the log-likelihood of genotype G being assigned to X. Log-
likelihoods are computed for each population. In order to
make the decision of either assigning genotype G to one
population or not assigning it at all, different stringency
levels can be applied. The stringency level is defined as the
absolute minimal difference between the largest and
next to largest log-likelihood of genotype G that is required
to assign the individual to one among the putative
populations (log LA − log LB > ε, where ε ≥ 0). Four
stringency levels are used commonly (ε = 0, ε = 1, ε = 2 and
ε = 3). The ε = 1, ε = 2 and ε = 3 levels, respectively, mean
that a multilocus genotype has to be 10, 100 or 1000 times
more likely in one population than in any other to be
assigned. The ε = 0 level requires only that the genotype be
more likely in one population relative to the other(s). If the
log-likelihood difference is not equal to or higher than the
selected stringency level, the genotype is not assigned and
the procedure is said to have failed.

This method is an adaptation for dominant markers of
Paetkau et al.’s method (1995) for codominant markers, which
was also applied recently by Congiu et al. (2001). For micro-
satellites, each single-locus likelihood value is obtained by
multiplication of the frequencies of its two component alleles.
In the context of AFLP (dominant) markers, the only two
possible one-locus-genotypes are 0 and 1. Consequently,
their likelihoods are simply their respective frequencies
within the locus. Equations 1 and 2 are based on the
assumptions that fi,X-values are accurate, and that the loci
are statistically independent (no linkage disequilibrium).

Two-populations model

Assignment success probability. Loci with larger frequency
differences should have more assignment power. Given
that fA and fB are the respective frequencies of presence
for populations A and B, the frequency differential
(FD = fA – fB) is a natural candidate for measuring locus
quality (Shriver et al. 1997). Given that numerous pairs (fA,
fB) can produce identical frequency differential values, it is
also of interest to assess whether such pairs have the same
assignment power. For example, is (0.01, 0.15) a better or
worse pair than (0.16, 0.30)? In order to address this issue,
we used a simple frequency distribution model in which fA
and fB were held constant across all loci. For the sake
of simplicity but without any loss of generality we also
assumed fB larger than fA. This model allowed us to derive
a straightforward procedure (see Appendix I) to compute
exact probabilities of correct assignment, given any
number of loci (l) and any constant frequency pair (fA, fB).

We first assessed how the probability of correct assign-
ment was affected by the frequency fA, the frequency
differential, and the number of loci under the restrictions of
the simple model. The probability of correct assignment
was computed as a function of the frequency differential
(FD) ranging from 0.01 to 0.250, for each of fA (0.001, 0.010,
0.020, 0.050, 0.100, 0.150, 0.200, 0.250) and each number of
loci (20, 50, 100) for the perfect situation in which there is
no sampling error and no error in assigning a genotype
to an individual (no scoring error or polymerase chain
reaction (PCR)-induced artefacts). Note that the computa-
tion of probabilities of correct assignment within the two-
populations model was not based on simulations but
obtained analytically.

The probability of correct assignment increased with the
frequency differential (FD) and the number of loci (Fig. 1).
The probability of correct assignment also increased
sharply as fA approached zero. The same effect has been
observed with fB close to 1 (data not shown). These results
demonstrate that the quality of loci depends not only on
the frequency differential of the pair (fA, fB), but also on the
proximity of fA or fB to either one of the tail ends of the (0,
1) probability interval. In order to investigate the effect of
the number of loci on assignment power, we therefore
retained only tail frequency pairs (0.001, fB) and centre
pairs (0.25, fB). These two types, referred to below as T and
C loci, provide lower and upper bounds for the minimum
number of loci required to reach predefined levels of
correct assignment.

Minimal number of loci. The minimum numbers of loci
required to reach 90%, 95% and 99% probability of correct
assignment (M90, M95 and M99) were computed for
frequency differentials ranging from 0.05 to 0.70 for both T
and C type loci. Minimal number of loci as a function of the
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frequency differential revealed that the number of loci
required rose sharply as the frequency differential de-
creased (Fig. 2). Curves obtained with T-loci show lower
values of minimum number of loci but differences between
the T- and C-type loci decreased as the frequency
differential increased. For any probability of correct
assignment, the minimum number of loci never exceeded
40 for frequency differentials equal or higher to 0.35 in
C-loci and 0.15 in T-loci. Loci with lower frequency

differential values, although less informative, can also
provide substantial allocation power. Indeed, sets of
approximately 60 C-loci with FD = 0.2 or sets of 60 T-loci
with FD as small as 0.05 sufficed to reach an expected
probability level of correct assignment of 95%.

Effects of sampling errors on the probability of correct assign-
ment. In the above two-populations model, we assumed
no sampling error on frequency estimates, i.e. φA = fA and
φB = fB. As the latter assumption is unrealistic and errors
on presence frequency estimates will certainly have a
negative impact on the probability of correct assignments
(P) (Smouse & Chevillon 1998), it is essential that we assess
the effect of this loss of power on M90 for various sample
sizes. We modelled the error on f, the population (real)
presence frequency, under the assumption that, prior to
the estimate φ, no relevant information is available on
the parameter f. We also assumed that the sample size is
small compared with the total population size so that
the number of sampled presences is expected to be dis-
tributed binomially. Based on the previous assumptions,
we were able to build the density function for f, given the
sample size n and the estimate φ. To compare the relative
power of our procedure with and without sampling error
we generalized the above two-populations model. As
before, the frequency estimates φA, φB were held constant
across loci but the population frequencies fA, fB were
obtained by sampling from the f-densities at each locus.
Hence, each population was represented by an array f of
sampled fs. To obtain estimates of the expected proportion
P of successful assignments as a function of estimates φA, φB
and sample size n, 100 pairs (A, B) of populations were

Fig. 1 Probability of correct assignment as a function of frequency
differential (FD = |fB − fA|) for three different numbers of loci (20,
50, 100) with ε = 0. Curves are labelled according to fA (0.001, 0.01,
0.02, 0.05, 0.10, 0.15, 0.20, 0.25) and lower curves correspond to
higher values of fA.

Fig. 2 Minimum number of loci as a function of frequency
differential to reach a specific probability of correct assignment
(M90, M95 and M99) with ε = 0. Dashed curves were obtained using
T-loci (fA = 0.001), whereas solid curves were obtained using C-
loci (fA = 0.25).
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generated randomly and 1000 genotypes were generated
randomly from each population. The details of the
construction of the f-densities, the sampling of f and the
computation of the expectancy of P are provided in
Appendix II.

We calculated estimates of M90 for sample sizes n = 30
and n = 45. Pairs of (φA, φB) estimates were built from φA = 0
(T-loci) and φA = 0.266 (C-loci) and FD = 0.067, 0.133, 0.200,
0.267. Values of M90 without sampling error were computed
analytically for the same set of (φA, φB). Figure 3 contains
two panels (T- and C-loci) of M90 curves as a function of FD
for n = 30, 45 and no sampling error (NS). As expected, the
minimum number of loci needed to reach 90% probability
of correct assignment was smallest with no sampling error
and largest with the smaller sample size (n = 30) for both
T- and C-loci. The most significant discrepancies in number
of loci (M90) between n = 30, 45 and no sampling error
were found with the smallest frequency differential
(FD = 0.067), but they decreased very rapidly with increas-
ing frequency differentials (FD). Between the three error
conditions, the T-loci showed more relative discrepancies
in M90 than C-loci. With FD ≥ 0.133, the relative discrepancies

almost vanished in C-loci and absolute discrepancies never
exceeded 20 in T-loci.

Although loci with FD = 0.067 do provide enough infor-
mation to reach the 90% level of correct asssignments, they
are much more sensitive to sampling error and so increasing
n from 30 to 45 does have a dramatic effect on their assign-
ment power. Indeed, with n = 30, 125 T-loci and 500 C-loci
are needed to reach the targeted 90% correct assignment,
whereas with n = 45 only 75 T-loci and 350 C-loci are
needed. Therefore, loci with low frequency differentials,
although more sensitive to sampling error, do provide
significant assignment power when their presence fre-
quencies are sampled adequately and their number is
sufficiently high. However, with n = 10 and FD = 0.1, we
failed to reach the 90% level of correct assignment even
with very large numbers of loci. In fact, there were clear
signs that E(P) reached an upper limit both with T and
C-loci. These limits were approximately 0.86 (T-loci) and
0.76 (C-loci) and were reached with numbers of loci in the
100–150 range (graphs not shown).

Multiple populations model

We subsequently considered situations with more than
two candidate populations and random frequency
variation among the populations. We kept the notion of a
fixed frequency differential (FD = fmax − fmin) where fmax
and fmin represent the maximum and minimum frequencies
among all populations, respectively. We also held fmax and
fmin constant across all loci. Random frequency variation
among populations was generated by the use of a Monte
Carlo simulator. For each locus, N–2 frequencies, where
N equals the number of populations, were generated
randomly according to U(fmin, fmax), i.e. the uniform
distribution with lower and upper bounds, respectively,
equal to fmin, fmax. The two remaining frequencies were
precisely fmin, fmax. The frequencies were then attributed
randomly to the N populations. At this point, each
population was defined by an array of l frequencies, where
l equals the number of loci. Random genotypes were
generated for each of the N populations by performing
1000 Bernoulli trials for each locus, thus generating 1000
genotypes per population. The number of iterations, each
with a renewed set of N populations, was 100 for each pair
of frequency bounds (fmin, fmax).

Minimal number of loci with more than two candidate popula-
tions. Using the Monte Carlo simulator described above,
we sought the minimum number of loci to reach a
probability of correct assignment of at least 90% (M90). In
the search for M90, we considered C-loci (fmin, fmax) = (0.25,
0.45) (0.25, 0.55) (0.25, 0.65) (0.25, 0.75) (0.25, 0.85) (0.25,
0.95) for each of the following number of populations
(N = 3, 4, 5, 7, 10). The random genotypes generated were

Fig. 3 Curves of minimum numbers of loci needed to reach 90%
probability of correct assignment (M90) as a function of frequency
differential for the three error conditions (n = 30, n = 45, NS (no
sampling error)). Top panel shows C-loci and bottom panel shows
T-loci.



1984 D .  C A M P B E L L ,  P .  D U C H E S N E  and L .  B E R N A T C H E Z

© 2003 Blackwell Publishing Ltd, Molecular Ecology, 12, 1979–1991

assigned to the N populations and the proportion of correct
assignments was computed. The results obtained using the
simulations for two populations, as a special case of the
multiple populations model, were similar to those
obtained from the two-populations (analytical) model in
terms of the minimal number of loci needed to reach a
probability of correct assignment of 90%, thus validating the
calculation procedures of the multiple populations model.

With more than two populations, we found that M90
stood between N and N + 1 times the minimum number of
loci for the two populations case (Fig. 4). Hence, for N ≥ 3,
a simple quasi-linear relationship appeared to hold
between number of populations and minimum number of
loci to reach a probability of correct assignment of at least
90% (M90). For example, with C-loci and a frequency differ-
ential of 0.20, m90 for two populations is equal to 37 loci,
and so M90 for 10 populations should fall between 370 (37
× N ) and 407 (37 × N + 1) loci, which is indeed consistent
with the simulated curve (400 loci, 10 populations,
FD = 0.20, Fig. 4). However, as this relationship is based
solely on observations from simulations, it should be
considered cautiously for fmin values different from 0.25
and for probabilities of correct assignment different from
90%. The number of loci needed for reliable assignment
with multiple populations appear relatively high. However,
such numbers of loci (e.g. between 300 and 2000) have been
screened commonly in previous studies using AFLP (e.g.
Albertson et al. 1999; Rogers et al. 2001; Wilding et al. 2001;
Young et al. 2001; Bensch et al. 2002; Orgen & Thorpe 2002).

Case study

Methodological outlines. AFLP analysis was performed on
dwarf (n = 29) and normal (n = 29) lake whitefish sampled
from East Lake, which is located within the secondary
contact zone of the St-John river basin of northeastern
North America (see Lu & Bernatchez 1999 for location
map). DNA samples for AFLP analysis were the same as
those used by Lu & Bernatchez (1999) for microsatellite
analysis.

The AFLP plant mapping kit (Applied Biosystems, Inc.)
was used according to the protocol of Vos et al. (1995) to
generate AFLP markers. Three selective amplification
primer combinations (EcoRIACA/MseICTA, EcoRIAGG/
MseICTG and EcoRIACC/MseICTC) were used. For the
remainder of the text, we will refer to these primer com-
binations using the EcoRIA (xx) and MseIC (xx) selective
nucleotide extension (e.g. EcoRIACA/MseICTA = CATA).
The procedure for AFLP analysis has been detailed else-
where (Rogers et al. 2001).

A descriptive analysis of our AFLP data set was conducted
in order to characterize the loci generated by each primer
combination. First, a distribution of frequency differential
values was determined for each primer combination with-
out any regard to tail proximity. Then, each locus was clas-
sified into one of three classes defined on the basis of tail
proximity and frequency differential. Within the context of
the case study, the loci will be characterized as C-loci when
both presence frequencies fA and fB belong to the centre
interval (0.01, 0.99) and otherwise as T-loci. C-loci with
FD < 0.20 and T-loci with FD < 0.05 are categorized as
the ‘least’ informative class, C-loci with 0.20 ≤ FD < 0.35 or
T-loci with 0.05 ≤ FD < 0.15 figure as the ‘good’ class and
C-loci with FD ≥ 0.35 and T-loci with FD ≥ 0.15 figure as
the ‘excellent’ class. Given the analytical results, this
classification gave prior indications as to the quality of
each primer combination with regard to number of loci,
frequency differential and tail proximity.

Following the method described above, reassignment
tests were performed for each of the three AFLP primer
combinations separately, as well as for the data set as a
whole. In each case, the first test was conducted using all
loci having a frequency differential higher than zero
(minimal FD = 0). A 5% increment in the minimal frequency
differential was added between each subsequent test to
select the set of loci to be used. Tests were performed until
no loci remained. In so doing, the number of loci used for
reassignment decreased whereas the average quality of
loci increased from the first to the last test. Each individual
to be reassigned was removed from the source population
when estimating the presence frequency of each locus. The
purpose of this ‘leave-one-out’ procedure is to avoid an
upward bias in assignment success (Smouse et al. 1982).
Assignment success was expressed as the ratio of correct

Fig. 4 Curves of minimum numbers of loci needed to reach 90%
probability of correct assignment (M90) as a function of frequency
differential for multiple populations with C-loci (fA = 0.25). Solid
curves indicate simulation results (curves are labelled according
to number of populations (N) = 3, 4, 5, 7, 10. Dashed curves
represent estimates based on the relationship: M90 = M90 for two
populations*N (estimates were performed with N = 3, 4, 5, 7, 10).
The dashed curve labelled with 2 represents M90 for two
populations.
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assignments over all decisions, i.e. assignments plus
nonassignments (failures).

All reassignment tests were conducted at four different
levels of stringency (ε = 0, ε = 1, ε = 2 and ε = 3) in order to
evaluate the discriminating power of different sets of
AFLP loci. Increasing values of ε will lead generally to an
increased proportion of failures and thereby to a decreased
overall proportion of both correct and incorrect assign-
ments. Therefore, the rationale in using different strin-
gency levels to evaluate the discriminating power of a set
of loci is that the higher the assignment success at high
levels of stringency, the higher the discriminating power of
a set of loci. All procedures with AFLP were carried out
using aflpop (Duchesne & Bernatchez 2002), a macro-
Excel based software available free of charge on the follow-
ing website: http://www.bio.ulaval.ca/contenu-fra/
professeurs/Prof-l-bernatchez.html.

Individuals used in this study were genotyped previ-
ously at six microsatellite loci (Bwf1, Bwf2, C2-157, C4-157,
Cocl23 and Cocl22) (methodological details in Lu &
Bernatchez 1999), allowing us to compare AFLP with
microsatellite-based assignments. Overall, comparable
analytical effort in the laboratory was required to collect
the data from both methods on whitefish populations. Thus,
running one AFLP 30-lane gel on a 377 automated DNA
sequencer (Applied Biosystems, Inc.) allowed genotyping
of 30 individuals with a multiplex of three primer com-
binations, whereas the equivalent microsatellite gel allowed
genotyping of 30 individuals at three microsatellite loci.
Two PCR amplifications per individual analysed were
necessary for both methods (preselective and selective
amplification for AFLP and two multiplexes amplifica-
tions for microsatellites).

Results of genetic polymorphism and population differ-
entiation using microsatellite loci are reported from Lu &
Bernatchez (1999), where details on the analysis are also
presented. Individuals were reassigned on the basis of

their microsatellite multilocus genotype using the Bayesian
method in geneclass (Cornuet et al. 1999). Assignment
success was estimated at four levels of stringency (ε = 0,
ε = 1, ε = 2 and ε = 3) in order to compare the discriminat-
ing power of AFLP loci and microsatellite loci.

Results and discussion

Effect of the primer combination on assignment success

The characterization of the AFLP data set is summarized in
Table 1 and Fig. 5. A total of 172 of 182 AFLP loci were
informative (FD > 0) with an average frequency differential
of 0.17. Primer combinations CATA, GGTG and CCTC
yielded 96, 41 and 35 informative loci, respectively. CATA
generated the largest number of ‘least’ informative loci (48
for CATA, 12 for CCTC and nine for GGTG) and of ‘good’
loci (34 for CATA, 21 for CCTC and 13 for GGTG). GGTG
generated the largest number of ‘excellent’ loci (19 for
GGTG, 14 for CATA, two for CCTC) and had the highest
average frequency differential (FD = 0.29 for GGTG, 0.14
for CATA and 0.12 for CCTC). Using all loci available for each
primer combination, very high assignment success was
obtained at ε = 0 with CATA (100%), GGTG (95%) or CCTC
(97%). When increasing the stringency level to ε = 3, the assign-
ment success decreased from 100% to 86% with CATA, from
95% to 84% with GGTG and from 97% to 29% with CCTC.
When using the complete data set, increasing the stringency
level to ε = 3 increased the rate of failures by only 3% relative
to ε = 0, thus providing an assignment success of 97%.

Thus, contrary to what was expected from the ‘random’
nature of the amplification of AFLP loci (Vos et al. 1995),
the three AFLP primer combinations used in this study
provided sets of loci varying significantly in number and
quality (frequency differential and tail proximity) of loci.
As a result, variable assignment success was achieved with
these three primer combinations with CATA providing the

 

CATA GGTG CCTC

CATA and 
GGTG and 
CCTC

T-loci (FD < 0.05) 13 6 1 20
T-loci (0.05 ≤ FD < 0.15) 25 11 16 52
T-loci (FD ≥ 0.15) 7 5 0 12
C-loci (FD < 0.20) 35 3 11 49
C-loci (0.20 ≤ FD < 0.35) 9 2 5 16
C-loci (FD ≥ 0.35) 7 14 2 23
Number of least informative loci 48 9 12 69
Number of good loci 34 13 21 68
Number of excellent loci 14 19 2 35
Total number of loci 96 41 35 172
Average FD ± SD 0.14 ± 0.14 0.29 ± 0.25 0.12 ± 0.11 0.17 ± 0.18

Table 1 Classification of AFLP loci as a
function of the frequency differential and
tail proximity for each primer combination
and the whole data set. The numbers of
least informative, good and excellent
markers are obtained based on the criteria
defined in Methodological outlines. ‘Least’
informative loci = T-loci (FD < 0.05) +
C-loci (FD < 0.20), ‘good’ loci = T-loci
(0.05 ≤ FD < 0.15) + C-loci (0.20 ≤ FD < 0.35)
and ‘excellent’ loci = T-loci (FD ≥ 0.15) + C-
loci (FD ≥ 0.35).

http://www.bio.ulaval.ca/contenu-fra/
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strongest and CCTC the weakest discriminating power.
However, despite the variation in assignment power
between different AFLP primer combinations, the results
showed that only one primer combination may be suffi-
cient to reach an assignment success of 95% at ε = 0, and
that such a high level of assignment success was main-
tained at high stringency level (ε = 3) when using the three
primer sets. The choice of the stringency level to be used
with assignment methods depends mainly on a trade-off
between performance of the assignment procedure (in
terms of overall proportion of individuals assigned) and
confidence level over assignments. In this study, AFLPs
have proved to be powerful with a fairly small increase in
proportion of failures, even at high stringency level (ε = 3)
when using all three primer combinations. This suggests
that, with AFLPs, the trade-off between confidence and
assignment performance may be small when using a suffi-
cient number of loci. Consequently, a high confidence level
can be achieved even when one wants to favour assign-
ment performance.

Effect of number of loci on assignment success

Figure 6 shows two panels of curves representing
assignment success as a function of minimal frequency
differential. For all primer combinations and stringency
levels, the assignment success was maximal when using
all informative loci (FD > 0; left-hand side of Fig. 6). When
the number of loci was decreased gradually to retain
loci with higher frequency differentials the assignment
success decreased slowly at ε = 0, whereas it decreased
quickly at ε = 3, with the exception of GGTG or when the
three primer combinations were pooled together. With
GGTG and the three primer combinations, respectively,
94.7% and 90% of the maximal assignment success were
obtained using only six loci with frequency differentials
higher than 0.70 at ε = 0. At ε = 3, 78.6% and 68% of the
maximal assignment success was still achieved with
these six loci. This suggests that loci with high frequency
differentials contribute in large part to assignment
power. However, the analysis of the effect of the num-
ber of loci on assignment success in the whitefish case
study revealed that the addition of numerous loci with
lower discriminating power enhanced assignment power
further, resulting in a higher assignment success when
all sources of information were used (all loci with
FD > 0).

Loci having a frequency differential below a certain
threshold (FD < 0.50) are discarded commonly because
their power to discriminate populations is considered too

 
 

Fig. 5 Distribution of frequency differential values observed in
CATA, GGTG and CCTC primer combinations.

Fig. 6 Assignment success as a function of minimal frequency
differential for two stringency levels (ε = 0 and ε = 3): (�), CATA
(�) GGTG, (�) CCTC, (×) three primer combinations combined.
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small (e.g. Shriver et al. 1997). As pointed out by Smouse
& Chevillon (1998), loci with low frequency differentials
may be more prone to sampling error. In accordance, the
conditions that produced the largest loss of probability of
correct assignment due to sampling error in our analytical
investigation were small frequency differentials, small
sample sizes and C-loci (fA = 0.25). However, in all but the
worst conditions (sample size n = 10), it was possible to
reach the targeted 90% probability of correct assignment
by increasing the number of loci with low frequency differ-
entials. Furthermore, with AFLP, the likelihood of obtain-
ing loci with low frequency differential under weak
population differentiation may be counterbalanced by an
increased probability of finding loci with high frequency
differentials due to the large number of loci generated.
Consequently, it is most likely that, under empirical condi-
tions, the sets of loci will contain few highly informative
loci (high FD) and many least informative (low FD) loci. As
can be seen from the case study results the use of such sets,
without discarding loci with low frequency differential
values, is likely to maximize assignment success. In the
advent of a complete absence of highly informative loci it
would remain possible, on the basis of our analytical
results, to achieve high assignment success by using
enough loci with low frequency differentials and adequate
sample sizes.

AFLPs vs. microsatellites

Moderate to high levels of genetic diversity were observed
at microsatellite loci within each sample, with the number
of alleles per locus varying from 5 to 10, and gene diversity
estimates varying between 0.16 and 0.82 (Table 2). The
average heterozygosity (HM) across loci in the dwarf and

normal ecotype were similar. Homogeneity tests of allele
frequency distribution showed that dwarf and normal
whitefish ecotypes were differentiated genetically (P <
0.05) and the extent of genetic differentiation between both
ecotypes was low (θ = 0.058, SD = 0.013–0.110).

The 172 AFLP loci were more powerful than the six micro-
satellite loci in discriminating the source of an individual
among putative populations. Indeed, AFLP markers
resulted consistently in higher assignment success than
microsatellite loci at all levels of stringency, regardless of
the AFLP primer combination used (Fig. 7). Furthermore,
the log-likelihood differences between dwarf and normal
populations obtained with AFLP for each individual were
generally much larger than those obtained with the six
microsatellites (Fig. 8). In only one individual (1.7%)
did the log-likelihood difference fall below the ε = 3
level with AFLP in contrast to 52 individuals (90%) with

 

Ecotype Bwf1 Bwf2 C2-157 C4-157 Cocl22 Cocl23 AT HM

Dwarf
N 39 40 40 39 39 40
A 8 6 9 7 6 5 41
AC 220 157 147 293 125 266
FC 0.61 0.55 0.39 0.68 0.55 0.63
AR 212–224 147–159 121–167 285–301 105–127 260–270
HO 0.60 0.63 0.76 0.52 0.60 0.56 0.61
HE 0.62 0.67 0.63 0.30 0.89 0.59 0.62

Normal

N 40 40 40 35 37 40
A 6 4 10 5 6 6 38
AC 220 157 145 293 123 266
FC 0.61 0.91 0.29 0.36 0.46 0.55
AR 212–224 147–159 121–167 285–301 105–127 260–270
HO 0.57 0.16 0.82 0.76 0.64 0.58 0.59
HE 0.51 0.15 0.63 0.66 0.76 0.58 0.55

Table 2 Allelic variability at six micro-
satellite loci from sympatric lake whitefish
ecotypes in East lake. These data are
reported from Lu & Bernatchez (1999).
Number of samples used for genetic
analysis (N), number of alleles at each locus
(A), total number of alleles at six loci (AT),
most common alleles (AC; in base pairs),
frequencies of the most common alleles
(FC), range of allele size (AR), observed
heterozygosity (HO) and gene diversity
(HE) at each locus, and mean within-
ecotype heterozygosity at six loci (HM)

Fig. 7 Comparison of the assignment success between micro-
satellite and AFLP at four levels of stringency (ε = 0, ε = 1, ε = 2
and ε = 3). From left to right, bars in each histogram refer to the
three primer combinations combined, CATA, GGTG, CCTC and
microsatellite loci, respectively.
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microsatellites. Comparable low assignment power with
microsatellites was obtained in other studies showing
weak population structuring (e.g. Roques et al. 1999;
Ruzzante et al. 2001). Low assignment power with micro-
satellites in these situations was most probably a direct
consequence of using an insufficient number of loci, given
the small allele frequency differentials among weakly
structured populations.

Given the relative ease with which large number of AFLP
markers can be obtained without any genetic information
on the species, this study showed that AFLPs may be an
excellent alternative to microsatellites in order to enhance
resolution in studies of population assignment, especially
when population differentiation is weak. On the other
hand, AFLPs have some significant drawbacks, the most
significant of which is that their dominant nature makes it
impossible to evaluate departure from Hardy–Weinberg
equilibrium. The fact that band homology is most often
assumed instead of being demonstrated from sequence
analysis may also hamper their reliability. Furthermore,
AFLPs may not be suitable for all population assignment
applications. For example, they may not provide enough
information to detect immigrant individuals directly,
unlike methods that use codominant markers (Rannala &
Mountain 1997), although this remains to be assessed
rigorously. Consequently, for some research programs
involving large-scale description of the population structure
of a species, the advantages of AFLPs for population
assignment may be offset by some of the long-term benefits
of developing microsatellites. Indeed, microsatellites markers
may be useful for studies involving multiple species over
a long period of time without the possible homology prob-
lems. Also, due to their codominance, they provide more
information on inbreeding coefficients. In summary, in
order to make the appropriate choice of marker, one
should compare the benefits and drawbacks of each type
of loci relative to the projects that are undertaken.
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Appendix I

Expectancy of P within the two-populations model

We are given fixed values of l, the number of loci, and (fA,
fB), the presence frequencies in populations A and B,
constant across all loci. Let us assume that GA is a genotype
from A. We define S as the sum of the presences over all
loci of GA. The computation of P, the expected number of
correct assignments over all decisions [assignments, both
correct and incorrect, and failures (no assignment)] may be
divided into four steps:

(i) P(S): probability of S presences within A At each of its loci,
GA has probability fA to show a presence (1). Each presence
may be viewed as a success in a Bernoulli trial. Therefore,
the sum of presences S across the l loci of GA has a binomial
distribution. Accordingly, the probability that GA contains
S = 0, 1, 2, 3, … l presences is precisely:

where C(l, S) stands for the number of possible choices of
S items (loci) among l.

(ii) Log-likelihoods of S presences For each value of S, the two
log-likelihoods (one in each population) are:

log LA (S) = S log(φA) + (l − S) log(1 − ϕA)

and

log LB (S) = S log(ϕB) + (l − S) log(1 − ϕΒ)

where φA, φB are the estimates of fA, fB.
Because log(0) is not defined, it is necessary to replace

frequencies of zero (φ = 0) by some appropriate value. We
chose φ = 1/(n + 2) after having run simulations to com-
pare this with smaller replacement values such as 0.001
and also to φ = 1/(n + 1). We found that φ = 1/(n + 2) pro-
duced consistently better results in terms of assignment
efficiency (data not shown).

(iii) Assignment decision The assignment decision is based
on the difference in log-likelihoods:

DL(S) = log LA(S) − log LB(S)

At this point we have pairs (DL(S), p(S)) for each S = 0, 1, 2,
3, … l

Given assignment criterion ε, the three possible deci-
sions for GA with S presences are:

assignment to A if DL(S) > ε 
assignment to B if DL(S) < −ε 
no assignment (failure) if −ε ≤ DL(S) ≤ ε 

(iv) Probability of correct assignment of GA and overall P

The probability PA of correct assignment of genotypes
from A is the sum of all P(S) such that DL(S) > ε.
Alternatively, the probability of misassignment of genotypes
from A would be the sum of all P(S) such that DL(S) < −ε.
The probability PB of correct assignment of genotypes
belonging to population B can be computed in a similar
fashion.

Finally, the probability of correct assignment of geno-
types from A or B is:

P = prAPA + prBPB where 
prA, prB = proportion of A, B specimens

Because we assumed no prior knowledge on the relative
sizes of the populations we used prA = prB = 0.5 in all
calculations. The criteria parameter ε was set to 0. We
assumed that φA, φB = fA, fB except in the Effects of sampling
errors on the probability of correct assignment section to
simulate errors on presence frequency estimates.

Appendix II

Expectancy of P under sampling error model

(i) Sampling procedure of population presence frequencies (fs)
Here, we allow the possibility for sampling error so that fi,
the population frequency presence on locus i, may be viewed
as a random variable. We denote NPi the number of
presences on locus i computed over all sample specimens.
The size of the population is assumed to be very large
compared to the sample size ni so that NPi is considered to
have binomial distribution. Keeping in mind that NPi and fi
relate to a specific locus, we now drop the locus index so as
to simplify all subsequent expressions. The probability
(likelihood) that NP presences among n specimens are
observed on a locus with population frequency f:

Because the sample size n and the number of presences NP
are known quantities, L(NP|n, f) is a polynomial function
in f, for intance P(f). In order to obtain the probability
density of f, for instance D(f), we re-scale P(f) so that
∫D(f) = 1. Hence:

To sample f from D(f) we use the ‘inverse’ method. This
method requires to compute the cumulative density
function of f:

p S C l S f f S lA
S

A
l S( )  ( , )  (   )   , , , , ... = − =−1 0 1 2 3

L NP n f C n NP f fNP n NP( , )  ( , )  (   ) = − −1

D f
P f

P f

( )  
( )

( )

=

∫
0
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Sampling from D(f) is performed in two steps. First a
number, for instance X, is generated from a uniform
random generator U(0,1). Then X is transformed into:

f = C−1 (X)

where C−1 is the inverse cumulative density of f. The standard
Maple numerical solver was used to solve for f (from X).

(ii) Sampling procedure from P In the two-populations (ana-
lytical) model, the true frequencies (fA, fB) were held
constant across all loci and no sampling error occurred. To
assess the loss of allocation power due to sampling error on
frequencies, we now hold the frequency estimates (φA, φB),
i.e. NPA, NPB constant across loci. However, fA, fB have
become random variables with probability densities D(fA),
D(fB) computed as above. Clearly, the proportion of correct
allocations P has also become a random variable. To obtain
estimates of the expectancy of P and so be able to assess the
loss of power resulting from sampling error, we have to
sample from P. We describe below the procedure to
sample a single value from P. The parameters of the
procedure are the sample size n, the number of presences
NPA, NPB, the number of loci l and the number of random

(artificial) genotypes NG. Based on n and NPA, generate an
array fA of l random frequencies using the above sampling
procedure for f. Based on n and NPB, generate an array fB
of l random frequencies. Populations A and B are now,
respectively, described by arrays fA, fB.

1. Following the distribution of presences at each locus,
generate NG random A-genotypes from fA. Similarly,
generate NG B-genotypes from fB.

2. For each A-genotype, compute log-likelihoods within A
and B. Assign to population of largest log-likelihood
following the same procedure as in the two-populations
(analytical) model. Similarly, compute log-likelihoods
and assign B-genotypes.

3. Compute the proportion of correctly assigned A- and
B-genotypes. This proportion is one random value
sampled from P.

(iii) Computation of E(P) To estimate E(P) from frequency
estimates φA, φB, we generated 100 frequency array samples
(fA, fB). Each array sample represented one possible pair
of populations (A, B). With each pair of populations,
1000 A-genotypes and 1000 B-genotypes were generated
and assigned. Hence, a total of 200 000 genotypes served as
basis to estimate E(P) as a function of sample size n and
presence frequency estimates φA, φB. E(P) is the average of
100 random values sampled from P.

C f D f df D f df
f

( )  ( )   ( )  
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