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Abstract: An outstanding aspect of pharmaceutical nanotechnology lies in the characterization 

of nanocarriers for targeting of drugs and other bioactive agents. The development of  microscopic 

techniques has made the study of the surface and systems architecture more attractive. In the field 

of pharmaceutical nanosystems, researchers have collected vital information on size, stability, 

and bilayer organization through the microscopic characterization of liposomes. This paper aims 

to compare the results obtained by atomic force microscopy, environmental scanning electron 

microscopy, transmission electron microscopy, and confocal laser scanning microscopy to 

point out the limits and advantages of these applications in the evaluation of vesicular systems. 

Besides this comparative aim, our work proposes a simple confocal laser scanning microscopy 

procedure to rapidly and easily detect the liposomal membrane.

Keywords: atomic force microscopy, transmission electron microscopy, environmental  scanning 

electron microscopy, confocal laser scanning microscopy

Introduction
Colloidal carriers and particularly liposomes have become widely used as pharma-

ceutical devices in numerous clinical applications.1–3 The increase in their therapeutic 

applications has developed analytical and technological approaches to characterize the 

carriers in terms of morphology, size, polydispersity index, number of lamellae, charge, 

bilayer fluidity, lipidic composition, and encapsulation efficiency.4 The application of 

dynamic light scattering (DLS, also known as photon correlation spectroscopy, PCS), 

nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), electron 

paramagnetic resonance (EPR), differential scanning calorimetry (DSC) has improved 

the evaluation of physicochemical and technological properties of these drug delivery 

systems.5–7 In particular, the size and the unilamellar or multilamellar structure of the 

liposomes can be also provided by small-angle X-ray scattering (SAXS).8,9

During the 1970s and 1980s, freeze-fracture electron microscopy was the first tool 

able to provide detail on liposome organization that was impossible to achieve by 

conventional thin-section electron microscopy.10,11 Modern microscopical techniques 

have increased our ability to characterize nanopharmaceutical systems.

This rapid communication aims to determine the details of the morphology and 

structure of a conventional liposomal formulation obtained by well-known micros-

copy techniques. The results of the analysis obtained by atomic force microscopy 

(AFM), environmental scanning electron microscopy (ESEM), transmission electron 

microscopy (TEM) and confocal laser scanning microscopy (CLSM; labeling using 

a fluorochrome marker) were compared in order to emphasize advantages and bias of 
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these techniques. We propose a simple procedure to analyze 

the liposome membrane by CLSM.

Methods
Preparation of liposomes
A typical and commonly used liposomal formulation was 

prepared by a thin-layer evaporation method using phosphati-

dylcholine (PC) and cholesterol (CHOL) at 1:0.1 (mol:mol) 

ratio.12 The total lipid amount was fixed at 1 mg/mL. Briefly, 

lipids (5 mg) were dissolved in 2 mL of chloroform. The 

solvent was removed by rotary evaporation (B-480; Büchi, 

Büchs, Switzerland) for 1 hour under vacuum (10 mbar) at 

20 ± 1°C. Then, the dried lipidic film was vacuum-dried for 

3 hours (0.15 mbar) and then hydrated at room temperature 

with 5 mL of MilliQ water (Millipore, Billerica, MA). 

The preparation was alternatively vortexed for 3 minutes 

(Zx3; Velp Scientifica, Usmate, Italy) and warmed in a 

water bath at room temperature for 3 minutes. The cycle 

was repeated three times. The sample, prepared in three lots, 

was stored at 4°C, protected from light and analyzed within 

15 days. Liposomes were analyzed for particle size and zeta 

potential by PCS and laser Doppler anemometry using a 

Zetasizer Nano ZS (laser 4 mW He-Ne, 633 nm, automatic 

laser attenuator, transmission 100% to 0.0003%, detector 

avalanche photodiode, QE . 50% at 633 nm, T = 25°C; 

Malvern Instruments, Malvern, UK) without any dilution 

of the samples.

Tapping mode atomic force microscopy
The AFM experiments were performed with a Nanoscope IIIa 

(Digital Instruments, Santa Barbara, CA) operating in tap-

ping mode at room temperature. Both the height and the 

phase imaging data were simultaneously acquired using a 

commercial silicon tip-cantilever (high resolution noncon-

tact “GOLDEN” Silicon Cantilevers NSG-11, NT-MDT, 

tip diameter ≅5–10 nm; Zelenograd, Moscow, Russia) 

with stiffness about 40 Nm−1 and a resonance frequency 

around 170 KHz. All the AFM images were obtained with-

out any dilution of the samples, with a scan rate of 0.7 or 

1 Hz over a selected area in the dimension of 5 µm × 5 µm 

or 0.65 µm × 0.65 µm using freshly cleaved mica as the 

 substrate. The force applied to the surface was roughly 

adjusted by the ratio of the engaged or set-point amplitude 

A
sp

 to the free air amplitude A
0
.

According to the literature, the set-point amplitude has 

to be adjusted to 10%–25% of the free air amplitude for 

“high force” and to 40%–70% or 75%–90% of the amplitude 

for the “moderate- and low-force” imaging, respectively.13 

In this communication, the experiments were carried in 

“moderate force” mode and the set point was adjusted to 

50%–60%. Images were processed and analyzed using a 

program obtained from Digital Instruments (version V5-31; 

Veeco Group, Santa Barbara, CA). The height and diameter 

of liposomes were measured from the profile section of AFM 

line scans analyzing the height images.

Environmental scanning electron 
microscopy
A Quanta 200 ESEM (FEI Company, Hillsboro, OR) was 

used in the ESEM investigations. The sample was put on 

stage and observed in real time (hydration/dehydration step) 

into the ESEM chamber adjusting the temperature with the 

Peltier stage (Emott AG, Zurich, Switzerland). At the begin-

ning of the experimental procedure, the chamber pressure and 

sample temperature were respectively set at about 6.45 Torr 

and 4°C. In these conditions, relative humidity reached 100%. 

The sample was maintained under these “initial conditions” 

for about 2 minutes and an image of interest was chosen 

after this time (initial state–wet state). The chamber pres-

sure is then slowly taken back at the dehydration condition 

(P ≅4–2.65 Torr) and the sample temperature stabilized at 

9°C. The images taken describe the final dehydration state.

Negative staining transmission  
electron microscopy
Briefly, a drop of a water-diluted suspension of the liposomes 

(about 0.05 mg/mL) was placed on a 200-mesh formvar 

copper grid (TABB Laboratories Equipment, Berks, UK), 

allowed to adsorb and the surplus was removed by filter 

paper. A drop of 2% (w/v) aqueous solution of uranyl acetate 

was added and left in contact with the sample for 5 minutes 

(initially, we tested different concentrations of uranyl acetate 

solution; the condition applied in this study was the most 

suitable to maintain the integrity of the sample during the 

preparation). The surplus water was removed and the sample 

was dried at room conditions before the vesicles were imaged 

with a TEM operating at an acceleration voltage of 200 KV 

(model JEM 2010; JEOL, Peabody, MA).

Confocal microscopy
CLSM analysis was performed with a DM IRE2 micro-

scope (Leica, Mannheim, Germany) and a Leica confo-

cal system equipped with a 3-channel multiband Leica 

scanner TCS SP2 with AOBS, laser diode blu COH 

(405 nm/25 mW), laser Ar (458 nm/5 mW, 476 nm/5 mW, 

488 nm/20 mW, 496 nm/5 mW, 514 nm/20 mW), laser HeNe 
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(543 nm/1.2 mW, 594 nm Orange, 633 nm/102 mW) and with 

a 63× λ-blu  corrected oil immersion objective. Before the 

analysis, the dried lipidic film of the liposomes was hydrated 

with a water solution of rhodamine 123 (0.015 mg/mL; 

Sigma-Aldrich Company, Milan Italy). The excess fluoro-

chrome solution was removed by dialysis technique using a 

dialysis tube (CelluSep MWCO 3500; Membrane  Filtration 

Products, Seguin, TX). A small aliquot of the dialyzed sample 

(usually 10 µL) was transferred to a coverslip (slide) and 

directly observed.

Results and discussions
Preliminary results: liposome properties
The formulation was heterogeneous (D(10) = 120 ± 34 nm; 

D(50) = 550 ± 123 nm; D(90) = 2540 ± 342 nm) with a 

polydispersity index (PDI; an estimate of the width of 

 distribution) about 0.45 ± 0.1 and the zeta potential (z-p) of 

about -6.5 ± 2.4 mV.

AFM studies
The AFM images of liposomes on mica are shown in 

 Figure 1. As described previously,14 AFM in the tapping 

and noncontact mode approaches allows the observation of 

the liposomal morphology without any sample manipulation 

such as staining, labeling, or fixation (see height images in 

Figure 1). Particularly the intermittent contact motion of the 

tip (tapping) eliminates lateral or shear forces which would 

deform or scrape the sample.15,16 The main advantage of the 

technique is the possibility to operate with high resolution 

in air or in fluid in real-time and at the nanometer scale. 

But, liposomes can change their shape once deposited 

on mica support also using tapping mode and operating 

in aqueous solution (within 10–15 minutes from deposi-

tion when  liposomes were still hydrated and plunged in 

water). In fact, the interaction between the sample and the 

substrate, as well as the continuous movement of the tip, 

can induce  deformation17 depending chiefly on the vesicle 

composition.18

Our experimental results agree with the hypotheses in 

the literature. The comparison between the diameter and the 

height values of our liposomes emphasized the flattening of 

vesicles on the support just few minutes after deposition. 

This indicated only a moderate stability of the liposomes on 

a mica substrate. In fact the liposomes maintained a spherical, 
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Figure 1 TM-AFM analysis (images acquired within 10–15 minutes from deposition on mica support).

Abbreviations: TM-AFM, tapping mode atomic force microscopy.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2011:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

560

Ruozi et al

well-defined shape, although the diameters were higher than 

the related heights (Figure 1, 3D reconstruction). Twenty 

minutes after deposition, liposomes showed a progressive 

tendency to turn into an asymmetrical and defeat structure 

described as planar vesicles (data not shown). This behavior 

can identify dried or partially-dried liposomes as others have 

reported previously.19,20

Along with this application, AFM was able to identify 

the important details of the surface properties.21 The AFM 

phase images display the variation of the phase during the 

cantilever oscillation, especially considering the oligo- and 

unilamellar vesicles, which are well studied by small scan-

sions. After having fixed the operation conditions (as A
sp

, A
0
, 

etc), the phase shift observed during the image acquisition 

could be affected by the bilayer wetting and hydration and 

consequently by the local surface properties of liposomes.22 

The phase images confirmed the instability of our liposomal 

formulation on mica surface. The dark area (negative phase 

shift-attractive force between tip and sample) can be related 

to a collapsed structure, characterized by a flattened layer of 

lipids with high viscosity, while the bright contour (positive 

phase shift- repulsive force between tip and sample) sug-

gested that the lipids were still well hydrated with a relative 

low viscosity environment.

In conclusion, the possibility of obtaining local informa-

tion about the surface of liposomes using TM-AFM strengths 

the versatility and the applicability of this technique in the 

pharmaceutical and medical field.

ESEM studies
Generally, liposomes may suffer structural perturbations as a 

result of the high-vacuum conditions and the staining process 

required by some electron microscopy techniques. Therefore, 

scanning electron microscopy (SEM) is a less frequently used 

imaging technique because analysis requires the sample to 

be dried or fixed before imaging.

However, ESEM images wet systems without previous 

sample preparation (conductive coating). ESEM is based on 

the use of a multiple aperture, graduated vacuum system, 

which allows the chamber to be maintained at pressures of 

up to 40 Torr, which allows specimens to be imaged under 

water vapor or other auxiliary gases. Moreover, by using 

a correct pump-down procedure and by controlling the 

temperature of the specimen, which in the ESEM is usually 

performed using a Peltier stage, dehydration of wet samples 

can be inhibited and hence samples can be imaged in their 

‘natural state’.23

In our case, we tried to study both the formation and 

morphology of liposomes in real time producing a progres-

sive dehydration of the sample by change of the pressure 

and temperature into the ESEM chamber. Figure 2 shows the 

ESEM micrographs of liposomes both at the initial condition 

(wet sample) and at the reduced pressure adopted to evaluate 

the morphology (until 2.65 Torr) maintaining a sufficient 

hydration of sample. Under these conditions, spherical and 

separated lipidic structures were clearly observed. Further 

reduction of pressure to 2 Torr resulted in the aggregation of 

the liposomes which give rise to an undefined and flattened 

structure (data not shown). Unfortunately, the resolution of 

ESEM analysis don’t provide detailed information related to 

the surface and the architecture of the nanoscale structures, 

as already pointed out by Mohammed et al.24

TEM analysis
Several methods can be used to apply TEM in the evalu-

ation of morphology and architecture of liposomes. The 

freeze-fracture electron microscopy is an optimal technique 

for examining the ultrastructure of rapidly frozen bio-

logical  samples by TEM, but the preparation of the samples 

 (cryofixation, fracturation and the following operation of 

shading with evaporated platinum or gold) required caution 

and long time.25,26 In our opinion, negative staining is an easier 

Figure 2 ESEM micrographs of liposomes: a) 4.0°C, 6.45 Torr; b) 9.0°C, 4.32 Torr; c) 9.0°C, 2.65 Torr.
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and faster procedure. According to this  procedure, liposomes 

are surrounded or embedded in a suitable electron dense 

material providing high contrast and good  reproducibility. 

We used a cationic negative stain (uranyl cation) that binds 

the phosphate group of phospholipids, poorly penetrating the 

lipidic bilayer; nevertheless, it allows the indicative evalua-

tion of the liposomal internal structure without discriminating 

on the fine details.27

The negative staining of our liposomes (Figure 3) con-

firms the results obtained by the AFM analysis. The images 

describe a population of heterogeneous vesicles in which it is 

possible to emphasize the presence of close bilayer structures 

spaced by free internal structure. Nevertheless, the shape of 

liposomes appeared distorted, although this electronic micro-

scopical technique ensures the complete structural analysis 

of the thin transparent samples. The possible artefacts are 

due both to the staining process (the interaction between the 

sample and the negative stain) and the distortion/ alteration 

induced during the drying steps are caused by the  exposition 

of the samples to a vacuum.

CLSM analysis
To study the structure of liposomes by confocal microscopy 

(CLSM), we loaded the liposomes with a fluorochrome 

marker which localizes in the lipidic bilayer. This approach 

could be considered innovative with reference to the potential 

for high-resolution imaging, as the nondestructive technique 

allows a 3D reconstruction using a sophistical and sensible 

range of fluorochromes (commercially available fluoroprobes 

are designed sensible to the environment in order to operate 

within different physiological ranges of pH, ionic strength, 

and water content with high sensitivity, selectivity and 

versatility).28,29 The literature describing the physical charac-

terization of pharmaceutical systems using this technique is 

far less extensive and between whiles it provides examples 

that illustrate the potential and scope.

Chiefly in the case of large multilamellar vesicles, this 

technique allows us to easily appreciate and evaluate the 

internal structure of the lipidic systems which is not possible 

to investigate directly with the other techniques described 

previously (Figure 4). In fact, the layers of the multilamellar 

vesicle structure appeared well identified by a close bilayer 

(colored in red) and separated by aqueous phase. The  ability 

to reject light from outside the focal plane obtaining a good 

contrast and clarity allows the acquisition of images of planes 

at various depths. The projection of each plane joined with 

both vertical and horizontal sections and the related 3D 

 reconstruction show the liposomes in their tridimensional 

architecture, bypassing the necessity of any procedure of 

sample fixation (as in TEM approach by negative staining 

or freeze fracture), staining by 31P-NMR (as in the nuclear 

magnetic resonance technique)30 or using complicated 

techniques that related to neutrons and X-ray applications.31 

 Unfortunately, the  acquisition of high definition detailed 

images of small unilamellar or oligolamellar liposomes 

appears limited by the native resolution of this  technology, 

which cannot resolve structures sized under 200 nm. The 

recent development in microscopic instrumentation as 

the introduction of multiphoton and stimulated emission 

 depletion microscopy (STED) with a lateral resolution less 

than 50 nm could solve the problem.

Conclusion
In summary, microscopic studies improve the character-

ization of nanoscale structures of liposomes and provide 

information about shape and morphology (AFM, TEM), 

dimensions (AFM, ESEM, TEM, and CLSM), surface 

properties (AFM), and internal structure (CLSM). More 

critical aspects regarding the sample preparation and the 

observation should be considered and carefully evaluated. 

A great potential for completing the physico-chemical char-

acterization of liposomes by using CLSM is to exploit the 

Figure 3 NS-TEM images of liposomes.
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rhodamine labeling proposed in this study. In fact, by using 

this method, one important advantage is that the preparation 

of sample is easy to operate avoiding any possible sample 

alterative process and obtaining the detailed evaluation of 

the liposomal architecture.
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