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Abstract—Analyzing the increasingly large volumes of data
that are available today, possibly including the application of
custom machine learning models, requires the utilization of
distributed frameworks. This can result in serious productiv-
ity issues for “normal” data scientists. This paper introduces
AFrame, a new scalable data analysis package powered by a
Big Data management system that extends the data scientists’
familiar DataFrame operations to efficiently operate on managed
data at scale. AFrame is implemented as a layer on top of Apache
AsterixDB, transparently scaling out the execution of DataFrame
operations and machine learning model invocation through a
parallel, shared-nothing big data management system. AFrame
incrementally constructs SQL++ queries and leverages Aster-
ixDB’s semistructured data management facilities, user-defined
function support, and live data ingestion support. In order to
evaluate the proposed approach, this paper also introduces an
extensible micro-benchmark for use in evaluating DataFrame
performance in both single-node and distributed settings via
a collection of representative analytic operations. This paper
presents the architecture of AFrame, describes the underlying
capabilities of AsterixDB that efficiently support modern data
analytic operations, and utilizes the proposed benchmark to
evaluate and compare the performance and support for large-
scale data analyses provided by alternative DataFrame libraries.

Index Terms—DataFrames, distributed data management,
large-scale data analysis, data science, benchmark

I. INTRODUCTION

In this era of big data, extracting useful patterns and intel-

ligence for improved decision-making is becoming a standard

practice for many businesses. Modern data increasingly has

three main characteristics: the first characteristic is that much

of it is generated and available on social media platforms.

The rapid growth in the numbers of mobile devices and

smartphones, Facebook users, and YouTube channels all com-

bine to create a data-rich social media landscape. Information

distribution through this landscape reaches a massive audience.

As a result, social media is now used as a medium for

advertisement, communication, and even political discourse.

The second characteristic of modern data is the rapid rate

at which the data is continuously being generated. In order

to accommodate the rate and frequency at which modern data

arrives, distributed data storage and management are required.

Storing such massive data in a traditional file system is no

longer an ideal solution because analysis often requires a

complete file scan to retrieve even a modest subset of the

data. In order to minimize time-to-insight, analyses need to

be performed in close to real-time on the ever-arriving data.

Database management systems are able to store, manage, and

utilize indexes and query optimization to efficiently retrieve

subsets of their data, enabling interactive data manipulation.

The third characteristic of modern data is the richness of the

information encapsulated in the data. Modern data is not only

massive in size but is also often nested and loosely-structured.

For example, Twitter [15] provides JSON data containing

information related to each message along with information

about the user who posted that message and their location

details if available. Other social media sites such as Facebook

and Instagram provide similar information through their web

services. As a result, modern data enables analyses that go

beyond interpreting content; one can also analyze the structure

and relationships of the data, such as identifying communities.

Information extraction from modern data requires complex

custom algorithms and analyses using machine learning.

The growing interest in collecting, monitoring, and inter-

preting large volumes of modern data for business advan-

tages motivates the development of data analytic tools. The

requirements that modern, at-scale data analysis impose on

analytic tools are not met by a single current system. Instead,

data scientists are typically required to integrate and maintain

several separate platforms, such as HDFS [35], Spark [5], and

TensorFlow [16], which then demands systems expertise from

analysts who should instead be focusing on data modeling,

selection of machine learning techniques, and data exploration.

In this paper, we focus on providing a ‘scale-independent’

user experience when moving from a local exploratory data

analysis environment to a large-scale distributed workflow. We

present AFrame, an Apache AsterixDB [18] based extension

of DataFrame. AFrame is a data exploration library that

provides a Pandas-like DataFrame [27] experience on top of

a big data management platform that can support large-scale

semi-structured data exploration and analysis. AFrame differs

from other DataFrame libraries by leveraging a complete big

data management system and its query processing capabilities

to efficiently scale DataFrame operations and optimize data

access on large distributed datasets.

The second contribution of this paper is a distributed

DataFrame benchmark for general data analytics. The perfor-

mance of a big data system is greatly affected by the charac-
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teristics of its workload. Understanding these characteristics

and being able to compare various systems’ performance on

a set of related analytic tasks will lead to more effective tool

selection. Various benchmarks [9], [22], [24], [26], [32] have

been developed for big data framework assessment, but these

benchmarks are either SQL-oriented benchmarks for OLTP

or OLAP operations or focus on end-to-end application-level

performance. To our knowledge, there is no standard Data-

Frame benchmark yet for large-scale data analytic use cases.

In order to evaluate the performance of our framework,

we have designed a micro-benchmark to compare various

distributed DataFrame libraries’ performance by issuing a set

of common analytic operations. Our DataFrame benchmark

provides a detailed comparison of each analytic operation by

separating the data preparation time (e.g., DataFrame creation)

and expression execution time to give better insight into each

system’s performance and operation overheads.

The rest of this paper is organized as follows: Section 2

discusses background and related work. Section 3 provides

an overview of the AFrame system architecture, user model,

and data analytic support. In Section 4, we describe the

proposed DataFrame benchmark. Section 5 details our initial

experiments and discusses their results. We discuss future

improvements and conclude the paper in Section 6.

II. BACKGROUND

An important motivation for the AFrame project comes from

the need to make the management of large-scale modern data

available to the larger audience of the data science community

by integrating the DataFrame user experience with a big data

management system. Here we discuss the foundations of ex-

ploratory data analysis and some advantages and disadvantages

of its standard evaluation strategy.

A. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) [38] is an investigation

process employed by analysts to extract information, identify

anomalies, discover insights, and understand the underlying

structures and characteristics of a dataset. The goal of EDA is

to provide analysts with clues and a better understanding of the

data in order to formulate reasonable hypotheses. Important

applications of EDA include, but are not limited to, data

exploration, cleaning, manipulation, and visualization.

Frameworks and technologies often used in these applica-

tions span across the fields of statistics and machine learning.

There are a large number of prepackaged machine learning

libraries that cover a wide variety of user requirements. How-

ever, not all of the machine learning frameworks that work out

of the box are designed to work in a distributed environment.

As a result, analysts have to resort to large-scale machine

learning frameworks such as MLlib [29] because extensive

effort is required to make locally constructed models operate

on big data. Often times, these large-scale machine learning

frameworks do not cover all types of analysis and models.

Since EDA involves visualizing data, collecting statistics

from the data, and is iterative in nature, most of the available

tools targeting these types of analyses only accommodate

smaller datasets and leave big data processing and the scaling

out of the algorithmic process for data engineers to implement.

In order to reduce the turn-around time and increase produc-

tivity for data analysts, several issues need to be addressed:

1) distributed application of custom machine learning models;

2) providing a seamless migration from a local workflow to a

distributed environment; 3) having a scalable system that can

acquire and operate on ever-changing incoming data.

B. Eager vs. Lazy Evaluation

EDA frameworks such as Pandas target a local workstation

environment and often rely on in-memory processing. These

frameworks require data to be loaded into memory before any

analysis operations can be performed on the data. Once the

data is loaded into memory, analysis operations are evaluated

eagerly, meaning as soon as they are initiated. However, a

similar evaluation strategy is not efficient on large-scale ever-

arriving data, as processing every declared operation without

any optimization would be expensive as it may result in

repetitive scans over massive data.

Eager and lazy evaluation are strategies used in pro-

gramming languages to determine when expressions should

be evaluated [34]. While eager evaluation causes programs

to evaluate expressions as soon as they are assigned, lazy

evaluation is the opposite and delays their evaluation until

their values are required. With eager evaluation, programmers

are responsible for ensuring code optimization to prevent

performance degradation due to unnecessary operations over

large datasets. Lazy evaluation, on the other hand, delays

execution until values are required; it is employed to help

with operation optimizations where multiple operations can

be chained together, extended, and a single iteration over the

source collection can be processed, e.g., as in LINQ [28].

As a result, lazy evaluation is more suitable for exploratory

operations on large-scale data. Its performance improvement

becomes critical as the size of the data grows.

C. Related Platforms

We can compare and contrast existing systems in terms of

Big data platforms and DataFrame technology.

1) Big Data Platforms: Here we consider frameworks that

can operate on distributed data.

Apache Spark: Apache Spark [40] is a general-purpose

cluster computing system that provides in-memory parallel

computation on a cluster with scalability and fault tolerance.

SparkSQL [20] is a module to simplify users’ interactions with

structured data. SparkSQL integrates relational processing

with Spark’s functional programming. MLlib [29], which is

built on top of Spark, provides the capability of constructing

and running machine learning models on distributed data.

However, Spark does not provide data management and it

requires the installation of a distributed file system like HDFS.

Hive: Apache Hive [3] is data warehouse software built

on top of Apache Hadoop for providing data summary, query,

and analysis capabilities. The introduction of Hive reduced the



complexity of having to write pure MapReduce programs by

providing a SQL-like interface and translating the input queries

into MapReduce programs to be executed on the Hadoop

platform. Now Hive also includes Apache Tez [6] and Apache

Spark [5] as alternative query runtimes. However, to leverage

Hive’s processing power, knowledge of SQL is essential in

addition to being able to install and appropriately configure

and manage Hadoop and HDFS.
Apache AsterixDB: Apache AsterixDB [2], [18] is a par-

allel open source Big Data Management System (BDMS)

that provides full distributed data management for large-

scale, semi-structured data. AsterixDB utilizes a NoSQL style

data model (ADM) which is a superset of JSON. Before

storing data into AsterixDB, a user can create a Datatype,

which describes known aspects of the data being stored, and

a Dataset, which is a collection of objects of a Datatype.

Datatypes are “open” by default, in that the description of the

data does not need to be complete prior to storing it; additional

fields are permitted at runtime. This allows for uninterrupted

ingestion of data with ever-changing data schemas. AsterixDB

provides SQL++ [21], a highly expressive semi-structured

query language for users that are familiar with SQL, to explore

stored NoSQL data.
Figure 1 shows an example of creating an open datatype

‘Tweet’ with only the field ‘id’ being pre-defined and two

datasets called ‘TrainingData’ and ‘LiveTweets’ which store

records of this Tweet datatype. The TrainingData dataset is

populated by reading data from a local file system. In this

example, it is being populated using a labeled airline sentiment

dataset. AsterixDB also provides support for user-defined

functions (UDFs) and built-in live social media data acqui-

sition through its data feed feature. The LiveTweets dataset

is populated by connecting a data feed called ‘TwitterFeed’

that continuously ingests Twitter data. (More details on how

to create a live Twitter feed can be found in [2], [17]). Figure 1

also creates two indexes on the LiveTweets dataset.

CREATE TYPE Tweet AS{id: int64};

CREATE DATASET TrainingData(Tweet);

CREATE DATASET LiveTweets(Tweet);

LOAD DATASET TrainingData USING localfs

(("path"="1.1.1.1:///airline_data.json"),

("format"="adm"));

CREATE FEED TwitterFeed WITH {...};

CONNECT FEED TwitterFeed TO LiveTweets;

START FEED TwitterFeed;

CREATE PRIMARY INDEX ON LiveTweets;

CREATE INDEX coordIdx ON LiveTweets(coordinate);

Fig. 1: SQL++ queries

2) DataFrames for Data Science: Here we consider li-

braries that provide a DataFrame facility.
Pandas: Pandas [12] is an open source data analysis tool

that provides an easy-to-use data structure built specifically to

support data wrangling in Python. Pandas reads data from var-

ious file formats (e.g., CSV, SQL databases, and Parquet) and

creates a Python object, DataFrame, with rows and columns

similar to a table in Excel. Pandas can be integrated with

scientific visualization tools such as Jupyter notebooks [25];

Jupyter notebooks provide a unified interface for organizing,

executing code and visualizing results without referring to

low-level systems’ details. The rich set of features that are

available in Pandas makes it one of today’s most popular tools

for data exploration. However, its limitation lies in scalability.

Pandas does not provide either data storage or support for

interacting with distributed data, as its focus has been on in-

memory computation on a single node. Another well-known

Pandas’ limitation is its memory consumption. This is caused

by the underlying internal memory requirements about which

the Pandas creator, McKinney, advised: “you should have 5 to

10 times as much RAM as the size of your dataset” [1].

R Data Frames: R [14] is a language originally built for

statistical computing and graphics. Since R is primarily used

for statistical analysis, R has become one of the most popular

languages in the data science community. R also provides Data

Frame as a built-in native data structure, but working with data

larger than memory in R still requires a distributed framework

and data storage setup. For example, SparkR [39] is an R

package created by Apache Spark that supports distributed

operations like R Data Frames but on large datasets.

Spark DataFrames: Spark also provides a DataFrame

API [19] to enable the wider audience of the data science

community to leverage distributed data processing. This API is

designed to support large-scale data science applications with

inspirations from both the R DataFrame and Python Pandas.

Spark employs the lazy evaluation technique to perform com-

putations only when values are required. This is different from

the eager evaluation strategies used in Python and R. Lazy

evaluation is exploited by Spark’s query optimizer, which un-

derstands the structure of the data and the operations. In order

for Spark to determine the input data schema for unstructured

data, a process called ‘schema inference’ is required and can

result in long wait times for data that does not fit in memory.

Pandas on Ray: Pandas on Ray, which recently become a

part of the Modin project [11], is a recent attempt to make

Pandas DataFrames work on big data by providing the Pandas

syntax and transparently distributing the data and operations

using Ray [31]. Ray uses shared memory and employs a

distributed scheduler to manage a system’s resources. Pandas

on Ray automatically utilizes all available cores on a machine

or a cluster to execute operations in parallel. Since the Ray

framework handles large data through shared memory, it

requires a cluster with sufficient aggregate memory to hold

the entire dataset. In addition, Pandas on Ray uses Pandas

as a black box at its core, which does not address the high

memory consumption issue of Pandas.

III. AFRAME SYSTEM ARCHITECTURE

Exploratory tools such as Pandas work well against locally

stored data that fits in the memory of a single machine, but this

is not a solution for large-scale analysis. Still, Pandas is one

of the most widely used libraries for data exploration due to

the analyst-friendly characteristics of its data structure. As a

result, we set out to integrate a Pandas-like user experience



with big data management capabilities to provide analysts

with a familiar environment while scaling out their analytic

operations over a large data cluster to enable big data analysis.

Our goal in the AFrame project is to create a unified system

that can efficiently support all of the various stages [30]

in data science projects, from data understanding to model

deployment and application, thus enabling very large-scale

analysis and requiring little or no modification to analysts’

existing local workflows. Instead of building such a system

from scratch, we extend Apache AsterixDB with support for

the use of machine learning libraries and with interactive

data exploration capabilities. Here we describe the underlying

architecture of AFrame, the relevant AsterixDB features, and

illustrate AFrame’s basic functionality through a small run-

ning example that shows how to perform a simple sentiment

analysis on ever-growing Twitter data.

A. Acquiring Data

AFrame is an API that provides a DataFrame syntax to

interact with AsterixDB’s datasets; it targets data scientists

who are already familiar with Pandas DataFrames. AFrame

works on distributed data by connecting to AsterixDB’s web-

service using its RESTful API. Figure 2 shows how users can

use AFrame in a Jupyter notebook to access datasets stored

in AsterixDB. Input 2 (labeled “In [2]”) creates an AFrame

object (trainingDF) from the TrainingData dataset initialized

via the SQL++ statements in Figure 1. Input 3 creates another

AFrame object (liveDF) from the LiveTweets dataset, which

is connected to a data feed that continuously ingests data

from Twitter. Building on top of AsterixDB allows AFrame to

operate on such live data the same way as it does on a static

dataset without requiring additional knowledge about how to

setup a streaming engine. Since Figure 1 created indexes on

the LiveTweets dataset, the incoming data is also appropriately

stored and indexed for efficient data access.

Fig. 2: Initializing AFrame Objects

B. Operating on Data

As most EDA tools are designed to work with in-memory

data, the eager evaluation strategy can suffice even when a

session involves multiple scans over the entire dataset. How-

ever, multiple scans over a large distributed dataset would be

very costly and have a negative effect on system performance.

AFrame leverages lazy evaluation. AFrame operations are

incrementally translated into SQL++ queries that are sent to

AsterixDB (via its RESTful API) only when final results are

called for. Figure 3 shows an example of some expressions

in AFrame when issuing Pandas-like DataFrame expressions.

Input 4 (labeled In [4]) issues a selection predicate on the

live dataset declared in Figure 2. Input 5 performs attribute

projections. Neither inputs 4 or 5 trigger query evaluation; they

only modify an underlying AFrame query. Input 6 performs

an action that requests the actual output of two records,

so AFrame takes the underlying query, appends a ‘LIMIT

2’ clause to it, sends it to AsterixDB for evaluation, and

displays the requested data. For debugging purposes, AFrame

allows users to observe the underlying query resulting from

the incremental query formation process. Input 7 prints the

underlying query resulting from Input 4. Input 8 prints the

underlying query of Input 5 (which adds projected attributes

to the selection query). These are examples of queries that

correspond to simple DataFrame operations. However, even

complex DataFrame expressions that result in nested SQL++

queries are efficiently translated into optimized query plans

in order to minimize data access. This is another benefit of

operating on AsterixDB and utilizing its query optimizer.

In its early development stage, AFrame today covers es-

sential Pandas’ operations for exploratory analyses that are

suitable for large-scale unordered data. Currently, AFrame’s

supported operations include column selection and projection,

statistical operations (e.g., describe), arithmetic operations

(e.g., addition, subtraction, etc.), applying functions, joining,

categorizing data (sorting and ordering), grouping (group by

and aggregation), and persisting data.

Fig. 3: DataFrame expressions and underlying queries

C. Support for Machine Learning Models

Following the data wrangling and hypothesis forming pro-

cess, distributed systems are often required to accommodate

the development and usage of customized machine learning

models. The goal of the modeling step is to create an effective

machine learning model that can make accurate predictions.

With AFrame, analysts can apply either a prepackaged model

or create a custom machine learning model from their local

environment that can be applied to a distributed dataset directly

from within a Jupyter notebook.

Figure 4 illustrates a sentiment classifier training session

using Python, Scikit-Learn [33], Pandas, and AFrame. It

trains a classifier on the training dataset from Figure 2. This

is a dataset, publicly available on Kaggle [10], containing

Twitter posts related to users’ experiences with U.S. airlines

released by CrowdFlower [7]. The dataset contains labeled



Fig. 4: Training a Scikit-Learn Pipeline

tweet sentiments which are positive, negative, and neutral.

The first step in Figure 4 selects a subset of attributes from

the training dataset. Since the subsetted training data is small

enough to fit in a single node’s memory1, here we convert it

to a Pandas DataFrame and use it to build and train a Scikit-

Learn pipeline to classify sentiment values. The last step after

training the model saves it as an executable which can then

be dropped into AsterixDB and utilized as a UDF.

In Figure 5, we show sample code for applying machine

learning models in AFrame using the Pandas-style map func-

tion syntax on the ‘text’ column to get sentiment value

predictions. Input 10 in the figure displays a sample of the text

column from the liveDF dataset created in Figure 2. Input 11

applies the pre-trained Stanford CoreNLP sentiment analysis

model [37] to the text column and displays two records. The

CoreNLP sentiment annotator produces 5 sentiment classes

ranging from very negative to very positive (0-4). Input 12

applies our custom Scikit-Learn sentiment analysis model

(created in Figure 4) to the same data.

Under the hood, AFrame utilizes AsterixDB’s UDF frame-

work to enable users to import and then apply their own

machine learning models written in popular programming

languages (e.g., Java and Python) as functions.

Fig. 5: Applying CoreNLP and Scikit-Learn models

D. Result Persistence

After constructing a model, the next step would be to

deploy the model and to apply it on real data. Input 13

in Figure 6 shows an example of how to apply the Scikit-

Learn sentiment function to the ‘text’ field of a queried

1Scikit-Learn’s model training is required to take place on a single-node,
but we are then able to utilize its trained models in a distributed setting.

subset (coords) of the live Twitter records resulting from the

operations in Figure 3. It then saves the sentiment prediction

as a new field called ‘sentiment’. Input 14 selects only records

with negative sentiment for future root cause analysis. In

AFrame, the result of an AFrame operation can optionally be

persisted as another dataset by issuing the ‘persist’ command

and providing a new dataset name, as shown by Input 15 in

Figure 6. Persisting an analysis result is efficient here, as the

data has never left AsterixDB storage and the new dataset

(demo.negTweets) can be accessed right away without having

to wait for a file scan. Input 16 displays sampled records

from the new dataset created using AFrame; their sentiment is

negative and they only contain a subset of the attributes from

the original dataset.

Fig. 6: Persist Sentiment Analysis Results

E. Summary

We have demonstrated through an example how to use

AFrame to acquire live Twitter data, manipulate the data,

train and apply a custom Scikit-Learn model to get senti-

ments from the data, and save an analysis result for further

investigation. AFrame provides a Pandas-like user experience

without suffering from Pandas’ single-node and in-memory

requirements. AFrame does not load all data from a file or

store its intermediate analysis results in memory. It can utilize

database features to efficiently retrieve data and accelerate data

manipulation on large-scale distributed data. By offloading

data management to a distributed database system, AFrame

remains a lightweight library that provides a scale-independent

user experience to data scientists with any level of expertise.

IV. A DATAFRAME BENCHMARK

In order to evaluate our AFrame implementation and com-

pare its performance to that of other distributed DataFrame

libraries, we have constructed a preliminary DataFrame bench-

mark. Inspired by the early Wisconsin Benchmark [23] from

the relational world, we propose a benchmark that evaluates

DataFrames in several key dimensions that are important to

conducting large-scale data analyses. This is similar to how

the Wisconsin Benchmark was used to assess early relational

database system performance. We also aim to provide mem-

bers of the data science community with a tool to help them

select a framework that is best suited to their project.



Our DataFrame Benchmark is designed to evaluate the

performance of DataFrame libraries against data of various

sizes in both local and distributed environments. As an initial

set of evaluated systems, we selected the following DataFrame

frameworks: Pandas, PySpark, Pandas on Ray (Modin), and

AFrame. There are several factors that contributed to our

framework selection. First, since our goal is to support

DataFrame syntax on large-scale data, it is appropriate to com-

pare how systems perform with regard to the original Pandas

DataFrames in a single node environment. Second, Apache

Spark is a popular framework for distributed processing of

large-scale data, so comparing against Spark DataFrames gives

us a good understanding and comparison to a commercial and

well-maintained DataFrame project. Pandas on Ray is another

project that is trying to solve the same data scientists’ problem,

but using a different approach, so we also include it in our

initial set of platforms.

A. Benchmark Datasets

In order to discover useful information from large volumes

of modern data, most data science projects rely on data

exploration. DataFrames are one of the most popular data

structures used in data exploration and manipulation. A mature

DataFrames library must be able to handle exploratory data

manipulation operations on large volumes of data efficiently.

The design of our DataFrame micro benchmark aims at

reflecting these expectations in its workload.

For our benchmark datasets, we have chosen to use a

synthetically generated Wisconsin benchmark dataset instead

of using data from social media sites to allow us to precisely

control the selectivity percentages, to generate data with

uniform value distributions, and to broadly represent data for

general analysis use cases (not just social media). A specifica-

tion of the attributes in the Wisconsin benchmark’s dataset is

displayed in Table I. The unique2 attribute is a declared key

and is ordered sequentially, while the unique1 attribute has 0

to (cardinality-1) unique values that are randomly distributed.

The two, four, ten and twenty attributes have a random order-

ing of values which are derived by an appropriate mod of the

unique1 values. The onePercent, tenPercent, twentyPercent,

and fiftyPercent attributes are used to provide access to a

known percentage of values in the dataset. The dataset also

contains three string attributes: stringu1, stringu2, and string4.

The stringu1 and stringu2 attributes derive their values from

the unique1 and unique2 values respectively. The string 4

attribute takes on one of four unique values in a cyclic fashion;

its unique values are constructed by forcing the first four

positions of a string to have the same value chosen from a

set of four letters: [A, H, O, V].

For our DataFrame benchmark, we used a JSON data

generator to generate Wisconsin datasets of various sizes

ranging from 1 GB (0.5 million records) to 40 GB (20 million

records). In addition to JSON, we also evaluate systems using

other widely used input formats, namely Parquet [4] and CSV.

Attribute name Attribute domain Attribute value
uniquel O..(MAX-1) unique, random
unique2 O..(MAX-1) unique, sequential
two 0..1 uniquel mod 2
four 0..3 uniquel mod 4
ten 0..9 uniquel mod 10
twenty 0..19 uniquel mod 20
onePercent 0..99 uniquel mod 100
tenPercent 0..9 uniquel mod 10
twentyPercent 0..4 uniquel mod 5
fiftyPercent 0..1 uniquel mod 2
unique3 O..(MAX-1) uniquel
evenOnePercent 0,2,4, ...,198 onePercent*2
oddOnePercent 1,3,5, ...,199 (onePercent *2)+ 1
stringul per template derived from uniquel
stringu2 per template derived from unique2
string4 per template cyclic: A, H, O, V

TABLE I: Scalable Wisconsin benchmark: attributes [23]

B. Benchmark Queries

The essential characteristic that makes DataFrame an ap-

pealing choice for data scientists is its stepwise syntax for

exploratory tasks and data manipulation. As a result, we

have designed our benchmark queries to target a set of

core exploratory operations and visualization tasks. Table II

summarizes the details of our initial DataFrame benchmark

expressions. All evaluated frameworks except Pandas on Ray

provide support for all of our benchmark expressions. Pandas

on Ray defaults back to Pandas if the given expression has not

yet been implemented to take advantage of its parallel process-

ing engine. (In our case, these expressions are expressions 4,

8, and 12 in Table II.) Our initial set of expressions consist of

analysis operations that include selection, projection, grouping,

sorting, aggregation, and join. For expressions 2, 5, 9, and 10,

we only asked for sampling because loading the entire dataset

into memory would not be desirable in an exploratory big data

context. For the join expression, both datasets are of the same

size with the same number of records ranging from 1 GB to

40 GB. When executing the benchmark, each expression is

run 15 times, and the first five results were excluded from the

calculation to account for any JVM warm-up overheads. The

recorded results are averaged over 10 runs. Our DataFrame

benchmark expressions are detailed in Table II. We randomly

generated values for the expression predicates (e.g., df[‘ten’]

== $x ) that fall within the tested attributes’ range to reduce

the effect of any in-memory caching between runs.

C. Evaluated System Details

The details of each systems’ setup are provided below.

Pandas: Pandas DataFrame only works on a single machine

environment and on data that fits in memory. It is important to

note that Pandas only utilizes a single core for processing and

that we use it with its default settings (without any additional

configuration). It is labeled “Pandas” in the experimental

results presented in this paper.

Spark: Spark indicates in its DataFrame API document that

there is a significant difference in its DataFrame creation time

when reading from JSON files if a data schema is provided.

This performance benefit comes from eliminating its initial

schema inference step. As a result, a dataset schema was

also included in our benchmark. For single node experiments,



ID Operation Description DataFrame Expression

1 Total Count Total count len(df)

2 Project Project records on attributes two and four df[[‘two’,‘four’]].head()

3 Filter & Count Count records that satisfy column conditions
len(df[(df[‘ten’] == x) & (df[‘twentyPercent’] == y) &

(df[‘two’] == z)])

4 Group By Count records with the same column value df.groupby(‘oddOnePercent’).agg(‘count’)

5 Map Function Apply a function to a column df[‘stringu1’].map(str.upper).head()

6 Max Retrieve a max column value df[‘unique1’].max()

7 Min Retrieve a min column value df[‘unique1’].min()

8 Group By & Max Retrieve the max column value for each group df.groupby(‘twenty’)[‘four’].agg(‘max’)

9 Sort Order records based on a column df.sort_values(‘unique1’, ascending=False).head()

10 Selection Retrieve some records that satisfy column conditions df[(df[‘ten’] == x)].head()

11 Range Selection Count records in a selected range len(df[(df[‘onePercent’] >= x) & (df[‘onePercent’] <= y)])

12 Join & Count Count records resulting from an inner join
len(pd.merge(df, df2, left_on=‘unique1’,

right_on=‘unique1’,how=‘inner’))

TABLE II: Benchmark Operations (df, df2 = DataFrame objects, x,y,z = variables representing random values within range)

we used Spark in its local standalone operating mode. In the

distributed environment, we configured HDFS as its distributed

storage and used its standalone cluster manager. We evaluated

Spark’s DataFrame on both JSON and Parquet data using

the default setup configurations. The three evaluated Spark

variations are labeled “Spark JSON”, “Spark JSON Schema”,

and “Spark Parquet” in the experimental results section.

AFrame: In order to evaluate AFrame, the benchmark

datasets are expected to be resident in AsterixDB (as opposed,

e.g., to HDFS) when running the operations. Similar to the

Wisconsin benchmark queries, some of the expressions can

benefit from indexes, so we executed the queries on both

indexed and non-indexed data. Also, even though AsterixDB’s

default data typing is open, there is some benefit when a data

schema is provided. Since we also provided Spark with a

schema, we decided to also evaluate AFrame on a closed data

type with the same pre-defined schema. The three evaluated

AFrame variations are labeled “AFrame”, “AFrame Schema”,

and “AFrame Index” in the experiments presented here.

Pandas on Ray: When we began evaluating the systems,

Pandas on Ray had not yet provided cluster installation in-

structions, so we executed the DataFrame benchmark only on

its single node setup. Notably, Pandas on Ray has implemented

an impressive number of Pandas’ operations to utilize all of the

available cores in the given system. (For functions that have

not been parallelized, it defaults back to using the original

Pandas’ operations.) When we did a preliminary run of the

benchmark to check supported expressions, we noticed that

Pandas on Ray had not yet parallelized Pandas’ load json

method, so we decided to evaluate Pandas on Ray using CSV

files instead. Pandas on Ray is based on a shared, in-memory

architecture; its strength lies in in-memory computation. How-

ever, the project has started to implement support for large

datasets using disk as an overflow for in-memory DataFrames.

D. Experimental Setup

Our DataFrame benchmark provides a set of configurable

parameters to enable both single-node and cluster performance

evaluations. The same suite of benchmark queries were applied

to both settings. Each evaluated framework handles DataFrame

creation differently, and some utilize an eager evaluation

strategy while the others employ lazy evaluation. On top of

that, depending on the flow of an analysis session, data might

or might not already be available in memory, resulting in

additional time to create a DataFrame before issuing analytic

operations. Sometimes, when only a small subset of the data

is needed, DataFrame creation time can dominate the overall

actual operation time. As a result, we separately consider

expression-only run times and total run times (which include

both the DataFrame creation and expression execution times).

In order to provide a reproducible environment for evaluat-

ing these systems, we set all of the evaluated systems up and

executed our benchmark on Amazon EC2 instances. For each

node, we selected the m4.large instance type with the Linux

16.04 operating system, 2 cores, 8 GB of memory, and 100

GB of SSD.

1) Single-Node Setup: We generated the Wisconsin bench-

mark as JSON data in various sizes ranging from 1 GB (0.5

million records) to 10 GB (5 millions records). The Parquet

and CSV datasets were created by converting the JSON files;

they contained the exact same logical records as the JSON

datasets. Table III shows the numbers of records and the byte

sizes of each dataset for all file formats. The sizes of the

Parquet files are significantly smaller due to its compression

and its internal data representation. The JSON structure is

based on key-value pairs. Each JSON record contains all of the

necessary information about its content, and in principle each

record could contain different fields in different orders. CSV

is more compact than JSON due to the facts that its schema

is only declared once for the whole file and that each record

has an identical list of fields in the exact same order. Parquet

is a column-oriented binary file that contains metadata about

its content. Parquet is the most compact file format among the

three formats tested.

Dataset Name

XS S M L XL

Number of Records 0.5 mil 1.25 mil 2.5 mil 3.75 mil 5 mil
JSON File Size 1 GB 2.5 GB 5 GB 7.5 GB 10 GB
Parquet File Size 43 MB 110 MB 217 MB 317 MB 426 MB
CSV File Size 715 MB 2.3 GB 4.6 GB 6.8 GB 9.3 GB

TABLE III: Dataset Summary (mil = million)

2) Multi-Node Setup: For the multi-node setting, we only

evaluated Spark and AFrame. The evaluated cluster size

ranged from 2-4 nodes, where each node is a worker except for

one node that is also a master. Speedup and scaleup are the two

preferred and widely used metrics to evaluate the processing



performance of distributed systems, so we evaluated the two

systems using these two metrics.

Speedup Experiment: Ideal speedup is when increasing

resources by a certain factor to operate on a fixed amount of

data results in the overall task processing time being reduced

by the same factor. As a result, speedup reduces the response

time, which also makes resources available sooner for other

tasks. Linear speedup is not always achievable due to reasons

such as start up cost and system interference between parallel

processes accessing shared resources.

For our DataFrame benchmark, we conducted speedup

experiments using a fixed size dataset while increasing the

number of machines from one up to four. The details are

summarized in Table IV, where aggregate memory is the sum

of all of the available memory in the cluster.

1 node 2 nodes 3 nodes 4 nodes

Aggregate Memory 8 GB 16 GB 24 GB 32 GB
JSON File Size 10 GB 10 GB 10GB 10 GB
Parquet File Size 426 MB 426 MB 426 MB 426 MB

TABLE IV: Speedup Experiment Setup

Scaleup Experiment Ideal scaleup is the system’s ability

to maintain the same response time when both the system

resources and work (data) increase by the same factor.

For the scaleup experiments, we increased both the number

of machines and the amount of data proportionally, as sum-

marized in Table V, to measure each system’s performance.

1 node 2 nodes 3 nodes 4 nodes

Aggregated Memory 8 GB 16 GB 24 GB 32 GB
JSON File Size 10 GB 20 GB 30GB 40 GB
Parquet File Size 426 MB 818 MB 1.33 GB 1.75 GB

TABLE V: Scaleup Experiment Setup

V. INITIAL BENCHMARK RESULTS

In this section, we present the initial experimental results

from both the single-node and cluster environments.

A. Single Node Results

For the single-node evaluations, we ran the test suite first on

the XS Wisconsin dataset as a preliminary test to determine

the level of feature support in each framework and to observe

their relative performance across all twelve expressions. The

XS results are displayed in Figure 7. After the first round, we

ran the benchmark on four other dataset sizes, S, M, L and XL

to evaluate the data scalability of each framework on a single

node. Due to space limitations, Figure 8 only displays selected

results that illustrate some key advantages and disadvantages

of each evaluated system. Note that Figures 7a to 7d and 8e

are all in log scale. As mentioned in the experimental setup

section, we present both the expression run times and the total

run times (which include the DataFrame creation times).

1) Baseline Performance Results: The XS results are pre-

sented in Figure 7. Figures 7a and 7b show the total run times

(including DataFrame creation). Figure 7a displays expression

1-6’s results and Figure 7b displays expression 7-12’s results.

Figures 7c and 7d show the expression-only execution times.

Figure 7c displays expression 1-6’s results, and Figure 7d

displays expression 7-12’s results. The differences between the

total and expression-only times indicate that the DataFrame

creation process can significantly impact performance.

Pandas requires data to be loaded into memory before its

operation evaluations. Since it was not designed for parallel

processing, the total run time including DataFrame creation

was high for Pandas in all of the test cases. However, once

the data was loaded into memory, as shown in Figures 7c and

7d, Pandas performed the best in 10 of the 12 expressions. The

two cases where Pandas was not the fastest were Expressions 5

and 10, and the reason was Pandas’ eager evaluation strategy.

Expression 5 applies a function to a string column, while

expression 10 selects rows that satisfy a column predicate.

However, in the end, both expressions 5 and 10 require only

a small subset (head()) of rows from the dataset. The strict

nature of Pandas’ eager evaluation caused both the function

and the predicate to be applied to the whole dataset before

selecting only a few samples to return. On the other hand,

with lazy evaluation, the expressions can be applied to just

the subset of data needed to fulfill the result’s required size.

Pandas on Ray leverages parallel processing by utilizing

all available cores in a system to load and process the data.

However, there are overheads associated with distributing a

DataFrame, as we can see from Figures 7c and 7d, where

Pandas outperformed Pandas on Ray on all but one expression.

However, Pandas on Ray’s total run time was better than

Pandas’ due to parallel data loading. As the size of the data

grows, so does the time taken to process the data. Pandas

on Ray outperforms Pandas when the task processing time

dominates its work distribution overheads.

Among the three Spark DataFrames, the Parquet-based

DataFrame (Spark Parquet) outperformed the JSON-based

DataFrame (Spark JSON) and the JSON-based DataFrame

with a pre-defined schema (Spark JSON Schema) in most

of the tested cases for both the total and expression-only

evaluation metrics. Spark produces different runtime plans for

the JSON-based DataFrame and the Parquet-based DataFrame,

resulting in the difference in their task execution times even

after the schema inferencing step.

AFrame was the fastest in terms of the total-time evaluation

since its DataFrame creation process does not involve first

loading data into memory from a file. In addition, AFrame

also benefits from the presence of database indexes. Its total-

time performance results for the datasets with indexes are an

order of magnitude faster, as seen for Expressions 1 and 11.

Even in terms of just the expression-only time, AFrame with

an index on the range attribute performed better than Spark

Parquet on Expression 11 (see Figure 7d).

2) Scalability: After the first evaluation round, we eval-

uated the systems’ single-node data scalability by running

each expression on all five different data sizes. Due to space

limitations, we only display a selected subset of the results.

(The full set of results can be found in [36].) As we can

see from Figures 8a and 8b, Pandas and Pandas on Ray
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Fig. 7: XS Results of Single Node Evaluation

were not able to complete the DataFrame creation process

for the M-XL datasets (5-10 GB) due to insufficient memory.

A possible workaround would be to load the data in smaller

chunks; we did not consider applying this workaround because

it would result in customizing the data chunk size and that

would directly affect the performance evaluation. Pandas on

Ray suffers from the same memory limitations as Pandas since

it uses Pandas internally.

The results of our single node scalability evaluation are

largely consistent with those from our first run of functionality

checking. There are some interesting results in the cases of

running Spark on L and XL datasets, which are 7.5 and

10 GB of JSON data (Figures 8a to 8d). These results are

much slower than the others in terms of both the total and

expression-only elapsed times. These results are explained by

Spark’s default settings and its memory management policy.

By default, Spark reserves one GB less than the available

memory (MAX MEMORY - 1) for its executor’s memory.

In our case this results in 7 GBs of memory being reserved

for the executor tasks. When working with data that is larger

than the available memory, Spark processes it in partitions

and spills data to disk if it has insufficient memory. The L

and XL datasets require Spark to spill to disk in order to

complete the tasks, which results in long task execution times.

In the Spark JSON case, providing a schema when creating

a DataFrame from JSON files allows Spark to completely

skips the schema inference step. This results in a lower total

run time than when a schema is not provided. However,

excluding the DataFrame creation time, whether or not the

schema was provided, there was no significant performance

difference between Spark JSON and Spark JSON Schema

across all expressions.

In contrast to JSON, Spark’s Parquet-based DataFrame

performance results were consistent throughout all data sizes

because the Parquet files are much smaller than the JSON

files used to generate them. Since Parquet is supplied with a

data schema and is a column-oriented format, it is especially

suitable for column-based queries such as attribute projections.

One factor to keep in mind is that even the Parquet-based

DataFrame requires some DataFrame creation overhead. Fig-

ure 8c displays the total elapsed time for expression 3, which

asks for the count of records that satisfy column conditions.

We can see that for the XS and S datasets, the Parquet-

based DataFrame total time results were slower than AFrame.

However, as the data size increases and the task processing

time becomes more prominent, the Parquet-based DataFrame

starts to have a better run time than AFrame. The Spark

Parquet-based DataFrame starts to benefit when the operation

time exceeds the DataFrame creation time. In turn, for the

expressions that require access to whole records, such as

expression 10, as seen in Figure 8f, Spark’s JSON-based

DataFrame performed significantly better than its Parquet-

based (columnar) DataFrame. Even in the case that includes

the DataFrame creation time, shown in Figure 8e, Spark’s

JSON-based DataFrame with a pre-defined schema was faster

than Parquet for all data sizes for Expression 10.

AFrame benefits from database optimizations like query

planning and indexing. For expression 1, which asks for a total

record count, AFrame with a primary key index performed the

best for all data sizes. AFrame benefits from having indexes
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Fig. 8: Selected Single Node Evaluation Results (* = value where the bar ends)

on the join attributes (Expression 12), as shown earlier in

Figure 7b; also as the size of the dataset gets larger, the others

suffer more from long DataFrame creation times because

they have to scan an additional dataset for this expression.

AFrame was faster than Spark’s JSON-based DataFrames in

most of the test cases in Figure 7 and continued to be so as

shown in Figure 8 for both expression-only and total times

evaluations. AFrame without indexes was slower than Spark

Parquet in most of the column-based expression-only times.

However, for whole-row-based expressions, such as expression

10 (Figures 8e and 8f), AFrame without indexes performed

better than Spark Parquet and were the best for both the

expression-only and total run time evaluations.

B. Multi-Node Results

For the distributed environment evaluation, as mentioned

earlier, we have only evaluated Spark and AFrame. We eval-

uated Spark on the same three DataFrame creation sources:

JSON, JSON with schema, and Parquet. Likewise, we eval-

uated AFrame on its same three datasets, which are datasets

with an open datatype, with a schema, and with an index.

For the multi-node evaluation, we evaluated the systems’

performance in a distributed environment. As we observed in

the single node evaluation, Spark spills to disk for both the L

and XL datasets (7.5 and 10 GB), which significantly affected

its performance. In order to observe the effect of clusters

processing data that is larger than the available aggregate

memory, we chose to start our multi-node evaluation with the

10-GB dataset. Here we evaluated both systems according to

both the speedup and scaleup metrics.

The multi-node evaluation was performed on ec2 machines

with the same specifications as the single node evaluation. Due

to space limitations, Figures 9 and 10 only display selected

multi-node scaleup and speedup evaluation results. (Again, the

full set of results are available in [36].)

1) Speedup Results: The results for both Spark and AFrame

are consistent with their single-node results in terms of their
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Fig. 9: Selected Multi-Node Speedup Evaluation Results (log scale)
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Fig. 10: Selected Multi-Node Scaleup Evaluation Results

performance rankings. Both systems processed the tasks faster

when increasing the number of processors while maintaining

the same data size. Spark’s performance improved drastically

when the distributed data begin to fit in memory in the case

of JSON DataFrames. Figures 9a and 9b show that increasing

the number of processing nodes reduces Spark JSON-based

DataFrame’s run time by an order of magnitude in the case of

going from a single node to a 2-node cluster. However, once

the data fits in memory, increasing the number of nodes no

longer results in such a drastic change (as we can see from the

flatter lines for both of Spark’s JSON-based DataFrames going

from 2 nodes to 4 nodes). For expression 1, AFrame with

an index and Spark’s Parquet-based DataFrame performed

the best. AFrame operating on a dataset with a primary

key index was faster than Spark in the total time case, and

Spark’s Parquet-based DataFrame was best in terms of the

expression-only time. Similar to the single node results, the

Parquet-based DataFrame was the slowest in expression-only

evaluation when access to the entire data record is required, as

seen for expression 10 in Figure 9d across different numbers

of nodes. In both Figures 9c and 9d, AFrame with and without

schema are the fastest.

2) Scaleup Results: In Figure 10, selected scaleup results

for Spark and AFrame are presented. No single system

performed the best across all tasks. Spark’s Parquet-based

DataFrame was the fastest for column-based expressions and

was consistently competitive, but it also incurred an overhead

for DataFrame creation. However, for row-based expressions,

AFrame continued to follow the same trend from the single

node case with the XL dataset, outperforming Spark Parquet.

As we saw in Figure 10c, by providing the Spark JSON-

based DataFrames with a schema, the total time is reduced

by an order of magnitude, especially when only a subset of

data is required. Expression 10 only samples a few records

from a large dataset, which causes the schema inference time

to otherwise dominate the actual expression execution time.

C. Discussion

Pandas performed competitively on all tasks for a single

node when the data fits in memory. However, its weaknesses

lie in resource utilization and scalability. The memory require-

ment for Pandas is large and it can only take advantage of a

single processing core. In addition, Pandas’ eager evaluation

strategy has disadvantages when expressions involve poten-

tially repetitive tasks. Operations that only view a small subset

of the data took longer on Pandas than on frameworks that

utilize parallel processing and/or lazy evaluation.

Pandas on Ray did an excellent job in functionally covering

Pandas operations. It reroutes operations to the default Pandas

when its parallel work distribution has not been enabled for

an operation. While treating Pandas DataFrame as a black

box does not solve the problem of its memory requirement,

it utilizes parallel processing for loading and processing data

in order to speed up the computation. Evaluating the system

as-is reveals that there can be significant overhead associated

with work distribution for Pandas on Ray. This is a known

issue which is mentioned in the project’s own benchmarking



results [13]. Its experimental out-of-core support will be worth

looking into once it is enabled and distributed installation

instructions are provided.

Spark DataFrame provides similar syntax to that of Pandas’

with the ability to operate on data that exceeds the per-

node memory limit; it provides a friendly interface to the

Apache Spark distributed compute engine. While Spark can

operate on large datasets, its performance drastically degrades

when having to work with insufficient cluster memory as

its strength lies in in-memory computation. As a result, on

large datasets, its JSON-based DataFrame was an order of

magnitude slower than AFrame. On the other hand, its Parquet-

based DataFrame performed quite competitively across all data

sizes. Due to its compression, a Parquet file is much smaller

than a JSON file with the same logical data content. Finally,

Parquet is a columnar file format, which makes the Parquet-

based DataFrame an excellent fit for column-based operations

but slower on tasks that require access to the entire payload

of each data record.

A unique characteristic that sets AFrame apart from other

large-scale DataFrame libraries is its ability to operate on man-

aged and indexed data. AFrame benefits from its AsterixDB

backend in several ways. First, it can eliminate repetitive file

scans during the DataFrame creation process since datasets

have been ingested and stored on disk in AsterixDB. Second,

it is able to operate on data larger than the available mem-

ory, seamlessly, without requiring additional effort. Third, it

eliminates issues that could arise from manually managing

large amounts of data from various sources. Flat file storage

requires effort to maintain and can be difficult to share between

multiple users; modifying data in traditional storage can be

prone to corruption because of a lack of transactional support.

In addition, by having a distributed data management system

as its backend, complex DataFrame operations that would

otherwise execute inefficiently can be optimized by a database

query optimizer. AsterixDB provides query plan optimization

and indexing that enable AFrame to perform competitively,

especially in terms of the total time evaluations.

VI. CONCLUSIONS & FUTURE WORK

In this work, we have shown the practicality of utilizing

a distributed data management system to scale data scien-

tists’ familiar DataFrame operations to work against modern

data at scale without requiring distributed data engineering

expertise. We can also increase data analysts’ productivity

by optimizing their operations’ execution times through lazy

evaluation and database query optimization. AsterixDB also

provides additional benefits to AFrame, such as the ability

to utilize pre-trained models from packages such as Scikit-

Learn (as-is) without requiring specialized large-scale machine

learning skills. Finally, with AsterixDB’s built-in social media

data feeds, data scientists can operate on live datasets in the

same way that they would work with static data.

In order to evaluate our initial AFrame prototype, we

have also proposed a DataFrame benchmark for evaluating

DataFrame performance on analytic operations. Our bench-

mark can be used in both single-node and distributed set-

tings. Our experiments showed that AFrame can operate

competitively in both settings. We have also demonstrated

that optimizations can be crucial when dealing with data at

scale. Our DataFrame benchmark, even at this early stage, can

help data scientists better understand the performance of their

workloads and understand distributed frameworks’ tradeoffs.

Moving forward, we have a list of new functionality and

improvements that we would like to implement for both

AFrame and the DataFrame benchmark. We are adding nested

data handling and window functions to AFrame. We also plan

to make AFrame less query language specific by abstracting

its language layer from the DataFrame operation translation

mechanism. We would then be able to deploy AFrame on

other query-based data management systems (e.g., Postgres).

The DataFrame benchmark is preliminary work that has

served a purpose by allowing us to evaluate the feasibility

of AFrame and to compare its initial performance against

other frameworks. However, the benchmark is a work in

progress and needs more analytic operations to be included

in order to evaluate other aspects of distributed DataFrames.

We also intend to add more frameworks (e.g., Dask [8]) to

our evaluation and to deploy them in a much larger distributed

environment.
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