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Abstract

Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound datasets and the availability of
such is vital for drug discovery protocols. We assess the bioactivity and ‘‘drug-likeness’’ of a relatively small but structurally
diverse dataset (containing .1,000 compounds) from African medicinal plants, which have been tested and proven a wide
range of biological activities. The geographical regions of collection of the medicinal plants cover the entire continent of
Africa, based on data from literature sources and information from traditional healers. For each isolated compound, the
three dimensional (3D) structure has been used to calculate physico-chemical properties used in the prediction of oral
bioavailability on the basis of Lipinski’s ‘‘Rule of Five’’. A comparative analysis has been carried out with the ‘‘drug-like’’,
‘‘lead-like’’, and ‘‘fragment-like’’ subsets, as well as with the Dictionary of Natural Products. A diversity analysis has been
carried out in comparison with the ChemBridge diverse database. Furthermore, descriptors related to absorption,
distribution, metabolism, excretion and toxicity (ADMET) have been used to predict the pharmacokinetic profile of the
compounds within the dataset. Our results prove that drug discovery, beginning with natural products from the African
flora, could be highly promising. The 3D structures are available and could be useful for virtual screening and natural
product lead generation programs.
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Introduction

Drug design and discovery efforts have often resorted to natural

sources for hit/lead compound identification [1–5]. This is

because nature is an enormous source for structurally diverse

chemical scaffolds from which drugs can be isolated and/or

synthesized [6–8]. Moreover, natural products (NPs) are unique in

that they are often rich in stereogenic centres and cover segments

of chemical space which are typically not occupied by a majority

of synthetic molecules and drugs [9–11]. In addition, it can be

verified that the African flora has a huge potential and remains an

interesting reservoir for new drugs targeting a variety of diseases

[12].

Modern drug discovery efforts also incorporate computer-aided

approaches like ligand docking, pharmacophore searching, neural

networking and binding free energy calculations of potential drugs

towards a target receptor. The rationale behind such in silico

methods has been to simulate the interaction between a potential

drug molecule and its receptor or binding site (often the drug

target) using 3D computer models [13–14]. Hence, the use of

computer modeling in drug discovery otherwise known as

computer-aided drug design (CADD) requires a compound library

containing 3D structures of potential leads, which need to be

screened in silico, with the view of identifying hit compounds. If this

effort is successful, then the identified hits could be confirmed as

active compounds using screening assays. Such a procedure

considerably cuts down the cost of drug discovery and develop-

ment [15].

At the moment, efforts towards drug discovery from the African

flora have been limited to random screening of extracts and/or

bioassay guided fractionation of extracts from medicinal plant

materials, based on information obtained from the ethnobotanical

uses of the plants [8]. However, these efforts remain below

expectations and their applicability as well as their impact, are not

felt at the level of local populations. Moreover, most screening

efforts are limited to crude extracts and/or in vitro screening, with

only little work on clinical development of the identified active

molecules. The inclusion of in silico methods of drug discovery into

the scene would likely foster efforts towards lead optimization and

facilitates the entry of most interesting compounds into clinical

trials. However, this process requires the development of databases

of 3D structures of compounds, which have been isolated from
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medicinal plants in Africa. It should be mentioned that some of the

chemical structures are available in published articles in interna-

tionally recognized peer-reviewed journals. However, locally

published data (in MSc and PhD theses as well as in local or

national journals) may not be readily available to the wider

scientific community. Moreover, the absence of 3D structures

heavily hampers in silico virtual screening. In our continuous efforts

to build virtual natural product libraries for compounds isolated

from the African flora [16–18], it has become necessary to identify

selected highly potent compounds from the entire continent,

generate their 3D structures and make them available for use in

virtual screening campaigns.

With the exponential increase in computer power [19], it has

become possible today to carry out successful virtual screening on

huge databases like the ZINC library (currently 19,607,982

purchasable compounds) [20–21] in a matter of weeks [19,22].

However, such computer power is currently absent in most

research laboratories on the African continent, thoughtless of

guaranteeing continuous electrical power supplies for long periods

of time. This has therefore necessitated the development of

relatively small compound library (,1000 compounds), known to

contain NPs from across the continent, which have recorded

activities against a wide range of tropical diseases as well as

diseases dominant in rich countries (like cancer and hypertension).

We therefore present AfroDb, which is available in several file

formats, and which could be highly useful in CADD efforts. An

evaluation of the potential oral bioavailability has been carried out

by Lipinski criteria [23] in comparison with Dictionary of Natural

Products (DNP) [24]. Several parameters related to drug

metabolism and pharmacokinetics (DMPK) are also computed.

A diversity analysis has also been carried out in comparison with

the ChemBridge Diverset library [25].

Results and Discussion

Origin and Description of Secondary Metabolites
The distribution of the compound collection by geographical

region of plant origin is shown in Figure 1. This shows that a

majority of the compounds with remarkable biological activities

were derived from the Central Africa region (35%), followed by

Southern Africa (23%) and East Africa (21%). The known

biological activities include very specific descriptions (like inhibi-

tion or modulation of known drug targets, e.g., prolyl endopep-

tidase I inhibition, 11b-hydroxysteroid dehydrogenase inhibition,

a-glucosidase inhibition, enhancement of cAMP-regulated chlo-

ride conductance of cells expressing CFTRDF508, and snake

venom phosphodiesterase I inhibition), while more unspecific

classifications include anti-HIV, antisalmonellal, antimalarial,

antileishmanial, antitubercular, antitrypanosomal, antitumour,

vasodilator, vasorelaxant and hypertensive effects, estrogenic

activities, and activity against Onchocerca gutturosa.

Discussion of Lipinski’s Oral Availability Criteria and
Property Distribution
In modern drug discovery, the identification of lead compounds

often involves the development of compound libraries with a high

level of molecular diversity within the limits of significant ‘‘drug-

like’’ properties [5,9]. Thus, Lipinski’s criteria [23], generally

referred to as the ‘‘rule of Five’’ (ro5), have been used in the

evaluation of the likely oral availability of the compounds within

the AfroDb database. In summary, Lipinski’s ro5 defines a likely

orally available molecule as one for which the molar weight (MW)

#500 Daltons (Da), the logarithm of the octanol/water partition

coefficient representing the lipophilicity factor (log P) #5, the

number of hydrogen bond acceptors (HBA) #10 and the number

of hydrogen bond donors (HBD) #5. A fifth rule dealing with the

number of rotatable bonds (NRB) is often added to these, such that

NRB #5. The distributions of the compound MW, log P, HBA

and HBD were calculated and used to assess the likely oral

availability of AfroDb, as shown in Figure 2. It is noteworthy that

natural products exhibit a wide range of flexibility, from rigid

conformationally constrained molecules to very flexible com-

pounds. Thus, the number of rotatable bonds (NRB) within the

AfroDb library was used as an additional criterion to test for the

favourable drug metabolism and pharmacokinetics (DMPK)

outcomes. It was observed that 57.8% of the compounds within

AfroDb showed no Lipinski violations and 84.3% showed ,2

violations (Figure 2A), while the peak of the distribution of the

MW lies between 301 and 400 (Figure 2B). The log P distribution

showed a Gaussian shaped curve with a peak centred at 3.5 log P

units (Figure 2C), while those of the HBA and HBD rose rapidly to

peak values at 5 acceptors and 1 donor respectively. Moreover,

both HBA and HBD graphs fell rapidly to maximum values of 27

acceptors and 14 donors (Figures 2D and E). The peak value for

NRB was between 3 and 4 (Figure 2F), the graph also falling

rapidly to a maximum value of 61 rotatable bonds (RBs). This last

parameter indicates the high degree of flexibility of some of the

NPs within the database. The MW distribution resembled those

previously reported for other ‘‘drug-like’’ NP libraries in the

literature [5,16,26], with only about 9% of MW .500 Da. In

addition, only about 16% of the compounds had log P values .5,

only about 7% having HBA .10 and only ,9% had HBD .5. It

was observed, however, that some of the compounds had log P

values as high as .21 units. The exceptionally large calculated

logP values (.14) observed in compounds 1 to 3 could be

explained by complex partitioning in long chain aliphatic

compounds, which could not be properly taken into account by

the algorithm employed in the log P prediction. The three long

chain compounds with log P.14 have been shown in Figure 3,

with their plant sources and biological activities given in Table 1.

The above arguments could be verified by the fact the scatter plots

displaying the mutual relationship between the MW versus the

other calculated parameters (log P, HBA, HBD and NRB),

Figure 4, show the highest densities of points within the Lipinski

compliance regions (MW ,500, 22, log P,5, HBA ,10, HBD

,3), and for which NRB ,5.

Comparison with the Dictionary of Natural Products
(DNP)
The distributions of the individual parameters for AfroDb and

the DNP have been compared (Figure 5). These histograms show

only data falling within the Lipinski compliance zones (MW,500,

22# log P,5, HBA ,10, and HBD ,5), the values being

expressed as percentage counts of the respective databases. Our

analyses showed an enhancement of the distributions of AfroDb

over the DNP for Lipinski properties. As for the MW distribution

histograms (Figure 5A), both curves show peaks at 301–400 Da,

the AfroDb having.19% enhancement in MW for the region 301

to 500 Da. Below this range, the percentages were reduced for the

AfroDb when compared to the DNP.

It is noteworthy that an enhancement of the MW profile is a

desirable factor for a more ‘‘drug-like library’’, according to

Lipinski’s criteria. The proportions of the two databases that satisfy

Lipinski’s MW property (,500 Da) were about 73% for the DNP,

as compared to about 84% for AfroDb. This showed an

enhancement of 11.2% for MW values between 301 and 500

Da of AfroDb over the DNP. The maximum values for the log P

distributions were respectively at 3.5 and 2.5 log P units for

African Medicinal Plants 3D Structures Database
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AfroDb and the DNP (Figure 5B). In addition, a corresponding

enhancement of 9.7% for log P values between 2 and 5 units was

observed for AfroDb over the DNP. As per the HBA and HBD

respectively (Figures 5C–D), AfroDb showed improvements of

17.1% for 3, HBA ,8 and 10.8% for 0, HBD ,4 over the

DNP. The peak of the distribution for the HBA for the AfroDb is

at 5 acceptors (19.3%) with a significant increase in 7 or 8

acceptors when compared to the DNP (Figure 5C). Similarly, the

peak of the distribution for the HBD for the AfroDb is at 1

acceptor (25.4%) with a significant increase in 3 or 4 donors as

compared to the DNP (Figure 5D). The overall summary of the

four Lipinski parameters for the two datasets thus reveals that the

AfroDb library is more ‘‘drug-like’’ than the DNP, indicating that

the chances of finding ‘‘lead-like’’ molecules with improved

Figure 1. Bar chart showing the distribution of the compounds within AfroDb by region of collection.
doi:10.1371/journal.pone.0078085.g001

Figure 2. Graph distribution of features that determine ‘‘drug-likeness’’. (A, B) Histogram of Lipinski violations as a percentage of the
AfroDb data set and molar weight distribution, respectively. (C, D, E, F) Distribution curves of the log P, HBA, HBD and NRB, respectively for the 1,008
compounds currently in AfroDb. For subfigure B, the x-axis label is the lower limit of binned data, e.g. 0 is equivalent to 0 to 100.
doi:10.1371/journal.pone.0078085.g002

African Medicinal Plants 3D Structures Database
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DMPK properties within a library such as AfroDb are quite

significant.

Overall DMPK Compliance of the AfroDb Library
There are 24 molecular descriptors calculated by QikProp

software, which are most relevant for the determination the #star

parameter [30]. For a given parameter, 1#star corresponds to the

computed property of a molecule falling outside the range for 95%

of known drugs. A plot of the #stars parameter (on x-axis) against

the corresponding counts (on y-axis) in the AfroDb is shown within

the same set of axes with those of the ‘‘drug-like’’, ‘‘lead-like’’, and

‘‘fragment-like’’ standard subsets, (Figure 6). The criteria for the

respective standard subsets were defined as (MW ,500; log P,5;

HBD#5; HBA#10) [23], (150#MW#350; log P#4; HBD#3;

HBA #6) [31–33] and (MW #250; 22# log P#3; HBD ,3;

HBA ,6; NRB ,3) [34]. It was observed that about 48% of the

compounds within AfroDb showed #star = 0, while about 79%

had #star #2. Among the 610 compounds of the ‘‘drug-like’’

subset, 73.4% had pharmacokinetic descriptors within the

acceptable range for 95% of known drugs, while 98.9% showed

#stars #2. The ‘‘lead-like’’ and ‘‘fragment-like’’ subsets were

respectively 75.2% and 76.0% compliant for all of the 24 most

relevant computed descriptors. The average values for 19 selected

computed descriptors for all 4 compound libraries have been

shown in Table 2. These values indicate a high probability of

finding drug leads within the AfroDb compound library.

Bioavailability Prediction
Two processes determine the bioavailability of a compound;

absorption and liver first-pass metabolism [35]. The solubility and

permeability of the compound, as well as interactions with

transporters and metabolizing enzymes in the gut wall are factors

responsible for absorption, while metabolism depends on the

functional group types present. The computed parameters used to

assess oral absorption revolved around Jorgensen’s famous ‘‘Rule

of Three’’ (ro3). According to the ro3, a compliance with all or

some of the rules (logSwatw{5:7,BIPcaco-2.22 nm/s and #

primary metabolites ,7) is indicative of likelihood to oral

availability. Thus, the most important parameters often considered

are the predicted aqueous solubility, logSwat, the conformation-

independent predicted aqueous solubility, CIlogSwat, the predict-

ed qualitative human oral absorption, the predicted % human oral

absorption. The solubility calculation procedure implemented

depends on the similarity property space between the given

molecule and its most similar analogue within the experimental

training set used to develop the model implemented in QikProp,

i.e., if the similarity is ,0.9, then the QikProp predicted value is

taken. Otherwise, the predicted property, Ppred , is adjusted such

that:

Ppred~SPexpz(1{S)PQP ð1Þ

where S is the similarity, while Pexpand PQPare the respective

experimental and QikProp predictions for the most similar

molecule within the training set. In equation (1), if S~1,then

the predicted property is equal to the measured experimental

property of the training set compound. The distribution curves for

two of the three determinants for the ro3 (logSwatand BIPcaco-2) are

shown in Figure S1. In general 43.6% of the AfroDb library was

compliant with the ro3, while the respective % compliances for the

various subsets were 67.6%, 92.3% and 100% for the ‘‘drug-like’’,

‘‘lead-like’’ and ‘‘fragment-like’’ libraries. The most remarkable

among the individual computed parameters was logSwat, which

was met by 73.8% of the compounds within the AfroDb library.

This property showed a Gaussian distribution for the ‘‘lead-like’’

and ‘‘fragment-like’’ subsets. The predicted apparent Caco-2 cell

permeability, BIPcaco-2 (in nm s21), model the permeability of the

gut-blood barrier (for non-active transport). Even though the

Caco-2 penetration parameter is not often correctly predicted

computationally [36], only 38.2% of the compounds fell within the

respected range for the BIPcaco-2 criterion. Histograms showing the

predicted qualitative human oral absorption parameter (in the

scale 1= low, 2 =medium and 3= high) are represented in Figure

S2. It was observed that 55.8% of the compounds in AfroDb were

predicted to have high human oral absorption. The predicted %

human oral absorption (on 0 to 100% scale) shows a similar trend,

47.0% of the compounds being predicted to be absorbed at 100%

and 63.1% of the compounds predicted to be absorbed at .90%.

The size of a molecule, as well as its capacity to make hydrogen

bonds, its overall lipophilicity and its shape and flexibility are

important properties to consider when determining permeability.

Molecular flexibility has been seen as a parameter which is

dependent on the NRB, a property which influences bioavailabil-

ity in rats [36]. As previously mentioned, the distribution of the

NRB for this dataset showed a peak value lying between 3 and 4

RBs, with an average value of 6.3 (Table 2). The gap between the

average and peak values could be explained by some degree of

conformational flexibility in some of the bulkiest NPs (having as

many as 61 RBs).

Prediction of Blood–brain Barrier (BBB) Penetration
The BBB partition coefficient is a good indicator of the ability of

a drug to have access to the central nervous system (CNS). Drugs

which are too polar do not cross the BBB. The blood/brain

partition coefficients (logB/B) were computed and used as a

predictor for access to the CNS. The predicted CNS activity was

Figure 3. 2D structures of the three compounds with log P
values .14, included in AfroDb.
doi:10.1371/journal.pone.0078085.g003
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computed on a 22 (inactive) to +2 (active) scale and showed that

only 3.8% of the compounds in AfroDb could be active in the

CNS (predicted CNS activity .1). A distribution of logB/B

(Figure 7A) showed a Gaussian-shaped curve with a peak at 20.5

logB/B units (the same for all the standard subsets), with .96% of

the compounds in AfroDb falling within the recommended range

for the predicted brain/blood partition coefficient (23.0 to 1.2).

Madin-Darby canine kidney (MDCK) monolayers, are widely

used to make oral absorption estimates, the reason being that these

cells also express transporter proteins, but only express very low

Figure 4. Pairwise comparison of mutual relationships between molecular descriptors. (A) The distribution of the calculated log P versus
MW, (B) HBA against MW, (C) HBD against MW and (D) NRB versus MW. LCR represents the Lipinski compliant regions.
doi:10.1371/journal.pone.0078085.g004

Table 1. Sources and biological activities of metabolites with calculated log P.14 found in AfroDb.

Compound Plant source (country) Measured activity Reference

01 Klainedoxa gabonensis (Cameroon) xanthine oxidase inhibitory activity [27]

02 Hugonia castaneifolia (Tanzania) antifungal activity against Cladosporium cucumericum [28]

03 Stereospermum acuminatissimum

(Cameroon)
antifungal activities against Candida sp. [29]

doi:10.1371/journal.pone.0078085.t001

African Medicinal Plants 3D Structures Database
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levels of metabolizing enzymes [36]. They are also used as an

additional criterion to predict BBB penetration. Thus, our

calculated apparent MDCK cell permeability could be considered

to be a good mimic for the BBB penetration (for non-active

transport). It was estimated that about 53% of the compounds had

apparent MDCK cell permeability values falling within the

recommended range of 25–500 nm s21 for 95% of known drugs.

This situation was not improved in the ‘‘drug-like’’ and ‘‘lead-like’’

subsets (,55% and ,44% respectively).

Prediction of Dermal Penetration
This factor is important for drugs administered through the

skin. The distribution of computed skin permeability parameter,

logKp, showed smooth Gaussian-shaped graphs centred at 22.5

logKp units for all 4 datasets (Figure S3), with ,92% of the

compounds in the AfroDb database falling within the recom-

mended range for .95% of known drugs. The predicted

maximum transdermal transport rates, Jm (in m cm22 hr21), were

computed from the predicted aqueous solubility (Swat) and skin

permeability (Kp), using the relation (2):

Jm~Kp|MW|Swat ð2Þ

This parameter showed variations from 0 to .1,600 m

cm22 hr21, with only about 2.5% of the compounds in AfroDb

having predicted value of Jm .100 m cm22 hr21.

Prediction of Plasma-protein Binding
The degree to which a drug binds to the blood plasma proteins

may seriously affect its efficacy. This is because binding of drugs to

plasma proteins (like human serum albumin, lipoprotein, glyco-

protein, a, b, and c globulins) greatly reduces the quantity of the

drug in general blood circulation and hence the less bound a drug

is, the more efficiently it can traverse cell membranes or diffuse.

The predicted plasma-protein binding has been estimated by the

prediction of binding to human serum albumin; the logKHSA

parameter (recommended range is 21.5 to 1.5 for 95% of known

Figure 5. Comparison of property distribution for the two datasets by percentage distributions. (A) MW, (B) log P, (C) HBA and (D) HBD.
DNP in red and AfroDb in blue. For subfigure B, the x-axis label is the lower limit of binned data, e.g. 22 is equivalent to 22 to 21.
doi:10.1371/journal.pone.0078085.g005
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drugs). Figure 7B shows the variation of this calculated parameter

within the AfroDb dataset, as well as for the standard subsets. This

equally gave smooth Gaussian-shaped curves centred on 0.5

logKHSA units for the total and ‘‘drug-like’’ libraries and 20.5

logKHSA units for the ‘‘lead-like’’ and ‘‘fragment-like’’ subsets. In

addition, our calculations revealed that .92% of the compounds

within the AfroDb library complied with this parameter, which is

an indication that a bulk of the compounds are likely to circulate

freely within the blood stream and hence have access to their

respective target sites.

Metabolism Prediction
An estimated number of possible metabolic reactions has also

been predicted by QikProp and used to determine whether the

molecules can easily gain access to the target site after entering the

blood stream. The average estimated number of possible

metabolic reactions for the AfroDb library is between 6 and 7,

while those of the standard subsets are respectively between 4 and

5, between 3 and 4 and between 2 and 3 (Table 2). Even though

some of the compounds are likely to undergo as many as up to 25

metabolic reactions due to the complexity of some of the plant

secondary metabolites within the database (Figure S4), up to about

80% of the compounds are predicted to undergo the recommend-

ed number of metabolic steps (1 to 8 reactions), with the situation

improving to ,91% and ,97% in the ‘‘drug-like’’ and ‘‘lead-like’’

subsets respectively.

Prediction of Blockage of Human Ether-a-go-go-related
Gene Potassium (HERG K+) Channel
Human ether-a-go-go related gene (HERG) encodes a potas-

sium ion (K+) channel that is implicated in the fatal arrhythmia

known as torsade de pointes or the long QT syndrome [37]. The

HERG K+ channel, which is best known for its contribution to the

electrical activity of the heart that coordinates the heart’s beating,

appears to be the molecular target responsible for the cardiac

toxicity of a wide range of therapeutic drugs [38]. HERG has also

been associated with modulating the functions of some cells of the

nervous system and with establishing and maintaining cancer-like

features in leukemic cells [39]. Thus, HERG K+ channel blockers

are potentially toxic and the predicted IC50 values often provide

reasonable predictions for cardiac toxicity of drugs in the early

stages of drug discovery [40]. In this work, the estimated or

predicted IC50 values for blockage of this channel have been used

to model the process in silico. The recommended range for

predicted log IC50 values for blockage of HERG K+ channels

(logHERG) is.25. A distribution curve for the variation of the

predicted logHERG is shown in Figure 7C, which is a left-slanted

Gaussian-shaped curve, with a peak at 25.5 logHERG units for

the total library and 24.5 logHERG units for all the standard

subsets. It was observed that, in general, this parameter was

predicted to fall within the recommended range for about 58% of

the compounds within the AfroDb database, ,70% for the ‘‘drug-

like’’ subset and ,90% for the ‘‘lead-like’’ subset.

Diversity Analysis
In order to reduce redundancy and enhance the coverage of

biological activity and chemical space, a dataset for virtual

screening must have the requirement of diversity. In this case,

we carried out a simple molecular descriptor comparison with a

relatively larger known diverse library (the DIVERSetTM Data-

base, containing 48,651 compounds) from the ChemBridge

Corporation [25]. Histograms showing the calculated descriptors;

MW, HBA, HBD, log P, NRB,number of rings (NR), number of

oxygens (NO), and total polar surface area (TPSA) are shown in

Figure 8 for AfroDb (in light green) and the ChemBridge dataset

(in red). The regions shown in dark green represent regions of

intersection. The MW of the AfroDb dataset stretches up to about

1000 Da, while that of the ChemBridge dataset is restricted to the

range 200# MW #500 Da. This observation could be explained

by the complexity and large sizes of some of the compounds within

the natural product library. The large proportion of very large and

complex NPs in AfroDb, could also explain the average molar

weight (MW~406Da), when compared to those of the standard

‘‘drug-like’’, ‘‘lead-like’’ libraries and typical drugs (MW~310Da

for typical drugs) [41]. This same explanation holds for the trend

which is observed in the distributions of log P, HBD, NCC, NO,

NRB, NR, TPSA and HBA for AfroDb, when compared with the

ChemBridge dataset. It was generally observed that the AfroDb

Figure 6. Distribution curves for#stars within the AfroDb library, along with the standard ‘‘drug-like’’, ‘‘lead-like’’ and ‘‘fragment-
like’’ subsets. Blue =AfroDb library, red = ‘‘drug-like’’ subset, green= ‘‘lead-like’’ subset and violet = ‘‘fragment-like’’ subset.
doi:10.1371/journal.pone.0078085.g006
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Table 2. Summary of average predicted pharmacokinetic property distributions of the total AfroDb library in comparison with the
various subsets.

Library name aLib. size b% compl. cMW (Da) dLogP eHBA fHBD gNRB

Total 1008 48 406 3.99 5.76 1.67 6.30

Drug-like 610 73 328 2.99 4.89 1.25 4.24

Lead-like 239 75 266 2.44 3.91 0.87 3.43

Fragment-like 51 76 219 1.89 3.39 0.60 1.40

Library name hLogB/B iBIPcaco-2 (nm

s-1)

jSmol (Å
2) kSmol,hfob (Å2) lVmol (Å

3) mLogSwat (S in

mol L-1)

nLogKHSA

Total 20.90 1516 674 415 1265 25.11 0.59

Drug-like 20.63 1663 568 312 1030 23.88 0.21

Lead-like 20.57 2032 492 235 860 23.11 20.02

Fragment-like 20.29 1983 424 139 712 22.50 20.20

Library name oMDCK pIndcoh
qGlob rQPpolrz (Å3) sLogHERG tLogKp

u
# metab

Total 859 0.009 0.84 41.78 24.68 22.84 6.13

Drug-like 944 0.008 0.87 33.75 24.33 22.73 4.85

Lead-like 1206 0.005 0.89 27.54 23.99 22.55 3.56

Fragment-like 1078 0.005 0.91 23.27 23.90 22.39 2.28

aSize or number of compounds in library;
bPercentage of compounds with #star = 0;
cMolar weight (range for 95% of drugs: 130–725 Da);
dLogarithm of partitioning coefficient between n-octanol and water phases (range for 95% of drugs: 22 to 6);
eNumber of hydrogen bonds accepted by the molecule (range for 95% of drugs: 2–20);
fNumber of hydrogen bonds donated by the molecule (range for 95% of drugs: 0–6).;
gNumber of rotatable bonds (range for 95% of drugs: 0–15);
hLogarithm of predicted blood/brain barrier partition coefficient (range for 95% of drugs: 23.0 to 1.0);
iPredicted apparent Caco-2 cell membrane permeability in Boehringer–Ingelheim scale, in nm/s (range for 95% of drugs: ,5 low, .100 high);
jTotal solvent-accessible molecular surface, in Å2 (probe radius 1.4 Å) (range for 95% of drugs: 300–1000 Å2);
kHydrophobic portion of the solvent-accessible molecular surface, in Å2 (probe radius 1.4 Å) (range for 95% of drugs: 0–750 (Å2);
lTotal volume of molecule enclosed by solvent-accessible molecular surface, in Å3 (probe radius 1.4 Å) (range for 95% of drugs: 500–2000 Å3);
mLogarithm of aqueous solubility (range for 95% of drugs: 26.0 to 0.5);
nLogarithm of predicted binding constant to human serum albumin (range for 95% of drugs: 21.5 to 1.2);
oPredicted apparent MDCK cell permeability in nm/sec (,25 poor, .500 great);
pIndex of cohesion interaction in solids (0.0 to 0.05 for 95% of drugs);
qGlobularity descriptor (0.75 to 0.95 for 95% of drugs);
rPredicted polarizability (13.0 to 70.0 for 95% of drugs);
sPredicted IC50 value for blockage of HERG K+ channels (concern,25);
tPredicted skin permeability (28.0 to 21.0 for 95% of drugs);
uNumber of likely metabolic reactions (range for 95% of drugs: 1–8).
doi:10.1371/journal.pone.0078085.t002

Figure 7. Distibution curves for some computed ADME parameters. (A) logB/B, (B) logKHSA, (C) logHERG. For subfigure B, the x-axis label is
the lower limit of binned data, e.g. 22 is equivalent to 22 to 21. The colour codes are according to Figure 5.
doi:10.1371/journal.pone.0078085.g007

African Medicinal Plants 3D Structures Database

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e78085



dataset covers a different physico-chemical space from the

ChemBridge Diversity dataset. Principal component analysis

(PCA) was as well used as a means of comparing the extent of

diversity of the two datasets. This consists in reducing the

dimensionality of the calculated descriptors by linearly transform-

ing the data, by calculating a new and smaller set of descriptors,

which are uncorrelated and normalised (mean= 0, variance = 1).

The PCA scatter plot of the previously calculated physico-

chemical properties of the AfroDb (light green) and ChemBridge

Diverset database (red), shown in Figure 9, is a visual represen-

tation of the molecules in the respective datasets, as described by

the 3 selected principal components (PC1, PC2 and PC3). Each

point shown corresponds to a molecule, the spread of the points

representing the diversity of the respective datasets. The first three

principal components (PCs) explain 80.1% (AfroDb) and 63.7%

(ChemBridge) of the variance of the individual datasets. The larger

number of outliers in the case of the AfroDb dataset (away for the

centre and towards the sides of the cube) indicates a wider

sampling of the chemical space compared to the ChemBridge

Diverset collection.

Searching for Most Common Substructures
The most common substructure selection (MCSS) panel for

compound selection (Figure 10) is based on substructures that can

be synthetically combined and are common in ‘‘drug-like’’

molecules and allows a direct selection and identification of

compounds containing such substructures. The panel highlights

the large diversity of the rings present in the NPs of AfroDb.

Tautomer Generation and Synthetic Accessibility
Evaluation
Of the 1008 compounds within AfroDb, we were able to

identify 2308 possible tautomers, and respectively 1463, 524 and

103 possible tautomers for the standard subsets (‘‘drug-like’’,

‘‘lead-like’’ and ‘‘fragment-like’’). The number of possible

analogues were estimated at 9098, even the synthetic accessibility

scores were quite weak for most of the proposed, as was expected

for NPs.

Some Selected Highly Potent Compounds
Our discussion also includes selected compounds within the

AfroDb database with promising biological activities, which have

been isolated from African medicinal plants from the very first

Figure 8. A simple descriptor-based comparison of the AfroDb database and the ChemBridge Diversity database. Comparison of
typical physico-chemical property distributions (MW, HBA, HBD, NCC, NO, NRB, log P, NR and TPSA) in the AfroDb (green) and ChemBridge Diverset
(red) database. All histograms and scatterplots were generated with the R software [85].
doi:10.1371/journal.pone.0078085.g008
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time. These have been summarised in Table 3, while their 2D

structures are shown in Figure 11.

Among the promising compounds with anticancer activities, the

trachylobane diterpene ent-trachyloban-3b-ol (04), derived from

Croton zambesicus (Euphorbiaceae) in Benin, has been shown to

exert a dose dependent cytotoxic effect, which varies between cell

lines. Induction of apoptosis in HL-60 cells could be detected at a

concentration of 50 mM after 24-h treatment. This compound was

also able to induce apoptosis in human promyelocytic leukemia

cells via caspase-3 activation in a concentration-dependent

manner [42]. Other promising cytotoxic agents included are six

aporphines (05–10) from Cassytha filiformis, among which actino-

daphnine (05), cassythine (06), and dicentrine (07) were also

shown to possess antitrypanosomal properties in vitro on Trypano-

soma brucei brucei [43]. Hypoestoxide (HE, 11), a natural

diterpenoid [a bicyclo (9, 3, 1) pentadecane], derived from

Hypoestoes rosea growing in Nigeria [44] has been reported to be

a potent nonsteroidal anti-inflammatory drug. This compound is

also reported to be non mutagenic and possesses antiangiogenic

and antitumor activities, also inhibiting the activity of IkB kinase

[45,46]. Other potent anticancer compounds have been isolated

from Gaillardia aristata growing in Egypt [47]. These include

neopulchellin (12) and 6a- hydroxyneopulchellin (13), with

respective IC50 values of 0.43 and 0.32 mgmL-1 against human

cancer cell lines (breast (MCF7)) and 0.46, 0.34 mgmL21 against

human colon (HCT116), respectively. Examples of NPs with

anticancer properties derived from plants growing in the Southern

African region include norviburtinal (14) and isopinnatal (15).

Figure 9. A principal component analysis (PCA) plot, showing the comparison of the chemical space defined by the NPs in AfroDb
(green) and the chemical space represented by NPs in the ChemBridge Diversity (red) databases.
doi:10.1371/journal.pone.0078085.g009
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These compounds were derived from Kigelia pinnata harvested in

Zimbabwe and have shown cytotoxic activity against various

cancer cell lines after 144 h exposure [48].

The anti-malarial properties of some of the compounds

included in the AfroDb dataset have been discussed in several

review papers [49–53], as well as compounds with antiparasitic

properties [54] and antimicrobial activities [55]. One of the

Figure 10. MCSS panel in AfroDb, featuring the most common cyclic structures included in the database.
doi:10.1371/journal.pone.0078085.g010

Figure 11. 2D structures of selected promising compounds derived from the African flora and included in AfroDb.
doi:10.1371/journal.pone.0078085.g011
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promising anti-malarial compounds include cryptolepine (16)

derived from Sida acuta (Malvaceae), a plant growing in Côte

d’Ivoire, which traditional healers commonly use for the treatment

of malaria [56]. This compound has shown antiplasmodial activity

against the FcM29-Cameroon (chloroquine-resistant strain) and a

Nigerian chloroquine-sensitive strain, with IC50 values of 0.13 and

0.17 mg/mL respectively.

Usefulness of the AfroDb Library
It is important to mention that virtual screening results

sometimes provide insight and direct natural product chemists to

search for theoretically active principles with attractive ADMET

profiles, which have been previously isolated, but not tested for

activity against specified drug targets (if samples are absent). This

‘‘resurrection’’ process could prove to be a better procedure for

lead search than the random screening, which is common practice

in most laboratories in Africa. AfroDb is constantly being updated;

meanwhile a MySQL platform to facilitate the searching of this

database and ordering of compound samples is under develop-

ment within our group and will also be published subsequently.

However, 3D structures of the compounds, as well as their

physico-chemical properties that were used to evaluate ‘‘drug-

likeness’’ and the DMPK profile, can be freely downloaded in the

(Dataset S1). In addition, information about compound sample

availability can be obtained on request from the authors of this

paper or from the pan-African Natural Products Library (p-

ANAPL) project [57–58].

Materials and Methods

Data Sources and Cutoff Points for Biological Activities
The plant sources, geographical collection sites, chemical

structures of pure compounds as well as their biological activities,

were retrieved from literature sources comprising mainly pub-

lished articles from across the major journals of natural product

chemistry, as well as MSc and PhD theses, textbook chapters, as

well as unpublished conference presentations (from personal

communication with the authors). References were recorded from

1971 to 2013. Following criteria used by Mahmoudi et al. [59]

and Wilcox et al. [60], a pure compound was considered highly

active if IC50,0.06 mM, being active with

0.06 mM#IC50#5 mM, weakly active when 5 mM#IC50#10 mM

and compounds with IC50.10 mM were considered inactive. Up

to weakly active compounds were selected.

Generation of 3D Models, Optimization and Calculation
of Molecular Descriptors
Based on the known chemical structures of the NPs, all 3D

molecular structures were generated using the graphical user

interface (GUI) of the MOE software [61] running on a Linux

workstation with a 3.5 GHz Intel Core2 Duo processor. The 3D

structures were generated using the builder module of MOE and

energy minimization was subsequently carried out using the

MMFF94 force field [62] until a gradient of 0.01 kcal/mol was

reached. The 3D structures of the compounds were then saved

as.mol2 files subsequently included into a MOE database (.mdb)

file and converted to other file formats (.sdf,.mol,.mol2 and.ldb),

which are suitable for use in several virtual screening workflow

protocols. Up to 10 possible tautomers were generated per

compound in the dataset. The MW, NRB, log P, HBA, HBD and

Lipinski violations were calculated using the molecular descriptor

calculator included in the QuSAR module of the MOE package

[61].

Determination of ADMET Profiles
The previously prepared 1,008 low energy 3D chemical

structures in the AfroDb library were saved in.mol2 format and

initially treated with LigPrep [63], distributed by Schrodinger Inc.

This implementation was carried out with the graphical user

interface (GUI) of the Maestro software package [64], using the

OPLS forcefield [65–67]. Protonation states at biologically

relevant pH were correctly assigned (group I metals in simple

salts were disconnected, strong acids were deprotonated, strong

bases protonated, while topological duplicates and explicit

hydrogens were added). A set of ADMET-related properties (a

total of 46 molecular descriptors) were calculated by using the

QikProp program [68] running in normal mode. QikProp

generates physically relevant descriptors, and uses them to perform

ADMET predictions. An overall ADME-compliance score – drug-

likeness parameter (indicated by #stars), was used to assess the

pharmacokinetic profiles of the compounds within the AfroDb

library. The #stars parameter indicates the number of property

descriptors computed by QikProp that fall outside the optimum

range of values for 95% of known drugs. The methods

implemented were developed by Jorgensen et al. [69–70] and

among the calculated descriptors are: the total solvent-accessible

molecular surface, Smol in Å2 (probe radius 1.4 Å) (range for 95%

of drugs: 300–1000 Å2); the hydrophobic portion of the solvent-

accessible molecular surface, Smol,hfob in Å2 (probe radius 1.4 Å)

(range for 95% of drugs: 0–750 Å2); the total volume of molecule

enclosed by solvent-accessible molecular surface, Vmol in Å3 (probe

radius 1.4 Å) (range for 95% of drugs: 500–2000 Å3); the logarithm

Table 3. Summary of selected promising potent compounds derived from African medicinal plants and currently included in
AfroDb.

Compound Plant source (country) Measured activity(ies) Reference

04 Croton zambesicus (Benin) Induction of apoptosis in Human promyelocytic leukemia cells [42]

05–10 Cassytha filiformis (Benin) Cytotoxic, antitrypanosomal [43]

11 Hypoestoes rosea (Nigeria) Anti-inflammatory, antiangiogenic and antitumor activities,
inhibiting the activity of IkB kinase

[44–46]

12–13 Gaillardia aristata (Egypt) Anticancer [47]

14–15 Kigelia pinnata (Zimbabwe) Anticancer [48]

16 Sida acuta (Cote d’Ivoire) Anti-malarial [56]

doi:10.1371/journal.pone.0078085.t003
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of aqueous solubility, logSwat (range for 95% of drugs: 26.0 to

0.5) [69,71]; the logarithm of predicted binding constant to human

serum albumin, logKHSA (range for 95% of drugs: 21.5 to 1.2)

[72]; the logarithm of predicted blood/brain barrier partition

coefficient, logB/B (range for 95% of drugs: 23.0 to 1.0) [73–75];

the predicted apparent Caco-2 cell membrane permeability

(BIPcaco-2) in Boehringer–Ingelheim scale, in nm/s (range for

95% of drugs: ,5 low, .100 high) [76–78]; the predicted

apparent Madin-Darby canine kidney (MDCK) cell permeability

in nm s21 (,25 poor, .500 great) [77]; the index of cohesion

interaction in solids, Indcoh, calculated from the HBA, HBD and

the surface area accessible to the solvent, SASA (Smol ) by the

relation Indcoh=HBA|HBD1/2/Smol (0.0 to 0.05 for 95% of

drugs) [71]; the globularity descriptor, Glob= (4pr2)=Smol , where r
is the radius of the sphere whose volume is equal to the molecular

volume (0.75 to 0.95 for 95% of drugs); the predicted polarizabil-

ity, QPpolz (13.0 to 70.0 for 95% of drugs); the predicted logarithm

of IC50 value for blockage of HERG K+ channels, logHERG

(concern,25) [79–80]; the predicted skin permeability, logKp

(28.0 to 21.0 for 95% of drugs) [81–82]; and the number of likely

metabolic reactions, #metab (range for 95% of drugs: 1–8).

Diversity Analysis and Searching with Most Common
Substructures
The ChemBridge Diverset dataset (48,651 compounds) was

downloaded from the official ChemBridge webpage [25]. The

MW, NRB, log P, log S, HBA, HBD, THSA, TPSA, NO, NCC,

NR and number of Lipinski violations were calculated using the

molecular descriptor calculator included in the QuSAR module of

the MOE package [61]. The LibMCS program of JKlustor [83]

was used for maximum common substructure clustering of the

AfroDb database. In the MCSS search, only structures with MW

#700 were included, since MCSS clustering is only feasible on

small molecules. This means, only 975 of the 1008 compounds of

the AfroDb were analyzed for MCSS. The compounds were

fragmented using the RECAP algorithm [84] and the frequency of

the generated fragments were analysed, leading to the identifica-

tion of the most frequent substructures.

Conclusions

To the best of our knowledge, AfroDb represents the largest

‘‘drug-like’’ and diverse collection of 3D structures of NPs covering

the geographical region of the entire African continent, which is

readily available for download and use in virtual screening

campaigns. Virtual screening workflows usually involve docking a

compound library into the binding site of a target receptor and

using scoring functions and binding free energy calculations to

identify putative binders. The availability of 3D structures of the

compounds to be used for docking is of utmost importance.

Therefore the availability of such structures within AfroDb, as well

as their calculated physico-chemical properties and indicators of

‘‘drug-likeness’’ within this newly developed database will facilitate

the drug discovery process from leads that have been identified

from African medicinal plants.

Supporting Information

Figure S1 Distribution curves for compliance to Jorgen-
sen’s ‘‘Rule of Three’’. (A) calculated logSwat against count,

(B) predicted BIPcaco-2 against count. Colour codes are as defined in

Figure 6.

(TIF)

Figure S2 Histograms showing the distribution of
human oral absorption predictions.

(TIF)

Figure S3 Distribution curves for the predicted skin
penetration parameter. Colour codes are as defined in

Figure 6.

(TIF)

Figure S4 Graphs showing the distribution of the
predicted number of metabolic reactions for compounds

in AfroDb. Colour codes are as defined in Figure 6.

(TIF)

Dataset S1 SDF 3D structures of compounds currently

included in AfroDb, along with computed physico-
chemical descriptors used to predict drug-likeness and
DMPK profile. This file is saved in.sdf format (which can be

viewed using many drug discovery software including Maestro,

MOE, Discovery studio, LigandScout, etc.) or into.ldb format

using the software LigandScout. Requests for other file formats

could be addressed to the authors of this article.

(SDF)
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18. Ntie-Kang F, Onguéné PA, Scharfe M, Owono LCO, Megnassan E, et al.
(2013) ConMedNP: An in silico assessment of the ‘‘druglikeness’’ and medicinal
potential of a natural product library from medicinal plants in Central Africa.
RSC Advances, submitted.

19. Couzin J (1998) Supercomputing-computer experts urge new federal initiative.
Science 281: 762.

20. Irwin JJ, Shoichet BK (2005) ZINC – A free database of commercially available
compounds for virtual screening. J Chem Inf Model 45(1): 177–182.

21. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: A
free tool to discover chemistry for biology. J Chem Inf Model 52: 1757–1768.

22. Buzbee B (1993) Workstation clusters rise and shine. Science 261: 852–853.

23. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and
computational approaches to estimate solubility and permeability in drug
discovery and development settings. Adv Drug Delivery Rev 23: 3–25.

24. Chapman and Hall/CRC Press: Dictionary of Natural Products on CD-Rom.
London; 2005.

25. ChemBridge Corporation website. Available: http://chembridge.com/Accessed
2013 June 13.

26. Feher M, Schmidt JM (2003) Property distributions: differences between drugs,
natural products, and molecules from combinatorial chemistry. J Chem Inf
Comput Sci 43: 218–227.

27. Nkanwen ERS, Gojayev AS, Wabo HK, Bankeu JJK, Iqbal MC, et al. (2013)
Lanostane-type triterpenoid and steroid from the stem bark of Klainedoxa
gabonensis. Fitoterapia 86:108–114.

28. Mdee LK, Waibel R, Nkunya MHH, Jonker SA, Achenbach H (1998) Rosane
diterpenes and bis-dinorditerpenes from Hugonia casteneifolia. Phytochemistry
49:1107–1113.

29. Sob SVT, Wabo HK, Tang C-P, Tane P, Ngadjui BT, et al. (2011) Phenol esters
and other constituents from the stem barks of Stereospermum acuminatissimum.
J Asian Nat Prod Res 13:1128–1134.

30. Schrödinger Press: QikProp 3.4 User Manual, LLC, New York, NY, 2011.

31. Teague SJ, Davis AM, Leeson PD, Opea TI (1999) The design of leadlike
combinatorial libraries. Angew Chem, Int Ed 38: 3743–3748.

32. Oprea TI (2002) Current trends in lead discovery: are we looking for the
appropriate properties? J Comput-Aided Mol Des 16: 325–334.

33. Schneider G (2002) Trends in virtual computational library design. Curr Med
Chem 9: 2095–2102.

34. Verdonk ML, Cole JC, Hartshorn ML, Murray CW, Taylor RD (2003)
Improved protein-ligand docking using GOLD. Proteins 52: 609–623.

35. Van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards
prediction paradise? Nat Rev Drug Discov 2: 192–204.

36. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, et al. (2002)
Molecular properties that influence the oral bioavailability of drug candidates.
J Med Chem 45: 2615–2623.

37. Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, et al.
(2009) The genetic basis of long QT and short QT syndromes: A mutation
update. Human Mutation 30: 1486–1511.

38. Vandenberg JI, Walker BD, Campbell TJ (2001) HERG K+ channels: Friend or
foe. Trends Pharmacol Sci 22: 240–246.

39. Chiesa N, Rosati B, Arcangeli A, Olivotto M, Wanke E (1997) A novel role for
HERG K+ channels: spike-frequency adaptation. J Physiol 501: 313–318.

40. Aronov AM (2005) Predictive in silico modeling for hERG channel blockers.
Drug Discov Today 10: 149–155.

41. KhannaV, Ranganathan S (2011) Structural diversity of biologically interesting
datasets: a scaffold analysis approach. J Cheminform 3: 30.

42. Block S, Gerkens P, Peulen O, Jolois O, Mingeot-Leclercq MP, et al. (2005)
Induction of apoptosis in Human promyelocytic leukemia cells by a natural
trachylobane diterpene. Anticancer Res 25: 363–368.

43. Hoet S, Stévigny C, Block S, Opperdoes F, Colson P, et al. (2004) Alkaloids from
Cassytha filiformis and realted aporphines: antitrypanosomal activity, cytotoxicity,
and interation with DNA and topoisomerases. Planta Med 70: 407–413.

44. Okogun JI, Adesomoju AA, Adesida GA, Lindner HJ, Habermehl G (1982)
Roseanolone: A new diterpene from Hypoestoes rosea. Z Naturforsch 37c: 558–
561.

45. Ojo-Amaize EA, Nchekwube EJ, Cottam HB, Bai R, Verdier-Pinard P, et al.
(2002) Hypoestoxide, a natural nonmutagenic diterpenoid with antiangiogenic
and antitumor activity: possible mechanisms of action. Cancer Res 62: 4007–
4014.

46. Ojo-Amaize EA, Kapahi P, Kakkanaiah VN, Takahashi T, Shalom-Barak T, et
al. (2001) Hypoestoxide, a novel anti-inflammatory natural diterpene, inhibits
the activity of IkB kinase. Cellular Immunology 209:149–157.

47. Salama MM, Kandil ZA, Islam WT (2012) Cytotoxic compounds from the
leaves of Gaillardia aristata Pursh. growing in Egypt. Nat Prod Res 26 (22): 2057–
2062.

48. Jackson SJ, Houghton PJ, Retsas S, Photiou A (2000) In vitro cytotoxicity of
norviburtinal and isopinnatal from Kigelia pinnata against cancer cell lines. Planta
Med 66: 758–761.

49. Schwikkard S, van Heerden RF (2002) Anti-malarial activity of plant
metabolites. Nat Prod Rep 19(6):675–692.

50. Magadula JJ, Erasto P (2009) Bioactive natural products derived from the East
African flora. Nat Prod Rep 26:1535–1554.

51. Titanji VPK, Zofou D, Ngemenya MN (2008) The anti-malarial potential of
medicinal plants used for the treatment of malaria in Cameroonian Folk
Medicine, Afr J Trad CAM 5(3):302–321.

52. Kuete V, Efferth T (2010) Cameroonian medicinal plants: pharmacology and
derived natural products. Frontiers in Pharmacology 1:123.

53. Ntie-Kang F, Lifongo LL, Mbaze LM, Ekwelle N, Owono Owono LC, et al.
(2013) Cameroonian medicinal plants: a bioactivity versus ethnobotanical survey
and chemotaxonomic classification. BMC Complement Altern Med 13(1): 147.

54. Hoet S, Opperdoes F, Brun R, Quetin-Leclercq J (2004) Natural products active
against African trypanosomes: a step towards new drugs. Nat Prod Rep 21: 253–
264.

55. Kuete V (2010) Potential of Cameroonian plants and derived products against
microbial infections: a review. Planta Med 76:1479–1491.

56. Banzouzi JT, Prado R, Menan H, Valentin A, Roumestan C, et al. (2004)
Studies on medicinal plants of Ivory Coast: Investigation of Sida acuta for in vitro
antiplasmodial activities and identification of an active constituent. Phytomedi-
cine 11: 338–341.

57. Chibale K, Davies-Coleman M, Masimirembwa C (2012) Drug discovery in
Africa: impacts of genomics, natural products, traditional medicines, insights into
medicinal chemistry, and technology platforms in pursuit of new drugs.
Springer.

58. pan-ANAPL: pan-African Natural Products Library. Available: http://www.
linkedin.com/groups/pANPL-4098579/about/Accessed 2013 June 13.

59. Mahmoudi N, De Julian-Ortiz JV, Ciceron L, Galvez J, Mazier D, et al. (2006)
Identification of new antimalarial drugs by linear discriminant analysis and
topological virtual screening. J Antimicrob Chemother 57: 489–497.

60. Bickii J, Njifutie N, Foyere JA, Basco LK, Ringwald P (2000) In vitro
antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae).
J Ethnopharmacol 69: 27–33.

61. Chemical Computing Group Inc.: Molecular Operating Environment Software.
Montreal; 2010.

62. Halgren TA (1996) Merck molecular forcefield. J Comput Chem 17: 490–641.

63. Schrödinger: LigPrep software, version 2.5, LLC, New York, NY; 2011.

64. Schrödinger: Maestro, version 9.2, LLC, New York, NY; 2011.

65. Shivakumar D, Williams J, Wu Y, DammW, Shelley J, et al. (2010) Prediction of
absolute solvation free energies using molecular dynamics free energy
perturbation and the OPLS force field. J Chem Theory Comput 6: 1509–1519.

66. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of
the OPLS all-atom force field on conformational energetics and properties of
organic liquids. J Am Chem Soc 118(45): 11225–11236.

67. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid
simulations] potential functions for proteins, energy minimizations for crystals of
cyclic peptides and crambin. J Am Chem Soc 110(6): 1657–1666.

68. Schrödinger: QikProp, version 3.4, LLC, New York, NY, 2011.

69. Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure.
Adv Drug Deliv Rev 54: 355–366.

70. Duffy EM, Jorgensen WL (2000) Prediction of properties from simulations: free
energies of solvation in hexadecane, octanol, and water. J Am Chem Soc 122:
2878–2888.

71. Jorgensen WL, Duffy EM (2000) Prediction of drug solubility from Monte Carlo
simulations. Bioorg Med Chem Lett 10: 1155–1158.

72. Colmenarejo G, Alvarez-Pedraglio A, Lavandera JL (2001) Cheminformatic
models to predict binding affinities to human serum albumin. J Med Chem 44:
4370–4378.

73. Luco JM (1999) Prediction of brain-blood distribution of a large set of drugs
from structurally derived descriptors using partial least squares (PLS) modelling.
J Chem Inf Comput Sci 39: 396–404.

74. Kelder J, Grootenhuis PD, Bayada DM, Delbresine LP, Ploemen JP (1999) Polar
molecular surface as a dominating determinant for oral absorption and brain
pernetration of drugs. Pharm Res 16: 1514–1519.

75. Ajay, Bermis GW, Murkco MA (1999) Designing libraries with CNS activity.
J Med Chem 42: 4942–4951.

76. Yazdanian M, Glynn SL, Wright JL, Hawi A (1998) Correlating partitioning
and caco-2 cell permeability of structurally diverse small molecular weight
compounds. Pharm Res 15: 1490–1494.

77. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, et al. (1999) MDCK
(Madin-Darby canine kidney) cells: a tool for membrane permeability screening.
J Pharm Sci 88: 28–33.

78. Stenberg P, Norinder U, Luthman K, Artursson P (2001) Experimental and
computational screening models for the prediction of intestinal drug absorption.
J Med Chem 44: 1927–1937.

79. Cavalli A, Poluzzi E, De Ponti F, Recanatini M (2002) Toward a
pharmacophore for drugs inducing the long QT syndrome: Insights from a
CoMFA Study of HERG K+ channel blockers. J Med Chem 45: 3844–3853.

African Medicinal Plants 3D Structures Database

PLOS ONE | www.plosone.org 14 October 2013 | Volume 8 | Issue 10 | e78085



80. De Ponti F, Poluzzi E, Montanaro N (2001) Organising evidence on QT
prolongation and occurrence of Torsades de Pointes with non-antiarrhythmic
drugs: a call for consensus. Eur J Clin Pharmacol 57: 185–209.

81. Potts RO, Guy RH (1992) Predicting skin permeability. Pharm Res 9: 663–669.
82. Potts RO, Guy RH (1995) A predictive algorithm for skin permeability: The

effects of molecular size and hydrogen bond activity. Pharm Res 12: 1628–1633.
83. ChemAxon: JChem software, version 5.11.3; 2012. Website. Available: https://

www.chemaxon.com/jchem/doc/user/LibMCS.html/Accessed 2013 June 13.

84. Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP-retrosynthetic

combinatorial analysis procedure: a powerful new technique for identifying

privileged molecular fragments with useful applications in combinatorial

chemistry. J Chem Inf Comput Sci 38: 511–522.

85. R Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna; 2012. Website http://www.R-

project.org/Accessed 2013 June 13.

African Medicinal Plants 3D Structures Database

PLOS ONE | www.plosone.org 15 October 2013 | Volume 8 | Issue 10 | e78085


